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PREFACE 

This set of problem solutions for the 3rd edition of the author's book Differential Equations 

and Dynamical Systems is intended as an aid for students working on the problem sets that appear 

at the-end of each section in the book. Most of the details necessary to obtain the solutions, along 

\Vi th the solutions themselves, are given for all of the problems in the book. Those solutions not 

found in the main body of the solutions manual can be found in the appendix at the end of the 

manual. 

Any additions, corrections or innovative methods of solution should be sent directly to the 

author, Lawrence Perko, Department of Mathematics, Northern Arizona University, Flagstaff, 

Arizona 86011 or to Lawrence.Perko@NAU.EDU. The author would like to take this opportunity 

to thank Louella Holter for her patience and precision in typing the camera-ready copy for this 

solutions manual and the appendix. 

Also, several interesting new problems as well as a list of additions and corrections for 

the 3rd edition of Differential Equations and Dynamical Systems have been added at the 

end of the appendix in this solutions manual. 
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1. LINEAR SYSTEMS 

PROBLEM SET 1.1 

Let x = (x 1, x2, x3)T = (x, y, z)T and x(O) = (x0, y0, z0)T. 

1. (a) x(t) = x0 e1, y(t) = y0 e1, and solution curves lie on the straight lines y = (yr/x0)x or on the 

y-axis. The phase portrait is given in Problem 3 below with a= 1. 

(b) x(t) = x0 e', y(t) = y0 e2', and solution curves, other than those on the x and y axes, lie on 

the parabolas y = (yr/x~)x2 . Cf. Problem 3 below with a= 2. 

(c) x(t) = x0 et, y(t) = y0e3t, and solution curves lie on the curves y = (yJx~)x3. 

1 

(d) x = -y, y= x can be written as y = x= -y or y + y = 0 which has the general solution 

y(t) = c1 cost+ c2sint; thus, x(t) = y(t) = -c 1 sint + c2cost; or in terms of the initial 

conditions x(t) = x0cost - y0sint and y(t) = x0 sint + Yocost. It follows that for all t ER, 

x2(t) + y2(t) = x~ + y~ and solution curves lie on these circles. Cf. Figure 4 in Section 1.5. 

(e) y(t) = c2e-1 and then solving the first-order linear differential equation x + x = c2e-1 leads 

to x(t) = c1 e-1 + c2 te-1 with c1 = x0 and c2 = y0• Cf. Figure 2 with A< 0 in Section 1.5. 

2. (a) x(t) = x0 e1, y(t) = y0e1, z(t) = z0 e1, and Eu= R3. 

(b) x(t) = x0e-1, y(t) = y0 e-t, z(t) = z0 e1, Es= Span {(I, 0, Q)T, (0, 1, O)T}, and 

P = Span { (0, 0, 1)}. Cf. Figure 3 with the arrows reversed. 

(c) x(t) = x0 cost-y0 sint, y(t) = x0 sint +Yo cost, z(t) = z0 e-1; solution curves lie on the 

cylinders xz + y2 = c2 and approach circular periodic orbits in the x,y plane as t ~ oo; 

Ee= Span { (1, 0, O)T, (0, 1, Q)T}, Es= Span { (0, 0, I)T}. 
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a= -1 a=O a= 1/2 a= I a=2 

4. x1(t) = XweA.1 1, xi{t) = x20 eA.2t, ··-, xn(t) = xn0 eA.01 . Thus, x(t) ---7 0 as t ---7 00 for all 

x0 E Rn if A. 1 < 0, ... , An< 0 (and also if ReC\) < 0 for j = I, 2, ···, n). 

5. If k > 0, the vectors Ax and kAx point in the same direction and they are related by the 

scale factor k. If k < 0, the vectors Ax and kAY. point in opposite directions and are 

related by the scale factor lkl. 

6. (a) ,\·(t) = au(t) + b\{t) = aAu(t) + bAr(t) = A[au(t) + bv(t)] = Aw(t) for all tE R. 

(b) u(t) = (e1, O)T, v(t) = (0, e-2t)T and the general solution of x =Ax is given by x(t) = 

x0u(t) + y0v(t). 

PROBLEM SET 1.2 

1. (a) A1 = 2, A.2 = 4, v1 =(I, -J)T, v2 =(I, J)T, P = [-~ ;]. P-1 = 112[~ -;] and 

B = P-
1
AP = [~ ~] 

[
e21 

y(t) = 0 [
e21 

x(t) = P 
0 

0 ] [e21 +e4t 
41 p-l Xo = l/2 4t 2t 

e e -e 

e4t _ e21] 
. Xo e41 +e21 · 



(b) A1 = 4, A2 = -2, V1 = (1, l)T, V2 = (1, -l)T, 

[

e4t 
y(t) = 0 [

e4t + e-2t 
x(t) = 112 4t -2t 

e -e 

e4t_e-2t] 
4t -2t Xo· 

e +e 

(c) A. 1 = -2, A.2 = 0, v 1 = (1, -I)T, v2 = (1,I)T, 

[

e-21 +1 1-e-2tl 
x(t) = 1/2 x 0 . 

1 - e -21 1 + e -2t 

2. A1 = 1, A2 = 2, A3 = -1, V1 = (2, -2, I)T, V2 = (0, 1, O)T, V3 = (0, 0, I)T 

3. x =Ax 

(a) A=[~ _:] (b) A = [ 0 I] 
-1 0 

(c) A = [ ~ ~ ~]-
-2 1 2 

(Also, see p. 121 in the appendix.) 

4. (a) x(t) = 1/2(3e4t - e2t, 3e4t + e2t) (b) x(t) = l/2(2e1, 6e2t - 2e1, et+ 5e-t). 

5. Jim x(t) = 0 iff A.
1
. < 0 for j = 1, 2, 3, ···, n. 

t->~ 

3 
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6. cp(t, x0) = P e · ·. P-1 x0 and lim cp(t, y0) = <f>(t, x0) since Jim Yo= x0 
[ 

A.,t l 
7. 

A Yo-->•o Yo-->•o 

e ·' 

according to the definition of the limit. 

(c) 

~ 
~ 

(e) 

(b) 

(f) 

PROBLEM SET 1.3 

1. (a) llAll =max IAxl =max .Y 4x2 + 9y2 ~ 31xl; but for x = (0, I )T, IAxl = 1-31 = 3; thus, llAll = 3. 
lxl $I lxl SI · 

(b) Following the hint for (c), we can maximize 1~12 = x2 + 4xy + 5y2 subject to the 

constraint x2 + y2 = I to find x2 = (2 ± {2)/4 and y2 = 1 - x2 which leads to 

llAll = 2.414 2136 ·· ; or si nee AAT = G ~] with eigenvalues 3 ± 2"2, we have 

llAll = .V3+2°\/'2 = I + f2. 



(c) We can either maximize 1Axl2 = 26x2 + lOxy + yz subject to the constraint x2 + y2 = 1; or 

find the eigenvalues of AA T = [
2

5

6 ~] which are (27 ± -./725 )/2; in either case, 

llAll = 5.1925824 .. ·. 

2. By definition, llTll =max IT(x)I. Thus, llTll ~max IT(x)!. But max IT(x)I = sup ITl(xxl )j 
lxl $ I lxl = I lxl = I x " O 

since if lxl = a and we set y = x/a for x -=t 0, then IYI = lxlf a= 1 and since Tis linear, 
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sup ITl(xl )I= sup jT(x)j =sup IT(-!)I =max IT(y)I. Thus, llTll $sup ITl(xl )j $ suplTl(xl )j = 
x" o X x" o a x "o a !YI= I O<lxfsl X x ,,o X 

max IT(x)I. It follows that llTll =max IT(x)I = sup IT(x)l/lxl. 
lxl = I lxl = I x " 0 

3. If Tis invertible, then there exists an inverse, 1 1, such that Tl1 = I and therefore 

llT11ll = 1. By the lemma in Section 3, 1 = llT11
11 $ llTll 111111· This implies that llTll > 0, 

1111l1>0,andll11ll~l~ll' 

4. Given TE L(Rn) with III -Tll < 1. Let a= III -Tll < 1 and the geometric series Iak 

converges. Thus, by the Weierstrass M-Test, I(l-T)k converges absolutely to 
k=O 

SE L(Rn). By induction it follows that T[ I + (I - T) + ··· + (I - T)n] = I - (I - T)n+J. 

Thus,TS=T IO-T)k = IT(l-T)k =Jim IT(l-T)k = 1im[l-(I-Tt+1]=l 
k=O k=O n~00 k=O n~ 00 

since Jim llI-Tll0+I = 0 which implies that Jim (I -T)n+t = 0 since 0 $ jj(I - T)n+tll $ 
n~oo n~oo 

110 -:- T)jj 0 +1• Therefore S = 1 1• 

5. (a) A_ [e2 
0 ] e - 3 . 

0 e-

(b) The eigenvalues and eigenvectors of A are A1 = 1, A2 = -1, v1 = (1, Q)T, v2 = (-1, l)T; 

thus,eA=P[~ e~1 Jir1 =[~ e=-~-t] whereP=[~ -:] 

(c) eA = e[~ ~]by Corollary 4. 
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(d) The eigenvalues and eigenvectors of A are A1 = 2, /...2 = -1, v1 = (2, I)T, v2 = (1, I)T; 

thus, eA = p[e2 ~1]p-1 = [2~2 -e-~I 2e-~1-2~2] where p = [2 I] . 
0 e e - e 2e - e 1 I 

(e) 
[

cos(l) -sin(l)] 
eA = e2 by Corollary 3. 

sin(l) cos(l) 

(f) The eigenvalues and eigenvectors of A are A. 1 = 1, A.2 = -1, v1 = (1, I)T, v2 = (-1, l)T; 

thus eA = P P- = with P = . [
e 0 ] 1 [cosh(l) sinh(l)] . [1 -1] 
0 e-1 sinh(l) cosh(l) 1 1 

Note that A2 =I and from Definition 2 it therefore follows that eA = I(l + 1/2! + 1/4! + ···) + 

A(l + 1/3! + 1/5! + ... )=I cosh(l) +A sinh(l). This remark also applies to part (b). 

6. (a) The eigenvalues are e2, e-3; e, e-1; e, e; e2, e-1; e2±i = ez[cos(l) ± i sin(l)]; e, e-1. 

(b) If Ax= Ax, then eAx = lim [I+ A+ A2/2! + ··· + Ak/k!]x =Jim [x + /..x + A,2x I 2! + ··· + 
k--¥><> k__,oo 

(c) If A= P diag P·) P-1, then by Corollary 1, det eA = det {P diag [e"i] P-1 } = det { diag 

[e"i]} = e"1 ... e1
·k = etraceA. For a 2 x 2 matrix A with repeated eigenvalues/.., we have det 

eA = det [ ~). :~] = e21 = e"'crA; and for a 2 x 2 matrix A with complex eigenvalues, A= 

. [ea cosb -ea sinb] . a± 1b, we have det eA = det = e2a = etraceA (smce the trace A= 
easinb eacosb 

/.. 1 + A2 =(a+ ib) +(a - ib) = 2a in this case). 

7. (a) eA = diag[e, ez, e3]. 

(b) [~ ~ ~l=[~ ~ ~l+[~ ~ ~l=N+SandNS=SNsothatbyProposition2, 
o o 2J o o oJ o o 2J 

e~ e~ l since N' = 0 implies that eN =I+ N. 

0 e
2 J 



(c) r~ ~ ~] = r~ ~ ~]+ r~ ~ ~] = N + S and NS= SN so that by Proposition 2 
012 010 002 

eA = eSeN = e2 r ~ ~ ~1] since N3 = 0 implies that eN = I + N + N2/2. 

112 1 
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9. If T(x) E E for all x E E, then by induction T2(x) E E, .. ., Tk (x) E E and therefore eT (x) = 
lim [I+ T + ··· + Tk/k!]x =Jim [x + T(x) + ··· + Tkk(,x)] EE since any subspace E of Rn 
k-too k-too • 

is complete and since xk = x + T(x) + ··· + Tk(x)/k! is a Cauchy sequence in E. 

PROBLEM SET 1.4 

[

e.At 
1. (a) x(t) = 

0 

(b) x(t) ~ [~At 

(c) x(t) =eat . [
cosbt 

smbt 
x =eat -sinbt] [x0 cosbt -Yosinbt J 

cosbt 0 x0 sinbt + y0 cosbt 

2. x(t) = e-1 • x [
cost - sin t J 
smt cost 0 
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3. (a) A1 =2, A2 = 4, v 1 =(I, -l)T, v2 =(I, !)T, x(t) = p [ ~
21 

~41 ] p-lx0 = 

112 x = e3t x where P = 
[
e2t + e4t e4t - e2t] [cosht sinht J [ 1 11] 
e4t -e2t e4t +e2t o sinht cosht o -1 

112 x = e1 . x where P = [
e

41
+e-

2
t e

41
-e-

2
t] [cosh3t sinh3t] [1 1] 

e4t -e-2t e4t +e2t 0 smh3t cosh3t 0 1 -1 · 

4. From Problem 2 in Problem Set 2, x(t) = eA1 x0 = P diag [el..it] P-1 = 

l/2[2e2~~ 2et 2~2 t ~ ] x0 where p = [-~ ~ ~1 and P-1 = 1/2 [ ~ ~ ~21. 
e1-e-t 0 2e-t 1 O 1 -1 0 

5. (a) A=[~ ~]+[~ -~] = S + N where Sand N commute. Thus, 

[ 
1 -t] x(t) = eAt Xo = e21 0 1 Xo. 

[
cost -sint] 

(b) x(t)=eAtxo=e21 sint cost Xo. 

(c) A1 =I, A2 = -1, v1 =(I, J)T, v2 = (-1, l)T, x(t) = eAI x0 = P-1 
[ ~

1 

~-1 ] Px0 = 

112[e:+e-: e:-e=:Jxo=[c~shht sinhht]xowhereP=[l -1],P-I=l/2[ 1 11]· 
e - e - e + e sm t cos t 1 1 -1 

(d) A= -2! + r~ ~ ~1 = s + N wheres and N commute. Thus, x(t) = eA1 Xo = 

e-" [I + Nt : N:t2/:ix0 = e_J : ~ ~1 x0• l t2 I 2 t 1 
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6. Since T(x) E E for all x E E and since T(x) = Ax, it follows that if x0 E E then Ax0 E E and 

tAx0 E E since Eis a linear subspace of Rn. It then follows by induction that (tk/k!)Akx0 E E 
N 

for all k EN. Therefore L Aktk xjk! E E since Eis a linear subspace of Rn. Then since a 
k=O 

closed subset of a complete metric space is complete, it follows that E is a complete normed 

linear space; i.e., every Cauchy sequence in E converges to a vector in E. (Cf. Theorem 
N 

3.11, p. 53 in [R].) Thus, for all tER Jim L Aktkxofk! = eA1 x0 E E. And therefore by 
N--took=O 

the Fundamental Theorem for linear systems x(t) = eAt x0 E E for all t E R. 

7. Suppose that there is a 'A< 0 such that Av= 'Av for some v 1:- 0. Then x(t) = eAtv is a 

co tkAk oo tk'Ak 
solution of (1) with x(O) = v. But eAtv = L --v = L --v = eA.tv since, by 

k=O k! k=O k! 

induction, Akv = f..kv. Thus, lim x(t) = Jim eAtv = lim eA.tv = 0 since 'A< 0. 
!-too !-too t--too 

8. By the Fundamental Theorem for linear systems, the solution of x = Ax, x(O) = x0 is 

given by «f.(t, x0) = eAt x0 . Thus, for all tE R, Jim f (t,y) = Jim eA1y = eAt lim y = 
y--txo y--txo y--txo 

PROBLEM SET 1.5 

1. (a) 8 = -2 < 0 implies that (I) has a saddle at the origin. 

(b) 8 = 8, T = 6, T2-48 = 4 > 0 implies that (1) has an unstable node at the origin. 

(c) S = 2, t = 0 implies that (1) has a center at the origin. 

(d) S = 5, T = 4, T2 -4S = -4 implies that (1) has an unstable focus at the origin. 

(e) 8 = f..2 + 2 > 0, 't = 21.., -r2 - 4S = -8 < 0 implies that for 'A 1:- 0 (1) has a focus at the origin; 

it is stable if 'A< 0 and unstable if 'A> O; and (1) has a center at the origin if 'A= 0. 

(f) S = )...2 - 2, 't = 21.., '!2 - 48 = 8 > 0 implies that (1) has a saddle at the origin if l'AI < {2; (1) 

has a node at the origin if l'AI > {2; it is stable if 'A< -f2 and unstable if 'A> {2; and (1) 

has a degenerate critical point at the origin if !'Al = {2. 
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2. (a) x1(t) = x1(0)e31, x2(t) = x2(0)e31• Cf. Problem 3 with a= I in Problem Set I.I. 

(b) x1(t) = x1(0)e31, xz(t) = x2(0)e1• Cf. Problem 3 with a= 112 in Problem Set 1.1. 

(c) x1(t) = x1(0)e1, x2(t) = x2(0)e31• Cf. Problem 3 with a= 2 in Problem Set 1.1. 

(d) x1(t) = [x 1(0) + x2(0)t]e1
, x2(t) = x2(0)e1

, which follows from eA1 x0 = e1 [~ ;J x0• 

Cf. Figure 2. 

3. o = 2a + b2 > 0 iff a > -b2/2 and 't = a + 2 < 0 iff a < -2. Thus, the system x = Ax has a 

sink at the origin iff -b2/2 <a< -2. 

4. (a) x(t) = x0 eJ.1, y(t) = y0. For 'A> 0 cf. Problem 3 with a= 0 in Problem Set l .1. 

(b) x(t) = x0 + y0t, y(t) =Yo· 

•••••••••••••••••••••• 

(c) x(t) = x0, y(t) = y0; every point x0 E R2 is a critical point. 

5. The second-order differential equation can be written in the form of a linear system (I) 

with A = [~ - ~ l If b < 0, the origin is a saddle; if b > 0 and a'- 4b ;, 0, the origin is a 

node which is stable if a< 0 and unstable if a> O; if b > 0, a2 - 4b < 0 and a-:;:. 0, the origin 

is a focus which is stable if a< 0 and unstable if a> O; if b > 0 and a= 0, the origin is a 

center; and if b = 0, the origin is a degenerate critical point. 

6. x1(t) = x1(0)e1, x2(t) = x1(0)e1 + [x2(0)- x1(0)]e21 ; A.1 = 1, A.z = 2, v1 = (1, l)T and v2 = 

(0, I )T; the origin is an unstable node. 

7. A.1 = (5 + {33)/2, A.z = (5 - {33)/2, v1 = (4, 3 + ffl)T, v2 = (4, 3 - {33.)T; the 

separatrices are the four trajectories in E5 v Eu and the origin. 

8. Since x1(t) = x1(0) cost - x2(0) sint and x2(t) = x1(0) sint + x2(0) cost, r(t) = 

~x~(t) + x;(t) = -Vx~(O) + x;(o), a constant and S(t) = tan-1[xz(t)/x 1(t)] = 

tan- 1[xz(O)/x 1(0)] + t; the origin is a center for this system. 
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9. Differentiating r2 = x~ + x; with respect to t leads to 2rr = 2x I X1 + 2X2X2 or r = 

(X1X1 + X2X2)/r for r * 0. Differentiating 9 = tan-1(x/x1) with respect tot leads toe = 

(x 1x2 - x2x1)/x ~ [l + (x/x1)2] = (x 1x2 - x2x1)/r2 for r * 0. For the system in Problem 8 

we easily obtain r = ar and S= b from these equations. These latter equations with the 

initial conditions r(O) = r0 and 9(0) = 80 have the solution r(t) = r0 eat, 9(t) = 90 + bt. Thus 

for a< 0, r(t) ~ 0 as t ~ oo and for b > 0 (orb< 0), O(t) ~ oo as t ~ oo (or as t ~ 

-oo) as in Figure 3. And for a= 0, r(t) = r0 while 9(t) ~ oo as t ~ oo (or as t ~ -oo) for 

b > 0 (orb< 0) as in Figure 4. 

PROBLEl\:l SET 1.6 

1. A= 2 ± i. For A= 2 + i, w = u +iv= (I, l)T + i(l, O)T, 

[ 1 l] [ 1 -1] [2 -1] 
p = [vu]= 0 1 , p-1 = 0 1 , p-1 AP= 1 2 

and the solution x(t) = Pe2t R P-1 x = e2t . [
cost + sint 

t 0 smt 

w ere R = . . h [
cost -sint] 

t smt cost 

-2sint J 
cost - sin t Xo 

2. 
[

-1 

A= 1 ± i, A3 = -2, w = (1 - i, -1, O)T, V3 = (0, 0, l)T, p = ~ 1 01 -1 0 ' 
0 1 

r
-1 -1 01 let cost 

P-1 = 0 -1 0 and the solution x(t) = P etsint 

0 0 1 0 

l

e 1(cost -sint) 

e1 sint 

0 

-2e1 sint 

e1(sint +cost) 

0 

(Also, see p. 122 in the appendix.) 

~ J Xo. 
-2l e 

~ J P-
1 

Xo = 
-2t e 
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3. 

r
-10 

'-1 = 1, A= 2 ± 3i, V1 = (-10, 3, 1), w = (0, i, l)T, p = ~ 0 01 
1 0 ' 
0 1 

r
-1110 0 01 re t 

p-1 = 3 / 10 1 0 and the solution x(t) = P 0 

1110 0 1 0 

0 

e21 cos3t 

e21 sin3t 
-e2

t ~in 3t] P-1 x0 = 
e21 cos3t 

r 
et 

(-3e1 +3e2t cos3t - e2t sin 3t) 110 

(-et + 3e21 sin3t + e21 cos3t) /IO 

0 
e21 cos3t 

e21 sin3t 
-e21~in3t] x0 . 

e2tcos3t 

4. '-1 = -1 + i, A3 = 1 + i, W1 = (1, -i, 0, O)T, W3 = (0, 0, 1 - i, -l)T, 

0 1 0 0 0 -1 0 0 

-1 0 0 0 0 0 0 
P= p-1 = and the solution x(t) = 

0 0 -1 I ' 0 0 -1 -1 

0 0 0 -1 0 0 0 -1 

p [ e-:R1 

e-1cost -e-1sint 0 0 

0 ] p-Ixo = e-1sint e-tcost 0 0 
0 0 e1(cost - sint) -2e1sint e1R ( 
0 0 e1sint et(sint +cost) 

PROBLEM SET 1. 7 

l.(a) A 1 =A2 =1;A=[~ ~]+[=~ ~]=S+NwhereSandNcommuteandN2 =0; 

x(t) = eA1 x = e51 eNt x = et x . 
[
1- t t ] 

0 0 -t 1 + t 0 

(b) A1 =A2 =2; A= [~ ~]+ [-: -:] = S + N where Sand N commute and N' = O; 

[

1- t 

x(t) = eAt Xo = est eNt Xo = e2t t -t ] 
Xo· 

l+t 

Xo. 
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(c) A = 1 1 · A = + = S + N · x(t) = eAt x = est eNt x = e1 x [ 1 OJ [O 1] . [ 1 t] 
I ' ' 0 1 0 0 ' O O 0 1 Q· 

(d) /... 1 = 1, 'A2 = -1; A= [ 
1 0

] + [
0 1

] = S + N, but Sand N do not commute; therefore, 
0 -1 0 0 

we must find v 1 = (1, O)T, v2 = (1, -2)T, P = [ 
1 1

], P--1 = 1/2 [
2 1

] and 
0 -2 0 -1 

[
e

1 

0 ] [2et et_ e-1
] x(t) = P P-1x0 = 112 -t x0• 

o e-t 0 2e 

2. (a) 

r

l 0 OJ rO 0 OJ /... 1 = 'A2 = A3 = l; A= 0 1 0 + 2 0 0 = S + N where Sand N 
0 0 1 3 2 0 

r 
1 0 

commute and N3 = O; therefore x(t) = eAt x0 = e1 eNt x0 = e1 .2t 1 

3t + 2t2 2t 

(b) A1 = A2 = -1, A3 = 1 and we must compute the generalized eigenvectors; v1 =(I, 0, O)T, 

v2 = (0, 1, O)T satisfying (A -A 11)2 v2 = 0, and v3 = (0, 2, l)T; S = P diag [-1, -1, l] P--1 = 

r
-1 0 01 ro 1 -21 0 -1 4 , N = A - S = 0 0 0 , S and N commute, N2 = 0 and x(t) = eAt x0 = 

0 0 1 0 0 0 

e''[l + Nt] x0 = P diag [ e-<, e-', e'] P-1 [I+ Nt]x0 = [ e~' 
0 
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(c) A1 = 1, A.2 = A.3 = 2 and in this case there is a basis of eigenvectors; v1 = (1, 1, -I)T, 

v2 = (0, 1, O)T, v3 = (0, 0, l)T; A= P diag [1, 2, 2] P-1 and x(t) = eA• x0 = 

(d) A1 = A2 = A.3 = 2; A= [~ ~ ~] + [~ ~ ~] = S + N where Sand N commute 

0 0 2 0 0 0 

and N3 = O; therefore, x(t) = eA< x0 = e" e" x0 = e'' I~ : t :tt

2

] x0. l 0 0 I 

3. (a) A1 = A2 = A.3 = A4 = O; A= N is nilpotent with A3 = 0 and 

1 0 0 0 

t l-t22 t2 /2 
x(t) = eA• x0 = x 

t -t2 /2 l+t2 /2 t o· 

0 -t 1 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
(b) A.1 = A.2 = A.3 = A.4 = 2; A = 21 + N where N = N2= 

o' 0 1 0 0 ' 1 0 0 

0 0 I 0 0 1 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 t 1 0 0 
N3= 

0 0 0 0 
, N4 = 0 and x(t) = eAt x0 = e2• eNt x0 = e2t 

t2 
/ 2 1 0 

1 0 0 0 t3 16 t2 2 t I 

Xo. 



(c) A1 = A2 = A.3 = 0, A.4 = 10 and there is a basis of eigenvectors, v1 = (1, -1, 0, O)T, 

(d) 

(e) 

1 1 1 1 

V2 = (1, 0, -1, O)T, v3 = {l, 0, 0, -l)T, v4 = (1, 2, 3, 4)T, p = -1 0 0 2 

0 -1 0 3 

0 0 -1 4 

2 -8 2 2 

P-1 = 1110 
3 3 -7 3 

, x(t) = eA• x0 = P diag [1, 1, 1, etOt] P-1 = 
4 4 4 -6 
1 1 1 1 

9 +eJOt -1 + e101 -l+e10t -1 + e!Ot 

1110 
-2 + 2e10t 8 + 2e 101 -2 + 2e 101 -2 + 2eIOt 

-3 + 3e!Ot -3 + 3e101 7 + 3e101 -3 + 3e101 Xo· 

-4 + 4e!Ot -4 + 4e101 -4 + 4e 101 6 + 4eIOt 

A1 = 1, A2 = -1, A3 = 1 + i, A4 = 1 - i, V1 = (1, 1, 0, O)T, V2 = (1, -1, 0, 0), 

1 1 0 0 112 112 0 0 

1 -1 0 0 II 2 -112 0 0 
W3 = (0, 0, i, 1), p = p-1 = , x(t) = eAt x0 = 

0 0 1 0 ' 0 0 1 0 

0 0 0 1 0 0 0 1 

et 0 0 0 cosht sinht 0 0 

p 0 e-1 0 0 
p-1 Xo = sin ht cosht 0 0 

0 0 e1cost -e1sint 0 0 e1cost -e1sint 
Xo. 

0 0 e1sint e1 cost 0 0 e1sint e1 cost 

A. 1 = A2 = 1 + i and the eigenvectors w1 = (i, 1, 0, O)T, w2 = (0, 0, i, l)T lead to 

cost -sint 0 0 

P = I, A = S = diag [: -I] sint cost 0 0 

1 
and x(t) = et 

0 0 cost -sint 
Xo. 

0 0 sint cost 

15 
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(f) /.. 1 = A2 =I+ i; the eigenvector w1 = (i, 1, 0, O)T and the generalized eigenvector 

1 0 1 0 

0 1 0 I 
w2 = (i, I, i, l)T, satisfying (A-A1l) w2 = w 1, lead to P = 

0 0 1 0 

p-1 = 

I 0 -1 

0 I 0 

0 0 I 

0 0 0 

0 

, S = P diag P-1 = diag -1 [1 -lJ [1 
0 I I 1 
1 

0 0 0 1 

-lJ 
1 

, and 

therefore N =A -S = [ ~ i 
0

?] with SN= NS and N2 ~ O; x(t) = e" x0 = 

cost -sint tcost -tsint 

. [cost -sint] sin t cost t sin t tcost 
e1 P diao P-1 [I+ Nt] x = e1 

ti sin t cost 0 0 0 cost -sin t 

0 0 sin t cost 

Xo. 

4. (a) /.. 1 =/..2 =2, P 1 = A-21 = [-i iJ r1(t) = e2t, r2(t) = te2t, x(t) = eAt x0 = 

[r1(t)I + ri(t)P 1]x0 = e21 [ 1~/ 1 ~ t] x 0 • 

[ 
0 0 OJ [ 0 0 OJ -1 1 0 ,P2=(A-l)(A-2l)= 0 0 0 ,x(t)=eA1 x0 = 
1 1 1 -1 0 0 



P1 = N, P2 = N2, P3 = N3, as in Problem 3(b); thus, x(t) = eAt x0 = 

1 0 0 0 
t 1 0 0 

[r1(t)I+rit)N+r3(t)N2 +rit)N3]=e21 

1
2

12 1 1 0 
x0• 

t3 
/ 6 t2 

/ 2 t 1 

PROBLEI\·1 SET 1.8 

1. (a), (b), (d), (f) and (h) are already in Jordan canonical form. 

(c),(e) A. 1 =1,A.2 =-1 andJ= [6 -~J (g)A.1 =2,A.2 =0and1= [~ g} 
(i) A. 1 = A.2 = 1, 81 = 1, 82 = 2, v1 = 0, v2 = 1 and J = [6 ~J 

2. (a), (b), (c), (d) are already in Jordan canonical form. 

(e) and (f) A1 = A.2 = 1, A.2 = -1, 81 = 2 and J = diag [I, 1, -1]. 

[t 
0 0 

~] [t 
1 0 

~] [t 
I 0 

3. (a) A. 0 A. 0 A. 1 
0 A. 0 A. 0 A. 
0 0 0 0 0 0 ~] 

01 = 02 = 03 = 04 = 4 01 = 3, 02 = 03 = 04 = 4 O 1 = 2, o2 = 3, o3 = c\ = 4 

17 

v1 =4, v2 = v3 = v4 = 0 VI = 2, V 2 = 1, V 3 = V 4 = 0 v I = I, v 2 = 0, v 3 = 1, v 4 = 0 

r~ 
1 0 

1] r~ 
1 0 

1] 
A. 1 A. 0 
0 A. 0 A. 
0 0 0 0 

o1 = 1, o2 = 2, o3 = 3, o4 = 4 01 = 2, 02 = 83 = 04 = 4 

V 1 = V2 = v3 = 0, V4 = 1 VI = V 3 = V 4 = 0, V 2 = 2 
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(b) x(t) = e1·1 x x(t) = eA.t p lb ~ g gJ p-1 x x(t) = eA.t p lb ~ 
12 

{ 

2 

g] p-1 x 
O> 0 0 1 0 O> 0 0 1 0 O> 

0001 00 0 1 

4. (a) 

5. (a) 

/.. 
/.. 

/.. 
/.. 

81=5 

/.. 1 

t t
2 /2 t

3 /6] [1 t 
1 t t

2 
I 2 p-1 x x(t) = eA.t p 0 1 

0 1 t 0' 0 0 
0 0 1 0 0 

[

a -b 1 
b a 0 
0 0 a 
0 0 b 

OJ [a -b 0 1 b a 0 
-b ' 0 0 /.. 1 

a 0 0 0 

0 OJ Q Q I 
1 t p- Xo. 

0 I 

~ l' A2 

0 ] p-1 x x(t) = eat p [Rbt 
a2tR O• 0 

e bzt 
tRbt] p-1 R Xo, 

bt 

/.. 

A 1 
/... 

81 = 4, 82 = 5 

/... 1 

).. 1 
/... 1 

/... 

/.. 

81 = 3, 82 = 4, 83 = 5 

/.. 1 /... 1 
A 1 

A 
/.. 

/.. 1 
/... 1 

/... 

81 = 2, 82 = 3, 83 = 4, 84 = 5 81 = 1, 82 = 2, 83 = 3, 84 = 4, 85 = 5 

/.. 1 
A 

A 1 
A 

/.. 

01 = 3, 82 = 5, 83 = 84 = 85 = 0 

).. 1 
/... 1 

/... 
/... 1 

/.. 



1 

0 
(b) For example, in the fifth case we have x(t) = eA.t P 0 

0 
0 

6. (a) J = diag[l, 2, 3]. 

(b) A1 = 1, A2 = A3 = 2, 8 1 = 2, and J = diag [1, 2, 2]. 

(c) A1 =1,A2 =A3 =2,01 =1,82 =2andJ=[b ~ ~]· 
0 0 2 

(e) J = diag [l, 2, 3, 4]. 

t t2 I 2 

1 t 

0 1 

0 0 

0 0 

(f) A1 =I, A2 = A3 =A,= 2, Ii,= 2, li2 = 3 (for A= 2) and J = [~ 

19 

t3 I 6 t 4 /24 

t2 I 2 t3 I 6 

t t2 I 2 p-1 Xo. 

1 t 

0 1 

0 0 OJ 2 0 0 
0 2 1 . 
0 0 2 

(g) A,= A2 = A3 = A4 = 2, li1 = 2, li2 = 3, li3 = 4 and as in Problem 3(a), J = [~ ~ ~ n 
(h) A1 = A2 = 'A3 = A4 = 2, 0 1 = 1, 02 = 2, 83 = 3, 84 = 4 and see Problem 3(a) solution. 
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The solutions, which follow from x(t) = eAt x0 = P eJt P-1 x0: 

(a) x(t) = e" x0 = [-~ 

et 

e2t _et 

et 2t 3e3t 
--2e +--
2 2 

(b) x(t) = eAt x0 = [ ~ 
-1 

0 OJ [l / 2 1 0 diag [e1, e21, e3t] 1 
-2 1 · 3 I 2 

0 0 

e2t 0 

2e3t -2e2t e3t 

x(t) = eAt x0 = [~ I 2J [ e
1 0 te~• 1 [~ 

-1 
(c) 1 1 0 e2t 1 

0 1 0 0 e2t 0 

[~ 
e2t _et e21 

- e1 + te21 l 
e2t te2t x 0. 

0 e2t 

[I 0 OJ [ e
21 te2t t2e2

' / 21 
(d) x(t) = eAt x0 = 0 1 -2 0 e2t te2t 

0 0 1 0 0 e2t 

e" [ ~ 
t 2t+t2 /21 
1 t Xo. 

