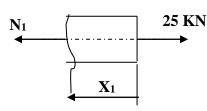
SOLUTION SERIE 1 R.D.M

Exercice 1

Charge: forces de 40 kN, 36 kN et 25 kN.

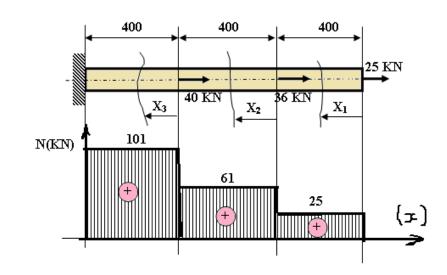
Pour mettre en évidence les efforts internes de la structure on utilise la méthode des sections qui consiste à sectionner des tronçons avec un argument constant de l'effort normal dans le tronçon en question. Exemple, toutes les sections droites de la poutre situées entre l'extrémité droite et la section à une dimension de 400 mm possède le même argument de l'effort normal.

Tronçon I $(0 \le X_1 \le 400)$



à l'équilibre on a :

$$N_1 = 25 KN$$



Tronçon II $(0 \le X_2 \le 400)$

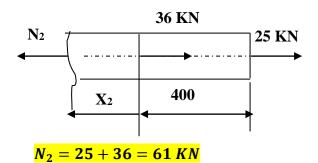
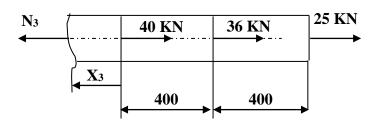


Diagramme des efforts normaux

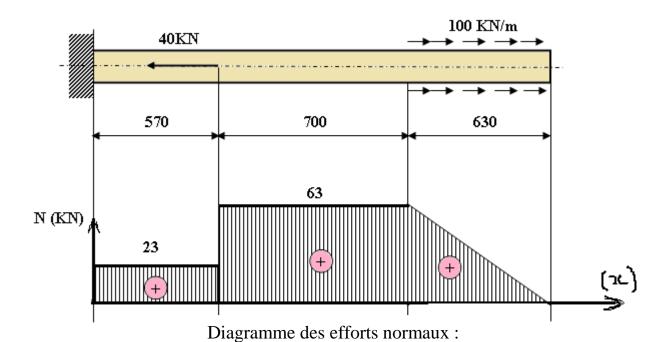
Tronçon III $(0 \le X_3 \le 400)$



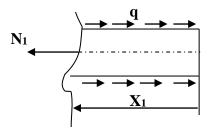
$$N_3 = 25 + 36 + 40 = 101 \, KN$$

Exercice 2

Charge: force concentrée de 40 KN et charge répartie longitudinalement 100 KN/m



Tronçon I $(0 \le X_1 \le 630)$



$$q = 100 \frac{KN}{m} = 100 \cdot 10^{-3} \frac{KN}{mm} = 0.1 \frac{KN}{mm}$$

à l'équilibre du tronçon on a :

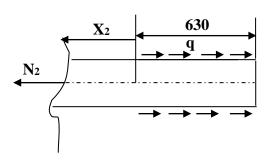
$$q X_1 - N_1 = 0 \qquad \Rightarrow \quad N_1 = q X_1$$

Etudions les bornes de X_1 :

pour
$$X_1 = 0$$
 \Longrightarrow $N_1 = 0$

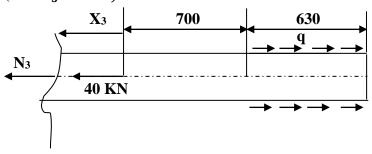
pour $X_1 = 630 \text{ mm}$ \Longrightarrow $N_1 = q.630 = 0, 1.630 = 63 KN$