0 1 

0 ?] = 
1 
2 

-IJ -~ Xo = 

[~ 
0 

~J Xo = 
1 
0 

~ l Xo. 
e2t 
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[ I 

0 

0 OJ 
e' 0 0 0 

[~ 
0 0 

!] Xo = 
-) 0 0 I 0 e:?' 0 0 0 

(f) x(t) = e" x0 = -~ I 0 0 0 0 e2t tc21 0 0 

0 I 0 0 0 0 e2t l 0 

e' 0 0 0 
e21 - e' e21 0 0 
e2' - e' 0 e2t 0 

Xo. 

te21 te2t 0 e2' 

[I 0 0 

I~] 
t t2 I 2 t3 I 6 

[~ 
0 0 

~] Xo = 

0 l -4 0 I t t2 I 2 I 4 
(h) x(t) = eAt Xo = e21 0 0 

I -3 0 0 I 0 l 
0 0 0 I 0 0 0 0 0 

l 4t+t2 /2 3t 2 /2+t 3 /6 

e21 0 ] t2 /2-t 

0 0 
Xo. 

0 0 0 

(Also, see p. 122 in the appendix.) 

7. If Q = diag [I,£, £2, ... , £m--- 1], then Q-1 = diag [ 1, !, l, .. ., - 1- J and Q-1BQ = 
£ £2 £ffi-l 

Q-1(}.I + N)Q =A.I+ Q-1NQ where Q-1NQ = 

I 0 0 0 0 I 0 0 0 
I 0 0 ] 0 0 

I 0 0 0 
0 - 0 0 

£ 
0 0 0 0 

0 £ 0 0 
0 0 l 0 0 E2 

£2 0 0 = 

l 0 0 0 0 I m-1 0 0 0 m-l 0 0 0 0 
0 0 0 £ 

£ 

0 I 0 0 0 
] 0 0 0 

0 0 11£ 0 0 
0 0 0 

I I £ 2 0 
E 

0 0 0 
0 0 £2 0 = 

0 0 0 0 I I £m-2 
0 0 0 m-1 

0 
£ 

0 0 0 0 
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0 £ 0 0 

~l 0 0 f 0 
0 0 0 £ ;j =EN 
0 0 0 0 
0 0 0 0 

8. The eigenvalues of a nilpotent matrix are all equal to zero. (This follows from the fact that 

any nilpotent matrix is linearly equivalent to a matrix with blocks of the form Nk along the 

diagonal where each Nk has the form of one of the matrices shown on the page following 

the statement of the theorem in this section.) 

9. By the corollary in this section, each coordinate of the solution x(t) of the initial value 

problem (4) is a linear combination of functions of the form tkea•cosbt or tkea1sin bt where 

k is a non-negative integer and the coefficients depend on the initial conditions x0. But if 

all of the eigenvalues of A have a negative real part, then a= Re( A) < 0 in these functions 

and since for all a< 0 and all integers k, tk ear -7 0 as t -7 oo (and since lcosbtl:::;; I and 

lsinbtl ~I), it follows that for all x0 E Rn each coordinate of x(t) approaches zero as 

t -7 oo; i.e., x(t) -7 0 as t -7 oo. 

10. If the elementary blocks in the Jordan form of A have the form B = diag (A, .. ., A.J or B = 

diag [D, ... , DJ where D is a 2 x 2 matrix of the form in the theorem stated in this section, 

then each coordinate in the solution x(t) of the initial value problem (4) will be a Jinear 

combination of functions of the form ei.t, eat cos bt or eat sin bt. Furthermore, if all of the 

eigenvalues of A have non-positive real part, i.e., if/..~ 0 and a~ 0 in the above forms, 

then each of the coordinates ofx(t) are bounded by constants (depending on x0 e Rn) for 

all t ~ 0 and therefore for each x0 e Rn, there exists a positive constant M such that lx(t)I ~ 

M for all t ~ 0. 
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11. Example 4 in Section 1.7 has !Al = I and yet the functions tcost and tsint are not bounded 

as t --7 oo (or as t --7 -00). In particular, the solution with x0 = (1, 0, 0, O)T has lx(t)I = 

'1 I+ t2 + sin2t + tsin2t ;::: It - I I and therefore lx(t)l --7 oo as t --7 oo. Also, note that any 

solution of Example 4 in Section 1.7 with x0E Span { (0, 0, I, O)T, (0, 0, 0, I)T} remains 

bounded for all t E R. 

12. Since this problem is closely related to Problem 5 in Set 9, we shall use the notation and 

theorems of the next section and do both of these problems at the same time; the corollary 

in this section tells us that the components of x(t) are linear combinations of functions of 

the form tkea1cosbt or tkea1sinbt with A= a+ ib and 0 ~ k ~ n - 1. 

(a) This case occurs iff x0 E Es - {O}. 

(b) This case occurs iff x0 E Eu - {O}. 

(c) This case occurs if x0 E £C - { 0} and A is semisimple. (It may also occur if x0 E Ee - { 0} 

even if A is not sernisimple as in Example 4 in Section 1.7.) That lx(t)I;::: m follows from 

the fact that x(t) is a periodic solution which does not intersect the critical point at the 

origin. 

(d) This case occurs if Es -::t {O}, Eu -::t {0} and x0 E Eu Cf) E5 Cf) Ee - (Eu u E5 u Ee). (It may 

also occur for certain XoE £C - {O} as in Example 4 in Section 1.7; cf. Problem 11 above.) 

(f) This case occurs if E5 -::t { 0}, £C -::t { 0} and x0 E Es Cf) Ee - (Es u Ee). 

Furthermore, these are the only possible types of behavior that can occur as t --7 ±oo 

according to the corollary in this section. 
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PROBLEI\'1 SET 1.9 

1. (a) E5 =Span { (0, l)T}, Eu= Span { (1, O)T}, Ee= {O }. 

(b) E5 = Eu = { 0}, F = R 2. 

(c) E5 =Ee= {O}, Eu= R2. 

(d) E5 =Span { (1, O)T}, Eu= Span { (1, -l)T}, Ee= {O}. 

(e, f) E5 =Span { (1-l)T}, Eu= Span { (1, O)T}, F = {O}. 

(g) E5 =Span {(O, l)T}, Eu= {O}, Ee= Span {(1, O)T}. 

(h) E5 =Eu= {O}, Ee= R2. 

(i) E5=R2,E5=F={O}. 

The flow eAt is hyperbolic exactly when Ee= {O}. 

2. (a) E5=Span {(1,0,0)T,(O, 1,0?},Eu=Span {(0,0, 1?},Ec= {0}. 

(b) E5=Span {(0,0, l)T},EU={O},EC=Span {(1,0,0)T,(o, 1,0)T}. 

(c) E5 =Span { (1, 0, o?, (0, 0, l)T}, Eu= Span { 1, -1, O)T}, EC= {O}. 

(d) E5 =Span {(1, -1, O)T, (0, 0, 1?}, Eu= Span {(1, 0, o?}, EC= {O}. 

The flow is hyperbolic in {a, c, d). 

3. A= ±2i, A.3 = 6, w1 = u1 + iv 1 = (10, 0, -3? + i(O, 10, -l)T, v3 = (0, 0, l)T. 

E5 = {O}, Eu= Span { (0, 0, 1?}, Ee= Span { (0, 10, -l)T, (10, 0, -3)T}. 

l 0 10 OJ lcos2t -sin2t 

JJ l! 
I OJ x(t) = /0 10 O O sin 2t cos2t 0 0 Xo = 

-1 -3 1 0 0 1 1 

l !Ocos2t 10sin2t 

~ J x,. -
1 

-10sin2t 10cos2t 
10 

sin2t -3cos2t + 3e61 -cos2t - 3sin2t + e61 e6t 

For x0 = (0, 0, c)T E Eu, x(t) = (0, 0, e61c)T E Eu; for x0 E Ee, i.e., for x0 = 

(lOa, lOb, -3a - b)T, x(t) = (10(acos2t + bsin2t), 10(bcos2t - asin2t), 

-3(acos2t + bsin2t) - (bcos2t - asin2t))T E Ee; and for x0 = 0 E E5, x(t) = 0 E E5. 
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4. (a) E5 =Span { (1, 0, O,)T, (0, 1, O)T}, Eu= Span { (0, 2, l)T}, Ee= {O}. 

5. See Problem 12 in Set 8. 

6. If L: ax 1 + bx2 = 0 is an invariant line for the system (1), then for x0 E L; eAt x0 E L for 

all tE R. But x0 = (x 1, x2)T EL and x0 :f:. 0 implies that x0 = k 1(-b, a? with k1 :f:. 0. And 

then eAt x0 E L for all tE R implies that for all tE R eAt k 1(-b, a)T = ki(-b, a)T, and in 

particular that eAv = kv with k = k/k1 and v = (-b, a?. As in Section 1.5, if (1) has an 

invariant line then A= PBP-1 and either B = [~ ~ J or B = [~ ~ J In the first case, if 

A :f:. µit follows that either k = e'A and P-1v = (1, O)T is an eigenvector of B, i.e., vis an 

eigenvector of A, or k = eµ and P-1v = (0, l)T is an eigenvector of B, i.e., vis an 

eigenvector of A. Also, in the first case if A=µ, then any vector VE R2 is an eigenvector 

of A and, in particular, v = (-b, a)T is an eigenvector of A. In the second case k = e'A and 

P-1v = (1, O)T is an eigenvector of B, i.e., vis an eigenvector of A and we are done. (The 

converse of Problem 6, that if v = (v1, v2f is an eigenvector of A, then v2x1 - v1x2 = 0 is 

an invariant line of (1) follows immediately from Problem 6 in Set 3.) 

PROBLEM SET 1.10 

1. Let <P(t) be a fundamental matrix solution of (2) and let x(t) = <P(t)c(t). Then c(O) = 

cp-l(Q)x0 and x(t) = <i\t)c(t) + <P(t)c (t) = A<l>(t)c(t) + <P(t){-(t) while Ax(t) + b(t) = 

A<l>(t)c(t) + b(t). It then follows from (1) that <P(t)c(t) = b(t), i.e., that c(t) = c(O) + 

f~ <I>-1(-r)b(t)dt = <I>-1(0)x0 + J~ <I>-1(t)b(t)dt. Thus x(t) = <l>(t)c(t) = <l>(t)<I>-1(0)x0 + 

<l>(t) J~ <I>-1(t)b(t)dt which is equation (3). 
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2. A1 = 1, 'A2 = -1, v1 = (1, O)T, v2 = (1, -2)T and a fundamental matrix <l>(t) with Cl>(O) =I is 

3. 

[ 1 1] let o ] [ 1 given by <I>(t) = eAt = 
0 -2 O e-t 0 

1/ 2] [et (et -ee_-tt) I 2]· 
-1/ 2 - 0 

Note that <I>-1(t) = Cl>(-t) and then 

x(t) = [ ~ 

( 

5 t 1 -l) -t-2 +-e +-e 
2 2 . 

1 -t -e 

<i{t) = - e _.., c~s - e_ sm -c~s = A(t)<I>(t), <I>-l(t) = e2t -zt . -zt , 
[ 

2 -Zt t -zt · t t] [ cost sint ] 
-2e .. t smt + e Zt cost -smt -e smt e cost 

i t 2 [ COS't cp-1(0) =I, and x(t) = Cl>(t)<I>-1(0)x0 + <I>(t) e 1 

2 
-21 . 

o - e smt 
sint ]( 1 ) 

e-2tCOS't e-2t dt= 

[ 

e2t 3] 5 ( 2 cost +sin t) - cost + 5 
Cl>(t) Xo + = 

-2l 3 
-e

5 
(2cost - sint) +cost -5 

1 (2cos2t - 4sint cost+ 3sint + e-zt (-5cos2t + 2sint cost - sin2t + 3cost )] 
Cl>(t)Xo + - 2 2 2 ( 2 ) . 

5 sin t + 2sint cost+ 5cos t -3cost + e- t -2cos t -4sint cost+ 3sint 
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2. NONLINEAR SYSTEl\:tS: LOCAL THEORY 

PROBLEM SET 2.1 

1. Df(x) = [l + x~ 2x1x2 ], Df(O) = [ 1 OJ, Df{O, 1) = [2 OJ. 
2x1 -1 + 2x2 0 -1 0 1 

(Also, seep. 123 in the appendix.) 

2. (a) E = R2 - {O}. (b) E = {xER2 1 x1 >-1, x2 >-2, x1 1' 1} - {O}. 

{ 
t
2 / 4, t ~ o} { o, t ~ o} {12 

14, t ~ o} 3 . x(t) = 2 , x(t) = 2 , x(t) = , x(t) = 0. 
-t I 4, t ~ 0 -t I 4, t ~ 0 0, t ~ O 

4. x(t) = 2 I~ for -oo < t < 1/8 and x(t) -7 oo as t -7 118-. 

5. x(t) ={tis a solution on (0, oo) but not on [0, oo) since x'(t) = 1/2{tis undefined at t = 

0. 

6. ijF(x)- F(y)ji = max~[(x 1 -yi)a1 + (x2 - Y2)a2]
2 

+ [(Y2 - x2)a1 + (x1 - y1)a2J2. 
lal=l 

Thus, if Ix - YI< 8, then lx1 - Yil < 8, lx2 - Yzl < 8 and therefore 

jjF(x)- F(y)ij <max 8~(a 1 + a2)
2 + (a1 + a2)

2 ~ 28 = E if 8 =EI 2. 
lal=l 

PROBLEM SET 2.2 

1. (a) u1(t) = 1 + t, uz(t) = 1 + t + t2 + t3/3, uit) = 1 + t + 12 + t3 + 2t4/3 + t5/3 + t6/9 + t7/63. 

Mathematical induction: u1(t) = 1 + t, u2(t) = l + t + t2 + O(t3) and for n ~ 1, assuming 

u0 (t) = 1 + t + t2 + ·· · + t11 + O(t11+l) we find that u11+1(t) = 1 + f~ [l + s + s2 + ··· + s0 + 
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O(sn+l)]2ds = 1 + J~ [l + 2s + 3s2 + ··· + (n+l)sn + O(sn+I)]ds = 1 + t + t2 + ··· + 1n+1 + 

O(tn+2). QED. 

(b) By separating variables and integrating we find that x(t) = l/(c - t) and the initial condition 

implies that c = 1. For x(t) = (1 - t)-1, we have that x(t) = ( 1 - t)-2 = x 2(t) for t *- O; and 

since x(O) = 1, tE (-oo, 1), and this function is a solution of the IVP in part (a) according 

to Definition I. The Taylor series for x(t) = I/(1-t) = 1 + t + ··· + t" +···,which agrees 

with the first (n + I )-terms in un(t) found in part (a). 

(c) x(t) = (3t)-2!3 = l/x2(t) for all t * 0; hence the function x(t) = (3t)113 is a solution of the 

given differential equation on the interval (-00, 0) or on the interval (0, oo). Clearly this 

function satisfies x(l/3) = 1, 1/3 E(O, oo) and hence x(t) = (3t)ll3 is a solution of the given 

IVP on the interval (0, 00) according to Definition 1. 

2. u0(t) = x0, u 1(t) = Xo + Ax0, ··-, uk(t) =(I+ A+···+ Ak/k!)x0 and limuk(t) = eA1x0 
k->~ 

absolutely and uniformly on any interval [O, t0]. 

S. By the lemma in this section, f is locally Lipschitz in E. Therefore, given x0 E E, there 

exists a K0 > 0 and an E > 0 such that N£(x0)cE and for all x, yE N£(x0), lf(x)-f(y)i $ 

K0 Ix - J'I. Next, To u(t) is continuous at t = 0. Therefore for E > 0 there exists a 8 > 0 

such that if ltl < 8 then IT o u(t) - To u(O)I = IT o u(t) - x0I < E. Choose a > 0 such that 

a< min(8, l/K0). Then for I= [-a, a], tE I and u, VE V = { uE C(l)l llu - x0 ll $ E}, 

IT ou(t) -To v(t)I = IJMr(u(s))-f(v(s))]ds I$ J~jr(u(s))-f(v(s)) jds $ell u - v II where 

c = K 0a < 1. Thus, by the contraction mapping principle, there exists a unique 

u(t) E V c C(I) such that To u(t) = u(t) for all t E I. 

6. If x(t) is a continuous function on I that satisfies the integral equation, then x(O) = x0 and 

x(t) = ~ft f(x(s))ds = f(x(t)) for all tE I by the fundamental theorem of calculus since 
dtJo 

f(x(t))E C(I); and therefore x(t) is differentiable and it satisfies the initial value problem 
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(2) for all t EI. Conversely, if x(t) is a solution of the initial value problem (2) for all t EI, 

then x(t) is differentiable and hence continuous on I and x(t)E E for all tE I; therefore, 

x'(t) = f(x(t)) implies that x(t) = J~r(x(s})ds+ c for all tE I and clearly c = x(O) = x0. 

Thus, x(t) satisfies the integral equation for all tE I. 

7. x(t) = ~t [f(x(t))] = Df[x(t)]X(t) =Df[x(t)]f(x(t))E C(I) by the chain rule since 

x(t)E E, Df[x(t)] and f(x(t)) are continuous for all tE I. 

8. Since a continuous function on a compact set is bounded, Df is bounded on E. It then 

follmvs immediately from Theorem 9.19 in [R] that f satisfies a Lipschitz condition on E. 

9. Suppose that there is a constant K0 > 0 such that for all x, y E E, lf(x) - f(y)I $ K0 Ix - YI· 

Then, given E > 0, choose 8 = E/K0 > 0 to get that for x, yE E with lx-yl < o, 
lf(x) - f(y)I $ K0 Ix -YI< K08 = E. Therefore, f is uniformly continuous on E. 

10.(a) Follow the hint for 8 <I; and for 8 ~ 1, choose x = 1andy=1/3 to show that 

lf(x) - f(y)I = 2 > 1 = E. 

(b) Use the result of part (a) and Problem 9 to show that f(x) = l/x does not satisfy a Lipschitz 

condition on (0, 1). 

11. If f is differentiable at x0, then there exists a linear transformation Df(x0) such that given 

E = 1, there is a 8 > 0 such that for Ix - x0I < 8, lf(x) - f(x0) - Df(x0)(x - x0)I $ Ix - x0I. 

Thus, for Ko= I + 11Df(x0)11, we obtain the desired result. 

PROBLEI\'1 SET 2.3 

1. The initial value problem has the solution u(t, y) = eAt y. Thus, <l>(t) = ~t. y) = eA1 

Cly 

which is the unique fundamental matrix satisfying ci> = A<l> and <l>(O) = I. 
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2. (a) u1(t, y) = y 1 e-1, u2(t, y) = -y~ e-21 + (y~ + y2)e-1 and u3(t, y) = (-y~/3)e-21 + (y~/3 + y3)e1• 

e-1 0 0 

dU 
<l>(t) = ()y (t, y) = -2y1e-21 +2y1e-t e-1 0 , <l>(O) =I and 

-~y1e-21 + ~Y1et 0 et 

-e -t 0 0 -1 0 0 

<l>(t) = 4y1e-21 -2y1e-1 -e -t 0 = Df[u(t, y)]<l>(t) = 2y1e-t -1 0 <l>(t). 

iy1e-21 +~ylet 0 et 2y1e-t 0 1 
3 3 

[(I -y,t)-2 O] etc (b) cp(t) = (Seep. 124 in the Appendix.) 
(1- et) I Yf et 

5. By the corollary in this section, it follows from Liouville's Theorem that det au (t, Xo) = ay 
exp J~ trace Of [u(s, x0)] ds = exp J~ · f(u(s, x0))ds since trace Df = Y'·f. 

6. From vector calculus, i.e., from the hint, it follows that y = u{t, y0) is volume preserving 

iff J(x) = det Ju (t, x) = 1 for all tE [O, a]. But, from Problem 5, this follows iff ax 
J

0
'v.f(u(s, y0))ds = 0 for all tE [O, a] and y0 E E; and by continuity, this follows iff 

Y' ·f(x) = 0 for all x E E. 

PROBLEM SET 2.4 

1. (a) x(t) = xc/(1 - x0t); (a, J3) = (-00, l/x0) for x0 > 0 and x(t) ~ 00 as t ~ (11x0t; {a, J3) = 
(-oo, oo) for x0 = O; and (a, J3) = (1/x0, oo) for x0 < 0 and x(t) ~ -00 as t ~ (l/x0)+. 

(b) (a, J3) = (-1, 1) and x(t) = sin-1(t) ~ + n/2E East~ a+ or as t ~ J3- where E = 
(-n/2, n/2). 



(c) x(t) = -2 tan h(2t) and (a, B) = (-00, oo). 

(d) x(t) = lx01/(1- 2x~ t)ll2, (a, B) = (-oo, 1/2x~) and x(t) -7 oo as t -7 (1/2x~)-. 

(e) x1(t) = y/(1 - y1t), xi(t) = (y2 - 1 + 1/y 1)e1 + (1 + t - 1/y1), (a, B) = (-00, lly1) and 

lx(t)l -7 00 as t -7 (l/y 1t. 

2. (a) x 1(t) =(I - tti, x2(t) = t + e1, (a, B) = (-oo, 1) and lx(t)l -7 oo as t -7 1-. 
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(b) x1(t) = ,fl+t, x2(t) = (1 - 0-1, (a, B) = (-1, 1), x(t) -7 (0, .5)T E East -7 (-1)+, where 

E = {x1 > O}, and lx(t)l -7 oo as t -7 1-. 

(c) x1(t) = ,l1 + t, x2(t) = (2/3)(1 + t)312 + 113, (a, f3) = (-1, oo) and x(t) -7 (0, l/3)T EE as 

t -7 (-1)+, where E = {x 1 > O}. 

3. Asssume B < oo. If Jim x(t) does not exist, then there exists a sequence tn -7 B- such that 
!-too-

{x(tn)} is not Cauchy; i.e., there exists an E > 0 such that for all integers N, there exist 

integers n > m ~ N such that lxCtn) - x(tm)I ~ £. Thus, for N = 1, there exists integers 

n1 > m 1 ~ 1 such that lxCtn1) - x(tm)I ~ E; for N = n1, there exist integers n2 > m2 ~ n1 

such that lxCtn2) - x(tm2)1 ~ E; · · · for N = nj, there exist integers nj+I > mj+J ~ nj such that 

lxCtn )- x(tm.)I ~£.Hence, the arc length off'+~ ~ lxCtn+l) - x(tn)I ~ ~ lx(t 0 .)- x(tm.)I ~ 
J J n=l j=l J J 

OQ 

LE= oo. Hence if B < oo and the arc length off'+ is finite, it follows that lim x(t) exists. 
j=l HP-

4. In cylindrical coordinates r = 0, 8 = r2/xi = 1/x; and X3 = 1. Thus, r = 1, X3(t) = t + lht 

and 8(t) = -(t + lln)-1• (a, B) = (-lht, oo), and lim x(t) as t-7 (-1/rr)+ does not exist (f' 

spirals down toward the unit circle in the x1, x2 plane as t -7 (-1/n)+); also, f'+ and['_ both 

have infinite arc length (cf. Problem 3). 

5. Suppose lim x(t) = x 1 EE. Then since Eis open, there is an E > 0 such that N2£(x1)cE 
1->l\-

and N r ( x1) c E. Assume that B < oo. Then there is a o > 0 such that for It - Bl < o, 
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jx(t) - xi I < E. Since x(t) is continuous and [O, ~ - 8] is a compact set, K = { y E Rn I y = 

x(t), t E [0, ~ - 8]} u { y E Rn I IY - x1 I s E} is a compact subset of E; furthermore, 

r + c K. Thus, by Corollary 2, f3 is not finite; i.e., ~ = oo. Next, we show that f(x 1) = 0. 

Suppose that f(x 1) t:- 0, say lf(x1)j = 8 > 0. Then by the continuity off, there exists an E > 0 

such that Ix - Xi I< E implies that x E E and lf(x)I ~ 812. Since x(t) -7 X1 and x(t) -7 v I = 
f(x 1) as t -7 oo, it follows that for this E > 0, there exists a t0 ~ 0 such that for all t c t0, 

lx(t) - x1j < c: and jx(t) - v1j <£,i.e., for all t ~ t0, lx(t)I = lf(x(t))I c 8/2 and lv1 ·x(t)I = 

lv 1j jx(t)l · lcos0 1(t)I ~ lv,l 8/4 where 81(t) is the angle between x(t) and v1 and lcos8 1(t)I ~ 

112 for all t ~ t0. Then by the mean value theorem, for all t > liJ, there is a f E (t0, t) such that 

v 1·x(t) - v 1·x(t0) = (t - t0)vi·x(f); thus, lv,l lx(t)- x(t0)I ~ lvi"[x(t)- x(t0)]1 = 

11 - t0l Iv 1 ·xc nl ;;:: It - t0l Iv 1 I 814 and therefore lxCt) - xc10)1 ~ It - t0I 014 ~ 2r for 1;;:: 10 + 

8E/8. Since lx(t0)I < E, this implies that fort~ t0 + 8r/8, lx(t) - x11 c lx(t) - x(t0)l -

lx(t0) - xii~ 2E - E = E, a contradiction since lx(t) - x11 <£for all t ~ t0. Thus, f(x1) = O; 

and x1 is an equilibrium point of (1), i.e., x(t) =Xi is the solution of (1) satisfying the initial 

condition x(O) =Xi· 



PROBLEJ\.-1 SET 2.5 \ 
\ 

1. x(t) = xof (I - x0t). 
Q ' ' ----- ~- . 

\ 
I 3. «l> 1(x) = diag[e-1, e2t]x. 
I 

6. «l> 1(y) = (y1 e-1, -y7e-21 + y2e-1 + yie-1, -y~e-21/3 + (3y3 + Yi)e1/3).T Ify3 =-yi/3, then 

«l>1(Y) = (Y1 e-1, -y.2e-21 + Y2e-1 + yie-1, -y12e-2t/3)E S. 
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7. c)>1(x0) = (3t + x~)lt3. For x0 > 0, (a, B) = (-x3j3, oo) and c)>1(x0) -t OE East -t (-x~/3)+. 

XO 

,..__ .......... Q ___ _ 

"..._ ____ _ 
_ -_-_-_-_-_-_-_-_-~- - - - - - - t 

I\ 
==Q ____ + ........ • 

PROBLEM SET 2.6 

1. (a) (0, 0) a source, (1, I) and (-1, I) saddles. 

(b) (4, 2) a source, (-2, -1) a sink. 

(c) (0, 0) a source, (0, -2), (±./3, I) saddles. 

(d) (0, 0, 0) a saddle. 

( e) See the hint concerning the origin. For k > 1, { ±..Jk=l. ± ..Jk=l, k - 1) are sinks. 

2. See Problem I (e) regarding the nature of the equilibrium points of the Lorenz system; two 

new equilibrium points bifurcate from the equilibrium point x = 0 at the bifurcation value 

µ = 1 in a "pitchfork bifurcation." Also, see Example 5 in Section 4.5. 

Df(O)y. 
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PROBLEM SET 2.7 

I. ).. 1 =-3, )..2 = 7, v1 = (3,-2)T, v2 =(I, l)T, P = r _: :J P-1 = ~[~ -a y = P-1x and 

y = diag [-3, 7]y + (-6y~ + y1y2 + y;, -9y~ - 6y1y2 - y;)T. 

2. uOl(t, a)= (c-ta 1, O)T, u<2l(t, a)= u<3l(t, a)= (e-ta 1, -e-2ta~/3l, and uUl(t, a)-+ u(t, a)= 

(c-ta 1, -e-2ta~/3l. Thus, S : x2 = -xi/3 and U: x1 = 0 . 

3. 

4. 

5. 

.l.. (c) = (c c-1 -c2e-21/3 + (c2/3 + c )c1)T S · c = -c2/3 for x E S ..... (x) = 't"t 1 ' I I 2 ' • 2 I ' ' 't" I 

u< 1l(t a)= (c-1 a e-1 a O)T u(2)(t a)= (e-1 a e-1(a a2) - e-21 a2 -e-21 a2/3)T u<3l(t a)= 
' I• 2• ' • I• 2 + l l' 2 ' ' 

u<4l(t, a)= (e-•a1, e-1(a2 + a;)-e-2'ai, -e--41ai!S +e-31 a~(a2 + a~)/2-e-21 (a2 + a~)2/3)T. S: x = 

\jf3(x 1, x2) where \jf 3(a 1, a2) = u3(0, a1, a2, 0) = -·1.t2/3- a~a/6- ai/30; i.e., S: x3 = 

2/ ,., 16 4/ r· . . 2 d. -x
2 

3 - Xj x2 - x 1 30. To md U, let t ---+ - t to get x1 = x 1, x2 = x2 - x 1 an x3 = 

-x3 - x~. For this system uCll(t, a)= u<Zl(t, a)= (e-1a 1, 0, O)T. Thus, U : x1 = 0, x2 = 0, i.e., 

U is the xraxis. 

x (t) = c e-1 x (t) = -c 2e-21 + (c + c2)e-1 x (t) = -c 4e--41/5 + c2(c + c2)e-31/2 -
I I ' 2 l 2 I ' 3 l I 2 I 

(c + c2)2e-21/3 + (30c + c4 + 5c2 c + 10c2)e1/30· 1im <f> (c) = 0 iff 30c~ + c~ + 5c2 c + 10c2 
2 I 3 I I 2 2 'I-too I -' I I 2 2 

= O; therefore, S: x3 = -x2./3 - x2
1 x/6- x4

1/30; and Jim <J> 1(c) = 0 iff c1 = c2 = O; therefore U 
~ 1-t-oo 

: x1 = 0 and x2 = 0. 

6. Since FE C1(E), it follows that for a11 E > 0, there exists a o > 0 such that for all ~ E 

N0(0), llDF(~) - DF(O)JI = JIDF(~)IJ < E. Thus, for all x, y E Nll(O), IF(x) - F(y)I ~ llDF(~)ll 

Ix - YI < E Ix - YI· 



7. U1 = {xE S1 I y > o}, h1(X, y) = -x, h~ 1 (x) = (-x, ~f; U2 = {xE S1 I y < O}, 

hz(x, y) = x, h;1(x) = (x, -~f; U3 = { x E S1 I x > 0}, h3(x, y) = y, h31(y) = 

(P. yr; and U4 = {xE S1 Ix< O}, h4(x, y) = -y, h41(y) = (-~1-y2' yr. 

U/'IU2 = 0, U3nU4 = 0; h3(U 1nU3) = {yE RI 0 < y < 1}, h1 oh;1(y) = -~l -y2 and 

Dh 1oh;1(y) =yip> 0 for YE hiU1nU3); h4(U1nU4) = {yE R l-1<y<0}, 

h1 oh~ 1 (y) = ~1- y2 and Dh1 oh~1 (y) = -y/ ~1- y2 > 0 for yE h/U1nU4); and it is 

8. h, oh;1(z, x) = (x, ~1- x2 - z2 ), h1 oh~1 (x, z) = (x, -~1- x2 - z2 ), h1 oh;1(y, z) = 

( ~l -y2 -z2
, y), h1 oh;1(z, y) = (-~1- y2 -z2

, y); Dh1 oh;1(z, x) = 

[ 

0 

-z 
... Jl-x2 -z2 
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det Dh1 oh;1(z, x) = ~l- x~ _ z
2 

> 0 for (z, x)E h3(U 1nU3) = { (z, x)E R2 I x2 + z2 < 1, 

z > 0}, det Dh1 oh~ 1 (x, z) = ~l- xz
2 

_ z
2 

> 0 for (x, z)E h4(U1nU4) = { (x, z)E R2 I x2 + 

z 
z2 < 1, z > O}, det Dh 1 oh;1(y, z) = I > 0 for (y, z)E h5(U 1nU5) = 

'\/ 1- y2 - z2 

{ (y, z)E R2 I y2 + z2 < 1, z > o}, det Dh1 oh;1(z, y) = ~ z > 0 for (z, y)E 
I-y2 - z2 

h6(U 1nU6) = { (z, y)E R2 I y2 + z2 < 1, z > 0 }, and so forth. 
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PROBLEM SET 2.8 

1. Let yj(O) = yj0; then y1(t) = y10 e-t, y/t) = y20 e-1 + z~(e21 - c-1)/3, z(t) = z0e1; <1>0(y, z) = 

(Yi· Y2)T, <1>1(y, z) = (y1, Y2 - c-2 koz2)T, <1>2(y, z) = (y1, Y2 - e-2 koO + e-3)z2)T, 

<1>3(y, z) = (y1, y2-e-2k0(1 + e-3 + e-<i)z2)T, ···,where k0 = (e3 - l)/3e; <l>k(y, z) ~ 

(y1, y2 - z2/3)T; 'I' k(y, z) = z; H0(y, z) = (y1, y2 - z2/3, z)T, L-1 H0 T1(y, z) = 

(y1, y2 - z2/3, z)T, H(y, z) = (y1, y2 - z2/3, z?, and H-1(y, z) = (y1, y2 + z2/3, z)T; E5 = 

{xE R3 I X3 = o} and H-1(E5
) = {xER3 I X3 = O}; Eu= {xE R3 I X1 = X2 = o}, and 

H-1(Eu) = { x E R3 I x = (0, z2/3, z)} = Wu(O). 

2. y(t) = y0e-1, z1(t) = z10 e1, z2(t) = z20 c1 + y~(e1 -e-2t)/3 + y0 z10(e1 - l); \f0(y, z) = 

(z1, z2)T, o/1(y, z) = (z1, z2 + k0 y2/e + k1yz/e)T, \f /y, z) = (z1, z2 + k0 y2(l + e-3)/e + k1yz1(1 

+ e-1)/e)T, o/3(y, z) = (z1, z2 + koy2(1 + e-3 + e-<i)/e + k1yz1(1 + e-1 + e-2)/e)T, ···,where k0 = 

(c3 - l)/3c2 and k1 = e - 1; o/k(y, z) ~ (z1, z2 + y2/3 + yz1)T; <1\(y, z) = 

y; H(y, z) = (y, z1, z2 + y2/3 + yz1)T, H-1(y, z) = (y, z1, z2 - y2/3 - yz1)T; E5 = 

{xE R3 I X2 = X3 = o}, H-1(E5
) = {xE R3 I X2 = 0, X3 =-xi/3}; Eu= {xE R3 j X1 = O}, 

H-1(P) = {xE R3 j x1 =0}. 

3. y1(t) = y10 e-t, y2(t) = y20 e-1 + y 1 ~(e-1 -e-21), z(t) = z0c1 + y 1~(e1 - c-21)/3; \f0(y, z) = 

z, \f 1(y, z) = z + k0 y~/c, \f2(y, z) = z + koYiO + e-3)/e, \f3(y, z) = z + k0 y~ (1 + c-3 + 

e-<i)/e, .. ., where k0 = (e3 - l)/3e2, and o/k(y, z) ~ z + yi/3; <I>0(y, z) = (y1, y2)T, 

<I>1(y, z) =(Yi· Y2 + k1eyi)T, <I>z(y, z) = (y1, Y2 + k1eyi(l + e-1))T, <I>iy, z) = 

(y1, y2 + k 1ey~(l + e-1 + e-2))T, .. ., where k1 = (e- l)/c2 and <I>k(y, z) ~ (y1, y2 + Yi)T; 

H(y, z) = (y1, y2 +Yi· z + y~/3), H-1(y, z) = (y1, y2 -yi, z-y~/3); Es= {xE R3 I x3 = O}, 

H-1(E5
) = {xE R3 I X3 =-xi/3}; Eu= {xE R3 I X1 = X2 = o}, H-1(P) = 

{ x E R 3 I x I = X2 = 0} . 
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5. 'l'm(z) = (z1, Z2 + mz~)T ~ cz,.,oo). If H(z) satisfies (9), then H(e2z1, e4z2 + e4zi) = 

diag[e2, e4]H(z); therefore, Hi(e2 z1, c4z2 + e4 z~) = e4H2 (z 1, z2) and e4 dH/ih1(z 1, z2) = 

dH/dz1(e2 z1, c4 z2 + e4 z~)-c2 + dH/dzi(e2 z1, e4 z2 + e4 zi)-2e4 zJ; ~etting z1 = z2 = 0 
If there exists a Ci: function H satfst)rmg ( 9 ), then 

implies that dH/dz1(0, o)' = 0. Q.Second-differentiation \Vith respect to Z1 yields 
I\ 

e4 ()2 H/dz~(O, 0) = e2(()2H/dz~·e2 + {)2 H/dz1 dz2·2e4z 1] + 2e4 z1 [()2 H/dz2 dz 1 ·c2 + 

d2 H/az;·2e4 z1] + 2c4 dH/ch2, the right-hand side being evaluated at ( e2 z1, e4 z2 + e4 zD; 

setting z1 =z2 =0 then implies that d2 H/dz~(O, 0) = ()2H/C>z~(O, 0) + 2dH/dz2(0, 0), i.e., 

that dH/dz2(0, 0) = 0. Thus J(z) = det DH(z) = 0 at z = 0. Finally, if H-1 exists, then 

Ho H-1(z) = z and then by the chain rule, if H-1 were differentiable at z = 0 we would 

get DH(H-1(z))-DH-1(z) =I which would imply that 0 = det DH(O)·DH-1(0) =I, a 

contradiction.(This contradicts Hartman's Tht!orem, p. 123. Therefore. there does not 
exist a C 1 function H satisfying (9).J 

PROBLE.l\I SET 2.9 

1. (a, c, d) all unstable, (b) (4, 2) is unstable and (-2, -1) is asymptotically stable, (e) 0 is 

asymptotically stable for k ~ I and fork> 1, 0 is unstable and (±~ , ±...J k - I , 

k - I) are asymptotically stable. 

2. (a) (1, 0) is an unstable proper node and (-1, 0) is an unstable saddle. 

(b) (-1, -1) and (2, 2) arc unstable saddles, ({2, 0) is an asymptotically stable proper node 

and (-{2 , 0) is an unstable proper node. 

(c) (1, 0) is an unstable saddle and (0, 2) is an asymptotically stable node. 

4. (a) V(x) < 0 for x =t 0 so 0 is asymptotically stable. 

(b) V(x) > 0 for x -:t 0 so 0 is unstable. 

(c) V(x) = 0 for all x E R2 so 0 is a stable equilibrium point which is not asymptotically 

stable and solution curves lie on circles centered at the origin. 
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5. (a) For V(x) = x~ + x;, V(x) < 0 for x :t O; therefore, 0 is ;asymptotically stable. 

(b) For V(x) = x~ + x;, it follows that on any given straight line x2 = mx 1 with Im - 2 I< '13, 
\{x) < 0 for all sufficiently small Ix! :t 0 and on any given straight line x2 = mx1 with 

Im - it> ..../3, V(x) > 0 for all sufficiently small !xi :t 0; i.e., 0 is a saddle and is unstable. 

This follows more easily from the Hartman-Grohman theorem since the eigenvalues of the 

linear part A= 1 ± .../3. (Also, see p. 126 in the appendix.) 

(c) For V(x) = x~ + 2x; /3, it follows that V(x) < 0 for 0 <!xi < 1; therefore, 0 is asymptotically 

stable. This also follows from the Hartman-Grohman theorem since the eigenvalues of the 

linear part A.= -2 ± i{S. 

(d) For V(x) = (x1 - x2 -4)4 • exp[(x1x2+ x1 - x2 + 12) I (4 + x2 - x1)], V(x) = 0 and therefore 

0 is a center. This Liapunov function can be found by making the rotation of coordinates u = 

x1 + x2, v = x1 -x2 to get du/dv = (u2/2 + v2/2 + 4v)/(uv-4u); and then letting w = u2 to get 

dw/dv = (w + 8v + v2) I (v -4), a linear differential equation. The solution of this linear 

differential equation then yields the Liapunov function V(x 1, x2). Also, note that the u, v 

system is symmetric with respect to the v-axis; cf. Theorem 6 in Section 2.10. 

7. Let x1 = x and x2 = -g(x 1). Then x + f(x) x + g(x) = 0 is equivalent to x1 = -g(x 1) - f(x 1)x1 = 
x2 - F'(x 1)x1 since F'(x1) = f(x 1). And this last equation is (up to an arbitrary constant) 

equivalent to x1 = x2 - F(x 1). Let V(x) = x; /2 + G(x 1). Then V(x) > 0 for x -:t 0 if G(x) > 0 

and V(x) = -g(x 1) F(x 1) < 0 if g(x) F(x) > 0. And since g(O) = 0, we have V (x) ~ 0 \vi th 

V (x) = 0 on the xi-axis. Thus, Theorem 3 implies that 0 is stable. To show that 0 is 

asymptotically stable, we may apply LaSalle's Invariance Principle: Let K be a bounded and 

positively invariant region in Rn and suppose that V(x) is defined on Kand that V (x) ~ 0 in 

K. Let L be the subset of K where V (x) = 0 and let M be the largest invariant subset of L. 

'.fhen thew-limit set of every orbit starting in K is in Mand the orbit approaches Mast-? 00• 

Cf. [67], p. 30. In this problem, we can Jet K = N(O), L = Kn{x 1 = O} and then M = {0} 

since orbits are transverse to the xraxis for x2 :t 0. Thus, by the above principle, 0 is 

asymptotically stable. 

8. F(x) = E(x3 - 3x)/3, G(x) = x2/2 > 0 for x * 0, and g(x) F(x) = Ex2(x2 - 3)/3 < 0 for E > 0 

and 0 < !xi < ..../3; therefore, for E > 0 the origin is an unstable equilibrium point of the van der 

Pol equation (using LaSalle's Invariance Principle). 
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PROBLEI\'I SET 2.10 

1 . (a) r = r, e = 1; the origin is an unstable focus. 

(b) r = ry2, 0 = 1; the origin is an unstable focus. 

(c) r= (x6 + y6)/r > 0 and S= 1 + xy(y4 - x4) I r2 > 0 for sufficiently small r > O;·the origin is 

an unstable focus. 

3. Let F(x) = f(x)-Df(O)x. Then according to the definition of differentiability, Definition 

1 in Section 2.1, IF(x)I I lxl ~ 0 as lxl ~ 0, i.e., as x ~ 0. 

4. (a) (0, 0) is an unstable proper node, (1, 1) and (-1, 1) are topological saddles. 

(b) (4, 2) is an unstable node and (-2, -1) is a stable focus. 

(c) (0, 0) is an unstable proper node and (0, -2), (±'13, 1) are topological saddles. 

( d) (0, 1) is a center since the system is symmetric with respect to the y-axis and (0, -1) is a 

topological saddle. 

(e) (0, ±1) are centers since the system is Hamiltonian and also since it is symmetric with 

respect to the y-axis and (±1, 0) are topological saddles. 

(f) (1, 0) is an unstable node and (-1, 0) is a topological saddle. 

PROBLEM SET 2.11 

1 . In Theorem 2, n = m = 1 is an odd integer, b1 = 4 t:. 0 and A = 8 > 0; therefore the system 

has a critical point with an elliptic domain at the origin. For V(x) = y - x2/(2 ±fl) we 

have V(x) = 0 on y = x2/(2 ± {2); thus y = x2/(2 ±fl) are invariant curves of the system. 

This system is best under~tood by drawing its global phase portrait; cf. Section 3.11) Prc1 .S-,, 

2. (a, b, e, f) 0 is a saddle-node. (c) 0 is a node (and it is unstable). (d) 0 is a topological 

saddle. 
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3. (a, b) 0 is a cusp. (c) 0 is a saddle-node. (d) 0 is a focus or center according to Theorem 

2 and using V(x) = x4 + 2y2 with V(x) = ~x2y2, it is a stable focus. (e) 0 is a topological 

saddle. (f) 0 is a focus or center according to Theorem 2; use the coordinate ransformation 

~ = x, T) = x + y to put the system into the normal form (3). Also, it can be shown that 0 is 

a stable focus. 

PROBLEM SET 2.12 

1. Substituting h(x) = a2 x2 + a3 x3+ · · · into (5) yields a2 = 0 and n'\i + ~+t = 0 for integer 

n ~ 2; and this implies that a1 = a2 = ··· = 0, i.e., that h(x) = 0. For the function h(x, c) 

given in this problem, we have h'(x, c) = 0 for x ~ 0 and h'(x, c) = ~eltx/x2 for x < 0. 

Substitution into equation (5) yields 0 = 0 for 

x ~ 0 and ~e11x/x2[x2] - (~e11x) = 0 for x < O; 

i.e., h(x, c) satisfies equation (5) for all XE R. 

Also, since h(x, c) is (real) analytic at each point 

x "# 0 with h<0)(x, c) ~ 0 as x ~ 0 and since 

h<0)(0, c) = 0 for all n = 1, 2, · · ·, it follows that 

h(x, c) E C00(R). 

C=O 

x 
-C=1 

-C=2 

2. Diagonalization yields a system of the form x= a(x + y)2 -y(x + y), y= -y - a(x + y)2 + 

y(x + y); then from (5), h(x) =-a.xi+ ax3 +···and on wc(O), x= ax2 + 0(x3); so for 

a'# 0, 0 is a saddle-node. For a= 0, h(x) = 0 and the x-axis is a line of critical points. 

3. The linear part of the system is already in diagonal form and from (5), h(x) = -x2 - 2x4 + · · ·; 

on wc(O), x= -x3 + · · · and the origin is a stable node. 

4. From (5) we have for h(x) = a2x2 + a3x3 +···that (2a2x + 3a3x2 + 4a4x3 + ···) (-x3) + (a2x2 

+ a3x3 + a4x4 + a5x5 + ···) - x2 = 0 identically in x for !xi< o. Therefore setting the 

coefficients of like powers of x equal to zero yields a2 = 1, a3 = 0, 2a2 = a4, a5 = 0, 4a4 = 

a6, a7 = 0, ···,i.e., a2 = I, a4 = 2a2 = 2, a6 = 4a4 = 2.4, ···, a20 = 2°n! and a2n+l = 0. Thus, 
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00 

h(x) = :L2nn! x2n+2 diverges except at x = 0 and this polynomial system has no analytic 
n=O 

center manifold. However, since x = -x3 < 0 for x > 0 and x = -x3 > 0 for x < 0, any 

trajectory y±(t) with y±(O) = (x±(O)), y±(O)) and x+(O) > 0 or x-(O) < 0 can be represented 

by a function y = f±(x) which is analytic for x > 0 or x < 0 respectively. And since Wc(O) 

is invariant under the flow, it follows from Theorem 1 that given f+(x), there exists an 

f-(x) such that the function h(x) = { f+(x) for x > 0, 0 for x = 0, f-(x) for x < 0} represents 

a C"° center manifold, Wc(O), and x = -x3 on Wc(O); thus, the origin is a stable node. 

5. (a) From (5), h(x) = -x7 - x; + ···;on Wc(O), x1 = -x2 + O(!xl3), x2 = x1 + O(lxl3) and the 

origin is topologically a stable focus on wc(O) which follows using the Liapunov function 

V(x) = (x7 + x;)/2 or by showing that r = -r3 + O(r4) and G = I + O(r) for the system on 

wc(O); hence, 0 is a symptotically stable critical point. 

(b) There is a saddle-node at the origin on wc(O). 

(c) There is a critical point with two hyperbolic sectors at the origin on wc(O). 

6. Let h(x) = a2 x2 + a3 x3 +···;then from (5), h(x) = dx2 + (ed-2ad)x3 +···and on Wc(O), 

x = ax2 + bdx3 + O(x4). Thus, for a::/= 0, the origin is a saddle-node; for a= 0 and bd > 0, 

the origin is a saddle; for a = 0 and bd < 0, the origin is a stable node; for a = b = 0 and 

cd °* 0, x= cd2 x4 + O(x5) on wc(O) and the origin is a saddle-node. If a= d = 0, the 

x-axis consists of critical points. 

7. h(x) = x7 + O(lxl3); on wc(O), x1 = -xi - x~ + O(lxl4); x2 = xi - x~ + O(lxl4) and the origin 

is topologically a stable focus on wc(O) which follows using the Liapunov function 

V(x) = (x~ + xi)/4; hence 0 is an asymptotically stable critical point. 
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PROBLEM SET 2.13 

1. L1[hi(x)] = (b20 x2 + (b 11 - 2a20)xy + (b02 - a11 )y2, -2b20 xy - b11 y2)T and for 

a02 = a11 = 0, a20 = (b + f)/2, b02 = -c, b11 = f and b20 =-a, LJ[h2(x)] + F2(x) = 

(0, dx2 + (e + 2a)xy)T. 

2. Since L1[h3(x)] = b30(x3, -3x2y)T + b21 (x2y, -2xy2)T + b12(xy2, -y3)T + (b03 - a12) (y3, O)T 

- 3a30(x2y, O? - 2a21 (xy2, O)T, the result for LJ(H3) follows; and then it is clear that H3 = 

LJ(H3)Et> G3• 

3. As in the paragraph preceding Remark 1, for F2 = F 2 = 0, the system x = Jx + F3(x) + 

O(jxj4) can be reduced, by letting x = y + h3(y), to a system of the form y = Jy + F-3(y) + 

O(lxj4) with F 3 E G3, i.e., to a system of the form x = y + O(lxl4), y = ax3 + bx2y + O(lxl4 ) 

for a, bE R. And letting y + O(lxj4) ~ y, we get a system of the form (3) in Section 2.l l; 

according to Theorem 2 in 2.11, for a> 0 there is a topological saddle at the origin and for 

a < 0 there is a focus or a center at the origin. 

4. Similar to Problem 3, we get a system of the form (3) in 2.11: x = y, y = ax4 + bx3y + 

O(lxj5) which, for a * 0, has a cusp at the origin. 

S. For X1 = Y1 and Xz = Y2 -y7, the given system reduces to x= y - x3 + xy2 - y3 + O(lxl4), 

y= x2 + 3x3 + x2y + O(lxl4) and then for x = (y1, y2 + y~ - y1y; + YDT or y = 

(x 1, x2 - x~ + x1x;- x~)T, this system reduces to y1 = y2 + O(lxl4); y2 = 

Y7 + 3y~ - 2Y7Y2 + O(jxl4). 
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PROBLE!\I SET 2.14 

1. (a) H(x, y) = a 11 xy + a 12 y2/2 - a21 x2/2 + Ax2y - Bxy2 + Cy3/3 - Dx3/J. (b) If x = f(x) is 

Hamiltonian, then f = (HY' - Hx) for x E E and therefore \7 ·f = fJH/ux - dH/Jy = 0 for 

XE E. On the other hand, if \7·f = 0, i.e., if df/dx = -df/dy in a simply connected 

region E, then the first-order differential equation -f2dx + f1dy = 0 is exact. (See, for 

example, Theorem 2.8. l in W.E. Boyce and R.C. Di Pima, "Elementary Differential 

Equations and Boundary Value Problems," J. Wiley, NY, 1997.) Thus, there exists a 

function HE C2(E) such that dH = Hxdx + Hydy = -f 2dx + f1dy and therefore the system 

x = f 1 = Hy, y= f2 = -Hx is Hamiltonian on E. 

2. H(x, y) = T(y) + U(x) = y2/2 + x2/2 - x3/3; U(x) has a strict local minimum at x = 0 and a 

strict local maximum at x = 1; and therefore the Hamiltonian system has a center at (0, 0) 

and a saddle at (I, 0). 

3. H(x, y) = y2/2 + x2/2- x:i/4; there is a center at (0, 0) and saddles at (±1, 0). 

5. (a) The Hamiltonian system has a center and the gradient system has a stable node at (0, 0). 

(c) The Hamiltonian and gradient systems have saddles at (mt, 0) for n E Z. 

(e) The Hamiltonian system has a center and the gradient system has a stable node at (-4/3, -2/3). 

6. (a) The surfaces V(x, y, z) =constant are paraboloids with their vertices on the z-axis and 

trajectories, other than the z-axis, approach the positive z-axis asymptotically as t ~ oo. 

(b) The surfaces V(x, y, z) =constant are concentric ellipsoids and the origin is a stable, 

three-dimensional node. 

(c) Each of the surfaces V(x, y, z) =constant has a strict local maximum at the origin, a strict 

local minimum at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0, 4/3, O); the gradient system 

has a source at the origin, a sink at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0, 4/3, 0). 
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7. Since x0 is a strict local minimum of V(x), there is a 8 > 0 such that V(x) - V(x0) > 0 for 

0 < lxl < 8 and d/dt[V(x)- V(x0)] = [av/ax]·x= -[(JV/()x 1) 2 + ··· + (0V/ox 0 )
2] < 0 for 

0 <!xi< 8. 

9. First of all (x0, 0) is a critical point of the Newtonian system (3) iff U'(x0) = 0. Since 

det Df(x0, 0) = U"(x0) and trace Df(x0, 0) = 0, it follows that (x0, 0) is a saddle of the 

Newtonian system (3) if U"(x0) < 0, i.e., if x0 is a strict local maximum of U(x); and 

since (3) is symmetric with respect to the x-axis, it follows that (x0, 0) is a center of the 

Newtonian system (3) if U"(x0) > 0, i.e., if x0 is a strict local minimum of U(x); finally, if 

x0 is a horizontal inflection point of U(x), then U'(x0) = 0 and the first nonvanishing 

derivative of U(x) at x0 is odd; therefore, it follows from Theorem 3 in Section 2.11 that 

(x0, 0) is a cusp for the Newtonian system (3). 

11. Let x1 = x, x2 = y, y1 = x and y2 = y. The two-body problem is a Hamiltonian system 

with H(x 1, x2, y1, y2) = (y7 + y;)/2- (x7 + xD-1' 2• The gradient system orthogonal to this 

system is x1 = -x/(x7 + x;)312
, x2 = -x/(x~ + x;)312

, ) 1
1 = -y1, Y2 = -y2• 

12. By Problem l(b), if x= f(x) is Hamiltonian, then \7·f = 0 in E (even if Eis not simply 

connected) and then by Problem 6 in Section 2.3, the flow defined by this system is area 

preserving. 
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3. NONLINEAR SYSTE1\1S: GLOBAL THEORY 

PROBLEM SET 3.1 

1. 

2. The differential equation x = x2/(l + x2) is separable; its solution is x(t) = 

( t + c ± ~( t + c )2 + 4) /2; for Xu ;t: 0, x(O) = xu if c =Xu - 1/x0 and the ± sign is chosen as 

xJlxol and this yields the result in Example 1; for x0 = 0 the solution is x(t) = 0. 

3. If f(x) ;t: 0 at x E E, then Dlf(x)I = lf(x)I f'(x)/f(x); and this then yields DF(x) = 

f'(x)/(l + lf(x)l)2; if f(x 0) = 0 at x0 E E, then DF(x0) = lim [F(x0 + h) - F(x0)]/h = 
h---lO 

Jim f(x 0 + h)/(I + lf(x0 + h)j)/h = f'(x0) and then Jim DF(x) =Jim f'(x)/(l + if(x)l)2 = f'(x 0) 
h-.0 X---l.•u X-Ho 

since f' E C(E) and since f(x 0) = 0; hence FE C1(E). 

4. f'(x) = -2x/(l + x2) 2 and f'(x) assumes its maximum/minimum at x = :+ I/{3 ; thus if'(x)I s 

If'(± I/{3 )I = 3{3 ; then by the mean value theorem lf(x) - f(y)I s 3\13 Ix - YI for x, y E R. 

The differential equation x = 1/(1 + x2) is separable and its solution satisfying x(O) = x0 is 

given by the solution of the cubic x3 + 3x - (3t + k0) = 0 with ko = x~ + 3x0; the solution of 

thiscubicisx(t)= (3t+k0 )+~(3t+k0 ) +4 + (3t+k0 )-~(3t+k0 ) +4 /z 113 {[ 2 ]1/3 [ 2 ]1/3} 

and x(t) ~ ± co as t ~ ± =. 

6. (a) If x0 is an equilibrium point of (1) then <f>t(x0) =Xu for all t E R; and since -r(x0, t) maps 

R onto R, it follows that t16t (H(x0)) = H(cf>t(x0)) = H(x0) for all TE R; i.e., H(x0) is an 

equilibrium point of (2). Alternatively, one may follow the hint given in Problem 6. 
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(b) If <flt(x0) is a periodic solution of (1) \Vith period t0, then <flto(x0) = x0 and therefore if 

T0 = T(x0, t0), it follo\\'S that lf;,
0
(H(x0)) = H(<f>to(x0)) = H(x0), i.e., 1fs.(H(x0)) is a 

periodic solution of (2) of period T0. 

7. (Cf. [Wi], p. 25-26.) Differentiating(*) wih respect tot yields DH(.Pt(x))Cl<f>t(x)/()t = 

dT(x, t)/dt·d\fl.(H(x))/()-r which at t = 0 yields DH(x)f(x) = (h(x, O)/ot·g(H(x)). Then 

9. 

differentiating this last equation with respect to x yields D2H(x)f(x) + DH(x)Df(x) = 

o-r(x, O)/ut·Dg(H(x))DH(x) + o2-r(x, O)/()x()t.g(H(x)). And then setting x = x0, this 

yields ADf(x0)A-1 = oT(x0, O)/Jt·Dg(H(x0)). Thus, the eigenvalues of Df(x0) and the 

eigenvalues of Dg(H(x0)) are related by the positive constant k0 = oT(x0, 0)/Jt. 

For F(x, y) = (y, µx + y - y3) and ~l "* 0, F-1(x, y) = (y - x + x3, ~tx)ht; 

DF(x, y) = [O 1 land Df-l(x, y) = r(-1+3x2) I ~t 
µ 1-3y2 1 

1/ ~l1 
0 

are continuous; and an 

easy computation yields F( -/µ, ,,!µ) = ( ,,,rµ, -)µ). 

PROBLE1\'I SET 3.2 

1 . There is a saddle at (0, 0) and stable nodes at (± 1, 0). [-1, 1] is an attracting set, but it is 

not an attractor since it docs not contain a dense orbit. (0, 1] is not an attractor since it is 

not closed. [1, oo) is an attractor. (0, oo), [0, 00) and (-1, oo) are not attracting sets. [--1, 

oo) and (-oo, oo) are attracting sets. 

2. (a) By the theorem of Hurwitz given in this problem, for any irrational number a and any 

integer N > 0, there are positive integers m, n such that n > N and Ian - ml< 1/n. Further­

more, for any E > 0, if we choose N ~ 2rr.IE, then l2nan - 2nml < 2n/n ::::; E and then for a= 

exp[2nia], Ian - 1 I < E. Let 8 = 2nna - 2nm; then 0 < IOI < E and there exists an integer K 

such that KISI < 2n < (K + OISI. Thus, for any point a0 on the unit circle C, there is an 

integer j E { 1, · .. , K} such that laj - a0I < E; therefore { ak I k = 1, 2, .. ·} is dense in C. 
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(b) The flow cf>t(w, z) = (e2r-itw, e2rraitz); it follows that cp
11
(w, z) = (e2rrinw, e2mmitz) = (w, a11z). 

(c) Let x0 = (w0 , z0)E T2. Given any point (w1, z1)E T2, let t0 = argw 1 - argw0 . Then 

e2rri1-0w0 = w1 and forz 0 = e2rrailoz0, cp4J(w0, z0) = (w 1, z 0) since cp 1(w0 , z0) = 

(e2rri1w0, e2rro:itz0). Then for any z1 EC and En= l/n, there~ a positive integer kn> n such 

that I z0 exp[2naik11 ] - z1 I< l/n; this follows from part (a) with a0 = z/Z.0 and£= l/n. 

Thus, for any point (w1, z1)E T2, if we Jct 1
11 

= t0 + k
11

, then t
11 
~ 00 and cp 1/w0, z0) = 

cVk
11 

o cp 10(w0, z0) = cVk
0 

(w 1, z0) ~ (w1, z1) as n ~ 00 ; therefore, (w 1, z1)E w(fx0); i.e., 

w(fx0) = T2• Similarly, it is shown that a(fx0) = T2• 

(d) Any trajectory of this system is a solution of the Hamiltonian system with two degrees of 

freedom x = -2nay, y = 2nax; u = -2nv, \, = 2nu; with H(x) = -n[a(x 2 + y2) + 

(u2 + v2)]. Thus, trajectories lie on the ellipsoidal surfaces Ek= {xE R4 I a(x2 + y2) + 

(u2 + v2) = k2}. For a given kE Rand x0 E Ek, it follows from part (c) that w(fx0) is the 

torus 1::2k = {xE R4 I u2 + v2 = h2, x2 + y2 = (k2- h2)/a} =Ch x Ch' with h' = 

-/( k 2 
- h 2) I a and, as in Section 3 .6, for a given k E R, we can project from the north 

pole of the surf ace Ek to obtain the projection of the tori ~,~. onto R3; cf. Figure 5 in 

Section 3.6. 

3. Reflexive: r) - r) since cf>1(X1) = cVt+lo(x,) for to= 0. Symmetric: If 11 - r2 then cf>1(X2) = 

cp 1+1
0
(x 1) which is equivalent to cp 1_ 10(x 1) = cp 1(x 1), i.e., r 2 - f 1. Transitive: If r 1 - r 2 and 

r; - r3 then <P1<x2) = <f>t+to<x,) and <f>t(X3) = <f>t+t1(X2) = <f>t+to+t1<x1), thus rl - r3. This 

equivalence relation partitions the set of solution curves of (I) into equivalence classes 

called trajectories. 

4. w(f) cannot consist of one limit orbit and two equilibrium points; in case (d) there are two 

different topological types given by the top two figures in Figure 4 in Section 3.3. 

(Also, seep. 129 in the appendix). 
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6. (a) Replacing x by -x and y by -y does not change the system. 

(b) For x = y = 0, x = 0, and y= 0, so the z-axis is invariant and consists of three 

trajectories: the origin together with the positive and negative z-axes. 

(c) Substituting the coordinates for the equilibrium points into the right-hand side of the 

system gives zero; for cr > 0 and p > I, the linear part at the origin has two negative 

eigenvalues and one positive eigenvalue. 

(d) V(x) = -2cr[(px - y)2 + ~z2) < 0 except on the line z = 0, y = px; thus, for 0 < p < I, 0 

is globally asymptotically stable. 

PROBLE!\1 SET 3.3 

1. (a) r = r(l - r2) sin [I I ~JI - r2 J]. S = I and r = 0 if r = -vi 1 ± (I In 2rt2
). This defines a 

sequence of limit cycles r;w"hich approach the cycle r on r = l; the limit cycles r~ are 

stable for n odd and unstable for n even. 

(b) Similarly, 0 = I, r= r(l - r2) sin[ 1/(1 - r2)] = 0 if r = ~1- (11 nrt), n a nonzero integer; 

r
0 

is stable for n odd and positive or n even and negative and r
0 

is unstable for n even and 

positive or odd and negative. 

2. S = I and r = r(l - r2)2 = 0 if r = I and r > 0 for r :;t: 0 or 1. 

3. From the example in Section 1.5 \Ve have a one-parameter family of cycles lying on the 

ellipses x(t) = acos2t, y(t) = ( a/2) sin2t with parameter a E (0, oo) and period Ta = n:. 

(b) r = 0 and S= r > 0 for r > O; by substitution into the system of differential equations, 

x(t) = acosat, y(t) = asinat is a periodic solution with period Ta= 2rt/a for aE (0, oo). 



4-6. Use the result of Problem 1 in Section 2.14 to show that the system is Hamiltonian and 

then use Theorem 2 in Section 2.14 to determine which critical points arc saddles and 

\vhich are centers. (Also, seep. 130 in the appendix.) 

7. (a) 0 = 1, r= r(l -r2) (4- r2) has two limit cycles 1 1 : Y1(t) =(cost, sint)T and 12 : Y2(t) = 
(2cost, 2sint)T; 1 1 is stable and 12 is unstable; 0, 1 1, 12 are the only limit sets of this 

system. 

(b) 0 = I, r = r(I - r2 - z~) (4 - r2 - z~) for z = z0; the spheres S1 : r2 + z2 = 1 and 

S2 : r2 + z2 = 4 arc invariant; there is no attracting set; cf. Example 2 in Section 3.2. 
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8. 0 = 1, r= r(l - r2) (4-r2), z(t) = Zoe1; 11 and lz arc unstable, wsc11) = {xE R3 I z = 0, 

0 < r < 2}, W 11 (11) = { x E R 3 I r = 1 }, \V5(f2) = 12, wu(f2) = { x E R 3 11 < r < 00}. The 

unit cylinder is the only attracting set for this system. 

9. f2 is a stable periodic orbit \V5(f2) = { x E R 3 I I < r < 00}; the origin, f2, the z-axis and 

the cylinder r = 2 are attracting sets for this system; and the origin and f 2 are the only 

attractors for this system. 

PROBLEI\:l SET 3.4 

1. Substitution into the system of differential equations shows that y(t) is a periodic solution. 

Since V·f(y(t)) = -2 (since I - x2/4 - y2 = 0 on Y(t)), it follows from the corollary to 

Theorem 2 that 1 is a stable limit cycle. 

2. Substitution shows that Y(t) is a periodic solution. In cylindrical coordinates r = r(l - r2), 

0 = I and i. = z, which has the solution '1>t(r0, 00, z0) =([I +(I/~ - l)e-21]-112 , t + 00, 

z0e1)T; thus P(r0, z0) = ([1 + (11~ - l)e-4n]-112, z0e2n)T, DP(r0, z0) = diag[e-4nr~ 3 · 

[l + (1/r;- l)e-4nJ-312, e2n] and DP(l, 0) = diag [e-4n, e2n] = c2nB where B = diag [-2, l]. 
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x0 exp [2na/lbl]; for d(x) = P(x) - x = x exp [2rra/lblJ - x, d'(O) = d'(x) =exp [2nallbl] - I 

' and clearly d(-x) = -d(x). 

(b) P(s) = [I + (1f s2 - 1 )e-471 ]-
112 for s -:t. 0 and P(O) = O; and this is equivalent to P(s) = 

s[s2 + (1 - s2)e-4n:]-112 which is (real) analytic for alls E R since s2 + (1 - s2)e-4n = 

e-4:i: + (1 - e-4n)s2 > 0 for all sE R; since P'(s) = e-4n[s2(1 - e-4n) + e-47!]-312 for all SER, 

P'(O) = e2 71 and d'(O) = e271 - I > O; thus, the origin is a simple focus which is unstable. 

4. 0 = 1, r= r(l - r2)2 and 'Y(t) = (COSt, sint)T is a semi-stable limit cycle of this system; 

since Y'·f(y(t)) = 0, it follows from Theorem 2 that d(O) = d'(O) = 0 and hence k 2 2 in 

Definition 2, i.e., r is a multiple limit cycle. 

5. If a= 0, b * 0, a20 + a02 = b20 + b02 = 0, then according to equation (3), cr = d"'(O) = 0 

and therefore the first non-vanishing derivative d<kl(O) * 0 has k = 2m + l 2 5, i.e., the 

01igin is either a center or a focus of multiplicity m 2 2. 

PROBLE11 SET 3.5 

1. Direct substitution shows that 'Y(t) is a periodic orbit of the system. The linearization about 

[

o -1 

y(t) has A= Df(y(t)) = 1 0 

0 0 

01 [cost 
0 and <l>(t) = sin t 

-1 0 

-sint 

cost 

0 

~ l as its fundamental 
e-t 

matrix satisfying <l>(O) =I. It follows that <l>(t) = Q(t)e8 t with Q(t) given in Example 1 and 

B = diag [O, 0, -1]; therefore, the characteristic exponents ofy(t) are A. 1=0 and /...2 =-1 

and the characteristic multipliers are 1 and e-2n; dim S(f) = 2, dim C(f) = 2 and 

dim U(r) = 1. 
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2. Direct substitution shows that 'Y(t) is a periodic solution of period n; the linearization about 

[

-2cos
2

2t -4-2sin4t ol 
y(t) has A(t) = Df(Y(t)) = l-(si:4t) / 2 -2s~2 2t ~ and direct substitution 

into x = A(t)x shows that the given <P(t) is a fundamental matrix for this non-autonomous 

linear system; <P(t) = Q(t)eBt with B = diag[-2, 0, 1] and Q(t) = 

[ 

cos2t 

~s~2t cos2t ~ l The charactcri st i c exponents of y( t) are A 1 = -2 and A1 = I 

-2sin 2t 

0 

and the characteristic multipliers are exp(-211:) and cxp(n); dim S(f) =dim U(f) = 2 and 

dim C(f) = 1. The periodic orbit 'Y(t) is an ellipse in the x,y plane; wu(f) is a vertical, 

elliptical cylinder through r, W5(f) is the x,y plane without the origin and ween = r. 

[ 

cost -sin t 

4.(a,b)cpt(x0)= sint cost 

1-cost sint 

~ } 0 " <l>(t)x0 where for u(t, x0) = <!> 1(x0). <l>(t) = 

(c) 'Y(t) is the periodic solution through the point (I, 0, O)T at t = 0, A= Df('Y(t)) = 

[
o -1 ol 
1 0 0 and direct substitution shows that <P(t) satisfies the linear differential 

0 1 0 

equation (2) and <P(O) = I. 



52 

7. (a) .!.[ 4
e: - e =~: 2

(e =~: -e: )] = p[e' O ] P- 1 = cB1 1 according to Proposition I in 
3 2(e - e ) 4e - e 0 e-21 

[2 l] [2 -2] Section 1.3 where P = and B 1 = . Thus, <l>(t) = Q(t)eBt with Q(t) = 
1 2 2 -3 

diag [R1, 13] and B = diag [O, 0, B1, O] \vhere 13 is the 3 x 3 identity matrix; it follows that 

the characteristic exponents of rare 0, 0, I, -2 and that dim W5(f) = 2, dim wu(f) = 2, 

and dm ween = 3. 

(b) Similarly, <l>(t) = Q(t)cB1 with Q(t) = diag[R 21, A(t), 1] and B = diag [-3, -3, 3, 3, O] 

where R21 is a 2 x 2 rotation matrix and A(t) = [ 1, 0; t, 0]; it follows that dim W 5(f) = 
dim wucn = 3 and dim ween= I. 

8. Direct substitution shows that y(t) is a periodic solution of the given system and that the 

given fundamental matrix <l>(t) is a solution of x = A(t)x with A(t) = Df(y(t)) = 

-8acos2 4t 

8-16asin 4tcos4t 

0 

-2-4asin4tcos4t 

-8asin2 4t 

0 

acos4t 

2a sin 4t provided cx(t) and f)(t) satisfy the 

cos4t - a2 

nonhomogeneous, periodic system given in this problem (it is not necesssary to solve the 

system for cx(t) and f)(t) in order to finish the problem); <l>(t) = Q(t)e81 with B = 

cos4t -l/2sin4t cx(t)el/4sin4t 

diag [-8a, 0, -a2] and Q(t) = 2sin4t cos4t f)(t)el/4sin4t . The characteristic 

0 0 el/4sin4t 

exponents are /... 1 = -8a and /...2 = -a2; the characteristic multipliers are e-4an and 

exp(-a2n/2); for a> 0 dim \V5(f) = 3 and dim Wu(r) = I while for a< 0, dim ws(r) = 

dim wucn = 2. 