Tronçon II $(0 \le X_2 \le 700)$



$$N_2 = q.630 = 0, 1.630 = 63 \, KN$$

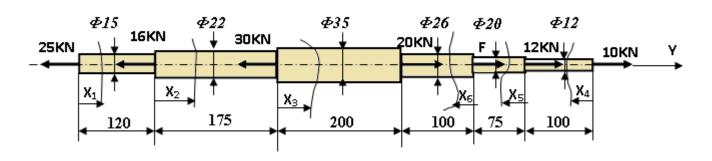
Tronçon III $(0 \le X_3 \le 570)$



$$N_3 = q.630 - 40 = 0, 1.630 - 40 = 23 \, KN$$

Exercice 3

1. Equilibre statique

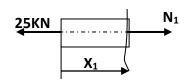


$$\sum Y = 10 + 12 + F + 20 - 30 - 16 - 25 = 0$$

$$\Rightarrow F = 71 - 42 = 29 KN$$

2. Les diagrammes des efforts normaux et des contraintes :

Tronçon I $(0 \le X_1 \le 120)$

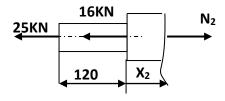


$$N_1 = 25 \, KN$$

$$\sigma_1 = \frac{N_1}{S_1} = \frac{25}{176,71} = 141,47 \text{ N/mm}^2$$

$$S_1 = \frac{\pi d_1^2}{4} = \frac{\pi 15^2}{4} = 176,71 \text{ mm}^2$$

Tronçon II $(0 \le X_2 \le 175)$

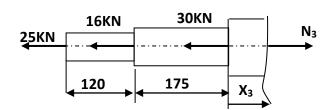


$$N_2 = 25 + 16 = 41KN$$

$$\sigma_2 = \frac{N_2}{S_2} = \frac{41}{380,13} = 107,85 \text{ N/mm}^2$$

$$S_2 = \frac{\pi d_2^2}{4} = \frac{\pi 22^2}{4} = 380,13 \text{ mm}^2$$

Tronçon III $(0 \le X_3 \le 200)$

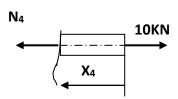


$$N_3 = 25 + 16 + 30 = 71KN$$

$$\sigma_3 = \frac{N_3}{S_3} = \frac{71}{706,85} = 100,44 \text{ N/mm}^2$$

$$S_3 = \frac{\pi d_3^2}{4} = \frac{\pi 30^2}{4} = 706,85 \text{ mm}^2$$

Tronçon IV $(0 \le X_4 \le 100)$

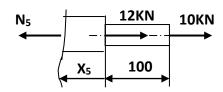


$$N_4 = 10 \, KN$$

$$\sigma_4 = \frac{N_4}{S_4} = \frac{10}{113,09} = 88,42 \text{ N/mm}^2$$

$$S_4 = \frac{\pi d_4^2}{4} = \frac{\pi 12^2}{4} = 113,09 \text{ mm}^2$$

Tronçon V $(0 \le X_5 \le 75)$

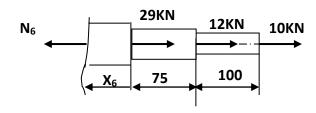


$$N_5 = 10 + 12 = 22 \, KN$$

$$\sigma_5 = \frac{N_5}{S_5} = \frac{22}{314,15} = 70,03 \text{ N/mm}^2$$

$$S_5 = \frac{\pi d_5^2}{4} = \frac{\pi 20^2}{4} = 314,15 \text{ mm}^2$$

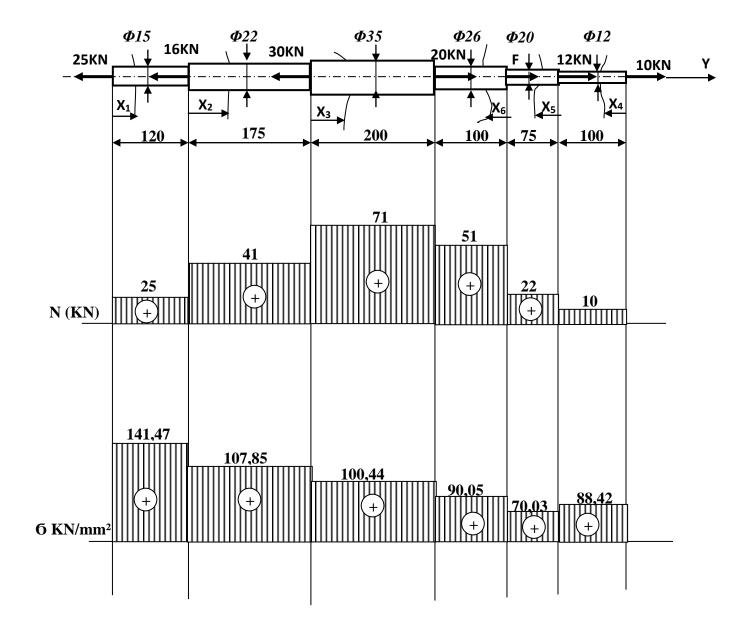
Tronçon VI $(0 \le X_6 \le 75)$



$$N_6 = 10 + 12 + 29 = 51 \, KN$$

$$\sigma_6 = \frac{N_6}{S_6} = \frac{51}{530,92} = 90,05 \text{ N/mm}^2$$

$$S_6 = \frac{\pi d_6^2}{4} = \frac{\pi 26^2}{4} = 530,92 \text{ mm}^2$$



Exercice 3

a) Graphe contrainte δ - déformation ϵ .

Pour tracer ce graphe il faut diviser les forces par la section initiale et les allongements par la longueur initiale :