PROBLEl\I SET 3.6 

1. dim wc(f') = 4; solving thew, Z equation for w leads to 1 - w = 

(1 ± ~l - h2 
- h2Z2

] I ( 1 + z2 ) and substituting this into the first equation following 

Figure 5 and simplifying leads to the result for T~. 
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2. (a) The Hamiltonian H(x, y, z, w) = (~x 2 + By2 + z2 + w2)/2; thus, for H = 112, trajectories 

lie on the ellipsoidal surface B(x2 + y2) + z2 + w2 = 1 and for h E (0, I) if x2 + y2 = h2/B, 
then z2 + w2 = 1 - h2, i.e., trajectories lie on the tori T~. 

(b) As in Problem 1, we find 1-w= [1±~1-h2 -h2z2 ]1(1+z2 ) and then 

z2 + B(x - 1!h-{i3)2 = o - h2)/h2. 

(c) According to Problem 2 in 3.2, the flow is dense in each of the tori T~ if() is irrational; 

and it consists of a one-parameter family of periodic orbits if() is rational. 

4. Under the projective transformation in Problem 3, 10 gets mapped onto Z = W = 0, i.e., 

the Y-axis; 11 gets mapped onto Y = y/(k- x), Z = I/(k - x), W = 0 and then substitution 

into H(x, y, z, w) = k2/2 leads to (Z - 3k)2 + 3Y2 = 3(3k2 - 1), the equation of an ellipse; 

the linearization about 11 shows that 11 has characteristic exponents A1 = 1~2 =0,1~3 = 1 

and .A4 = -1 and dim W 5(f'1) =dim wu(f') = 2 as in Section 3.5. 
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PROBLEM SET 3. 7 

1. (a) r=r5 -3r3+randS= 1sor<Oonr=1 andr>Oonr=2;thus,thca-limitsetofany 

trajectory that starts in A 1 is in A1 and by the Poincarc-Bendixson theorem a(f) is a 

periodic orbit (since A 1 contains no critical points). 

(b) Since the eigenvalues of the linear pai1, Df(O), arc ±2i and since r> 0 for sufficiently 

small r > 0, the origin is an unstable focus; thus, the w-limit set of any trajectory that starts 

in A2 is in A2, etc. 

(c) r = '13 - -J 5 I {2 is a stable limit cycle and r = '13 + -V 5 I {2 is an unstable limit cycle. 

2. (a) r= r- r3 (cos48 + sin40) = r- r3 + r3 sin220/2; thus,[:::;; r(l - r2/2) = 

( ...J2 + E) (-...J2 E - E2/2) < 0 for r = ...J2 + E and E > O; [;:::: r(l - r2) = (1 - E) (2 - E) E > 0 for 

r = I - E and 0 < £ < 1. Thus, for 0 < E < 1, any trajectory r cnte1ing the annular region 

A£= { I - E < r < {2 + E} at t = t0 remains in AE for all t > t0. Since there arc no critical 

points in AP it follows from the Poincare-Bendixson theorem that there is a periodic orbit 

ru = w(f) c AE and since this is true for all EE (0, 1), it follows that ro c A. Also, the 

only points on the circler= I \vhere a limit cycle could intersect r = I are the points on 

r = 1 where 8 = 0, rr/2, n, 3rr12 (where r = 0). But at all other points on r = I, r > O; so it 

is impossible for any limit cycle to intersect r = 1. A similar argument shmvs that no limit 

cycle can intersect r = {2 ; thus, there is at least one limit cycle in the annular region A. 

(b) Using Dulac's Theorem, this analytic system has a finite number of limit cycles and since 

the boundary of AE is "incoming" for all EE (0, 1 ), at least one of these limit cycles must 

be stable. 
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4. (a) The only two phase portraits that are topologically distinct in the annular region A are the 

t\VO for which the cycles r = l and r = 2 have either the same or the opposite orientations; 

all other possible phase portraits are equivalent to one of these two under the 

homeomorphism of A given either by H(x, y) = (x, -y) or H(x, y) = 2/..Jx 2 + y2. 

(b) As in the proof of Poincare's theorem: On any ray 8 = 0 1, we have S> 0 on r = l and 

e < 0 on r = 2 or vice versa; thus by the intermediate value theorem 0 = 0 at some point 

r E (I, 2); then, by continuity' there is a dosed curve r 0 of points on which e = O; i.e.' on 

which the motion is radial; let f 1 be the curve <f. 11(f0) with t1 > 0; then since the flow <f. 1 is 

area preserving, it follows that f 0 and f 1 must enclose the same area and therefore they 

must cross at least twice; if they cross exactly twice, at x1 and x2, then r must have the 

opposite sign on the arcs x1x2 and x2x1 of f 0 and therefore, by continuity, r = 0 at x 1 and 

x2 which are thus critical points of (I) since r = 8 = 0 there; if there are more points of 

intersection, it can still be shown that r changes sign at least twice. 

6. (a) Even though the points "n may not lie on a straight line, by Lemma I <here is a transversal 

{through the point Xo E f 0 and since xn ~ Xo• it follows from Lemmas I and 2 that f n 

crosses e exactly once at a point xn (for all sufficiently large n); thus, by Theorem I in 

Section 3.4, <f.r<i.i) \xn) =in, i.e., -r(in) = Tn and 't(Xo) = T0; therefore, by the continuity 

(b) See Figure 6 in Section 4.5 

7. The phase portrait is given by the separatrix 

configuration shown here; and even though 

the critical point (I, 0) is the w-limit set of 

every trajectory, except for the critical point 

at 0, (I, 0) is not a stable critical point. 

-~--.,,.... ....... 
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/ ' 
I .,,,..-....... ' 

I / \ ' 
I I J ', 
I I / '-
I I ~/~----.-........... ::---
1 \ 0 / 
\ \ / 

\ ' ._/ 'I ' ...... __ 7 'I 

' ~ ...... / ....... / --- - - _..., 
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8. For y = -1, we have y = 0 and x=-1; i.e., the line y =-1 is a trajectory. Also, the 

origin is the only critical point of this system and since Df(O, 0) = [O, I; -1, I], the origin 

is an unstable focus. Since ri.- = y2(1 + y) I (1 + y2) > 0 for y > -1, there are no limit 

cycles around the origin in the half plane y > -1. Thus, according to the Poincare­

Bendixson Theorem for analytic systems, any trajectory starting on the positive y-axis has 

the separatrix cycle consisting of the trajectory y = -1 and the point at infinity on the 

Bendixson sphere as its w-limit set; i.e., this system has an unbounded oscillation. Since 

dy = I = I+ y -{1 + .!.)--t -x 
dx x I+ y2 y 

as y --t - oo, it follows that any trajectory in the half plane y < -1 (which can be 

represented as a function y(x) since x = y < -1), satisfies y(x) = y0 - x2/2 + 0(1/x) as lxl 

--t oo, i.e., as t --t ±oo. The phase portraits on R2 and on the Bendixson sphere are given 

by the following figures: 

y 
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PROBLEM SET 3.8 

2. fhascxactlytwopositivezerosata1.2= ~S±ffi /2,f'(x)>Oforx> vls/2andhcncc 

for x > a2, and the function F(x) = .32xs - 4x3/3 + .8x satisfies F(a1) > 0 and F(a2) < 0. 

3. a1 = -72, a3 = 392/3, a5 = -224/5 and a7 = 128/35. 

4. The system in Theorem 6 with a1 = 1152, a3 = -6560/3, a5 = 4368/5, a7 = -76817, and 

a9 = 256/63 (and all other a's = 0) has exactly four limit cycles asymptotic tor= 1, 2, 3, 4 

as £ ---7 0. 

5. By the symmetry with respect to the y-axis, the critical point (0, F(O)) is a center. 

(Also, seep. 134 in the appendix.) 

6. By Licnard's theorem (or its corollary in this section), van dcr Pol's system has a unique 

limit cycle and it is stable. 

(a) By Theorem 6, the limit cycle is asymptotic to the circler= 2 asµ ---7 0. 

(b) Under the given transformation we get x'('t) = 

µ2(u + x - x3/3) and u'('t") = -x and then with 

t = µ2-r and f = lht2, we get x = u + x - x3/3 

and ti= -Ex. For 0 < f << 1 we have 0 <It.ii 

<< 1, u> 0 for x < 0 and ti< 0 for x > 0; and 

since x changes sign on the curve u = x3/3 - x, 

u 3 
U=:\ /3-X 

it follows that the limit cycle is approximated by the darkened curve shown in Figure 8 

as £ ---7 0, i.e., asµ ---7 oo. Cf. F. Dumortier' s analysis of the "canard" phenomenon in 

Section 5 of his article in NATO Adv. Studies, C408 (1993) 20-73. 
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PROBLEl\'f SET 3.9 
m 

1. If (I) has a separatrix cycle S = u rj c E, then by Green's theorem with R = int(S), 
j=l 

m 

I= Jf RV· fdxdy = f
5
(Pdy-Qdx) = L J~jPy-Qx)dt = 0 since x =Pandy= Q on 

j=l 

Ij; but if V·f is not identically zero and does not change sign in E, then I I J > 0, a 

contradiction; thus, there is no separatrix cycle S of (1) lying entirely in E. 

2. Suppose there is a periodic orbit r lying in E and let R = int(f), a simply connected region; 

then by Green's theorem I = fJ RV · {Bf)dxdy = f 
1 

B(Pdy - Qdx) = f ~00 B(Py - Qx )dt = 0 and 

this leads to a contradiction as in Problem 1. Next, suppose there are two periodic orbits 11 and 

r2 in the annular region A and let r0 be an arc from a point on 11 to a point on 12 which lies in 

the region between f 1 and 12; then for r = f 1 + 10 - 12 - f 0, the simply connected region R = 

int(f) c A and by Green's theorem I =ff V · (Bf)dxdy = f + f- f- f B(Pdy - Qdx) = 
R 11 1o 12 1o 

l B(Pdy- Qdx )- J B(Pdy- Qdx) = 0 and this leads to a contradiction as above. 
11 12 

3. (a) V·f = I - 3r2 < 0 for r > J/{3; there is no contradiction to Bendixson's theorem because 

A is not a simply connected region. 

(b) From Problem 2 in Section 7, there is at least one limit cycle in the region A and then by 

Theorem 2 (with B = 1) there is at most one limit cycle in A. 

4. (a) SinceV·f = 1 - x2 > 0 for !xi< 1, it foIJows from Bendixson's criteria that any limit cycle 

of van dcr Pol's equation must cross both of the lines x= ±1. (Note that van der Pol's 

system is invariant under x --t -x and y --t -y and therefore any limit cycle of this system 

is symmetric with respect to the origin.) 
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(b) First of all, if f has no positive zeros then F'(x) = f(x) is either increasing or decreasing 

and therefore by the corollary to Theorem 3, there is no limit cycle of (I); if x1 is the 

smallest zero off then since V·f = -F'(x) = -f(x) -:t 0 for !xi< x1• it follows as in part (a) 

that any limit cycle of (1) must cross x = x1 and x = -x1• 

5. (b) Change the time scale to obtain x = y, y = -x + y( I + xz + x4) and then compute V ·f 

(or r) for this system to show that it has no limit cycle in R2• 

PROBLEM SET 3.10 

1. (a) The stable manifold is tangent to the stable subspace Es= { (y, z)E R2 I y = 0} at O; and 

since for y = 0, )1 = -5z2 < 0, the stable manifold is as shown in Figure 6. 

(b) Since y< 0 for y = 0, the separatrix r having (1, 0, 0) as its w-limit point approaches 

(1, 0, 0) through points where y > O; since there are no critical points in the finite plane, 

there are no cycles there and hence, by the generalized Poincare-Bendixson theorem, a(r) 

is a critical point on the equator of the Poincare sphere with y > O; it cannot be the stable 

node at (I, 2, 0)/{5; so it must be the unstable node at (-1, 2, 0)/{5. 

2. By the theorem in Section 1.5, 0 is an unstable focus for the linear part of this system at 0; 

by Theorem 4 in Section 2.10 (or by the Hartman Grohman theorem and Theorem 2 in 

2.10), 0 is an unstable focus for the nonlinear system as well; and since x = -y for x = 0, 

x < 0 if y > 0 and x > 0 if y < O; therefore, the flow swirls counterclockwise around the 

focus at 0. Since 0 is unstable and there are no other critical points in R2, it follows from 

the generalized Poincare-Bendixson theorem that the (unique) stable limit cycle established 

in Section 3.8 is the w-lirnit set of every trajectory, except the equilibrim point 0. 
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3. (a) We have an unstable node at the origin; stable nodes at (±1, 0, O); and saddles at (0, ±1, 0). 

; 

(c) We have an unstable focus at the origin, \Vith a counterclockwise flow; there is a cycle on 

the equator of the Poincare sphere and no limit cycles in R 2 for this linear system. 

4. You should determine that ( 4, 2) is an unstable node and (-2, -1) is a stable focus for 

this nonlinear system. (Cf. Sections l.5 and 2.10.) Also, determine that there is a stable 

node at (0, 1, 0), an unstable node at (0, - l, 0), and saddles at ±( {2, 1, 0 )/{3 and at 

±h'2, -1, 0 )/{3 on the equator of the Poincare sphere. Note that y :5 0 on y = 0 and that 

V·f = IOy < 0 for y < O; so there arc no limit cycles. The global phase portrait is 

determined by Figure l 2(i). 

5. You should determine that (0, 0) is an unstable node and that (0, -2) and (±13, l) are 

saddles. (Cf. Sections l.5 and 2.10.) Also, determine that there are stable nodes at (0, 1, 0) 

and (±'13, -1, 0)/2, and that there are unstable nodes at (0, -1, 0) and (±,{3, 1, 0)/2 on the 

equator of the Poincare sphere. Note that the y-axis consists of trajectories and that y :5 0 for 

y = 0. The global phase portrait is determined by Figure 12(vii). 

6. You should determine that there is a center at (0, 1) (using the symmetry with respect to 

the y-axis) and that there is a saddle at (0, -1 ). (Cf. Sections 1.5 and 2.10.) Also, 

determine that there are nodes at the critical points (±1, 0, 0) on the equator of the Poincarc 

sphere. Use the symmetry with respect to the y-axis to aid in drawing the global phase 

portrait which is determined by Figure 12(v). 

7. You should determine that there are centers at (0, ±1) using the symmetry with respect to 

the y-axis (also, this system is Hamiltonian) and that there are saddles at (±1, 0). Also, 

you should determine that there are nodes at the critical points (±1, 0, 0) on the equator of 

the Poincare sphere. Use the symmetries to aid you in drawing the global phase portrait 

\vhich is given by Figure 12(vi). 
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8. You should determine that (1, 0) is an unstable node and that (-1, 0) is a saddle for the 

nonlinear system. (Cf. Sections 1.5 and 2.10.) Also, using Theorem 1 in Section 2.11, 

determine that there arc saddle-nodes at the four critical points (±1, ±I, 0)/'12, and also that 

there are nodes at the critical points (±1, 0, 0) on the equator of the Poincarc sphere. 

Determine that the x-axis consists of trajectories and that the global phase portrait is given 

by Figure 12(ii). 

9. (a) The equation of the tangent plane to a level surf ace F(x) = I is given by VF(x0)-(x - x0) = 0 

at a point x0 on the surface and this leads to x·x0 = 1. 

(b) At each point xE S2, f(x) must satisfy f(x)·x = 0. 

(c) Follow the hint to obtain f and then show that f(x)·x = 0. 

10. a Hi, b H vii, c H v, d H vi, e H ii as determined in Problems 4-8. 

11. i Ha, ii H c, iii H d, iv Hg, v He, vi Hf, vii H b. 

12. The homoclinic loop at the saddle point (0, -1) is given by (x2 + y2- 2y + l)eY = 4/e. 

13. (a) This follo\vs directly by converting to polar coordinates since r = (xx + yy)/r = r(x2 - y2) 

and 0 = (xy - yx)/r2 = 2xy. 

(b) Substituting x = 'fjp2andy=11/p2 into the equation obtained in part (a) yields dp/d8 = 

-p(~2 -112)/2~11 which can be written asp= (~2 -112)/p, S= -2~ri/p2 and therefore~ = 

pcos8 -p0sin8 =~and tj = psin8 + pScos8 = -11. 

(c) The flow on S2 in Figure 4 follows exactly as in Example I and then projecting from the 

north pole of S2 onto the~. 11 plane at the south pole of S2 yields the flow in Figure 14(a); 

the "blow-up," shown in 14 (a), reduces the complicated critical point at the origin to four 

hyperbolic critical points (nodes) on the unit circle; shrinking this circle to the point at the 

origin yields Figure 14(b). 
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PROBLEM SET 3.11 

1. In Figure 5 there are four (parabolic) strip regions; in Figure 7 there are three (parabolic) 

strip regions; and in Figure 9 there is one (hyperbolic) strip region and one spiral region. 

2. You should detennine that (0, 2) is a stable node and that (1, 0) is a saddle for the non-

linear system. (Cf. Sections 1.5 and 2.10.) You should also determine that according to 

Theorem l in Section 2.11, there are saddle-nodes at (±1, 0, 0) and according to Theorem 

2 in Section 2.11, there are critical points with an elliptic domain at (0, ±1, 0). Finally, 

you should determine that the phase portrait is given by Figure 12(iv) in Section 3.10. 

3. You should determine that (2, 2) is a stable node, that (-1, -1) is an unstable focus, and 

that (0, -2) is a saddle for the nonlinear system. (Cf. Sections 1.5 and 2.10.) You should 

also determine that according to Theorem 2 in Section 2.11 there are saddles at ±( 1, 2, 0)/ 

{3 and a critical point with an elliptic sector at (0, 1, 0) and (0, -1, 0) on the equator of 

the Poincare sphere. Finally, you should detennine that the phase portrait is given by 

Figure l 2(iii) in Section 3.10. 

4. For a> 0 you should detennine that (0, 0) is an unstable node and that (-a, 0) is a saddle 

for the nonlinear system. Then determine that there are stable nodes at (0, ±1, 0) and using 

Theorem l in Section 2.11 detennine that there are saddle-nodes at (± 1, 0, 0). Draw the 

global phase portrait using the fact that the x and y axes and the straight line x =-a consist of 

trajectories. For the bif urea ti on value a= 0, detennine that there is a saddle-node at (0, 0) 

and that for a< 0, the saddle and the node have interchanged their relative positions from 

those with a > 0. 

6. You should determine that there is an unstable node at the origin and stable nodes at (0, alb) 

and (alb, 0) as well as a saddle at (r - b, s - b)a/(rs - b2) for the nonlinear system. (Cf. 

Sections 1.5 and 2.10.) Also, determine that there are saddles at (±1, 0, 0) and (0, ±1, 0) 

and nodes at ±(r - b, s - b, 0)/ ~(r - b )2 + (s- b )2 on the equator of the Poincare sphere. 
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Use the fact that the x and y axes and the straight line y(r - b) = x(s - b) consist of 

trajectories to aid in drawing the global phase portrait. If the initial numbers of the two 

competing species x0 and y0 (are positive and) lie on the above-mentioned straight line, then 

x(t) ----t a(r- b)/(rs - b2) and y(t) ----t a(s - b)/(rs - b2) as t ----too; but the probability of 

choosing a point in the first quadrant on that line is zero. 

7. According to Definition l', the separatrices consist of the straight lines x =mt, n = 0, 

±1, ... , since any other trajectory of the system can be embedded in a parallel region N 

with two other (curved) trajectories rl and r2 satisfying the definition while the straight 

line trajectories x = nn cannot. The flow is described by the following phase portraits: 

----- ----- I I -----/ l\ ;1f \ I I / \ 
••• I \ I \ • •• • • • \ I I \ ••• 

I \ I \ \ I I --V 
I \ I \ \ 

"' 
I \ 

I I I I \ / I I 
I I I I 

....._ _,,. 
I I 

x = -7t x=O x =7t x = -7t x=O x = 7t 

PROBLEM SET 3.12 

l. Ir(C) = (1/ 2n) f c (xdy- ydx) I ( x2 + y2
) =(11 2n) ere ( cos2 e + sin2 e )de= 1 = Ig(C). 

Ih(C) = (l I 2n)fc(-ydx + xdy) I ( x2 + y2
) = (1I2n)J;rc(sin2 e + cos2 O )do= I. 

IdC) = (1I2n:)fc(-xdy + ydx) I ( x2 + y2
) = (1I2n)f;'\-cos2 e - sin2 e)cto = -1. 

3. Let Vs= (1- s)v + sw for 0::; s::; 1. Then v0 = v -:f. 0 and v1 = w -:f. 0. Suppose that for 

some SE (0, 1), Vs= 0; this implies that w = [-(1 - s)/s]v; i.e., that wand v have the 

opposite directions; and that contradicts the hypotheses of Lemma 2. Next, for s E [O, 1], 
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Vs is continuous since the sum of the two continuous functions (1 - s)v and sw is 

continuous. Finally, it follows from the continuity of Vs with respect to s for SE [O, l] 

and the fact that lv
5
(C) is an integer that Iv

0
(C) = I~/C); otherwise there would exist a 

points* E [O, 1] at which the value of lv
5
(C) jumps by at least one unit; but this would 

contradict the continuity of lv
5
(C) with respect to s. 

4. In Section 2.11, Figure 2 has e = h = 1 and therefore Ir(O) = 1; Figure 3 has h = 2, e = 0 

and Ir(O) = O; Figure 4 has h = 2, e = 0 and Ir(O) = 0; and Figure 5 has h = 0, e = 2 and 

Ir(O) = 2. 

5. (a) From Figure 10, T = 12, v = 6, e = 18 and thus X(T2) = T + v-f = 0. 

(b) Since p = 1 for the Klein bottle K, X(K) = 2(1 - p) = 0 and since the uniform parallel 

flow f shown in Figure 11 has no critical points, Ir(K) = 0 = X(K). 

6. By Theorem 7 a saddle-node (sn) has index 0 and a critical point with an elliptic domain 

(ed) has index 1. Thus, in Section 3.10, Figures 4 and 7 have 2 saddles (s) and 4 nodes 

(n) on s2 and thus I(S2) = 2; Figure 9 has two foci (f) on s2 and 2 sn on the equator of S2 

and thus l(S2) = 2; Figure 12(i) has 4 non s2, 2 n and 4 son the equator of S2 and thus 

I(S 2) = 2; Figure 12(ii) has 2 sand 2 non S2, 2 n and 4 sn at infinity and thus l(S2) = 2; 

Figure 12(iii) has 2 f, 2 sand 2 non S2 and 2 sand 2 ed at infinity and thus l(S2) = 2; 

Figure l 2(iv) has 2 sand 2 n on s2 and 2 sand 2 ed at infinity and thus l(S2) = 2; Figure 

12(v) has 2 sand 2 centers (c) on s2 and 2 n at infinity and thus l(S2) = 2; Figure 12(vi) 

has 4 sand 4 con S2 and 2 n at infinity and thus I(S2) = 2; Figure 12(vii) has 2 n and 6 s 

on s2 and 6 n at infinity and thus I(S2) = 2. Also, Figure 5 in Section 3.10 has 1 sin R2 

and 2 n at infinity and thus I(P) = 1. In Section 3.10, Problem 3(a) has In in R2, 1 n and 

I sat infinity and thus I(P) =I; Problem 3(b) has an infinite number of nonisolated critical 

points at infinity and we cannot compute l(P); and Problem 3(c) has 1 f on R2 and no 

critical points at infinity and thus l(P) = I. 

7. The indices are 1, -2 and 2 respectively. 
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8. (a) There is a flow on S2 with (i) one critical point which has two elliptic sectors and I(S2) = 

2; (ii) two nodes and l(S 2) = 2; and (iii) one critical point which has two elliptic sectors 

and two saddle-nodes in which case I(S2) = 2. 

(b) There is a flow on T2 with (i) no critical points, i.e., a winding around T2
, and thus 

l(T2) = O; (ii) one critical point and a homoclinic loop at that critical point which then has 

two hyperbolic sectors and thus (by Bendixson's index theorem), l(T2) = 0. 

(c) There is a flow on the anchor ring with two saddles and I= -2. 

(d) There is a flow on the double anchor ring (which hasp= 3) with four saddles and I= -4. 

(e) A flow with a center at the origin and a cycle at infinity (such as x = y, y = -x) describes 

a flow on the projective plane, P, with one critical point; and a flow with a saddle node 

and a node in R 2 and a cycle at infinity describes a flow on P with two critical points. 

(f) Similar to the parallel flow on the rectangle, R, in Figure 11, you can describe a flow on R 

with a saddle-node which (as in Figure 11) would describe a flow on the Klein bottle \Vith 

one critical point. 

9. You should find x = rk cosk8 and y = rk sink8 and therefore r = rk cos(k- 1 )0 and 

S = rk-1 sin(k-1 )8. Fork= I there is a proper node at O; fork = 2 there are two ray 

solutions at e = 0 and e = TC and two elliptic sectors, hence I = 2; fork = 3 there are four 

ray solutions, 8 = 0, TC/2, TC, 3rr./2 and four elliptic sectors, hence I= 3; in general there are 

2(k- 1) ray solutions and elliptic sectors and hence I= 1 + (k - I)= k. The second 

equation yields r = rk cos(k + 1)8 and S ~k-1sin(k+1)8; there are 2(k + 1) ray solutions 

and hyperbolic sectors and hence I= 1 - (k + I)= -k. The phase portraits fork= 2 and 3 

in these two equations are given by 

k=2 k=3 k=2 k=3 
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4. NONLINEAR SYSTEMS: BIFURCATION THEORY 

PROBLEM SET 4.1 

1. (a) Since f(x) - g(x) = -µx, Dx =I and II I II= I, II f - g 11 1 =Iµ l(max !xi+ 1). 

(b) The first system has a center at the origin and therefore Jim cp 1(x) -:t. 0 for x -:t 0. For 
(~oo 

µ -:t 0, for example ifµ < 0, then the second system has a sink at the origin and therefore 

Jim lfs1(x) = 0 for all x E R. But if there were a homeomorphism H and a strictly 
!~oo 

increasing 't: R--e) R such that cp 1 = H-1+,H; then it would follow that Jim cp 1(1, 0) = 
l~oo 

H-1 Jim lfs1(H(l, 0)) = 0, a contradiction; the caseµ> 0 is treated in the same way by 
!~oo 

considering t ~ --00; thus, the two systems are not topologically equivalent forµ t:. 0. 

3. (a) det Df(O) = -1 and therefore the origin is a saddle for the nonlinear system; det Df(± I, 0) = 

2, trace Df(± I, 0) = µ and therefore (±I, 0) are stable (or unstable) foci forµ < 0 (orµ > 0); 

actually, they are foci for lµI < '18 andµ t:. 0 while they are nodes for lµI > '18. (Cf. Sections 

1.5 and 2.10.) Also, forµ -:t 0, Y'·f(x) =µdoes not change sign and Bendixson's criteria 

imply that there arc no cycles (or separatrix cycles) in R2• 

(b) As in Problem 1, the fact that <fti('/2, 0) ~ 0and1JliC>f2, 0) ~ (1, 0) as t·~ oo (forµ< 0) 

can be used to show that for arbitrarily small lµl t:. 0 the system in Example 3 is not 

topologically equivalent to the system with µ = 0. 

4. (a) 

-- 0 ........ -~ 1 
',-:"\ / \ 

\ I \ 
\ I I 

' \ 
""'--

(b) It can be shown that II f - g 11 1 =Iµ I (max.Ix!+ 1). Thus, f and g are C1-close on any 
xEK 

compact K for sufficiently small lµI -:t 0. For the flow in (a), 14>1(.5, O)I ~ I as t ~ oo and 

for the flow in (b), llJi 1(.5, O)I ~ 00 as t ~ 00 forµ t:. 0 and this can be used to show that 

the two flows are not topologically equivalent as in Problem 1. 
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5. According to the Corollary to Peixoto's theorem, on1y (vii) is structurally stable on S2; (i, ii, i. V'. 

y ~l) are structurally stable on R2 (under strong C1-perturbations) according to Theorem 4; (iii) 

1; not structuralJy stable on R2 (under strong C1-perturbations) according to Theorem 4 since 

it has a saddle connection between a saddle in R2 and a SAi, however it is structurally stable 

on any bounded region of R2; and (v, vi) are not structurally stable on bounded regions in 

R2 since they have saddle connections and nonhyperbolic critical points in R2. 

6. (a) There is only one critical point (0,0), a stable node, which is hyperbolic and 
there is no SAi; therefore, the system is structurally stable on R2 (with re­
spect to the C1 strong topology) by Theorem 4. (It is not S.S. on S1 by Cor. I, 
but it is s.s. on any bounded region of R~ which is what G/H ask for on p. 42). 

(b) There is a nonhyperbolic critical point at (0,0) and the system is therefore not 
Structurally stable by Theorem 4. 

(c) There is a nonhyperbolic critical point at (0, 0) and also saddle connections and therefore the 

system is not structurally stable bj Tiu5.:~-"'bl1 A , 

(d) There is a nonhyperbolic critical point (with/....=± i) at the origin and therefore the system is 

not structurally stable by Theorem .t/. (Note that, by symmetry, the origin is a center for this 

system.) 

7. This system is structurally unstable since there 

is a nonhyperbolic critical point (with /.... = ± i) 

at the origin; and also since there are saddle 

connections. 

I ,,, ......... 

,,.~ 

( ' 
8. For Example 2 withµ< 0, Q = {O}; withµ= 0, Q = {O, r} where r is the semistable 

lirrut cycle; and withµ> 0, Q = {O, r1, r 2 } where 11 and12 are the limit cycles shown in 

Figure 2. For Example 3 with µ < 0, Q = { (0, 0), (±I, 0)} with µ = 0, Q = R2; and with 

µ > 0, Q = {(O, 0), (±1, O)}. 

10. Q consists of the set of critical points, limit cycles and graphics in each of the phase 

portraits in Figure 5. 
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PROBLEM SET 4.2 

1 . The critical points are at x = ±2{µ and x = ±{µ forµ 2': 0. The bifurcation value is 

µ = 0. And the phase portraits are given by 

-----4:--- x ----<(-----•---(~- x (•)•(•)•( x 

µ<0 µ>0 

2. The critical points are at x = 0 and x = µ2; and the bifurcation value isµ~ q. 

3. (a') f(x) = 3x•s1n(i/x)- xcos(J/x) for x :;t 0 and f(O) = Jimx2sin(l/x) = O~ since limf(x) = 

0 = f (0), f is continuous at x = 0 and also for all x :;t 0. (a) Forµ= 0 there are critical 

points at x = 1/nn, n = ±1, ±2, ···and at x = O; since f'(l/nn) = -(-l)n/nn t:- 0, the 

nonzero critical points are hyperbolic and alternate in stability; and since f(O) = 0, the 

origin is a nonhyperbolic critical point. 

(b) µ = 0 is a bifurcation value since there are an infinite number of critical points in that case. 
,... 

( c) From the bifurcation diagram, it can be seen 

that there are an infinite number of saddle-node 

bifurcations (at the points~ with vertical 

tangent lines) and that they accumulate atµ= 0. 

4. Xo = (0, 0), J.1o = 0, A = AT = [O, O; 0, -1 J and the corresponding eigenvectors v = w = 

(1, O)T. Since fµ(x, 0) = (x, O)TDfµ(x, 0) = [l, 0; 0, OJ and D2f(x, µ) = [-2, 0, ... , 0], it 

follows that wTfµ(O, 0) = 0, wTDfµ(O, O)v = I and wTD2f(O, O)(v, v) = -2; thus the 

conditions (3) are satisfied. Forµ= 0, dim W5(0) = 1, dim wu(O) = 0 and dim wc(O) = 1. 

5. Similar to Problem 4 except that D2f(x, µ) = [-6x, 0, ···, 0], D2f(O, 0) = 0, D3f(x, µ) = 

[-6, 0, ··-,OJ and it follows that wTfµ(O, 0) = 0 and wTDfµ(O, O)v = I as above, but 

D2f(0, 0) = 0 and wTD3f(O, O)(v, v, v) =-6. Forµ= 0 dimW5(0) = dimWc(O) = 1 

and dim wu(O) = 0. 
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PROBLEM SET 4.3 

1. (a) Let Ac R3 be the region above all the surfaces in Figure 3, B c R3 the region beJow aJl 

the surfaces in Figure 3, and CcR3 the shaded region in Figure 3. We then have 

< • ) • ( 
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( • < 
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( • 
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1. 

( . ) . ( 
C1 orC

2 

where SNt denotes the two pieces of the SN 1 surface 

that bound part of the shaded region in Figure 3. 

(b) The phase portraits for the given system in R2 fo1low from those in part (a) and y = -y; 

for example, we have 
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2. As in Problem 3 in Section 2.12, the flow on the center manifold, wc(O) : y = x2 + · · ·, is 

determined by x = x3 + O(x4). This system therefore reduces to the normal form x = x3, 

y= -y and as in Example I of the cusp bifurcation in R2, we have the universal unfolding 

x = µ 1 + µ 2x + x3, y= -y for this normal form or for the given system. For 0 < lfl-1<<1 

and µ1 <-~4µ~I27, µ 1 = -~4µ~ I 27 and-~4µ~ I 27 < µ 1 < ~4µ~ I 27 respectively, 

we have: 
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_) 

3. As in Problem 4 in Section 2.12, the flow on the center manifold is detennined by 

x= x2 + O(x3). We therefore have the normal form x = x2, y= -y for this system. The 

universal unfolding is given as in equation (4), i.e., x = µ + x2, :Y= -y and the various 

phase portraits are given in Figure 7 in Section 4.2 (with x ~ -x). 

4. The flow on wc(O) is detennined by x = -x4 + 0(x5) and the universal unfolding as in 

equation (8) is given by x = µ 1 + µ2x + µ 3x2 - x4, y= -y. The various phase portraits can 

easily be determined from those in Problem 1. 

6. (a) If a -:t 0 then the system (after normalizing the time) has the normal form x = x2 + O(x3) on 

the center manifold; cf. Problem 6 in Section 2.12. And, as in Problem 3, the universal 

unfolding is given by x = µ 1 + x2, .Y= -y. It follows that for a -:t 0, this system has a 

codimension-one saddle-node bifurcation at µ1 = 0. 

(b) If a= 0 and bd -:t 0 then the system (after rescaling the time) has the normal form x = 

-x3 + 0(x4) on the center manifold; cf. Problem 6 in Section 2.12. And, as in Example 1, 

the universal unfolding is given by x = µ 1 + µ2x - x3, y= -y. It follows that for a= 0 

and bd -:;; 0, this system has a codimension-two cusp bifurcation at µ. = 0. 

(c) For a= b = 0 and cd -:t 0, this system (after rescaling the time) has the normal form 

x = -x4 + O(x5) on the center manifold; cf. Problem 6 in Section 2.12. And, as in equation 

(8), the universal unfolding is given by x = µ1 + µ2x + µ3x2 - x4, y = -y. It follows that for 

a= b = 0 and cd -:t 0, this system has a codimension-three swallow-tail bifurcation atµ.= 0. 
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PROBLEM SET 4.4 

1. (a) According to equation (3), cr = 6n(a + b). Thus, a has the same sign as (a+ b) and 

according to Theorem l, if (a+ b) < 0 then a unique stable limit cycle bifurcates from the 

origin asµ increases from zero; i.e., we have a supercritical Hopf bifurcation at the origin 

at the bifurcation valueµ= 0 if (a+ b) < O; and if (a+ b) > 0 then a unique unstable limit 

cycle bifurcates from the origin as µ decreases from zero; i.e., we have a subcritical Hopf 

bifurcation at the origin at the bifurcation valueµ= 0 if (a+ b) > 0. 

(b) According to equation (3), cr = 12na. Thus cr has the same sign as a and according to 

Theorem 1, if a < 0 then a unique stable limit cycle bifurcates from the origin as µ 

increases from zero, i.e., \Ve have a supercritical Hopf bifurcation at the origin at the 

bifurcation valueµ= 0 if a< O; and if a> 0 then a unique unstable limit cycle bifurcates 

from the origin asµ decreases from zero, i.e., we have a subcritical Hopf bifurcation at 

the origin at the bifurcation value µ = 0 if a> 0. For this particular problem, we can also 

deduce that for a< 0 the origin is a stable, weak focus forµ= 0 by computing r = ar3 for 

µ = 0 and thus r< 0 for a< 0 and r > 0. (Also, seep. 139 in the appendix.) We also note 

that, as in Definition 1 of Section 4.6, we have 

p Q 

for the system in l(b) provided b 2': 0 or provided b < 0 and r2 < l/lbl. Thus, the system in 

l(b) defines a one-parameter family of negatively rotated vector fields with parameterµ 

according to Definition 1 in Section 4.6. A similar result holds for the system in 1 (a). 

2. (a) For example f 1y(x, y) = -1 - xcos0 ~ -1 as (x, y) ~ 0 since icosOI < 1 and f1y(O, 0) = 

lim [f1(0, k)- f1(0, O)]/k = lim(-k/k) = -1. 
k~O k~O 
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(b) 0 = 1 and r= r(µ- r); thus forµ> 0 there is a unique stable limit cycler=µ and for 

µ ~ 0, r < 0 for r 1:- 0 and there is no limit cycle around the origin. The phase portraits 

are similar to those in Figure 1. 

(c) The bifurcation diagram is similar to that in Figure 2 except that r =µis a cone in 

(x, y, µ)-space. 

3. x = y, y= -x - µy + x3. From equation (3'), cr = 0 since all of the coefficients aij• bij are 

zero except b30 = 1 and b30 does not appear in (3'). For ~l = 0 this is a Hamiltonian system 

with H(x, y) = (y2 + x2)/2 - x4/4. The phase portrait is given in Figure 4 in Section 4.10. 

5. The multiplicity of the weak focus at the origin is three. (Seep. 139 in the appendix.) 

6. Setting (p - µ1 13/4) (p - µ113) (p - 2µ1 13) equal to -a/2 - 3a3 p/8 - 5a5 p2/J6 - 35a/128p3 

yields a1 =µ(the coefficient of x in the problem), a3(µ) = -22µ213/3, a5(µ) = 52µ 113/5 and 

a7 = -128/35. 

7. For a20 =a, a11 = b, a02 = 0, b20 = e, b11 = m and b02 = n, equation (3) yields 

3n 3n 
(J = - [-2ae + ab - m(n + £)] = - \VI 

2 2 

with W l given in Theorem 4. 

8. (a) W 1 = -1 - m(n + 1 ). Thus, according to Theorem 4, this system with µ = 0 has a weak focus 

of multiplicity one at the origin iff m(n + 1) + 11:- 0. If m = 0 or n = -1, W 1 = -1 (so cr < 0) 

and there is a supercritical Hopf bifurcation at the origin at the bifurcation value µ = 0 

according to Theorem 1. 

(b) W2 = (2 + m) (3 - m) (n + 1) (n2 - 2). Thus, according to Theorem 4, this system withµ= 0 

and m(n + 1) + 1=0 has a weak focus of multiplicity two at the origin iff (m, n) 1:- (-2, 

-1/2), (3, -4/3) or (-1/(1 ± {2), ± {2). According to Theorem 5 and Table 1 in Section 4.6, 
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for W 2 > 0 an unstable limit cycle bifurcates from the origin as µdecreases from 0 and for 

W 2 < 0 a stable limit cycle bifurcates from the mi gin as µincreases from zero. 

(c) W3 = (2 + m) (2 + n) (n + 1) (n2 - 2). Thus, according to Theorem 4, this system withµ= 0 

has a weak focus of multiplicity 3 iff m(n + 1) + 1 = 0 and m = 3, i.e., iff m = 3 and n = 

-413. In this case W3 > 0 and, according to Theorem 5 in Section 4.6, an unstable limit cycle 

bifurcates from the origin asµ decreases from 0. 

(d) For (m, n) = (-2, -112), or (-1 I (1 ± {2), ±f2), W1 = W2 = W3 = 0 and according to 

Theorem 4, this system withµ= 0 has a center. The system with m = -2 and n = -1/2 is 

Hamiltonian. 

PROBLEM SET 4.5 

1. Since V·f(x, µ) = 2µ -4lxJ2, V·f('Yµ(t), µ) = -2µ and DP(rw µ) = exp[-4µn]. 

4. 0 = 1, r= r[µ-(r2- 1)2] [µ-4(r2 -1)2] and r= 0 for r = ~l ± µ 112 and 

r = ~l ± µ 112 I 2. It is then easy to show that Y~(t) and Y~(t) satisfy the given 

differential equations. DP(~1 ± ~t 112 , µ) = exp(24µ 312 (µ 112 ± i)]n and 

DP( ~1±µ112 I2, µ) = exp[-4µ 312 (µ 112 I2±1 )]n. 

5. Because of the xr and yr terms on the right-hand sides of the differential equations, this 

system is C1 but not C2; cf. Problem 2(a) in Section 4.4. In polar coordinates B = 1 and 

f = r(µ - (r - } )2] and f = 0 for r = 1 ± µ1/2, y±(t) = ( 1 ± µ 112) ( COSt, sint)T defines two 

one-parameter families of periodic orbits. The bifurcations for this system are the same as 

those in Example 2 except that the stabilities of the periodic orbits and the critical point at 

the origin are reversed. 
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7. (a) P(-1/2, -114) = -1/2 and DP(x, µ) = -2x implies that DP(-112, -114) = 1; therefore, there 

is a nonhyperbolic fixed point x = -112 at the bifurcation value µ = -114; the bifurcation 

diagram shows a saddle-node bifurcation at the point(µ, x) = (-114, -1/2). 

(b) P(O, 1) = 0 and DP(x, µ) = µ - 2µx implies that DP(O, 1) = 1; therefore, there is a 

nonhyperbolic fixed point x = 0 at the bifurcation value µ = 1; the bifurcation diagram 

shows a transcritical bifurcation at the point (µ, x) = ( 1, 0). 

8. (a) P(-1/2, O; -114) = (-112, O)T and DP(x, µ) = [-2x, 0; 0, 2] implies that DP(-112, O; -1/4) = 

[-1, O; 0, 2] which has an eigenvalue J..1 = -1 of unit modulus; thus, here is a nonhyperbolic 

fixed point (-112, o? at the bifurcation valueµ= -1/4. The bifurcation diagram shows a 

saddle-node bifurcation at the point(µ, x, y) = (-114, -112, 0). 

(b) P(O; 3/2) = 0 and DP(x, µ) = [0, 1; -1/2, µ - 3y2] implies that DP(O, 3/2) = 

[O, 1; -112, -3/2] which has an eigenvalue A.= -1 of unit modulus; thus, there is a 

nonhyperbolic fixed point x = 0 at the bifurcation value µ = 312. The bifurcation diagram 

shows a pitchfork bifurcation at the point(µ, x, y) = (312, 0, 0). 

9. DP(x, µ) = -2x which implies that DP{-112 + ~1+4µ / 2, µ) = 1- ~l + 4µ which is 

equal to -1 at µ = 3/4; thus, x = 112 is a nonhyperbolic fixed point at the bifurcation value 

µ = 3/4. For the map F(x, µ) = µ- (µ - x2)2 we have F(l/2, 3/4) = 1/2, DF(x, µ) = 
4x(µ - x2), DF(l/2, 3/4) = 1; D2F(x, µ) = 4µ- 12x2, D2F(l/2, 3/4) = O; D3F(x, µ) = 

-36x, D3F(l/2, 3/4) = -18 -:t 0; Fµ(x, µ) = -2(µ- x2), x 

Fµ(l/2, 3/4) = O; DFµ(x, µ) = 4x and DFµ(l/2, 3/4) = 

-2 -:t 0. The equation 1 - ( 1 - x2)2 = x has the 

solutions x = 0, x = 1 and x = {-I± ../5) / 2. The 

bifurcation diagram shows a period-doubling bifurca­

tion at the point(µ, x) = (3/4, 1/2). Cf. Figure 7(a). 
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11 . The one-dimensional maps in Problems 9 and 10 cannot be the Poincare maps of any two­

dimensional system of differential equations because period-doubling bifurcations cannot 

occur in two-dimensional systems since trajectories in the plane cannot cross. 

PROBLEl\l SET 4.6 

1. Suppose that x = f(x, µ)with f = (P, Q)T satisfies det [P, Q; P w Qµ] = PQµ - QP µ > 0 and 

that y = A(x) is a nonsingular transformation with det DA(x) > 0 (in a region RcR2). Let 

DA= [a, b; c, d]. Then the system y = DA(x)x = DA(x)f(x, µ) = (aP + bQ, cP + dQ? 

defines a one-parameter family of rotated vector fields if det [aP + bQ, cP + dQ; aP µ + bQw 

cPµ + dQµ] > 0. But this determinant is equal to det [P, Q; PW Qµ] [a, c; b, d] = (PQµ -

QPµ)· 

det DA(x) which is positive (in the region R). 

2. (a) det [P, Q; P w Qµ] = r2 > 0 for r > 0; therefore, this system defines a one-parameter family 

of rotated vector fields. The conditions of Theorem 5, with µ 0 = 0, are satisfied and since 

atµ= 0 we haver= -r2, the origin is a stable weak focus. (It also follows from equation 

(2) in Section 4.4 that cr = -12rr.) Thus, from Figure 1 with cr < 0 and w < 0 we have a 

supercritical Hopf bifurcation in which a stable limit cycle bifurcates from the origin as µ 

increases from 0. [This is quite clear since r = r(µ - r).] 

(b) As in Problem 2(b) in Section 4.4, the determinant of [P, Q; Pµ, Qµ] = -r2(1 + br2) < 0 

for r2 < l/lbl (or for all r if b ~ 0) and this system defines a family of negatively rotated 

vector fields with parameterµ, according to Definition 1, in the neighborhood of the origin 

0::::; r < 1/~ for b < 0 (or for all r ~ 0 for b ~ 0). According to Theorem S and Table 1, 

for cr = 9rra < 0, a stable (positively oriented) limit cycle bifurcates from the origin asµ 

increases from 0 and for cr > 0 (i.e. for a> 0) an unstable (positively oriented) limit cycle 

bifurcates from the origin as µdecreases from 0. Thus for a< 0, the Hopf bifurcation is 

supercritical and for a> 0, the Hopf bifurcation is subcritical. 
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3. det [P, Q; PW Qµl = x2(1+x)2>0 except on the lines x = 0 and x = -1; therefore, this 

system forms a one-parameter family of rotated vector fields (mod x(l + x) = 0), defined in 

the paragraph preceding Example 3. According to equation (3') in Section 4.4, a = 9rrl2 > 0 

for the system with µ = 0; thus, the origin is an unstable weak focus and the flow swirls 

4. 

clockwise around 0, i.e., w = -1. It follows from Figure l (or from Theorem 1 in Section 

4.4) that a unique unstable limit cycle bifurcates from the origin asµ decreases from the 

bifurcation value J..11> = O; i.e., we have a subcritical Hopf bifurcation. Since 0 is the only 

critical point, Theorem 6 implies that the one-parameter family of limit cycles tenninates as 

µ ~ -00 or as the limit cycle expands without bound. 

-3 < µ < 0 

-, 
' I 

I 
I 

-..:,, 

' I 
I 

5. As in Example 3, it follows from the theory of rotated vector fields (cf. Theorems 1and6) 

that a unique, stable limit cycle is generated in a supercritical Hopf bifurcation at the critical 

point (1, 1) at the bifurcation valueµ= 112 and this stable, negatively oriented limit cycle 

expands monotonically as µ increases from the value µ = .5 until, at µ = µ 1 = .52, it 

intersects the saddle at the origin and forms a separatrix cycle; cf. Figure 8. The global 
phase portraits are given by: 

-2<µ!5:1/2 112 < µ < µ, 
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6. [P, Q; Pw Qµl = y2(1 + y)2. From equation (3') in Section 4.4, cr = -9nl2 < 0 and clearly 

ffi = -1; therefore, by Figure 1 (or Theorem 1 in Section 4.4 ), there is a supercritical Hopf 

bifurcation in which a stable limit cycle bifurcates from the origin as the parameter µ 

increases from the bifurcation value µ = 0. In order to draw the global phase portraits, you 

must determine the behavior of the critical points at infinity as in Section 3.1 O; e.g., for 

µ = 0, there is a saddle node at the point (±1, 0, 0) at infinity and a critical point with two 

hyperbolic sectors at (0, ±I, 0). 

7. [P, Q; P w Qµl = (-x + y + y2)2 > 0 for x -:t y + y2. There are critical points at (0, 0), (2, I) 

and (12, -4); Df(O) = [-1, I;-µ, 4 +µ]and thus (0, 0) is a saddle. Df(2, 1) = 

[-1, 3; -1 - µ, 3µ-2], 8 = 5, 't = 3(µ - 1) and thus (2, I) is a weak focus forµ= l; from 

(3') in Section 4.4, with ao2 = I, b11 = -1 and b02 = -1 forµ= 1, we find that cr = 5n/2 

and clearly ro = -1 at (2, 1 ); thus, from Figure 1 (or Theorem 1 in Section 4.4) there is a 

subcritical bifurcation in which an unstable limit cycle bifurcates from (2, 1) asµ 

decreases from~= 1. Df(l2, -4) = [-1, -7; 4 - µ, -7µ + 8], 8 = 20, 't = 7 - 7µ and thus 

(12, -4) is a weak focus forµ= l; from (3') in Section 4.4, with 3<12 = 1, b11 = -1 and 

b02 = -1forµ=1, we find that cr = -15n/56 and clearly ffi = +1 at (12, -4); thus from 

Figure 1 (or Theorem 1 in Section 4.4 with a+ d = 7 - 7µ in place ofµ as in Remark 1 in 

Section 4.4) there is a supercritical Hopf bifurcation in which a stable limit cycle bifurcates 

from (12, -4) asµ decreases from Jlo = 1. For 0 < µ < 4, there is a saddle-node at (±1, 0, 0) 

on the equator of the Poincare sphere and the global phase portraits are given by: 



78 

1~µ<4 

PROBLEM SET 4. 7 

1. Forµ= ±1, Df(O) = [0, -1; l, 0] and from equation (3) in Section 4.4, a= 15rr/2. Thus, 

by Theorem l in Section 4.4 a unique unstable limit cycle bifurcates from the origin as the 

trace Df(O) = µ 2 - l decreases from zero, i.e., asµ decreases from~= l or asµ 

increases from~= -1. (Cf. Remark 1 in Section 4.4.) 

2. Note that for r = 0 andµ= -1, r= 0 and we cannot determine the stability of the origin 

simply by computing i; however, from equation (3) in Section 4.4, we find that forµ= -1, 

cr = -487t and then by Theorem l and Remark l in Section 4.4, we find that a unique stable 

limit cycle bifurcates from the origin in a supercritical Hopf bifurcation at the bifurcation 

value~= -1 as the trace Df(O, µ) = (µ- 1)2 (µ + 1) increases from zero, i.e., asµ 

increases from the valueµ= -1; cf. Figure 4. Note that forµ= I, equation (3) in Section 

4.4 yields a= 0; i.e., there is a weak focus of multiplicity two at the origin forµ= I; cf. 

Figure 4. 



3. The bifurcation diagram is given by the graph of the relation [(r2 - 2)2 + µ 2 - l] · 

[r2 + 2µ2 - 2] = 0. (Seep. 142 in the appendix.) 

4. The bifurcation diagram is given by the graph of the relation [(r2-2)2 + µ 2 - l] · 

[r2 + µ2 - 3] = 0. (Seep. 143 in the appendix.) 

PROBLEl\:I SET 4.8 

1 . (a) Replacing (x, y) by (-x, -y) leaves the system invariant. Df(O) = [O, 1; 1, µ] has <S = -1 

and therefore there is a saddle at the origin. (Cf. Sections 1.5 and 2.10.) Df(±l, 0) = 
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[O, 2; -2, 1 +µ]has <S = 4, 't' = 1 +µand there are foci at (±1, 0) for lµI < 3. (Cf. Sections 

1.5 and 2.10.) 

(b) For y t:- 0, [P, Q; P w Qµ] = y2(1 + r2) > O. 

(c) After translating the origin to (1, 0) or (-1, 0) and using equation (3') in Section 4.4, we 

see that cr = -3n/4 and since w = -1, it follows from Theorem 5 and Figure 1 in Section 

4.6 that a unique, stable limit cycle bifurcates from each of the critical points (1, 0) and 

(-1, 0) asµ increases from the bifurcation valueµ= -1. According to Theorems 1and6 

in Section 4.6, these limit cycles expand monotonically until they intersect the saddle at the 

origin simultaneously, in view of the symmetry, and form a grahic, S0, with two 

homoclinic loops at 0 at the bifurcation valueµ= µ 1 > -1. 

(d) By Theorem 3 in Section 4.6, since the limit cycles from part (c) are stable, the graphic S0 

is stable. Since cr0 = V'·f(O) =µ,and since S0 is stable, it follows that µ 1 :::; 0. 

(Numerically deduce that µ 1 = -.74.) 

(e) Since in Figure 1 of Section 4.6, the exterior stability of S0, cr = -1, and since w = -1, a 

unique limit cycle bifurcates on the exterior of S0 as µ increases from the bifurcation value 

µ 1 = -.74 according to Theorem 3 in Section 4.6. This stable, negatively oriented limit 

cycle expands monotonically as µincreases. Since for larger, r is asymptotic to 
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r2 + x2y2/r, there must be an unstable limit cycle which contracts \Vith increasingµ and 

intersects the above-mentioned stable limit cycle at some bifurcation valueµ= µ 2 > ~t 1 and 

forms a semi stable limit cycle. The one-parameter family of limit cycles composed of these 

unstable and stable limit cycles thus extends from the graphic S0 to infinity. Cf. the family 

LP in Figure 9 of Section 4.9. 

2. This problem is meant to illustrate how, using the theory of rotated vector fields, a 

separatrix cycle can be obtained from a Hamiltonian system and how limit cycles can then 

be made to bifurcate from the separatrix cycle by rotating the vector field. 

(a) Clearly this is a Hamiltonian system with H(x, y) = (y2 - x2)/2 + x4/4 and the phase 

portrait is given by Figure 3 in Section 4.9. 

(b) The system in this part of the problem satisfies [P, Q; P w Oa1 = H(x, y) [y2 + (x - x3)
2
] < 0 

for H(x, y) < 0, i.e., inside the two loops of the graphic H(x, y) = 0. Therefore all vectors 

of the vector field inside these two loops rotate in the negative direction as a increases; thus, 

the two loops of the scparatrix cycle, S0, are internally unstable; i.e., according to the 

paragraph follO\ving Theorem 3 in Section 4.6, the negative of the interior stability a= -1 

and w = -1. Similarly on the exterior of S0, we have a positively rotated vector field and 

therefore a = +I for the exterior stability of S0. 

(c) If \Ve fix a at a positive value and embed the vector field of part (b) in a one-parameter 

family of rotated vector fields (5), then from Figure 1 and Theorem 3 in Section 4.6, an 

unstable limit cycle bifurcates on the interiors of the two loops of S0 as µincreases from 

zero; and an unstable limit cycle bifurcates on the exterior of S0 asµ decreases from zero. 

The trace of the linear part of (5) at (±1, 0) is given by Tµ =trace Df(±l, 0, µ) = -(3a/4)­

cosµ+ 3 sinµ which is zero forµ=µ*= tan-1 (.1/4)"" .025 at a= .1. The behavior of the 

system (5) at O'. = .1 is described in the following phase portraits. Note that this system is 

invariant under (x, y) ~ (-x, -y). 



(d) For a= -.1, the separatrix cycle is internally and externally stable and thus stable limit 

cycles bifurcate from the homoclinic loops on their interior as µdecreases from zero and 

on the exterior of S0 as µincreases from zero. 

---· ___ ... 

µ<0 µ=0 

___ .. 
----

0 < µ < µ* 

(c) A1,2 = I ± i, l),1.21 = {2, E5 = Ec = {O), Eu= R2. 

(d) ).l = (3+v'5)!2,A.2 =(3-vls)/2, v, = (2, l+vls)T, V2 = (1+vls,-2)T, E5 =Span 

{v2 ), ELI= Span {v 1}, Ec = {O}. 

5. (a) P(x, y) and p-1(x, y) = (x + y + x3, x) are clearly continuously differentiable since they 

arc polynomial maps. 

(b) (x, y) = (0, 0) is the only fixed point of P; there is a one-dimensional stable manifold 

W 5(0) tangent to E5 =Span {( 1+vis,2 )T} at the origin; and there is a one-dimensional 

unstable manifold wu(O) tangent to Eu= Span {(2, -1--JS) T} at the origin. 
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6. If x =. s1s2 • • • = Isj / 2j, then F(x) = Isj / 2j-l (mod 1) = Isj+l / 2j = .s2s3 •• • ; and 
j=l j=l j=l 

P(x) = Isj / 2j-n (mod 1) = Isj+n / 2j = .sn+I sn+2 ···.It follows that F(.5) = .0 and 
j=l j=l 

F(.T) = .T; F2 (.01) = .01 and F2 (.10) = .10 etc. Thus, .OL 01 (with n zeros) is a 

periodic orbit of period (n + 1). And if x and y differ in the nth place, then Xn = 1 and 

Yn = 0 or vice versa, so that IP-l(x) - Fn-l(y)j = j.xn ... - ·Yn ··· I= .1 ··· = 112 + ··· ;::: 1/2. 

PROBLEM SET 4.9 

1. For E = 0, Ya(t) = (acost, asint? with Ta= 2rr. Thus, M(µ, a)= 

-n:a2 r~l1 + 3~t3a 2 I 4 + 5~l5a4 I 8 ]; and M(µ, a)= 0 iff a2 = 

[-3µ 3 ± ~9~tj - 40µ 1µ5 J / 5~t 5 . This yields two positive roots if µ3µ5 < 0 and 0 < ~t 1 µ5 < 

9~l;/40. Thus, by Theorem 5, for all sufficiently small E -:t 0, this Lienard system has 

exactly t\VO limit cycles asymptotic to circles of radii r1 and r2, given by the square roots of 

the above two positive numbers, as E ~ 0. 

2. For a= 0 (and B = 0) we have the phase portrait shown in Figure 3 and the global phase 

portrait shown below with critical points at (0, ±1, 0) having two hyperbolic sectors. For 

E > 0, the system (8) with B = 0 defines a one-parameter family of rotated vector fields 

(mod y = 0) with parameter a since [P, Q; P w Qal = Ey2 > 0 for y -:t 0. Thus the field 

vectors rotate in the positive sense from those in Figure 3 as a increases from zero and we 

have the second phase portrait shown below. There will be a sequence of saddle-saddle 

bifurcation values a~, described at the end of this section and in Figure 11, with a~ ~ 0. 

We thus have the following global phase portraits for (8) with B = 0 and E > 0: 



a=O 

a 

* a> a 0 

I 
I 

'..;_./ 

a>O 

a 
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3. For E = 0 the system is Hamiltonian with H(x, y) = (y2 - x2)/2 - x3/3. The homoclinic 

loop through (0, 0) is given by H(x, y) = 0 since H(O, 0) = 0. The homoclinic loop r0 

through the origin intersects the x-axis at x = -312. Using the symmetry and the fact that 

dt = dx/y, the Melnikov function along the homoclinic loopy= ±~x2 + 2x3 13 is given 

by M(a) = J~,J(y 0(t))" g(y 0(t), a)dt = J~°',Y~(t)[a + x0(t)]dt = 

2J
0 ~x2 +2x3 /3(a+x)dx = 2f-

312
x..jl+2x/3(a+x)dx = 2(la-~);and 

-312 Jo 5 35 

M(a) = 0 iff a= 6n. Thus, by Theorem 4, for sufficiently small E :t= 0 there is an a(E) = 

6n + O(E) such that this system has a homoclinic loop at the origin in a neighborhood of 

r0. Since Df(-1, 0) = (0, l; -1, E(a - 1)], 8 = 1 and 't = E(a - 1) = 0 at a= I. From (3') 

in Section 4.4, a = + 3rri2 and clearly w = -1; thus, for E > 0 there is a subcritical Hopf 

bifurcation at (-1, 0) in which an unstable limit cycle bifurcates from (-1, 0) as a 

decreases from the bifurcation value a = 1; viz. 

a< a(E) a= a(E) = 6n + 0(£) 

a(E) <a< I a;::: 1 
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4. (a) Integration by parts with u = cos(JJ0(t + t0), du= -w0 sin(JJ0(t + t0)dt, dv = secht tanht dt, 

v = -secht yields I= -(1) 0 JI~cht ·sin(JJ0(t + t0 )dt = -(1)0 sin(JJ0t0JI,;cht ·cos(JJ0tdt since 

sec ht · sin (1)0 t is an odd function. 

(b) Let C be the contour shown and f(z) = cos(JJ0 z/coshz. Then coshz has a simple zero at 

z = irr/2 and f(z) has a simple pole at z = irr/2 and no other singularities inside or on C. 

Thus, the residue of f(z) = g(z)/h(z) at z = irr/2, Res f(z) = g(irc/2)/h'(irr/2) = 

cos(i (1)0rr./2)/ sinh(irc/2) = cosh( (1)0 rr/2)/i = -icosh((JJ0rr./2). 

(c) For z = ±a + iT and 0 $ T $re, I cos (1)0z/coshz I $ e-a (I + eltlon) / ( 1 - e-2a) and therefore, 

fr. COS(l) 0 (±a + i-r) -a( <•l n) / ( -7a) · ------d-r :::; rre I + e 0 I - e - ---7 0 as a ---7 oo. And for z = t + m = 
0 cosh(±a + i-r) 

fa-in: Ja cosw0 (-u +ire) Ja cos(JJ0u 
-u + irr, . f(z)dz = . du = coshw0rc du since 

a+m -a cosh(-u + m) -a cosh u 

cosh (-u +ire)= -coshu, cos(JJ0(-u + irr) = cos(JJ0 ucosh(JJ0 7t + sinw0 u·sinh(JJ0 7t and 

sin (1)0 u/coshu is an odd function. 

(d) We then have! f(z)dz=2rriResf(z)=(l+coshw 0rc)Ja coswot dt + 
Ye -a cosht 

Jn: cosw0 (a + i-r) JOcos(JJ0 (-a + iT) . . . 
--~-- dT + d-r. And, fmally, Jettmg a ---7 oo and usmg the 

o cosh(a + i-r) n: cosh(-a + iT) 

-(1)0 sin (1) 0t0 2rrcosh((JJ0rc I 2) . 
results from (a)-(c), we have I= ( ) = -rr.(1)0 s1n(JJ0 t0 1 + cosh (1) 0rr 

sech(w0 rr/2) since 2cosh2 ((1)0 rc/2)/(1 + cosh (1)07t) = 1. 
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PROBLEM SET 4.10 

1 . The given differential equation is equivalent to the second-order differential equation 

x = y = x - x3 + E(ax + ~x2x) = x - x3 + Exg(x, µ)with g(x, µ)=a+ Bx2. Similarly, 

the Lienard equation is equivalent to x = y + E(µ 1x + 3µ 2x2x) = x - x3 + E(µ 1 + 3µ 2x2)x 
which is equivalent to the above second-order differential equation with a= ~t 1 and~= 3µ 2. 

2. For\= EAi 1 + E2\ 2 + · · · and y 0(t) = (x0(t), y0(t)) = (acost, asint), the (first-order) 

Melnikov function for this system is given by 

and we have M(a, µ) = 0 for all u. > 0 iff A11 =0. 

3. The system in Example 3 is equivalent to x = y + E(µ 1x + 3µ 2x2x) = -x + x3 + 

E(µ 1 + 3~t2x 2 )X. and similarly, the system given in this problem is equivalent to x = )1 = 

-x + x3 + Ex(~t 1 + 3µ 2x2). For E = 0 the given system is clearly Hamiltonian with 

H(x, y) = (x2 + y2)/2 - x4/4 and the two heteroclinic orbits are given by 2(x2 + y2) - x4 = 1 

since H(±l, 0) = 114. Along the upper heteroclinic orbit y = (1 - x2)/{2 and the Melnikov 

function along the upper (or lower) homoclinic orbit is given by 



4. 
./7 

The function xu(t) given in Example 2 satisfies xu(t) = - 2 dn'(u) and 
2-a 

.. -f2 II . I 2 .. 3 
xu(t)= 3/'1 dn (u)w1thu=tl"V2-a . Thus, Xu-Xu+ Xu= 

( 2 - a 2
) -

'121(2-a2)3'2[dn"(u)-(2-a2 )dn(u)+2dn3(u)]=o. Alsoxu(t) = 

.J2 I ( 2 - a 2
) · dn'(u) = -~2a2 I ( 2 - a 2 ) · sn(u)- cn(u) =Yu (t) given in Example 2. 

5. The function xu(t) given in Example 3 satisfies Xa(t) = -J2a.., sn'(u)and Xa(l) = 
l +a-

-J2~ 312 sn"(u) with u =ti ~l + a 2 . Thus, Xa + xu - x~ = fla I ( l + a
2

)
312 

· 
( l +a-) 

[sn"(u) + (1+a2)sn(u)-2a2sn3(u)]=0. Also xu(t) = ·./la I (1 + a 2
) ·sn'(u) = 

../2a I ( l + a 2
) · cn(u)- dn(u) = y (t (t) given in Example 3. 
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6. For the system in Example 2 along the exterior periodic orbit y u(t) given in this problem, 

with Tu= 4K(a) ,/2a2 
- I and u = t /-Y2a2 -1, 

2(µ 1 -µ 2 )(2a
2

-1)[ ) ( )( ) ] + 
3 

2(2a2 -1 E(a)+ 2-3a2 l-a2 K(a) 

-µ 1(2a
2 

-1}2[E(a)-(l-a
2
)K(a)]} 
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= ,., 
8 

512 {&[(2a
2

-1)2E(a)-(2a
2

-1)(a
2

-1)K(a)J 
(2cc -1) 3 

+ 
1

6

5 
~l 2 [ 2 (a 4 

- a 
2 + 1) E( a) - (a 4 

- 3a 2 + 2) K (a) n . 
And therefore we have M(a, µ) = 0 if µ/~t2 is equal to the function of a given in this 

problem, \Vhose graph is shown in Figure 6. Note that the value ~t/µ2 = -2.4 for a= 1 

coJTesponds to the homoclinic loop bifurcation as in Example 2. 

7. For the system in Problem 7 with Yu.(t) = (xa(t), Ya(t)) the interior periodic orbit given in 

Example 2, with Ta= 2K(a)~2 - a 2 and u = t I ~2 - a 2
, 

= {2µ,,2 
2 [n(8-8a2 +3a4)-(2-a2)2n] 

(2- a-) 2 

+ ~li 312 {~[(a2 -1)K(a)+2(2-a2 )E(a)]-4(2-a2 )E(a)} 
(2-a2) 3 

= 
1 J µ2f2.rra

4 

+ 
4
µ 1 [(2-a2)E(a)+2(a2 -1)K(a)J} 

(2-a2)31212(2-a2t2 3 
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·1,M 
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The graph of the ratio µ/µ 2 as a function of a is shown below: 

02 04 01 01 0'2 0 .... 

And we sec that there is a unique limit cycle for-2~t2 < ~l 1 < ii 1(E) = -1.67µ 2. It is shown 

in Problem 8 that il1(E) = -31ql/ 4-Ji + O(E) is the homoclinic loop bifurcation value and, 

using equation (3') in Section 4.4, we can show that this system has a supercritical Hopf 

bifurcation at µ 1 = -2µ 2. 

8. The system in Problem 7 is equivalent to the second-order differential equation 

x = y + E(~t 1 x + 2µ 2xx) = x - x3 + Ex(~t 1 + 2µ 2x) as is the system in Problem 8. The 

Melnikov function along the homoclinic loop y;(t) which, as in Example 3 in Section 4.9, 

lies on the curve y2 = x2 - x4/2, is given by 

M(µ) = J: f (y;(t)) /\ g("Y;, µ)dt 

= J~00 Y~(t)[µ1+2~l2Xo(t)]dt=2J0.J2x~l-x2 12(µ 1 +2µ 2x)dx 

= 2(2µ 1 /3+-l2nµ 2 14). 

And therefore, M(µ) = 0 if µ 1 = -3-Ji n µ/8 which leads to the homoclinic loop bifurca­

tion value ii 1(E) = -3-Ji n µ/8 + O(E) according to Theorem 3. Note that for ~t 1 = 0 the 

system in Problem 7 is symmetric about the y-axis and it therefore has a continuous band 

of cycles for µ 1 = 0 (even if E 7:- 0). The phase portraits for the asymmetric perturbed 

Duffing oscillator in Problem 7 with E > 0, ~t2 > 0 and µ 1 ::::; 0 arc shown below: 



90 

9. For'Y0 (t) = (x0 (t), y0 (t)) = (acost, asint) and Ta= 2n, the Melnikov function is given by 

f Z1t[ 2 4 6 8 ] M(a,µ.) =-Jo µ 1xa(t)+µ 3xa(t)+µ 5xa(t)+µ 7xa(t) dt 

= -2na2 [& + 3µ3 a2 + 5µ5 a4 + 35µ7 a6J 
2 8 16 128 

which clearly has three positive roots for appropriate choices ofµ; in fact, if we want three 

particular sized limit cycles, say limit cycles asymptotic to circles of radii r = 1, 2, 3 as E ~ 0, 

we simply set the polynomial (a2 - l) (a2 - 4) (a2 - 9), i.e., a,6 - 14a4 + 49a2 - 36 equal to 

the above 6th degree polynomial in a in order to determine that µ 1 = -72, ~ = 392/3, µ5 = 

-224/5 and µ,, = I 28/35 will produce three limit cycles of the desired sizes. (Cf. Theorem 6 in 

Section 3.8.) 
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PROBLEM SET 4.11 

1 . The solution of the unperturbed problem through a point x = a on the x-axis at time t = 0 is 

Yu(t) = (acost, -asint). In the context of Theorem 1, \Ve have M 1(a, >.) = 0, H(x, y) = 

y2/2 - U(x) with U(x) = -x2/2, f(x, y, E) = EA 12x - 2x 2 - (2/..21 + A51 )xy + y2, g(x, y, E) = 

EA12Y - f-21X 2 + (4 + A,t1)xy + A21Y2, F(x, y) = s; f(x, s, O)ds - s; g(s, 0, O)ds = 
-2x2y - (/..21 + A5/2)xy2 + y3/3 + A21 x3/3, G(x, y) = g(x, y, 0) + Fx(x, y) = 

A.t1xy - A51 y2/2, G1(x, y) = A41 xy, G2(x, y) = -A51 y2/2, G1h(x, y) = A.t1x/y, P2(x, h) = 

J
0
x A51 (s2 - 2h)/2 ds = A51 x3/6 - l1.51 hx and P2h(x, h) = -A51 x. Thus, according to Theorem 

1, with dx = ydt and dy = -xdt to zero order and with h = a 2/2, we have, \Vith the integrals 

taken around ra : x = y u(t), 

M2(a, >.) = f(G 111 P2 -G1P211 ]dx+flgfdx-ffdy]-f F[fx +gy]dx 
y 

= f [A., ~ ( ).~ 1 x3 
- /.. 51 hx)- A., xy(-A 51 x) ]dx + f[), 12 ydx - /.. 12 xdy] 

[ 

2 (' 1 ) 2 3 1 3 ] _ f -2x y- A 21 +A 51 /2 ;xy +y /3+A21 x /3 . 