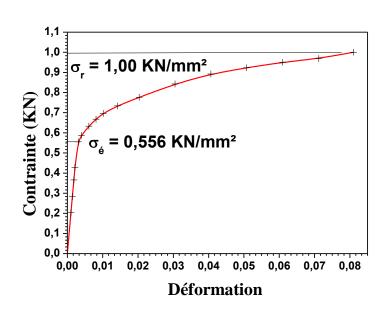
$$\sigma = rac{F}{S_0}$$
 et $rac{\Delta L}{L_0}$

Avec

$$S_0 = \frac{\pi D^2}{4} = \frac{\pi (17,68^2)}{4} = 245,5 \ mm^2$$
 et $L_0 = 25 \ mm$

On obtient:

ε	б
	(KN/mm²)
0	0
0,00102	0,20353635
0,0014	0,28290766
0,00184	0,36620825
0,00214	0,42829077
0,00304	0,55638507
0,00404	0,58781925
0,00608	0,63261297
0,00812	0,66797642
0,01016	0,69626719
0,0142	0,73398821
0,02032	0,77642436
0,03048	0,84243615
0,04064	0,89194499
0,0508	0,92337917
0,06096	0,95088409
0,0712	0,96895874
0,081	1,00



Selon le graphe la limite de rupture est atteinte pour une déformation $\varepsilon = 0,081$ et elle est de 1,00 KN/mm² La limite élastique est atteinte pour une déformation $\varepsilon = 0,0034$ et elle vaut 0,556 KN/mm²

Le de Young est calculé à partir de la courbe linéaire de Hooke où la contrainte est proportionnelle à la déformation :

$$\sigma = E \varepsilon \qquad \Longrightarrow \qquad E = \frac{\sigma}{\varepsilon} \quad soit \ E = \frac{\Delta \sigma}{\Delta \varepsilon}$$

$$E_1 = \frac{[(0,28290766) - (0,20353635)]10^3}{(0,0014) - (0,00102)} = 208871,86 \, \text{N/mm}^2$$

$$E_2 = \frac{[(0,36620825) - (0,28290766)]10^3}{(0,00184) - (0,0014)} = 189319,52 \, \text{N/mm}^2$$

$$E_3 = \frac{[(0,4289077) - (0,36620825)]10^3}{(0,00214) - (0,00184)} = 208998,16 \, N/mm^2$$

$$E_m = \frac{E_1 + E_2 + E_3}{3} = 202396,51 \, N/mm^2$$

Soit
$$E \simeq 2,024 \ 10^5 \ N/mm^2$$

L'allongement pour cent A% est donné par:

$$A\% = 100 \frac{L_u - L_0}{L_0} = 100 \frac{26,75 - 25}{25} = 7\%$$

Le coefficient de striction est donné par :

$$Z\% = 100 \frac{S_u - S_0}{S_0} = 100 \frac{211,49 - 245,5}{245,5} = -13,85\%$$

$$S_u = \frac{\pi(D_u^2)}{4} = \frac{\pi(16,41)^2}{4} = 211,49 \text{ mm}^2$$

EXERCICE 4

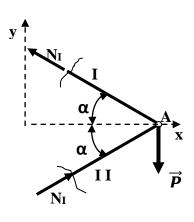
1) Détermination des efforts dans les barres Equations d'équilibre :

$$\sum X = -N_I \cos \alpha + N_{II} \cos \alpha = 0$$

$$\sum Y = N_I \sin \alpha + N_{II} \sin \alpha - P = 0$$

$$\Rightarrow N_I = N_{II} = N$$

$$\Rightarrow 2N \sin \alpha - P = 0 \Rightarrow N = \frac{P}{2 \sin \alpha} = P = 10^3 N$$



En utilisant la condition de résistance on obtient : $\sigma_{max} \leq [\sigma]$ La barre I est soumise à une traction :

$$\sigma_{max} = \frac{N_I}{S_I} \le [\sigma_t]_I \implies S_I \ge \frac{N_I}{[\sigma_t]_I} = \frac{10^3}{10^3} = 1 \text{ cm}^2$$

- La barre II est soumise à une compression:

$$\sigma_{max} = \frac{N_{II}}{S_{II}} \le [\sigma_c]_{II} \implies S_{II} \ge \frac{N_{II}}{[\sigma_c]_{II}} = \frac{10^3}{10^2} = 10 \text{ cm}^2$$

2) Allongements Selon la loi de Hooke

$$\Delta L_{\rm I} = \frac{{\rm N} \ L_{\rm I}}{{\rm E}_{\rm I} {\rm S}_{\rm I}} \quad ; \quad \Delta L_{\rm II} = \frac{{\rm N} \ L_{\rm II}}{{\rm E}_{\rm II} \ {\rm S}_{\rm II}}$$
 Avec $L_{\rm I} = L_{\rm II} = a$ (triangle ABC equilateral)

$$\Delta L_{\rm I} = \frac{\text{N a}}{\text{E}_{\rm I} \text{S}_{\rm I}} = \frac{10^3 \cdot 10^2}{2 \cdot 10^6 \cdot 1} = 0.05 \text{ cm} = 0.5 \text{ mm}$$

$$\Delta L_{\rm II} = \frac{\text{N a}}{\text{E}_{\rm II} \, \text{S}_{\rm II}} = \frac{10^3 \cdot 10^2}{10^6} = 0.1 \, \text{cm} = 1 \, \text{mm}$$

EXERCICE 6

1- Aspect statique

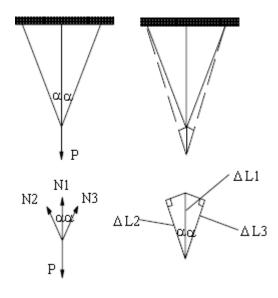
$$\sum Fx = 0$$

$$N_2 \sin \alpha - N_3 \sin \alpha = 0$$

$$\Rightarrow N_2 = N_3 \qquad (1)$$

$$\sum Fy = 0$$

$$N_1 + N_2 \cos \alpha + N_3 \cos \alpha - P = 0$$



2- Aspect géométrique

$$\Delta l_2 = \Delta l_3 = \Delta l_1 \cos \alpha$$

 \Rightarrow N₁ + 2N₂ cos α = P

3- Aspect physique:

$$\Delta L_1 = \frac{N_1 L_1}{ES}$$
 et $\Delta L_2 = \frac{N_2 L_2}{ES}$

En substituant dans (3), on obtient

$$\frac{N_2L_2}{ES} = \frac{N_1L_1}{ES}\cos\alpha \Rightarrow N_2L_2 = N_1L_1\cos\alpha$$

4- Synthèse et résolution des équations

On élimine N_3 de (2) \Rightarrow $N_1 + 2N_2 \cos \alpha = P$

de (5) on tire
$$N_1 = N_2 \frac{L_2}{L_1 \cos \alpha}$$

et en combinant (6) et (7) on aura alors

$$\Rightarrow$$
 N₁ = $\frac{P}{1 + 2\cos^3\alpha}$ et N₂ = N₃ = $\frac{P\cos^2\alpha}{1 + 2\cos^3\alpha}$

Application numérique $P = 10^3$ KN et $\alpha = 30^\circ$