(-4x -(2A. 21 + A. 51 )y + ( 4 + A. 41 )x + 211. 21 y ]dx 
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which agrees with the formula for dia, A.)= M2(a, 'A)/a in Lemma 1. (Cf. equation (3) 

in Section 4.10 with w0 = -1 and lr(Yu(O))I =a.) 

2. Letting y 4 -y we get the system in the form of equation 0µ): x = y + E(Eax + y2 -

Sxy - 2x2), )1 = -x + E(Eay + 4xy). \Ve therefore have M 1(a, a)= 0, H(x, y) = y2/2 - U(x) 

with U(x) = -x2f2, f(x, y, E) = rnx + y2 - 8xy - 2x2, g(x, y, £) = rny + 4xy, F(x, y) = 

y>!J-- 4xy2 - 2x2y, G(x, y) = -4y2, G 1(x, y) = 0, G2(x, y) = -4y 2, Pix, h) = 2xh - x3/3, 

and P21i(x, h) = 2x. Thus, from Theorem I with dx = ydt and dy = -xdt to zero order and 

with h = a 2/2, we have, with the integrals being taken around Y c./t) = (xu_Ct), Yu(t)) = 

(acost, -cxsint), 

tv1 2(a, a) = f[ G 111 P2 - G 1 P2h ]dx + f[gr dx - f Edy]-f ~ [ f x + gy ]dx 

= af[y<lx-xdy]-f[y3 /3-4xy-2x2 ](-8y)dx 

2 (a4 
37t 2 n:) 2( 2) = a2na +8 3 .4 -20: 4 =-2rra: a-a . 

And since, from equation (3) in Section 4.10, di(a:, a)= -M2(a, a)/a (in view of the fact 

that rn0 =+I and x =a), \.Ve have d2(a:, a)= 2na:(a - a:2) or d(a, £,a)= 2m:2a(a - a2) + 

0({') which agrees with the formula for d(a, E, a) following Corollary I to 0(£3). Using 

Lemma I, \Ve can show that the error is 0(E6) as in that formula; cf. Problem 3. 
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3. In order to use Lemma I for the system in Corollary I, we must note that A. 11 = ).21 = 0, 

A31 = 2, ), ... 1 = 0, A. 51 = 8, )\,61 = 0, ).12 =a and all of the other l.ij = 0. Thus, from Lemma I, 

we have d1(x, A.)= 2rrA 11x = 0, d2(x, A.)= 2rrA 12x - rrA51 x3/4 = 2rrax - rr8x 3/4 = 

2nx(a - x2) and d3(x, A.)= dix, A.)= d5(x, A.)= 0. Since A.41 :t -5, \Ve can not use the 

fonnula for d6(x, A.) and there may well be 0(E6) terms in d(x, E, A.). Thus d(x, E, A.)= 

rd 1(x, A.)+ £ 2d2(x, A.)+··· = 2nE2x(a - x2) + 0(£6) as in the formula for d(x, E, A.) 

following Corollary I. It then follO\vs from Theorem 2 that for a> 0 and all sufficiently 

small E -:t 0, the system (4) has exactly one hyperbolic limit cycle in an O(E) neighborhood of 

the circle of radius x = ·la. This completes the proof of Corollary I. Corollaries 2 and 3 arc 

pro\'cd in a similar fashion by using Lemma I to derive the given formulas for the displace-

mcnt function d(x, L µ)and by using Theorem 2 and the results cited in Remark I. 

..J. First of all, it is easy lo sec that for 1'(/l) = (xu(l), Yu(l)) = (acosl, -asint), M1(a) = 

f~"[ ex~ (l)y<!(l) +bx~ (t)yu(l) + cx~(t)]dt = 0 for all a. And then with lJ(x) = -x2/2, f(x, y, 

E) =fax+ hxy + nJx3 + cx..t, g(x, y, E) = cx..t, fr(x, y, E) =ax+ dx3, gr= 0, f._(x, y, 0) = 

by+ 4cx-', g)' = 0, F(x, y) = bxy2/2 + ex4y - cxs/s, G(x, y) = by2/2 + 4ex3y, G 1(x, y) = 

4ex 3y, G2(x, y) = by2/2, G 111(x, y) = 4ex3/y, P2(x, h) = b(hx - x3/b), P211(x, h) =bx. 

Thus, from Theorem I with dx = ydt and dy = -xdt to zero order and with h = a 2/2, we 

have, with the integrals being taken around 'Y a(l), 

M2(U) = f[o,h P2 -G, P2h]dx +f[g£dx-f£dy]-f F[f x + gy]<lx 
y 

,([4cx
3 

( x
3

) ] !( ) = j -;-b hx- 6 -4ex3ybx dx-y ax+dx3 dx 

- f(bxy 2 /2+cx\'-cx5 ts)(by+4ex3)dx 
y 

= 4bc f :n[ hx~ (t)- x~ (t) I 6 - x~ (l)y; (t) ]dt + f :n[ ax; (t) + dx; (t)]dt-



94 

- J~rr[3bex~(t)y~(t)-4cx~(t)/ s]dt 

= rca2 [2ca6 + 2_ bca..i + 2da2 +a] 
16 24 4 

which follows using the formulas for Jgrrcos2
m tdt given at the end of Section 4.10. 

5. For Y a(t) = (-acost, a.sint) we have M 1(a) = 0. And then with f(x, y, £)=£ax+ £bx3 + 

rcx 5 + x6, g(x, y, £)=Axe•+ Bx4 + Cx2, fx(x, y, 0) = 6x5, fr(x, y, E) =ax+ bx3 + cxs, 

gy = 0, gr= 0, F(x, y) = x6y - Ax7/7 - Bx5/5 - Cx3/3, G(x, y) = 6x5y, G 1(x, y) = 6x5y, 

Gix, y) = 0, G 111(x, y) = 6x 5/y, P2(x, h) = 0, P2h(x, h) = 0. Thus, from Theorem 1 with 

dx = ydt, dy = -xdt to zero order and with h = a 2/2 and the integrals being taken around 

Y u(t), we have 

= r2rr[ 2 4 6 ] f2rr[ 12 10 8 ] .o ax(t(t)+bxa(l)+cxu(t) dt+Jo 6Axa (t)/7+6Bxu (t)/5+2Cx(.((t) dt 

')( 99 10 189 8 35 6 5 4 3 2 ) = rccc -Aa +-Bu. +-Ca +-ca +-ba +a 
256 320 32 8 4 

where we use the integrals of even powers of cost given at the end of Section 4.10 and the 

i 2rr 10 63n: J2TC 12 3 · 77n 
formulas cos tdt = ~ and cos tdt = 9 which follO\V from the formula 

0 2 0 2 

-
1
-J6ncos2

m tdt = (
2

m) ·-i- given in Theorem 6 in Section 3.8. 
2rc m 2 m 



95 

7. With 'Yu(t) = (xc/t), Yn(t)) = (acost, -asint), we have M1(a) = 

f ~rr [a + bxn (t) + Xu ( t) y u ( t) + ex~ ( t) + 3x~ ( t) Yu ( t) - y~ ( t)] ya ( t) dt = 3rr/ 4 - 3rr/4 == 0. 

And then f(x, y, E) = 0, g(x, y, E) =a+ bx+ xy + cx3 + 3x2y - y3, gyCx, y, E) = 

x + 3x2 - 3y2, gr= 0, F(x, y) =-ax - bx2/2 - cx4/4, G(x, y) = xy + 3x2y - y3, 

G1(x, y) = xy + 3x2y - y\ 0 2 = P2 = P21i = 0 and G111(x, y) = (x + 3x2 - 3y2)/y imply that 

Mia) = -f ~ [ gy ]dx = f[ ax+ bx 2 I 2 +ex 4 I 4 ][ x + 3x 2 
- 3y 2

] d;x 

= J~rr[ ax;(t) + 3bx~ (t) I 2 - 3bx~ (t) y; (t) I 2 + 3cx~ (t) I 4 - 3cx; (t) y~ (t) I 4 ]ut 

= na2 [a+3bu2 /4+3ca4 ts]=rrh[2a+3bh+3ch 2
] 

I r2rr 1 2 127! 4 2 where we have used the fact that h = a2 2, cos-t sin tut = rr I 4 , cos t sin t dt = rr IS 
·O 0 

and the fo1mulas for the integrals of even powers of cost given at the end of Section 4. 10. 

PROllLEl\I SET 4.12 

1. (a) You should find Q.rn = a30 - b21 + a12 , Q31 = b:w, Q22 = a1/2, Q 13 = (b 12 - a21 + 3b30 + 

am)/4, Qo4 = bo/4, QJo = (a20 - b11 + 2ao2)/3, Q21 = h20• Q12 = ao2• QoJ = (bo2 + 2b20 -

a11)/3, Q~o = aH/2, QI 1 = b10• Qo2 = bo/2, 010 = aoo and Qo1 =boo; q(x, y) = (b21 - adx2 -

(3b12 - a12 + 3b30 + a03)xy/4+(b11 - 2a02)x + (a 11 - 2b20)y; and a(h) = (a21 - b12 + 3a03 -

(b) Q50 = (3aw - 3b31 + 2a22 - 2b 13 + Saw)/15, Q41 = b40, Q32 = (a22 - b13 + 4a04)/3, Q23 = (b22 

- a:q +4b40)/3, Q 14 = a04 and Q05 = (3b04 - 3a13 + 2b22 -2a31 + 8b40)/15; q30 = b31 - 2(a22 -

b13 + 4a04)/3, q21 = a31 - 4b40, q 12 = b13 - 4a04 , and q03 = a13 - 2(b22 - a31 + 4b..-04)/3; and 

a(h) is the same as in part (a). 

(c) This problem is done in Ilicv's paper [58]. 
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2. (a) For the system in Problem 2(a), we have f1(x, y) = -2x2 - (211.21 + }.51 )xy + y2, g1(x, y) = 

-/,21 x2 + (4 + A41 )xy + /, 21 y2, f2(x, y) = /1. 12x and g2(x, y) = }.12y. Therefore Q 1 = rn1 = 

g1dx - f1dy = [-),21 x2 + (4 + A41 )xy + A. 21 y2Jdx + [2x 2 + (21..21 + l1. 51 )xy - y2Jdy, and ci>2 

= g2dx - f 2dy = ), 12ydx - l. 12xdy. It then follows from the proof of Lemma 1 with n = 2 

that q1(x, y) = (b 11 - 2a02)x + (a 11 - 2b20)y = (2A 21 + A. 51 - 2/1.21 )x + (4 + /...41 - 4)y = ),51 x 
27! 27! 

+ ),41 y. And finally, dz(h) = J Q 2 = J(co 2 + q1rn1) = /.. 12 f {y2 + x 2 )dt + f (i. 51 x + ), 41 y) 
ll=h 11=-h o O 2rr 

[-A. 21 x2y + (4 + ),41 )xy2 + ).21 y3 - 2x1 - (2), 21 + A.51 )x2y + xy2]dt = 2rm2}. 12 - J [2A.51 x4 

0 
' . , , 1 (?' 1 ) , 2 ' (4 ) ) . 2 , 1 ' , , 1 1 4) d ? ( ,, - As1x-y- + 11.41 -A21 + ''51 x-y - l.51 . + '41 X y- + r.21A41X"r - r1.21'•41Y t = -1! a-A12 

- a 41.5 /8) = 4rrh/... 12 - rrh2/1.51 where we have used dx = ydt, dy = -xdt, xu(t) = acost, 
2rc 2rc 2rr 2rc 

Yu(t) = asint, f sin2t cos2t dt = 2rr/8, J sin4t dt = f cos4t dt = 2n:-3/8, f sint cos3t dt 
2n: 0 

= f cost sin:>t de= 0 and a= \12ii. 
0 

0 () 0 

(b) For /.. 11 = A. 12 = A.51 = 0, consider the system in Problem 2(b): We have f1(x, y) = -2x2 -

211.21XY + y2, g,(x. y) = -l1.21X2 + (4 + } . .i1)xy + t1.21Y 2• f2(X, y) = -/.·52X)', g2(x, y) = 0, 

f:.1(x, y) = /, 13 x and g3(x, y) = l1. 11y. Then q1(x. y) = 11..iiY (from part a with i.51 = 0), Q 2 = 

COz + c.i1<01 = ),szxydy + A41Y { [-A21X2 + (4 + '·41)xy + /,21Y2]dx + [2x2 + 2l .. 21XY -

y2]dy} = A52xydy + [-1,.i 11.21 x2y + ),41 (4 + ),.i1)xy 2 + A21 /...i 1 Y~]dx + [2/ .. 41 x2y + 

A.41 y3]dy. Thus, in determining qi{x, y), we have a30 = 0, a21 = -/,41 /. 21 , a12 = A.41 (4 + A.i1), 

a03 = /.. 21 ),41 , b30 = 0, b21 = 2A41 , b12 = 2A..i11 .. 21 , b03 = -/ .. 41 and b11 = A52. And from 

Problem l(a), we have q02 = 0 and q2(x, y) = b11 x + (b21 - a12)x2 - (3b 12 - a12 + 3b30 + 

a03)xy/4 = A52x - (2A41 + A~ 1 )x2 - (7/ .. 21 A.41 - 4/1.41 - ) .. ~ 1 )xy/4. Therefore, f Q 3 = f w3 
2n 211 2it H=h H=h 

+ q1W2 + qzW1 = A13 J (y2 + x2)dt - A41As2 J x2y2dt + J [A.52(4 + A41)x2y2 - As22x4 + 
0 0 0 

A.52x2y2 + O(x3y, xy3, xS, x4y, x3y2, x2y3, xy4)]dt = 2rra2J.. 13 - rra4A5/4 = rrh[4/, 13 -
2it 

),52h] where we have used dx = ydt, dy = -xdt, the integrals in part (a), and J sinmt cos11t 
0 

dt = 0 for m + n odd. 
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3. For n = 1 and Q = (atox + a01 y + a00)dx + (b 10x + b01 y + b00)dy, we have Q = dQ + qdH 

+ a(H)ydx + B(H)xydx for O(x, y) = Q20x2 +Q 11 xy + Q02y2 + Q 10x + 0 01 y + B00H(x, y), 

q(x, y) = q00, a(h) = a 0, B(h) = 0 and H(x, y) = (x2 + y2)/2 - x3/3 provided Q = [2Q20x 

+ Q11Y + 010 + Buo (x - x2) + qoo(X - x2) + aoy]dx + [ Q11X + 2Qu2Y + 001 + BooY + 

qooY ]dy; i.e., provided 2Q20 +Boo+ qoo = a10• 011 + ao = aot • QIO = aoo· Boo+ qoo = 0, 

0 11 = b10, 2Q02 + 8 00 + q00 = b01 and 0 01 = b00. We can choose 8 00 + q00 = 0 (here and for 

all n ~ 1), 0 20 = a1J2, Q10 = a00 , Q11 = b10, 0 02 = b0 /2, Q01 = b00, and a 0 = a01 - b10. For 

n = 2, you should find, in addition to the above formulas, that Q30 = b1 /30 - a0/ 15 + 

a20/3, Q21 = b20, Q12 = a0z15 + 3b1/ IO, Q03 = b20/3, 8 10 = -3q1/4, q 10 = 4b1 /5 - 8a0/5 

and 8 01 = q01 = 0. 

PROBLEJ\I SET 4.13 

1. As in Section 2.12, we let y = h(x) = ax2 + bx3 + · · · be the T:i.ylor se1ics for the analytic 

center manifold. Substituting this cxp:i.nsion into equation (5) in Section 2.12 results in 

(2ax + 3bx2) (ax2 + bx3) - µ2(ax2 + bx3) - (x2 + ax3) + 0(x4) = 0, i.e., (-µ 2a - 1 )x2 + 

O(x~) = 0 which implies that a= -Iht, or that the analytic center manifold is approximated 

by y = -x2/µ 2 + O(x3) as x -t 0. Equation (6) in Section 2.12 then implies that the flow on 

the analytic center manifold is approximated by x = -x2ht2 + O(x3) as x -t 0. And for 

either µ2 > 0 or µ2 < 0, this implies that there is a saddle-node at the origin with two 

hyperbolic sectors in the right-half plane for µ2 -:t 0. 
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2. For ~t 2 -:!- 0, the linear part of the system (2) has a simple eigenvalue/,= 0 with conespond­

ing eigenvector v =(I, O)T and [Df(O, 0, ~t 2 ))T = (0, O; 1, µ2] has an eigenvector\\'= 

(~l 2 , -I )T conesponding to the eigenvalue/,= 0. Furthermore, wTfµ 1(0, 0, ~t 2 ) = 

(µ2, -1) (0, l)T = -1-:t-0 and wT(D 2f(O, 0, ~t 2 ) (v, v)] = (~l 2 , -1) (0, 2l = -2-:;:. 0. Thus, 

for ~t 2 f:. 0, according to Theorem 1 in Section 4.2, the system (2) experiences a saddle-node 

hifurcation at the equilibrium point x = 0 as the parameter ~t 1 passes through the bifurcation 

value µ 1=0. 

3. Setting v 1 = -1/.+ and translating the origin to the center of the system ( 4) at (-1/2, 0), i.e., 

letting x = u + 1/2 and y = v, we obtain x = y and y = -x + x2 + c(ay + ~xy) wi1h u. = 

V2 - 1/2 and B = 1. This system is equivalent to x = y = -x + x2 + f( ax + Bx x) as is the 

system x = y + f(ax + bx 2), y = -x + x2 with (a, b) =(a, 012). The l\·klnikov function 

along the one-parameter family of periodic orbits y u(t) = (xu(t). y11(t)) of pc1iod Tu= 

8(1 - a2 + a 4)
1'4 K(a), given in this problem is given by 

M(a, µ) = (" f (yu(t)) /\ g(y0 (t), µ.)dt = J:u [ ax~(t) + (b- a)x~(t)- bx~(t) ]dt 

= , 
4

,,
4

f --sn4 u+3a--Ji-a-+u4 -l-ccsn-u 
a .tKu1i[9a4 

, ( .------;--- - - ,) , 

(1-a~ +a )" Jo 2 

+ ~(~1-a2 +a4 -1-a2 )
2

}u 

+ 9(~-a)4 5/4 rK(u)[3a6sn6u+3a4(~1-a2 +a4 -l-a2)sn4u 
4(1-a +a) o 

- b f4K(u)[8la8 snSU + 27a6(,Ji- a2 + a4 -1- a2) sn6u 
2(1-a2+a4)714)Jo 4 

+ 
27

:
4 

(~1-a2 +a4 -1-a2 )2 sn 4 u+3a2 (~t-cx2 +cx4 -l-a2 rsn2 u 

1 ( / 2 4 2 )
4

] + '4 \ 1 - a + a - 1 - a du 
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6
b 714 {[1(a4 -3a2 +2)~a4 -a2 +1+5(a6 +a4 -4a2 +2))K{a) 

35(l-a2 +a4
) 

-[s(2a6 -3a4 -3a2 +2)+ t4(a4 -a2 +1)
3

'
2
]E(a)} 

where we have used the formulas for the integrals of even powers of sn(u) given in 

Section 4.10 and the formula 

i

4K(a) g 6(1 + a 2
) i4K(a) 6 5 i4K(a) 4 

sn (u)dn = 2 sn udu - --2 sn udu 
o ?a o ?a o 

given on page 192 of [40]. It follows that M(a, µ.)has a simple zero iff 

~ = {[ 1( a 4 
- 3a 2 + 2 )~ a 4 

- a 2 + 1 + s( a 6 +a 4 
- 4a2 + 2)] K( a) 

-[s(2a6 -3a4 -3a2 +2)+14(a4 -a2 +1)
312

] E(a)} 

1/2 . 
7(a4 -a2 +1) [2(a4 -a2 +I)E(a)-(a4 -3a2 +2)K(a)] 

This function is plotted, using Mathematica, as a function of a and as a function of x 

below, where from the expression for xa(f j4) we have 

2a
2 

-1 1 ~ 3 x= +- and 2a2 =1+(2x-1) 2 . 
2~t-a2 +a4 2 3+4x-4x 

0.2 04 06 08 
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From the graphs, we sec that for b > 0 and sufficiently small E > 0 the above system has 

exactly one limit cycle for-.28 ···<alb< 0. As in the first part of this section, it is easy to 

show that the system in this problem has a subc1itical l lopf bifurcation in \vhich an 

unstable limit cycle bifurcates from the origin as a decreases from zero; according to the 

abo\'c graphs, it expands monotonically as a decreases from zero to (-.28 .. · )b. 

Computing the Mclnikov function along the homoclinic loop shows that this system has a 

homoclinic loop for a(E) = -2b/7 + O(E) = (-.28 · · · )b + O(E). And for v1 = -1/4, the 

homoclinic loop bifurcation value a= a= v2 - 112 = -2/7b + O(E) for b = Bl1 = 1/2 

corresponds to v2 = 5/14 + O(E) as computed earlier in this section. 

4. For the system (6), Df(x) = [O, I; ~l 1 +3x2 -2xy, µ2 - x2]. For µ 1 ~0, the origin is the 

only critical point and Df(O) = [O, I; µ 1, µ 2]; thus, for ~t 1 > 0, the origin is a saddle and 

for ~t 1 = 0 the flow on the center manifold, y = -x3/(3~t2 ) + O(x4), is given by x = 

-x3/(3~t2 ) + O(x~) and we have a topological saddle at the origin. For ~t 1 < 0 we have 

critic:.il points at (0. 0) and (±~-µ 1 , o); the origin is a source for ~t 2 > 0 and a sink for 

µ2 :::; 0 where we must use equation (3') in Section 4.4 in order to determine the stability of 

the origin when µ2 = O; since or( ±1/~. 0) = [ 0, I; -2µ 1, ~t 1 + ~t 2 ], these critical points 

arc both saddles. Using equation ( 4) in Section 4.2, \VC can show that there is a pitchfork 

bifurcation for µ 1 = 0 (and ~t 2 -:t 0) in which three c1itical points bifurcate from the origin 

as ~t 1 decreases through ~L 1 = 0. Since for µ 1 < 0 and µ 2 = 0 the 01igin is stable, it follows 

from Theorem I in Section 4.4 that there is a supercritical Hopf bifurcation in which a 

stable limit cycle bifurcates from the origin as µ2 increases from zero. It then follows from 

the theory of rotated vector fields in Section 4.6 that for w =-I this stable limit cycle 

expands as the parameter µ2 increases until it intersects both of the saddles at (±1/-µ 1, o) 
at some homoclinic (or heteroclinic) loop bifurcation value µ2 = h(~t 1 ) = -~t/5 + o(µr ); 
this approximation \Vas de1ived in this section using the results of Example 3 in Section 

4.10; \Ve have also used the symmetry of this system about the origin to deduce that the 

expanding limit cycle intersects both saddle points simultaneously. The bifurcation set and 

phase portraits for this problem arc shown in Figures 7.3.4 and 7.3.5 in [G/H]. 
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5. The details in Problem 5 are similar to the details in Problem 4 except that in Problem 5 we 

use the results of Theorem 5 and Problem 6 in Section 4.10 to establish the results 

concerning the limit cycles for this problem. We also make use of the symmetry of this 

system about the origin. (Seep. 146 in the appendix.) 

6. If we make the transformation of coordinates (x, y, r, µ1, ~t 2 ) ~ (x, -y, -t, µ1, -µ2), the 

system in this problem is transformed into the system (2). Hence, the bifurcation set and 

corresponding phase portraits are obtained from Figure 3 by rotating the ~l 1 , µ2 plane 

through 180° about the ~t 1 -axis and by rotating the phase po1traits through 180° about the 

x-axis and reversing the arrows. 

7. For ~t 1 > 0 there arc no critical points and for µ 1 ~ 0 there are critical points at 

( ± \/-µ 1 , 0). D f ( ± ,/-µ 1 , 0) = [ 0, 1; ± 2\/-µ 1 , µ 2 ] ; for ~t 1 < 0, ( 2 ,/- ~t 1 , 0) is a saddle 

and (-2~-µ 1 , 0) is a sink if µ 2 < 0 and a source if µ 2 > 0; for µ 2 = 0, by the symmetry 

with respect to the x-axis, (-2,/-~t 1 , 0) is a center. For µ 1 = ~t 2 = 0, there is one non­

hypcrbolic critical point at the origin; and from Theorem 3 in Section 2.11 it is a cusp. For 

µ 1 = 0 and ~l 2 :t 0, according to Theorem 1 in Section 2.11, there is a saddle-node at the 

origin. For ~t 1 = 0 and ~l2 :f. 0, there is a single zero eigenvalue and according to Theorem 

l in Section 4.2 there is a saddle-node bifurcation, viz.: 
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PROBLEi\1SET4.1..J 

I. Setting T(x+, y+) = 0 leaJs to c(u + S) =I+ u.0 + u.y• with y+ =(a- 13 + S)/2 anJ 
r --- . -- .. 

S = \i(a -13)2 -4y 2 
: and this in turn yields c =I 1 + c1.(u + f\ + S)/2]/(u + S) for the 

I lupf bifurcation surface I 1+. For Y = 0 and (J. > f\ this reduces to the Hopf bifurcation 

surface 11+: c = (1 + a2)/('2u. - ~)for (4). In order to show that for T(x+, y+) = 0. the 

critical point (x+, y') is a stable weak focus (and to complete pa11 h of this problem), rather 

than using equation en. it is easier to USC the folluwing formub for the Liapunov number, 

CT, of the quadratic system x = -x + Ey + y2, y = Fx + y - xy + cy2 with I + EF < 0 given 

in Lemma 2.3 in [51]: cr = F[cF2 +(cF+l)(F-E+2c)]k with the positive constant k= 

Jrr/l2jEFI II+ Efj.112). (This formula also follO\vs Jircctly frnm cq. (3') in Section 4.4 for 

the abU\'C quaJratic system. er. Problem 9 in Section 4.4.) For E = 0 + 2y+ and F = u. - L' 

- y• \\e see that a= 0 iff 2(1S - j3)c 2 + [(u + f) - S)(f~ - 2S) + 2Jc +<I~ - u. - 3S) = 0. 

\\here we ha\·c useJ equation (8) fury•. Soh·ing this quadratic for c then leads to the 

equation of the H2 surface gi\'L'll in part (h). (l'\umcrical computation shows that the 

solution with the minus sign has no intersection with the H+ surface and it can therefore be 

ignored.) And then for y = 0 and S =a- r3. it can be shown that the discriminant h2 - 4a<l 

< 0. i.e., that a docs not change sign and that for u. = 20 = c = I. cr is negati vc. Thus, for 

Y = 0, a superc1itical Hopf bifurcation occurs as c increases. 

2. The system (5) experiences a Takens-Bogdanov bifurcation at the origin when both 

8(0, 0) = Y2 = 0 and T(O, 0) =-I + c0- al~ -Y2 = 0, i.e., when Y = 0 and c =a+ llj3; 

the linear part of (5) at the origin then has the form Df(O, 0) = [-1. j3; -l/j3, I] \Vith 0 t: 0. 

3. For a= f~ + 2Y, S = 0 and 8(x±, y±) =±Sy±= 0 and since y± =(a - 13)/2, T(x±, y±) = 

ac - I - a(a + j3)/2 = (!\ + 2Y)c - I - (j3 + 2Y)(l3 + Y) for a= 13 + 2Y; it follows that 

T(x\ y±) t:. 0 if ct:. f~ + Y + I/(j3 + 2Y). We have for a= B + 2Y that the matrix A= Df(x±, y±) = 

[-1, a; 0 + Y - c, u.(c - 0 - Y)] has one zero eigenvalue with eigenvector v = ( u, I )T anJ one 

non-zero eigenvalue with eigenvector v2 = (1, c - I~ - Y)T. Transforming the linear part to 
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Jordan canonical form (and normalizing the time) we get B = P-1 AP= [I, O; 0, O] and then it 

can be shown that the transformed system x = (0, ~L)T +Bx+ Q 2(x) satisfies the conditions of 

Theorem 1 in Section 4.2 . 

.t. For a= B + 2Y, A= Df(x±, y±) = [-1, a; B + Y - c, a(c - P - Y)J as in Problem 3. Then 

for c = B + Y + 1/(B + 2Y) = B + Y + I/a, it follows that A= Df(x±, y±) = [-1, a; -1/u, I] 

and that 3(x'\ y~) = T(x~, y~) = O; i.e., we have a double-zero eigenvalue bifurcation 

occurring in this case, and from the results in Section 4.12, it follows that the quadratic 

system (5) experiences a Takens-Bogdanov bifurcation. 

5. Setting T(O, 0) = 0 leads to c =a+ (I + Y2)/B, the Hopf bifurcation surface, H0 , for the 

critical point of (5) at the origin. And then, as in Problem 1, using the simplified formula 

. for the Liapunov number cr = F[ cf2 + (cF + 1 )(F - E + 2c)Jk, from [51 ], \Vi th E = Band 

F = u. - c, we find that cr = 0 iff <B- 2u.)c 2 + (2u.2 - ar) + l)c +a - B = 0. And this 

leads to the fonnula for the multiplicity-two I Iopf bifurcation surface given in Problem 5. 

(Numerical computation shows that the solution of the above quadratic with the minus 

sign has no intersection with the H0 surface and it is therefore disregarded.) 

6. The global existence and analyticity of the homoclinic loop bifurcation surface HL +for the 

system (5) follow from the theory of rotated vector fields in Section 4.6 and the 

uniqueness of analytic continuations. The system (5) defines a semi-complete family of 

rotated vector fields mod x =BY+ y2 with parameter cE (-=, oo) according to the 

definition in Section 4.6. Let us consider the case when the Liapunov number cr in 

Problem 1 is negative. (The case when cr > 0 is treated in a similar manner.) First of all, it 

follows from Theorem 5 in Section 4.6 that for cr < 0 a unique limit cycle is born in a 

Hopf bifurcation at a value of c E H+; and then according to Theorems 1 and 4 in 

Section 4.6, that limit cycle expands monotonically as c increases until it intersects the 

saddle point P- and forms a homoclinic loop at some value of c = h(a, B. Y). (It follows 
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from the Poincarc-Bendixson theorem that the outer boundary of this one-parameter family 

of limit cycles cannot include the saddle point at (I, 0, 0) on the equator of the Poincarc 

sphere.) Thus, for each point (a, p, Y) E R, defined in Theorem 5, there exists a unique 

value of c, c = h(a, r~. Y) at which (5) has a homoclinic loop at the saddle P-. The 

analyticity of the function h(a, B. Y) then follO\vs from the stable manifold theorem and 

the implicit function theorem for analytic functions as in [38]. A similar type of analysis 

can be used to establish the existence of the analytic smf aces HL0
, c;, and C~; the 

serious student should sec Remark 10 in [38] regarding the existence of these latter two 

surfaces. 

7. According to Theorem I and Remark 1 in Section 4.8, (5) has a multiple homoclinic loop 

bifurcation for the homoclinic loop at the saddle point P- if cr = T(x-, y-) =-I + f)(c - u) + 

(2c - a)y- = O; and then since y- =[a - 0- S]/2, it follows that cr = 0 iff c = 

[I + a(Cl + B - S)/2]/(a - S). 

8. The details of this problem arc similar to those in Problem 3 and are left to the student to 

carry out. 

9. Following the hint given in this problem, we sec that the H0 and I IL0 bifurcation curves 

enter the region E for B < 0 and for points on the HL0 curve we have the phase portrait (f') 

given in Figure 8; furthermore, for points bet\veen the HL0 and H0 curves, we have the 

phase portrait (i') in Figure 8; and for points on the H0 curve and to the right of the H0 

curve, we have the phase portrait (h') shown in Figure 8. Finally, there is one last feature, 

not shown in Figure 18, that occurs for B < 0: as in the figures shown below, there is a 

C~ bifurcation curve of multiplicity-two limit cycles emanating from the H~ point on the 

H0 curve (determined in Problem 6 above) and for points bet\veen the 11° curve and the C~ 

curve we have the phase portrait (k') in Figure 8. Thus, the charts l, 2 and 3 in Figure 16 



are transposed into the charts 1, 2 and 3 shown below for -I << f3 < 0 (and a similar 

transposition occurs for charts 4 and 5 in Figure 16). 

PROBLEM SET 4.15 
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1 . From equation (8) in Section 4.14, as y---? 0, y• ---? a - f3, y- ---? 0, x• ---? a( a - ~) and x­

-? O; 8(0, 0) = y2 ---? O; and -r(O, 0) = -1 + B<c - a) -y2 ---? -1 + f3(c - a). Regarding 

Sotomayor's Theorem for (2): Since 8(0, 0) = 0 and -r(O, 0) = -1 + B<c - a) -:t- 0, the 

matrix A= Df(O, 0) = [-1, f3; (a - c), f3(c - a)] has a simple eigenvalue A= 0 with 

corresponding eigenvector v = (f3, I )T; the matrix AT has an eigenvector w =(a - c, J)T 

corresponding to A= 0. Thus, the conditions wT fµ (0, 0) =(a - c, I)· (0, l) =I '!:- 0 

and wT[D2f(0, 0) (v, v)] =(a - c, 1) · (2, -2f3 + 2c) = 2(a - f3) -:t 0 are both satisfied 

for the system (2) in Theorem l. They are similarly shown to hold for the system (5) in 

Theorem l '. Thus, accorcling to Sotomayor's Theorem, the system (2) in Theorem I 

experiences a saddle-node bifurcation (of codimension I) at the critical point at the origin 

at the bifurcation value µ = 0 and the system (5) in Theorem I' experiences a saddle-node 

bifurcation (of codimension I) at the critical point p+ at the bifurcation valueµ= 0. 

2. Applying the linear transformation x = u + Bv, y = (c - a)u + v or equivalently u = (x -

f3y)/8, v =[(a - c)x + y ]/8 with 8 = I - f3(c - a), together with t---? -<)t, to the system (1) 

with y = 0, we find ti = (x - f3y)/8 = u + a20u2 + a 11 uv + ao2v2 and v =[(a - c)x + y]/8 
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= b20u2 + b 11 uv + b02v2 where a20 = (u-c) (a~c - u + B - fk 2 + c)/82, a 11 =(-2c+2fk2 

- f~ + 2a - 2u.fk + (.(fP - f~2c)/82. a02 = (I + p2 - fk)/52, h20 =(a - c) (a2 - u.c + I )/02. 

b 11 = (2uc - fk - 1 - 2u2 + up)/S~ and b02 = <P - a)/82. \Ve sec that for u. =I~. h02 = 0. 

Thus, on the center manifold, u = -a02 v2 + O(v3), we have\·= -b 11 a02 \.:~ + O(v.t) or\· = 

-v3 + O(v.t) after rescaling the time. Similarly, applying the abovc-mcntione<l lincar 

transfonnation to the system (6). \\'e find that the flow on the center manifol<l is 

<letermined by.;,= ~t 1 + ~t 2 \' - v3 + O(~t 1 v. ~tl, ~t~. v.t, ): cf. the proof of Theorem 3.4 

and Rem:.irk 3.5 in [60]. 

3. Applying the linear transform:.ition of coon.linatcs x = (u - v )/(u.c - u 2 - 1 ), y = (c -

<J.)u/(uc - CJ. 2 - I) or cqui,·alently u = (u.c - a2 - I )y/(c - u. ), ,. = (u.c - u 2 - 1) [y/(c -

u) - x J to the system (I) with y = 0, u '# 0. BCc - u) = I an<l B -:t- 2c. we fin<l t.i = v + au 2 

+bu\ and\·= u2 +cu\ with a= (c: - Ll.C - l)/(u.c - u2 - i) and h = e = 1/(uc - <t.2 - I J 

as in the proof of Lemma 3.7 in [60]. We therefore have that c + 2a = -(I - 2c2 + 2u.c)I 

tu.c - u 2 - 1) -:f- 0 iff I - 2c2 + 2u.c = 1 - 2c(c - u) = 1 - 2cf P -:t- 0, i.e .. iff p -:t- 2c. 
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-t. (a) from the results of Problem 8 (a, b) in Problem Set 4.4, we have that, forµ= 0, W 1 = 

-I - m and W2 = 2(m + 2)(m - 3) for n = 0 (and a= b = f = 1). Thus, for ~l = 0 and m = 

-1, W 1 = 0 and W 2 = -8 < 0 so that, according to Theorem 4 in Section 4.4, the system in 

this problem has a weak focus of multiplicity 2 at the origin and it is stable. Since 

det(P, Q; P w Qi,) = -r2 + 0(r3) < 0 in a neighborhood of the origin, this sytem defines a 

family of negatively rotated vector fields with parameter ~l in a neighborhood of the origin, 

according to Definition 1 in Section 4.6. Since 0 > 0 near the origin (i.e., w = + 1 ), and 

cr = 3rr.W/2 < 0 form >-1andcr>0 form< -1 (and W 1 =0 while W 2 < 0 if m = -1), it 

follows from Theorem 5 and Figure 1 in Section 4.6 (or Theorem 1 in Section 4.4 form* 

-1) that a stable, positively oriented limit cycle bifurcates from the origin as ~t increases if 

m 2'. -1 and that an unstable, positively oriented limit cycle bifurcates from the origin as ~l 

decreases if m < -1. According to Theorem 2 in Section 4.1, form= -1 and a fixedµ> 

0. there exists a S > 0 such that the hyperbolic (stable) limit cycle, which bifurcates from 

the origin asµ increases from zero, continues to exist form< -1 and Jm + 1J<8. For 

such a fixed m = m0 < -1, according to Theorems 1, 2, and 6 in Section 4.6, the 

abovementioncd stable, positively oriented limit cycle contracts as µdecreases until it 

intersects the unstable limit cycle generated in a Hopf bifurcation atµ= 0 (which expands 

asµ decreases from zero) at some value ofµ= µ0 < 0 and forms a multiplicity-2 limit 

cycle. This defines a point (~. m0) on the multiplicity-2 limit cycle bifurcation curve C2 

\vhich, according to the results in [38), is an analytic curve which intersects the Hopf 

bifurcation curveµ= 0 (i.e., them-axis) tangentially at the point(µ, m) = (0, -1). This 

leads to the following bifurcation set similar to Figure 2 in Section 4.15: 
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(b) Forµ= a3 = 0, il follows from equation (3') in Section 4.4 that er= 0; hence, this system 

has a weak focus of multiplicity m ~ 2 al the origin. But according to Theorem 5 in 

Section 3.8, m::::; 2; hence, m = 2. For ~t = a3 = 0, r = -16cx6/5r < 0 for E > 0 and xi:- O; 

hence, the origin is a slable focus. For ~l = 0 and a3 i:- 0, equation (3') in Section 4.4 

implies that CJ= -3rra3El2. Also, 0 < 0 near the origin (i.e., to= -1) and according to 

Definition I in Section 4.6, for£> 0 this system defines a family of negatively rotated 

vector fields (mod x = 0) with parameterµ since [P, Q; Pw Qµ] = -Ex2. Thus, if we lel a 

denole the stability of the origin, il follows that er< 0 for a3 ~ 0 and CJ> 0 for a3 < 0. It 

therefore follows from Theorem 5 and Figure 1 in Section 4.6 (or from Theorem 1 in 

Section 4.4 for a3 1:- 0) that a stable, negatively oriented limit cycle bifurcates from the 

origin asµ decreases from zero if a3 ~ 0 and that an unstable, negatively oriented limit 

cycle bifurcates from the origin asµ increases from zero if a3 < 0. According to Theorem 2 

in Section 4.1, for a3 = 0 and for a fixed µ < 0, there exists a()> 0 such thal the 

hyperbolic (stable) limit cycle, \vhich bifurcates from lhe origin asµ decreases from zero, 

continues to exist for a3 < 0 and la3I < 8. For such a fixed a3 =a~< 0, according to 
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Theorems I, 2, and 6 in Section 4.6, the abovementioned stable, negatively oriented limit 

cycle contracts as ~l increases until it intersects the unstable limit cycle generated in a Hopf 

hifurcation (which exp:.mds as ~l increases from zero) at some value ofµ= ~lo> 0 and 

forms a multiplicity-2 limit cycle. This defines a point (~l0 , a~ on the multiplicity-2 limit 

cycle bifurcation curve C2 which, according to the results in [38), is an analytic curve 

which intersects the Hopf bifurcation curveµ= 0 (i.e., the a3 axis) tangentially at the 

origin of the (~t, a3) plane. This leads to the following bifurcation set similar to Figure 2 in 

Section 4.15: 

Finally, for the perturbed system (with small E * 0), we can compute the Melnikov 

function as in Example 2 in Section 4.9 to approximate the shape of the C2 bifurcation 

curve for small £ > 0: For 'Y uCt) = (a cost, a sint)T, Ta= 2n andµ = (µ, a3), 
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= 

= 

= 

It follows that M(µ, a)= -rra2
( {µ - ·./2.a2 

)
2 

iff a3 = -8{2µ I 3, in which case for 

a 0 = ~,iµTi, M(µ, a 0) =Ma(µ, cx0) = 0 and Maa(µ, a 0) = -8rr~t < 0 for ~l > 0. Also, 

tv1~t(µ, a)= -rra2, i.e., tv1~t(µ, a 0) = -rr1ht I 2 < 0 for ~l > 0. Therefore, by Theorem 2 

in Section 4.10, there exists a3 = -8{2µ I 3 + O(E) such that this system has a unique limit 

cycle of multiplicity 2 in an O(E) neighborhood of the circle of radius r = ~,iµ--; 2 for all 

sufficiently small E > O; i.e., the multiplicity-2 limit cycle bifurcation curve C2 is given by 

a3 = -s./2!1I3 + O(E) = -3. 77-.,/!l + O(E) for sufficiently small E > 0 and we see that the 

curve a3 = -4.,J)l, for which Example 3 in Section 4.4 has two limit cycles, lies below the 

C2 bifurcation curve in the above figure (i.e., it lies in the doubly cross-hatched region in 

the (µ, a3) plane for \.Vhich the system in this problem has two limit cycles which arc 

shown in Figure 5 in Section 4.4 for E = .01 andµ= .5 or 1). 
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5. (a) According to Theorem 3 in Section 3.4, for ~t 1 = 0, P(O) = 0 and P'(O) = I. Therefore, the 

displacement function, d(s) = P(s) - s, satisfies d(O) = d'(O) = 0 and according to the 

comment following Theorem 3 in Section 3.4, d"(O) = 0. Next, it follo\VS from equation 

(3) in Section 3.4 that for µ1 = 0, cr = d"'(O) = 12nµ 2 = 0 for µ 2 = 0 and, once again 

according to the comment following Theorem 3, this implies that d(IV)(O) = 0. Thus, 

according to the definition of the multiplicity, m, of a focus in Section 3.4, m ~ 2 for ~t 1 = 

(b) Using the equations for r and G in Section 2.10, we find that the system in this problem 

can be written in polar coordinates as 

and 0 = 1. 

Thus, if µ 1 = µ2 = 0, we obtain dr/dO =rs. The solution of this differential equation with 

r(O) = r0 is given by r(O) = r0 (t-4r~or
114 . The Poincare map for the focus at the origin 

of this system, as defined in Section 3.4, is then given by P(r0) = r(2rr) = r0 [ 1- Sm~ r114
. 

[ ]
-5/4 [ 4]-9/4 

Wecanthencompute P'(r0 )= 1-Srrrri , P"(r0 )=40rrr6 l-Srrr0 , 

P"'( r o) = l 20n r6 [ l - Src rci r
914 

+ o( r8), p(IV)( r 0 ) = 240rc r o [ l - Src rri r914 
+ o(rg) and 

p(v)(r0 )=240rr[1-Srrrrir
914 

+o(rri) as r0 --jo. Thusd(V)(O)=P\V)(0)=240rr>O; 

and this implies that the origin is an unstable, weak focus of multiplicity m = 2 for 

(c) From part (b) we see that dr/dO = 0 iff r = 0 or r4 + µ 2r2 + µ 1 = 0. The latter equation has 

solutions r2 = [-µ 2 ± ~µ~ - 4µ 1 ] I 2 which are both positive iff µ 2 < 0 and µ 1 > 0. For 

µ 1 =µ~I 4 and µ 2 < 0, we have one (positive) double root r2 = -µ 2/2, which corresponds 

to a multiplicity-2 limit cycle described by a circular orbit of radius r = ~-µ2 I 2. 
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(d) As in part (a). it follows from equation (3) in Section 3.4 that for ~t 1 = 0, cr = 12rc~t2 . 

Thus. by Theorem l in Section 4.4, if ~t2 < 0, a unique stable limit cycle bifurcates from 

the 01igin as µ 1 increases from zero and if µ2 > 0, a unique unstable limit cycle bifurcates 

from the origin as ~t 1 decreases from zero. Next, [P,Q; P~q· Qµ 1] = -r2 < 0 for r -:f:. O; i.e., 

the system in this problem defines a one-parameter family of negatively rotated vector 

fields with parameter ~t 1 • Thus, by Theorem 5 in Section 4.6 and the fact that for µ1 = 

~t 2 = 0 the origin is a positively oriented, unstable focus, we find that, according to the 

table in Figure l in Section 4.6 (adjusted for a negatively rotated vector field by changing 

the signs of ~~l), an unstable, positively oriented limit cycle bifurcates from the origin as 

~l 1 decreases from zero. For ~t2 = 0 and ~t 1 < 0, this limit cycle is described by a circular 

orbit of radius r = ~1-~t 1 , according to the result in part (c); and then since 

\7 · f = 2~t 1 + 6r.i = -4~t 1 on this limit cycle, we have P'(O) = e-Sn:µ 1 >I foqt 1 < 0. 

according to Theorem 2 in Section 3.4; i.e., we have a hn>erbolic, unstable limit cycle 

for ~t 2 = 0 and ~t 1 < 0. [See Note I below regarding another method for establishing the 

hypcrbolicity of this limit cycle and those in Problem 4.] Thus, according to Theorem 2 in 

Section 4.1, for ~t2 = 0 and for a fixed (sufficiently small) µ 1 < 0, there exists a 8 > 0 such 

that the hyperbolic, unstable limit cycle, which bifurcates from the origin for ~t2 =0 as ~t 1 

decreases from zero, continues to exist for -<5 < µ2 < 0. Then by Theorems I, 2 and 6 in 

Section 4.6, for -8 < µ~ < 0, this unstable, positively oriented limit cycle contracts as ~t 1 
increases until it intersects the stable, positively oriented limit cycle (generated in the 

supercritical Hopf bifurcation, for µ2 < 0, as µ 1 increases from zero) at some value of 

µ 1 = µ? > 0 and forms a multiplicity-2 limit cycle. (Cf. the last figure in Figure 5 in 

Section 4.6.) The point (µ?, µ~) lies on the multiplicity-2 limit cycle bifurcation curve C2 

which, according to the results in [38], is an analytic curve which intersects the Hopf 

bifurcation curve µ 1 =0 (i.e., the ~lz-axis) tangentially at the origin of the (µ 1, µ2) plane. 

As was noted in part (c), µ? = (µ~)2 / 4; i.e., the multiplicity-2 limit cycle bifurcation 

curve, C2, is given by µ2 = -2,/µ; for µ1 > 0. Putting all of these facts together leads to 

the following bifurcation set (similar to Figure 2 in this section): 
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---·--- ··---

---·-·---· 
---------

f'1 

(c) If we replace x by x I 't.il and y by y I ~!2 in the system of differential equations 

, , 4 
X. = µ-x -y-3~t.u- + 2xr 

in Example 4 in Section 4.4, we obtain the system 

. , 3 '.I 4 
x = µ-x - y - ..)

2 
~txr- + xr 

, 3 2 4 y = x - ~l -y - Ii ~tyr +yr 

of part (a) in this problem with ~t 1 = ~t2 and µ2 =-3µ1 ·li; i.e., with µ2 = 

-3{µ; I {2 = -2.12.,/µ~ for µ 1 2': 0. This curve lies below C2 in the region where this 

system has two limit cycles (as shown in the above figure). The system in Example -t of 

Section -t.4 has two limit cycles described by circular orbits of radii r = {µ and 

r = @2; i.e., the latter system above has two (unstable and stable) limit qclcs described 
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by circular orbits of radii r::: ( "2 µ )1'2 
and r::: (µI "2f'2 

(*)(respectively), obtained by 

replacing r by r I ~:2 in the equations r::: \Jrµ and r::: ,)µI 2. The two equations (*)above 

also follow from the equations for the radii of the two limit cycles, of the latter system 

above, found in part (c). 

Note 1: We could also have used the theory of multiple foci and limit cycles, in Sections 

4.4 and 4.5 respectively, to establish the hyperbolicity of the (unstable) limit cycle 

generated at the origin in Problem 5 for µ2 = 0 as µ1 decreases from zero. The follmving 

argument, a slight variation of which also applies to Problems 4(a) and (b), should have 

been included in the solution to Problem 4 above: 

Since for µ2 = 0 (in Problem 5), an unstable (positively oriented) limit cycle bifurcates 

from the origin as µ 1 decreases from zero, there exist Eo > 0 and 80 > 0 such that for -f0 < 

µ 1 <0, there exists an unstable (positively oriented) limit cycle, r 1, in N80 (0). Since f 1 is 

unstable, it is of odd multiplicity m ~ 1 (otherwise, it would be a semi-stable limit cycle). 

Suppose that m ~ 3. Then according to Theorem 3(i) in Section 4.4, there exists an E > 0 

and a 8 > 0 (with E < Eo and 8 < 80) such that any system E-close to the system in Problem 

5 with µ 1 = ~t2 = 0, in the c2m+I_norm, has at most two limit cycles in N8(0) since the 

origin is a \veak focus of multiplicity 2 according to part (b). Then for µ2 = 0 and 

sufficiently small 1µ 11 < E, f 1 c N0 (0) and, according to Theorem 2(ii) in Section 4.5, 

there exists an analytic system which is £-close to the system in this problem with µ:z = 0 

and -E < µ1 < 0, in the cm-norm (and we can also find an analytic system which is £-close 

to the system in this problem with µ2 = 0 and-£< µ1 < 0 in the 

czm+I_norm), and which has m limit cycles in N0(0). But this is a contradiction form~ 3. 

Thus, m = 1 and f 1 is a simple (i.e., hyperbolic) limit cycle. 
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Note 2: As was noted above, a variation of the above argument applies to establish the 

hypcrbolicity of the limit cycles in Problems 4(a) and (b); however, in Problem 4(b), with 

a3 = 0 andµ< 0, \Ve can also use the Mclnikov theory to establish that the limit cycle, r 1, 

is hyperbolic: As in the solution to Problem 4(b) above, we have, for a1 = 0, that 

M(a, ~l) = -rm2(~l + 2a~) which implies that Ma{ a,µ)= -2n:a(µ + 6a~). We sec that 

M(a,µ)=Oiffa=Oora= V-µ/2 font<O;andthat Ma(a, ~1-~t/2) = 

4rrµ ~-µI 2 < 0 forµ< 0. Therefore, for a3 = 0 and ~t < 0, r1 is a hyperbolic (stable) 

limit cycle according to Theorem 1 in Section 4.10 (since £ > 0 and rn0 < 0). 
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1. LINEAR SYSTEl\'lS 

PROBLEl\I SET 1.2 

3. (a) i = [
0 1 

]x has the solution 
2 -1 

which implies that x(t) = .!.(2e1 + e- 21
) x (0) + _!_( e 1 

- e- 21
) x (0). 

3 3 

[O -Ii (b) x = 
1 0 

x. (Sec Problem l(d) in Problem Set 1.1.) 

. -[cost -sintl. x(t) - . X 0 . 
sm t cost 

Note: This problem can also be w1ittcn as 

x = [ O 
1 ]x which has the solution 

-1 0 

·()=[cost sintl. X t . X 0 . 
-sm t cost 

121 

In either case, we get that the (unique) solution of the second-order differential equation in 
3(b) is x(t) = x(O) cost+ x(O) sint. 

(c) x =I ~ ~ ~ix has the solution 

l-2 1 2 

[ 

2(3e 1 + e-1 
- e 21

) 

x(t)=i 2(3e1 -e- 1 -2e 21
) 

2(3e 1 + e- 1 
- 4e 21

) 

which implies that 

3(e 1 -e- 1
) 

3(e1 +e-1
) 

3(e 1 -e- 1
) 

-3e
1

+e-
1

+2e
21

] 

-3e1 -e-1 +4e 21 x 
0' 

-3c 1 + e- 1 + 8e21 

x(t)=_!_(3e 1 +e- 1 -c 21 )x(O)+!(e 1 -e- 1)x(0)-!(3e 1 -c- 1 -2e 21 )x(O). 
3 2 6 
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PROBLEl\I SET 1.6 

2. 

PROBLEl\I SET 1.8 

6. (e) J = 1.liag j l, 2, 3, 4J and the solution 

e' () () 0 
c21 - e' e~' 0 () 

x(t) = 3 ;1 ., ~I I I -e - _e + -c 2e't - 2c~t c't () xw 
2 ., 

8 -It 9 't '1 I I -k.it - 6e'1 + 2e~t ., 11 ( t I) -It -e --e +2e- --c .ie c - c 
3 ., 6 -

(g) The solution, according to the remark following Corollary I in Section 1.7, is giwn by 

I 4t+t~ /2 () 

x(t)=e~t 
0 I 0 

0 0 I 0 
Xo· 

0 0 0 

Note: The solution to Problem 6(h) could also be obtained in this manner. 
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2. NONLINEAR SYSTEI\1S: LOCAL THEORY 

PROBLE!\1 SET 2.1 

[l+xi+x; 2x 1x2 2x,x, ] 
1. Df(x) = -1 + x2x3 l-x 3 +x 1x3 -X2 ~ X1X2 , 

-2x 1 

Df(O)~H 
0 

~l Df(0,-1, I)~ H 0 

l 0 

PROBLEl\I SET 2.2 

3. As in the proof of the Fundamental Existence Theorem (FET) in this section, we have that 

there exist positive constants E and K such that \f ( x, t) - f ( y, t) I::; K Ix - YI for al I 

x, y, E Ni::(x0) c E and fort in some interval (-t0, t0). Let N0 = { (x, l)l lx - x0l::; f/2., 

It I::; tof2.} and let tv1 = maxlf(x, t)I on the compact set N0. Let the successive approxi­

mations uk(t) be defined as stated in this problem and let b = £12. Then b > 0 and assuming 

that there exists an a> 0 such that Uk(t) is defined and continuous on [-a, a] and satisfies 

max Ju~ (t)- x0 J::; b, 
[-a.a] 

(*) 

it follows exactly as in the proof of the FET that uk+i(t) is defined and continuous on 

[-a, a] and satisfies luk+i(t)- x01::; l\fa fort E [-a, a]. Thus, choosing 0 <a::; 

min { b/M, tof2}, it follows by induction that uk(t) is defined and continuous and satisfies 

(*)for all t E [-a, a] and k = I, 2, 3 .... Then since uk(t) E N0 fort E [-a, a] and k = 

I, 2, 3 ···,by exactly the same sequence of estimates as in the FET (with f(x, t) in place of 

f(x)), \Ve obtain that for any E > 0 there exists an integer N such that form, n ~ N, 

llum - udl < E; i.e. {ud is a Cauchy sequence in C([-a, a]). Thus, u1...(t) converges 

uniformly to a continuous function u(t) on [-a, a]. The remainder of the proof follows 

exactly as in the proof of the FET. 
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4. Let A(t) be an nxn continuous matrix valued function on [-a0, a0] and let the successive 

approximations to the fundamental matrix solution be defined as stated in this problem. 

l ltl 
Then using the matrix norm (defined in Section 1.3), we have 1l<1> 1(t)- Iii::; llA(t)ll ds::; 

() 

M0a0 fort E [-a0, a0 ). It then follows easily by induction that 

ll<I>j+I (t)-<l>j(t)ll::; (Mo aor' for j = 0, 1, 2, .. ·.And then for any positive integer N and m 

> k ~ N we have 11<1> m ( t)- <l>k (t)jl:::; I, (M0 a0 f1 :::; (M 0a f +1 / (1- aM 0 ) if the positive 
j=1' 

number a:::; a0 and a< 1/1\10. Thus, { <l>k} is a Cauchy sequence of continuous nxn matrices 

on [-a, a], a complete metric space. Therefore <l>k(t) converges uniformly to a continuous 

nxn matrix function <l>(t) on [-a, a]. The remainder of the proof follows as in the proof of 

the fundamental Existence Theorem in this section. 

PROBLEl\l SET 2.3 

Df[u(t, J)] <l>(t). 

3. In this problem, the proof follows exactly as in the proof of Problem 3 in Section 2.2, 

contained in this supplement, with f(t, x, µ)in place of f(t, x). 

4. The proof follows exactly as in the proof of Problem 4 in Section 2.2, contained in this 

supplement. 



l ') -_) 

PROBLE:\1 SET 2.5 

2. 

4. 

( 
2 )-1/2 x(t) = x0 l + 2x0 t 

-t 't l c -e-
x 

c2r 

(See Figure 2 in Section 1.2.) 

PROBLEl\l SET 2.8 

4. y1(t)=y,0c-1
, y 2 (t)=y 20c-'+y~0 z 0 tc-r, z(t)=z0c

1
, \J1.(y,z)=z fork=O, 1,2 ···and 

\J1(y, z) = z. By either (3) or (6) we obtain <l\(y, z) = (y1, y" ± ky~z)-j (y 1, ± 00) for 

y1z-:;:. 0. Thus, the successive approximations for <l>(y, z), as defined by (3) or (6), do not 

converge globally; however, this does not contradict the fact, established in the proof of the 

Hartman-Grobman Theorem, that the successive approximations for <l)(y, z), as defined by 

(6), converge locally. It is simply more difficult in this case to determine the function 

<l>(y, z) to which they converge in a neighborhood of the 01igin. (This is similar to the fact 

that it is easier to show that I I/k2 converges than to determine the number to which it 

con verges.) 
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PROBLEM SET 2.9 

3. 1 v· ( ) 2 1 4 4 1 ~ 4 . . 2 x = -x 1 x; - x1 - x2 - x3 x~ - x3 < 0 for x * O; so 0 1s asymptotically stable. The 

solution of the linemized system x = Df(O)x is given by x1{t) = x10 cost- x20 sint, 

x2 (t) = x10 sin t + x20 cost, x_1(t) = x30 ; therefore, the origin of the linearized system is 

stable, but not asymptotically stable. 

5. (b) As noted in the original solutions manual, the easiest way to show that the origin is a saddle 

for this problem is to compute the eigenvalues of the linear part, /.. = l ± {3, and to use the 

Hartman-Grobman Theorem. In order to use the Liapunov type function V(x) = x~ + x~ 

we can use Theorem 3 in Section 3.10, along with the fact that on any given straight line 

x2 = mx 1 with Im - 21 < -...F3, V{x) < 0 for all sufficiently small Ix! -:f:. 0 and that on any 

given straight line x2=mx 1 with Im - 21 > .Y3, V(x) > 0 for all sufficiently small !xi -:f:. 0 

(as was noted in the original solutions manual); also, for all sufficiently small x1>0 and 

-x 1 I ...../3 < x2 < x1 I -J3, iJ < 0 and iJ;::: 0 otherwise. This shows that for x 1 > 0 there is 

a separatrix approaching the origin as t --j 00 , tangent to the line x2 = x1 I -v·i), which lies 

above that line, and a separatrix \vhich approaches the origin as t --j -oo, tangent to the line 

x2 = -x 1 I \13, which lies above that line. Similar results hold for x1 < 0 and there are no 

other trajectories approaching the origin as t --j ±oo for x-:/:- 0. These facts then imply that 

the origin is a saddle and is unstable. 

6. Since A(t) is continuous, it is integrable and then by direct substitution into the differential 

equation it follows that 

x(t) = x(O) exp J~A{s)ds 

(with the exponent defined as in Definition 2 in Section 1.3). Thus, by the usual properties 

of norms, for B(t) = J~ A( s )ds, we have 

lx(t)I $ lx{O)li1I+B(t)+B2(t)/2!+ ... 11 

$ lx(O)l[i1Ii1+1iB(t)i1+1iB(t)i1
2 
/2!+ ... ] 



= lx(O)I expllB(t)ll $ lx(O)I exp DIA(s)lids. 

And if r~l!A(s)llJs < oo, it follows that Jim lx(t )I$ lx(O)I exp r-l!A(s)::ds < 00 • Jo t-->- Jo 

PROBLEl\I SET 2.10 

2 . By definition of the limit, Jim f ( x) = Jim _x_ = 0. And, by definition. 
x-~o x-)O lnl xi 

f'(O) =Jim f(x) = lim -
1
- = 0. Also, for x -t:- 0, f'(x) = {lnlxl-1) I (Injxl)2 which is 

x---.0 x X-•O Inlxl 

continuous for x -t:- 0 and Jim f'(x) = f'(O) = 0. Thus, f E C1(R). But 
X->0 

f"(O) = lim f'(x) = lim (lnlxl-l} = ±oo docs not exist; i.e., f"(O) is undefined 
.-.u x .-.o x(Inlxl) 

PROBLEl\I SET 2.14 

4. The phase portrait is given below; cf. Example l and Figure 3 in Section 4.9 where 

U(x)=-x 2 /2+x 4 /4. 

~"-.......... - ---·----

/;/~~~----
1'/;~~ 
i I I ~:. --.... ,,__ /-~, ' 
. I ( i~' \ ·, ( ~ \ 
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5. (b) Both the Hamiltonian and the gradient systems have saddles at the origin. (The 

Hamiltonian system phase portrait is shown as dashed curves.) 

(d) Both the Hamiltonian and the gradient systems have saddles at (1, 2). 

(f) Both the Hamiltonian and the gradient systems have saddles at (-1, 0). 

8. V, (x, y) = 4x 3 -6x2 + 2x = 0 at x = 0, 1 or 1/2 and Yy(x, y) = 2y = 0 at y = 0. The 

critical points arc at (0, 0), (1, 0) and (1/2, 0). The discriminant D = V xx Vyy - v:Y s:.itisfies 

D(I/2, 0) = -1 and therefore (1/2, 0) is a saddle point; D(O, 0) = D(l, 0) = 4 and VYY = 2 > 

0 and therefore (0, 0) and (1, 0) are local minima. Theorem 5 implies that the gradient 

system has a saddle at (1/2, 0) and stable nodes at (0, 0) and (I, 0). 

1 0. The system 01thogonal to the system in this problem is linearly equivalent to 

x = bx + ay + higher degree terms 

y = -ax + by+ higher degree terms 

with a< 0 and b > 0. In the notation of the theorem in Section 1.5 we have 

8 = a2 + b2 > 0, T = 2b > 0 and -r 2 
- 48 = -4a2 < 0. Therefore, according to the theorem 

in Section 1.5 and Theorem 4 (and the Remark) in Section 2.10, we see that the origin is an 
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unstahlc focus with a counterclockwise flow. Similarly if (5) has a nondegenerate critical 

point at the origin which is an unstable focus (i.e. a> 0) with a clock\vise flow (i.e. h < 0) 

then the system (6) orthogonal to (5) has a stable focus with a clockwise flow, etc. 

3. NONLINEAR SYSTEl\'IS: GLOBAL THEORY 

PROBLEM SET 3.1 

5. Exactly the same argument, used in the proof of Theorem I, based on Corollary 2 in 

Section 2.4, with f(x) I ( 1 + lf<x)i2} in place of f(x) I (l + lf(x)l), can be used to cslahlish a 

result analogous lo Theorem 1 for the differential equation in this problem. 

8. As in Problem 7 (with T(x, l) = t) we find that for A= Dll(x0 ), A Df(x0) A- 1 = Dg{ll(x0 l): 

i.e., the matrices Df(x0) and Dg(H(XQ)) are linearly equivalent and therefore have the same 

eigenvalues. Note that if x0 is an equilibrium point of (l ), then H(x0 ) is an equilibrium 

point of (2). Also note that it follows by differentiating H 0 11-1 ( x) = x that 

DH(x0 ) DH-l(ll(x0)) =I: i.e., the matrix A= Dll(x0) is nonsingular. 

PROBLEM SET 3.2 

4. (a) 
(d) 1' 

- i' ~ , 

~O' x ~ 
L> 

(h) 
(e) 

\ 

)<@X @/) 
./ -· ~.:-.----_../ ... 
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(c) (f) 

5. (a) In Figure I in Section 1.1, the saddle separatrices arc invariant, but they arc not the ex or w 

limit sets of any trjaectory of that flow. 

(b) The cylinder, A, in Example3 (i.e., in Figure 4) is an attracting set, but it is not the rn-limit 

set of any trajectory in a neighborhood of A. Also, in Problem 1, the interval 

[-1, 1] is an attracting set, but it is not the cu-limit set of any trajectory in a neighborhood of 

[-1, I]. 

(c) The cylinder in Example 3 is an attracting set, but it is not an attractor since it docs not 

contain a dense orbit. 

PROBLEf\l SET 3.3 

6. The origin is a saddle and there arc centers at (±1, 0). The compound separat1ix cycle is 

given by y2 - x2 + x4/2 = 0. 

PROBLEM SET 3.5 

3. Since <l>(t) satisfies cil = A(t)<I> and <l>(O) =I, it follows that x(t) = <l>(t)x0 satisfies 

x(t) = cil(t)x 0 = A(t)<l>(t)x0 = A(t)x(t) and x(O) =I x0 = x0 . 
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5. (a) Let <l>(t) be the fundamental matrix for (2) with ¢(0) =I and let Y(t) be a periodic solution 

of (l) of period T (where A(t) is a continuous T-periodic matrix). By Theorem I, <t>(T) = 

Q(T)cBT = Q(O)eBT = eBT since Q(O) = <1>(0) =I. Thus, the characteristic multipliers, of 

Y(t), mJ = eA,T, j = I, ·. ·. n, arc the eigenvalues of <l>(T) and since the product of the 

eigenvalues of <l>(T) is equal to dct <l>(T), it follows from Liou vi lie' s Theorem that 

n rT !] m J = dct <t>(T) = exp Jo tr A( t )dt. 

And since the sum of the eigenvalues of <P(T) is equal to tr <l>(T), it follows that 
n 

Imi = tr<P(T). 
J =I 

(b) for m
1 

= e;.,i aml m, =I we have from 5(a) that e;' 1 =exp (\rA(t)dt or that - Jo 

i1. 1 = -~-(tr A(t)dt. But A(t) = Df(y(l)) which implies that tr A= tr Of= 

Jf I (,lf n \~ f' d I . ' I r I "' I' ( )d r-· 11 . - + · · · + -. - = ' · an t 1erclorc A1 = ~ 1t v' · Y(t) t. ·ma y. s111cc 
Jx1 Jxn J ' 

l 
m1 + m2 = tr<t>(T), it follows that l +exp fo \7 ·f (Y(t))dt =tr WCI'). 

6. Since Il(t, x0) = <t>(t) it follows from Liouville's Theorem and tr A(t) = v ·f (Y(t)) (Cf. 

5(b)) that det H(t. x11 ) =<let <l>(t) =exp {tr A(s)<ls =exp J~v ·f(y(s))ds. 

PROBLEM SET 3.6 

3. This is most easily done by showing that 

ri.·~-- . 
Y= -\ik - 4 smt Z=~ and W=O, 

D D 

where D = k - .Jk 2 
- 4 cost, satisfy the equation of the ellipse (by substituting these 

quantities into that equation). It can also be accomplished by substituting x = k - n/Z and y 

= nY/Z into x 2 + y2 = k~ - 4. 
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5. Under the projective transformation in Problem 3, r 0 gets mapped onto the Y-axis; the 

periodic orbits r ~: y ± (t) = ( ~k 2 + 112 cost,- 1/k2 + 1I2 sin t, ±I, 0} respectively get 

mapped onto those branches of the hyperbolas (Z ± 2k)2 
- 2Y 2 = 2(2k 2 + 1) which do not 

intersect the Y-axis (and \vhich are "connected at infinity"). This can be seen by 

substituting x = k ::+ 1/Z and 

y = YIZ into x 2 + y2 = k 2 +I I 2 or alternatively by showing that Y = -1/k
2 +I I 2 sin t ID 

and Z = ±1/D, with D = k - ~k2 +I I 2 cost, satisfy the above equations for the 

hyperbolas in the (Y, Z) plane. The lineaiization about r0 shows that r0 has characteristic 

exponents ). 1 = A2 = 0, A3 =I and A~= -I and that dim W'(r0 ) =dim wu(r 0 ) = 2. The 

lincarization about r ~ shows that r l have four zero characteristic exponents; i.e., 



6. The statement of this problem should 

have U1 = S2 
- {(o, 0, I)} and U2 = 

52 -{(0,0,-1)}. Then for (x,y,z)EU11 

let h 1 (x, y, z) = (X, Y) and for (x, y, z) E 

U2, let h2(x, y, z) = (x, Y), where 

h 1(x, y, z) and h2(x, y, z) are defined 

in the statement of this problem. It then 

follows from the similar triangles in the 

figure shown here that ( X I Y) = ( X I Y) 

and that X 2 + Y 2 = (x2 + Y2f. Therefore 

h2 ° h~
1 (X, Y) = (X, Y) I (x 2 + Y 2

) and 

for (X, Y) E h1(u1 n U2) = 

0 

{(x, Y) E R2IX 2 + Y 2 
'/:- o}, D h2 ° h~

1 (x, Y) = 

[Y 2 -X 2
, -2XY;-2XY, X 2 -Y 2

) I (x 2 + Y 2 )2 and dct D h2 ° h~ 1 (X, Y) = 

-11(x 2 +Y 2 )2'/:-o. 

PROBLEl\l SET 3. 7 

133 

(x~ Y) 

3. (a) Since f has no zeros in A, there arc no critical points in A and since f is transverse to the 

boundary of A, pointing inward, the w-limit set of any trajectory r starting in A is in A. 

Therefore, by the Poincare-Bendixson Theorem, w(f) is a periodic orbit which is contained 

in A. 

(b) If A contains a finite number of Ii mil cycles, f 1, f 2, .. ., f n• ordered such that fj c Int fj+ 1 

for j = 1, . ·., n - 1, then r 1 must be stable on its interior since it is the w-limit set of any 

trajectory starting in An Int f 1. Similarly, rn is stable on its exterior. If f 1 is a stable limit 

cycle, we arc done. If r 1 is not a stable limit cycle, then it must be a semi-stable limit cycle, 

unstable on its exterior; and then r 2 must be stable on its interior since it is the w-limit set of 
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any tntjcctory starting in Ext rl n Int r2. Continuing in this way, WC find that either there 

exists an integer j with l <j < n such that rj is stable or that r 11 is stable on its interior; i.e., 

that f 11 is a stable limit cycle. In either case there exists at least one stable limit cycle in A. 

5. The only critical point is at the origin. rr = /( 1- x 2 
- y2

) = 0 on r = l and 0 < 0 on r = 1. 

Also, r < 0 for r > l and y -:t 0 while r > 0 for 0 < r < 1 and y -:t- 0. Thus, r = l is a stable 

limit cycle \.vhich is thew-limit set of every trajectory in R2\( 0}. 

PROBLEl\I SET 3.8 

1 . Clearly F, g E Cl(R), F and g are odd functions, xg(x) = x2 > 0 for x -:t 0, F(O) = 0, 

F'(O) = (x~ + 4x 2 -1) I (x 2 + tflx=o = -1<0, F has a single positive zero at x = l and 

since F'(x) > 0 for x >-./5 -2 (where ,/5-2<1), F(x) --7 oo, monotonically for x ~ l, as 

x --7 00 • Thus, F and g satisfy the hypotheses of Lienard' s Theorem. 

5. (a) There is a center at the origin and the phase portrait is topologically equivalent to Figure 4 

in Section 1.5 (with b < 0). 

(b) Assuming that F(O) = 0, it follows from Theorem 6 in Section 2.10 that the origin is a 

center for this system since it is symmetric with respect to the y-axis. (In any case, there is 

a center at (0, F(O)) according to Theorem 6.) 

If g(x) has no zeros, other than x = 0, then the 

phase portrait is topologically equivalent to 

Figure 4 in Section 1.5 (with b < 0); ho\.vever, 

if for example g(x) has zeros at ±x 1 and ±x2 

(where 0<x 1 < x2) then, according to 

Theorem 3 in [24], the outer boundary of the 

continuous band of cycles around the center 

at the origin is a graphic (defined in Section 
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3.7) and we could have the phase portrait shown here. It could also happen that the graphic 

includes the "point at infinity" on the BenJixson sphere, shown in Figure I in Section 3.6, 

in which case part of the continuous band of cycles would extend to infinity. 

If we let x = i: and y = -z, then the second-order differential equation 

i + F(z) + z = 0 (*) 

can be \\'1ittcn in the form of the Lienard system (I) with g(x) = x. Thus, if F(x) satisfies 

the hypotheses of Lienard's Theorem (and g(x) = x), it follows from Lienard's Theorem 

that (1) has a unique stable limit cycle, i.e., (*)has a unique, asymptotically stable, 

periodic solution. 

PROBLEl\I SET 3.9 

5. (a) v ·(Br)= -b 2e-21
1x < 0 which implies that this system has no limit cycle in R2, by 

Theorem 2. 

PROBLEl\I SET 3.10 

3. (b) The projection of the flow on the (y, z) and (x, z) planes, according to Theorem 2, is given 

by 5' = 0, z = -z and x = 0, z = -z respccti\·ely; and the global phase ponrait is given by 

the following figure which has an unstable proper node at the origin and a circle of critical 

points at infinity. 
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PROBLEl\1 SET 3.11 

5. First of all, the functions y = x 2 I ( 1 ± -v12) satisfy the differential equations of this problem 

in the form dy I dx = (-x 3 + 4xy) I y since both sides reduce to 2x I ( 2 ± .,/2) for 

y = x 2 I (2 ±·,Fi). Next, since the system in this problem is invariant under the 

transformation (t, x, y) ~ (-t, -x, y), it is symmetric with respect to the y-axis. 

And then for x = 0 we have )' = 0 and J 

x > 0 for y > 0 while x < 0 for y < O; 

and y > 0 above the parabola y = x 2 I 4 

for x > O; and both x < 0 and y < 0 for 

x > 0 and y < 0. Thus, we have the vector 

field and tlmv shmvn here. This, combined 

with the symmetry, shows that there is a 

hyperbolic sector above the parabola y = x 2 I ( 1 - ,/2), a parabolic sector between 

the parabolas y = x 2 I ( 2 ± \/2) and an elliptic sector below the parabola y = x 2 I ( 2 + ·\,''2). 

Using equation (7') in Theorem 2 in Section 3.10 we find that the projection of the flow on 

the Puincare sphere onto the (x, z) pbne at the point (0, 1, 0) satisfies x = z2 
- 4x cz + x 4 

and z = -4xz 2 + x 3z. This system is symmetric about the z-axis and z = x 2 I (1 ± -./2) arc 

invariant curves of this system in the form dz/dx = (-4xz2 + x 3z) I (z 2 
- 4x 2z + x J) since 

both sides reduce to ·x I ( 2 ± \/2) for z = x 2 I ( 2 ± \ 1'2). An analysis si mi Jar to that given 

above then allows us to complete the description of the types of sectors that this system has 

at the origin, as listed in the Hint for this problem. \Ve thus obtain the scparatrix configura-

tion shown in this problem (on p. 398) and we see that, according to Definition l, the four 

trajectories vv'hich lie on the invaiiant parabolas y = x2 I ( 2 ± -vf2), \Vhich coITespond to the 

invariant parabolas z = x2 I ( 2 ± vf2) of equation (7'), as given above, for x t:. 0 are 

scparat1iccs since y = x 2 I ( 2-.J2) lies on the boundary of the hyperbolic sector above this 

parabola through the origin, and similarly, y = x2 I (2 + ·/2) lies on the boundary of the two 

hyperbolic sectors between this parabola and the equator of the Poincare sphere at the point 

(0, 1, 0) at infinity. 
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PROBLEM SET 3.12 

2 . With the coordinate system and the Jordan curve Cu as described in this problem, it 

follows from the uniform continuity of f(x) that for ko > 0, there exists a 8 > 0 such that if 

Ca is contained in a square of side 8 in E (as in the proof of Theorem l), then for all x E 

Ca, lr(x)- r(xo)I < ko I 2. This implies that for all x = (x, y)T E Ca, jQ(x,y)I < ko I 2 and 

IP(x.y )- k0 I < k0 I 2; and therefore that IP(x, y )I > ko/2, i.e., that IQ(x,y) I P(x,y)I < l. It 

follows that -n: I 4 < tan- 1jQ(x,y)/ P(x,y)I < n: I 4 for all (x, y)T E C3 • Thus, as {x, y) 

moves around Cu in the positive direction, !'J. @< n:/2 or !'J. ®12n: < 1/4. 

4. NONLINEAR SYSTE1\1S: BIFURCATION THEORY 

PROBLEM SET 4.1 

2. (a) As in the solution of Problem I (a), since f(x) - g(x) = -µx, we have 

llf-gll1 =lµl(n;ca.:xlxl+t). 

(h) If there were a homeomorphism H: R2 --7 R2 and a strictly increasing function T: R --7 R 

such that Hr, 'Pt=*• ~ H, then for x E R2 we would have liml H ,, 'Pt(x) I= 
{-~~ 

liml *t "H(x) j. But for ~l > 0 and 0 <Ix I< I we have I 'Pt (x) I:-:::; 1 for all t ~ 0 and thus 
I->= 

there is a constant M such that I H ,,. <p1(x) I :-:::; M for all t ~ 0 (since a continuous function on 

a compact set is bounded); and liml *t "I-l(x) I= oo (since for x-:!- 0, H(x) i:- 0; cf. Figure 
I->~ 

2). We therefore have a contradiction. Similarly, forµ> 0 and 1 < I x I < I + E, with f > 0 

sufficiently small, we have I H ·- <p1(x) I:::; M for all t ~ 0 and lim I H 0 lft 1 (x) I= oo and we 
1--.~ 

again anivc at a contradiction. Thus the two systems in Example 2 arc not topologically 

equivalent forµ-:!- 0. 

9. According to the solution in Problem 10 in Section 3.10, 10 (a, b, c, d, e) correspond to 

the global phase portraits in Figure 12 (i, vii, v, vi, ii). Thus, we sec that for 10 (a, b, e) 

the nonwandering set on the Poincare sphere, S2, is simply the set of critical points on 52 
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as shO\.vn in Figure 12 (i, vii, ii) in Section 3. lO. For 10 (c), the nonwandcring set consists 

of the set of critical points on 52 and the separatrix cycle or graphic consisting of the 

homoclinic loop at the origin and the origin shown in Figure 12 (v). For IO (d) the 

nonwandering set consists of the set of critical points on 52 and the two graphics consisting 

of the hctroclinic loops from (1, 0) to (-1, 0), these two critical points and the piece of the 

x-axis between these two critical points shown in Figure 12 (vi). 

Problem Set 4.2 

6. Let the hyperbolic critical points that occur near x0 forµ> ~lo be x±. We then have dim 

\VS(x+) = k + 1, dim \VLI(x+) = n - k - 1, dim \V5(x_) = k and dim \VLI(x_) = n - k. If the 

conditions (3) are satisfied, then there are two hyperbolic critical points near Xo for both 

µ>~lo and ~l < µ0 and the dimensions of the stable and unstable manifolds arc the same as 

above. If the conditions ( 4) are satisfied then there are three hyperbolic critical points near 

x0 for ~l > µ0 (or forµ< ~lo) and the dimensions of the stable and unstable manifolds are 

the same as those above for x_ at two of the critical points and the same as those above for 

x. '1 -----X+ at the remaining critical point. / 

7 . The c 1i t ical points arc at { ±2.Jµ, 0) and t ~ ~ -__.---
( ±,/µ, 0) forµ~ 0. The bifurcation "/' 

diagram is shmvn at the right and the -phase portraits arc shown below. 

µ<0 



139 

PROBLEl\l SET 4.3 

5 . A universal unfolding for the system in this problem is given by x = 

µ 1 + µ 2x + µ 3x 2 - x4
, )' = -y; and the various phase portraits for (~t 1 , µ 2, µ 3) in the 

parameter space shown in Figure 3 can be determined from those in Problem I. 

PROBLE:\l SET 4.4 

1. (b) Writing the system in l(b), without any O(r4) terms, in polar coordinates leads to r = r(µ + ar2) 

and S = I. Thus, forµ = 0, dr/d8 = ar3 which has the solution r(O) = r0 [I - 2ar68 r1
'
2

. This 

[ 
21-1/2 [ 21-3/2 implies that the Poincarc map P(r0) = r0 I - 4nar0 . Thus, P'(r0) = l -4nar0 , 

[ l
-5/2 [ 2 l-5/2 

P"(r0) = 12m1r0 l -4nar6 and P"'(r0) = 12na l -4nar0 + O(r0) as r0 -7 0. This 

shows that d(O) = P(O) = 0, d'(O) = P'(O) - 1 = 0, d"(O) = P"(O) = 0 and that d'"(O) = P'"(O) = 

l 2m1 = cr, since from equation (3), cr = 12na. 

4 . r = r(~t - r 2 )(µ - 2r 2 
). fJ = I. Therefore, forµ > 0, we have r = 0 for r = 0, 

5. 

r = ,/µand r = \i'Jl/ 2. On y 1(t), x(t) =-\/Iµ sin t = -y(t) and y(t) =,/µcost= x(t); 

i.e., y 1 (t) is a periodic solution of the system in this problem, as is y 2(t). Since r > 0 for 

0 < r < --./~t / 2 and for r > ,/µ while r < 0 for {µTi< r <\,,µ,we see that Y 1(t) is an 

unstable limit cycle and y 2(t) is a stable limit cycle of this system; and the origin is an 

unstable focus. The phase portraits arc given by 

-- ...... 

/ 
/ 

\ 

The bifurcation diagram for the 

system in this problem is shown 

here. 

0 

' 
/ 

/ 
/ 

- - - -

µ>0 

- -/~ 
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9. Substituting a= -1, b = E, c = F, d =I, a02 =I, b 11 = -1 and b02 = c into equation (3') 

leads directly to the result stated in this problem. (Cf. Problems 1 and 5 in Section 4.14 and 

note that the di vision sign should be deleted in the fomrnla for a in Problems l and 5 in the 

original Solutions Manual.) 

PROBLEM SET 4.5 

2. Equation (2) in Example 2 yields DP(y~, µ)=exp (n 4r2 (r2 -l)dt = exp[±8rrµt 12 (1 + ~t 1 ' 2 )]; 

in Example 3 it yields DP(y0, µ) = exp J:n 2r2 (1 + µ- r2 )dt =exp(4nµ) and DP(Yw ~l) = 

exp fo2
r.2r2 (1- r2 )dt = exp[-4n:µ(l +µ)];and in Example 4 it yields DP(y0, µ) = 

, , , 
exp= tn -2r2[µ-(r 2 

- l}f dt = exp(-4nµ) and DP(y~, µ) = exp tn 4r2
( 1- r2 )2 dt = 

exp[8rr~t(l ± µt 12
)]. 

.3. The su1faces of periodic orbits in Example 3 are given by: 

I 
I 

/ I 
I 

I I 
/ I I 
~- I \ 

\ 

And the surfaces for Example 4 are given by the surface in Figure 3 in Section 4.5 intersected 

with the unit cylinder along the µ-axis. 



1-l 1 

6. In polar coordinates, these systems have the form r = nv( r, ~l ). <jJ = l. The bifurcation 

diagram is given by \Jl(r, ~l) = 0 in the(µ, r) plane: (' 

(a) For \j/(r, ~l) = (r- I) (r- ~l - I), 

the bifurcation diagram is given 

here; there is a Hopf bifurcation 

at (-1, 0) and a transcritical 

bifurcation at (0. I). 

(b) f-or \jf (r, ~l) = (r - I) (r - µ - l) 

(r + ~l), the bifurcation diagram 

is given here; there arc Hopf 

bifurcations at (-1, 0) and at 

(0, 0) and transcritical bifurcations 

at (-1, I), (-1/2, 1/2) and (0, l). 

(c) For \jf(r, ~l) = (r- I) (r- ~l - I) 

(r + ~l + l ), the bifurcation diagram 

is given here; there is a Hopf type 

bifurcation at (-1, 0) and trans-

critical bifurcations at (-2, I) and (0, l ). 

(d) For \j/(r, ~l) = (~l - I) (r2 - l) 

[~l -1-(r~ -1)2]. the bifurcation 

diagram is gi vcn here; there is a 

I lopf bifurcation at (2, 0), a center 

forµ= l and r ~ 0, and a higher 

codimension bifurcation at (I, l ). 

' -, 

/ 

/ 
/ 

-1 () 
)'-• 

r 
"- / 

" "- , , 

~/'/ 
/ ', 

, ' , 

"-1 -o· 
-I OI 

(' 

I / 
' , 
' I I / 

~ 
I 

I 
J. -

-1 0 I 

r 

,. 

/ 

-+-------V or-···. I - - 2. / 
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1 0. For P(x, µ) = µx(l - x), x = 213 is a fixed point of P(x, 3) = 3x(l - x) since P(2/3, 3) = 2/3; 

it is nonhyperbolic since DP(x, µ)=µ(I - 2x) implies that DP(2/3, 3) = -1. We therefore 

expect a period doubling, or flip bifurcation. As in Problem 9, we see that this is indeed the 

case since for F(x, ~l) = P2(x, µ) = µ2x(l - x) (1 - ~lx + µx2) we have F(2/3, 3) = 2/3, 

DF(x, µ) = µ2(1 - 2x) (l -2x + 2µx2) which implies that DF(2/3, 3) = 1, D2F(x, µ) = 

-2µ 2 [1-2µx + 2µx 2 + µ(1-2x) 2
] which implies that 02F(2/3, 3) = 0, D3F(x, ~t) = 8µ3(l -

2x) which implies that D3f(2/3, 3) = -72 -:t 0, Fµ(x, µ) = 2µx(l - x) (I - ~tx + µx2) - ~t2 

x2(1 - x)2 which implies that Fµ(2/3, 3) = 0 and DFµ(x, µ) = 2µ(1 - 2x) (1 - 3µx + 4~tx2) 

which implies that DFµ(2/3, 3) = 2/3 -:t 0. Thus, conditions (4) in Section 4.2 are satisfied for 

the map F = p2 and therefore p2 has a pitchfork bifurcation at (2/3, 3). The bifurcation 

diagram is obtained by graphing the equation F(x, ~l) = x; this was done using Implicit Plot 

on Mathematica. The resulting bifurcation diagram is shown here. 
>{ _.,,..,. 

'/-1 

0 / 
I 

J 
i 

'2. 

I 

PROBLEM SET 4. 7 

3. The bifurcation diagram is shown here. 

As in the original Solutions Manual, it 

is gi vcn by the graph of the relation 

[ ( r 2 
- 2 )2 + µ 2 -1] · [ r 2 + 2µ 2 

- 2] = 0 

in the (µ, r) plane. There arc subcritical 

i -, 

/ 
I 

3 

---·-· 

- --r 

r 

\ 
j V_ I 

. I -- -

-i·~-r-~-;----~----..~~ 

_.-'\ --
-I o 

-fl 
{ 

Hopf bifurcations at (±1, 0), saddle node bifurcations at the nonhypcrbolic periodic orbits 

con-csponding to the points (±1, 1), there arc transcritical bifurcations at the periodic orbits 
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corresponding to the intersection points of these two conic sections with ~l * 0, and there is 

a higher codimension bifurcation at the periodic orbit coITesponding to the point (0, .J2). 

4. The bifurcation diagram is shown here. As in the original Solutions Manual, it is given by 

the graph of the relation [ ( r 2 
- 2) ~ + µ 2 

- l] · [ r 2 + µ 2 
- 3] = O 

in the(µ, r) plane. There are subcritical Hopf ~I (Z 

bifurcations at ( ±\/3 I 2, 0), saddle node ././- =--

/: ~ /·:\ bifurcations at (±1, I) and a higher / ' 
'- -- -- ·- _,. \ 

codimension bifurcation at (0, .J2 ). { I ). _ -;-{ 
-· oj 

·-1 

PROBLEl\t SET 4.8 

3. (a) This is a Hamiltonian system with Hamiltonian H(x, y) = y2 -6x2 + x.3. There are critical 

points at (0, 0) and (4, 0), a saddle and a center respectively. Note that this system is sym-

metric about the x-axis. The phase portrait is topologically equivalent to Figure I in Section 

4.9. The homoclinic loop r 0 is given by y2 = 6x2 - x.3. And we note that 11(4, 0) = -32. 

(b) The system x= X(x, y, a)= y - a H(x, y) (l2x - Jx2), )'= 12x - Jx2 + aH(x, y)y 

satisfies [P, Q; Pa• Oa1 = H(x, y) [y2 + ( 12x - 3x 2 )~] < 0 for H(x, y) < 0, i.e., on the 

interior of r 0 (which is an invariant curve of this system for all a). As in 3(b), for a> 0 

the loop r 0 is internally unstable, a= -1 and w = -1. The phase portrait is shown below 

for a> 0 (and µ = 0). 

(c) If we fix a at a positive value and embed the vector field (X, Y) of part (b) in a one-

parameter family of rotated vector fields (5), then from Figure 1 and Theorem 3 in Section 

4.6 an unstable limit cycle bifurcates from the interior of r 0 asµ increases from zero. The 

trace of the linear part of (5) at the critical point (4, 0) is given by 'tµ =trace Df(4, 0, ~t) = 

13[-32a cosµ+ sinµ], where f(x, y, µ)is the vector field (5). And we have Tµ = 0 for ~l = 
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µ*=tan-I (3.2)::::: 1.27 for a= .1. The phase portraits for the system (5) are described 

below: 

- ---..:>,>"" -- "-... 

\ 

) 
J 

' ' J { • J 
...__/ 

/I 
.~/ 

/ ---- ---- -- I ..--

./ / - / 

µ<0 

--- - -- .. 

0 < µ < µ* 

(c) For ex= -.1 the separatrix cycle r 0 is internally stable and thus a stable limit cycle 

bifurcates from the interior off 0 asµ decreases from zero. 

PROBLEl\1 SET 4.11 

6. For Ya(t) = (-acost, asint), we have M1(a) = 0. And then f(x, y, E) = ra 1x + rn2x3 + 

Ea,x5 + ·· · +fa x2m-I + x2m g(x y E) = A1x2m + A2x2m-2 + · · · +A x4 +A x2 
.> m • • • m-1 m ' 

fx(x, y, 0) = 2mx2m-I, fc(X, y, E) = a1x + a2x3 + ··· + amx2m-I, gy = 0, gr= 0, F(x, y) = 

x2my - A1x2m+l/(2m + 1) - A2x2m-1/(2m - 1) - ·· · - Amx3/3, G(x, y) = 2mx2m-ly, G1(x, 

y) = 2mx2m-ly, G2 = 0, P2 = 0, P2h = 0 and G 111(x, y) = 2mx2m-1/y. Thus, from 
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Theorem 1 with c.lx = ydt, dy = -xc.lt, to first order, and with h = u.2!2 and the integrals 

heing taken around Yu(t), we have 

= (~[a 1 x~(t) + a 2 x~(t) + ... + a 111 x~(m(t)]dt 

= 4mmc .., er + - , u.- + ,[ A1 (4m)( ,)2m-l A, ( 2(2m -1))( ,)2m-2 
(2m + 1)2-' 111 2m. (2111 - 1)2_m-I 2111 - I 

Am (2(m+l))( 2 )m ~(2m)( :)1111 ~i- .: 2 + 1 u. + u. + .. · + - rru. P," 1 (a ) 
3 · 2 111 

• 111 + I 2 "' m 2 - ' 

where P :m-t (c/) is a (2m - I )th degree polynomial in u.2. l'\ote that the constant 

k = , "# 0 in Problem 6. We han: used the fom1ula 4m (4m) 
(2m + 1)2· 111 2m 

l i 2 
n ' 111 d ( 

2 m) l . . Th 6 . S . 3 8 . b . . I . I - cos- t t = ·-,-given m eorem m ect10n . 111 o tammg t i1s rcsu t. 
2n: o m 2- 111 ~ 

Thus, \\'e sec that for sufficiently small f "# 0 the system in Problem 6 has 2m - 1 limit 

cycles for an appropriate choice of constants a 1, · · ·, anr A 1, · • ·, A111 (alternating in sign). 

In fact, if we wish to obtain limit cycles asymptotic to circles of radius rj, j = I, .. -, 2m -

I, as f--) 0, we simply set the (2m - I )th degree polynomial ( a 2 
- r~ )( u. 2 

- r;) · · · 

(al - r;
111

_ 1) in u2 equal to k0P lm-t (al) with any non-zero constant k0, in order to 

determine the 2m coefficients a 1, .. ., am, A 1, .. -, A,ll' 
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PROBLE:\l SET 4.12 

2. (c) All of the results necessary for the computation of d..i(h) arc derived in Problc111 I (b). For 

l .. 11 = t-12 = l.u = 1.51 = A.52 = 0, we have f1(x, y) = -2x2 - 2) .. 21 , xy + y2, g1(x, y) = 

-t-21X2 + (4 + t-41)xy + ),21y2, f1(X, y) = g2(x, y) = g3(x, y) = 0, f3(x, y) = -t-53Xy, 

fix, y) = A. 14x and g4(x, y) = A. 14y. Then q1, q2 and Q 2 are the same as in part (b), with 

1.52 = 0, and Q 3 = A.53 xydy + A.41 x {A.21 (2 + A.41 )x3 + [t,21 (7/, 21 - 4- 1.41 )/4 - (li.41 + 2) 

(A41+4))x2y- [A21(2 + A41) + (4 + /,41) (71.21 -4 - l .. 41)/4] xy2 - /,21 (7) .. 21 - 4 -

A.41 )/4 y3} dx + / .. 41 x {-2 (2 + ),41 )x3 - [2),21 (2 + ),41 ) + (7).21 - 4 -A41 )/2]x2y + [2 + 

A.41 - ).21 (7A.21 - 4 - ) .. 41 )/2]xy2 + (71.21 - 4 -A41 )y3/4} dy. Then using the formulas in 

Problem l(b), we find q3(x, y) = .A53x - A30x3 + A21 x2y + A 12xy2 - A03y3 with A30 = 

A41(2 + A41) (7).21 + 4 - A41)/6, A21 = ),41 lJ .. 21(7/,21 - 4 - A41)/4 - 0'41 + 2) U-41 - 4)], 

A12 = ),41 (7).21 -4 -),41 )/4 and A03 = /,41 [2(1,41 + 2) (1,41 + 5)/3 -).21 (7A21 - 4 -

),41 )/4J. And this allows us to compute ad4(o:, A)= M4(a) = J Q 4 where Q 4 = rn4 + 
11-h~u~ 12 

given above. This leads to the fonnula for d4(a, A) given in Lemma l in Section 4.11, 

using the fact that r2
\in.i t cos2 t dt = (n sin 2 t cos 4 t dt = n I 8, r2\in° t dt = 

~ Jo Jo Jo 

J
,,, 
- cos6 t dt = Sn I 8 and using the integrals in pa11s (a) and (b ). 

() 

In order to compute d5(h) and d6(h), it is necessary to obtain the fonnulas for Q 4, q4, 

Q5 and q5 contained in [58]. That will not be done here. 

PROBLEM SET 4.13 

S. For the system (6) \vith the minus sign, Df(x) = [O, l; µ 1 - 3x2 - 2xy, µ2 - x2]. For 

µ 1<0 the origin is the only critical point and Df(O) = [0, l; µ 1, µ2]; thus for ~t 1 <0, the 

origin is a sink for µ2 < 0 and a source for µ2 > 0. Using equation (3') in Section 4.4, we 

find a= -3n I 2lµt!11 2 
< 0 and the origin is also stable for ~t 2 = 0. Furthermore, for µ2 = 0 

there is a supercritical Hopf bifurcation at the origin in which a unique stable, negatively 

oriented limit cycle bifurcates from the 01igin as ~t2 increases from zero. It follows from the 
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rotated vector field theory in Section 4.6 that this stable limit cycle expands to infinity as ).l2 

increases \vithout bound. For ).l1 = 0 the !low on the center manifold, y = x3/µ 1 + O(x~), is 

given by x = x3 I µ 1 + o(x 4
) and there is an unstable node at the origin. For ).l 1 >0, we 

have critical points at the origin and at (± 1/J1~, o). Using equation (4) in Section 4.2, we 

can show that there is a pitchfork bifurcation for J.li = 0 (and ).t2 t:- 0) in which three critical 

points bifurcate from the origin as µ 1 increases through ).t 1 = 0. Since <let Df(O) = -).l 1 < 0 

for J.l1>0, the origin is a saddle for µI> O; and since or(±\~• o)= [O,l;-2µ1' µ~-µI], 

(±,/J1~. o) arc sinks for ).t2 < µ 1 and sources for µ 2 > µ 1. After translating the origin to 

( ±\tµ;, 0) and using equation (3') in Section 4.4, we find that cr = 3rr I ~2).t 1 > 0 and 

thus, according to Theorem 1 in Section 4.4, there are suhcritical Hopf bifurcations at 

( ±\/~, 0) for µ2 = µ 1 in which unique, negatively oriented, unstable limit cycles bifurcate 

from (±·/~t-1 , o) as µ2 decreases from ).t 1. Using the rotated vector field theory in Section 

4.6, it follows that these negatively oriented, unstable limit cycles expand as ).t2 decreases 

and (since this system is symmet1ic with respect to the origin) they simultaneously intersect 

the saddle at the origin and form a compound scparat1ix cycle with two loops at ).lz = h(µ 1). 

By making the rescaling transfonnation (7) we obtain the system (8). The system (8) was 

studied in Example 2 in Section 4.10. It follows from Theorem 5 in Section 4.10 that the 

homoclinic-loop bifurcation occurs at µ2 = h(µ 1) = 4µ/5 + O(J.tn as J.l 1 ~ o·. Theorem 5 

in Section 4.10 also establishes that for µ 1 >0 and h(µ 1) < ).t2 < µ 1 there is exactly one 

limit cycle for this system around each of the critical points ( ±..[µ;, 0), neither of which 

encloses the origin. Finally, the computation of the Melnikov function for the exterior 

Duffing problem in Problem 6 of Section 4.10, which is contained in the original Solutions 

Manual, shows that there is a multiplicity-two limit cycle bifurcation surface given by 

µ 2 = c(µ 1) :::.752µ 1 +O(µ;) as µ 1 ~ o+. The bifurcation set and the corresponding phase 

portraits arc shown below; cf. Figures 7.3.7 and 7.3.9 in [G/H]. 



148 

'~;~,, 
I , ~ 
~~ 
c,~ 

----------4'=~----------)'1 

This completes the appendix to the Solutions Manual for TAM 7, Differential Equations and 

Dynamical Systems. There is nothing to add concerning the Research Problems at the end of 

Section 4.15 since, to my knowledge, no further progress has been made on those problems 

beyond what is contained in Section 4.15 and in our Journal of Differential Equations paper [ 60], 

published in 2000. 
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5. SOME ADDITIONAL PROBLEMS 

Problem 6 in Section 2.$: (Sternberg) Re\\Ti.te the system 

x = 2x + y1 

. 
y=y 

in differential form as dx/dy =2x/y + y and solve this first-order, linear differential 
equation to obtain x = yl. ( c + lnl y I). Solve the linearization of this system to obtain 
x = c y2 and note that by Hartman's Theorem, the linear and nonlinear systems are 
C

1
-diffeomorphic (or C~ conjugate as defined in Section 3.1); in fact, all trajectories 

(except those on the x-axis) are tangent to the y-axis at the origin. However, the linear 
and nonlinear systems are not C ~ diffeomorphic since under a Cj. change of coordinates, 
the Cl. curves x= cy2. would go into C~ curves and the curves x = ya(c+ Inly!) are not 
Cl... Note that the "resonance condition" ')\

1
= m

1
)\

1 
+ m..r~ is satisfied with m

1 
=O, 

mi..= 2>1, A
1
= 2 and A..a.= 1. Thus, neither Poincare's nor Sternberg's theorems apply. 

Problem 8 in Section 2.12: 
(a) Use Theorem 2 in Section 2.12 to find the approximation for the flow on the local 
center manifold, f', for the system 

x = xy + xz - x '4 

• '2. y = -y-x 

- ~ z=z+x. 

And then sketch the local phase portrait for this system to see that the origin is a type of 
topological saddle in R3 which is topologically equivalent to the saddle shown in 
Figure 3 of Section 1.1 (with t ~ -t). 
Hint: It can be shown that there is a smooth surface S: z = ~(x,y), containing the curve 
r and the y-axis such that for all ~oi. S, 4'/.2S•) ..fr. 0 as t •t14 See the figure below on 
the left. -
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(b) Use Theorem 2 in Section 2.12 to find the approximation for the flow on the local 
center manifold, r' for the system 

y=-y-xi 

z=z+x2: 

And then sketch the local phase portrait for this system to see that the origin is a type of 
saddle-node in R1 for this system. 

!:!.i!U.: For x ~O there is a surface S containingP and the y-axis as in part (a); for x~ 0 
there is a topological saddle on S at O; i.e., there is a topological saddle-node on the 
surface Sat the origin. There is another smooth surface T: y =i (x,z) containing the 
curve Pand the z-axis such that for all 3 0 = (x., y

0
, z0 ) with~~ 0, !f/.~") -.Oas 

t? - c.o, and there is a topological saddle on T at 0 for x
0
? 0. See the figure below on 

the right. 
Note: In part (a) we also have a surface T: y = t (x,z) containing f and the z-axis on 
which there is a topological saddle at 0. 



Problem 8 in Section 4.2: (Khellat) Show that the system 

; l 
y= -x+x 

does not satisfy conditions (2), (3), or ( 4) in Section 4.2, but that it has a pitchfork 
bifurcation at the origin as the parameterµ varies through the bifurcation value 
;-< = 0. Thus, while condition (4) is sufficient for a pitchfork bifurcation, it is not 
necessary. 
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Problem 5 in Section 4.9: Compute the Melnikov function, M(tJ, for the following 
perturbations of the undamped pendulum in Example I of Section 2.14 with Hamiltonian 

l. H(x,y) = y 12 + I - cos x 

And show that M(t.,) has simple zeros. 

Note: Theorem I in Section 4.9 applies to the flow on the cylinder (obtained by 
identifying x-points mod h) in the follo~ing problems where, for H = 2, we have two 
homoclinic orbits r;:: _t[{t) = Cx! (t), Y! (t)) at the hyperbolic saddle point 
(ii, 0) = ( - n;O) mod 2 rr. Thus, Lemma 1 implies that the Poincare map, P~ , for the 
perturbed system has a unique hyperbolic fixed point X£ =(Ti ,0) ""!" 0(£,) of saddle type 
and Theorem I implies that the stable and unstable manifolds W~~c:) and W~~t) of 
the Poincare map intersect transversally. Therefore, we have the type of chaotic 
dynamics predicted by the Smale-Birkhoff Homoclinic Theorem. Cf. Figure 11 in 
Section 4.8 and Figure 9 on p. 158 in [15] which illustrate why an iterate P: of ~ has a 
horseshoe map. Also, see p. 158 in [ 15] for an interesting discussion of why a 
periodically perturbed pendulum exhibits sensitive dependence on initial conditions. 

, 
x = y (a) 
y =-sin x +£COS t 

Hint: On the homoclinic orbit.:; ct"with H = 2, we have cos x = y' 12 - 1 and this 
allows us to integrate ~=-sin x =_! 1 -cos"x =~y{ 1 -y2 /4' to obtain Y!(t) =:!'2 sech t. 
Then use the result of Problem 4 in ection 4.9 to find M(tJ = 21fsech (ii /2) cost(). 
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(b) (Poincare 1890; cf. [15], p.155) 

x = y 

y = -sin x + f cos x cos t. 

Hint: Follow the hint for part (a), use two integrations by parts to evaluate 

cr.i J sech t tanh
2 

t cos t dt 
_(O 

and then use the result of Problem'+ in Section 4.9 to find 

M(t,J = -21l'sech(17"/2) cos tc. 

as on p. 157 in [15]. 

(c) x = y 

y = -sin x + E rcos t - y). 

Hint: Similar to the result in Example 1 in Section 4.9, you should find that for 
fl> (4hr) cosh fu /2), M(t") has a simple zero. 

Problem 7 in Section 4.15: Use Theorem 4 in Section 4.15 to show that for 1 = 0 and 
f < 0, there is a point 

c = /8 12 
{ 

On the line TB 
0 

: c = ol.. + 1/ fl (given in Theorem 3 in Section 4.9) which lies in the 
region E = {(cl_, c) Ice >fl, lei < 2 } provided that -4 <;B <O. Cf. Figure 6 in Section 4.14 
and note that the point TB" has o<.>f' and -2 < c < 0 for -4 <j1<0. · 

3 . 
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~: For -4 <;$ < 0 and sufficiently small(> 0, the unfolding of the TB; point shown 
in the bifurcation diagram in Figure 1 in Section 4.15 implies that the points H; , C~ and 
HI:' all lie in the region E in a small neighborhood of the TB0 point for small (> 0. 

~ 3 

Re-draw the charts in Figure 6 in Section 4.14 for -4 ~ < 0 and small '1 > 0, noting that 
the TB~ line bifurcates into the H0 line where c =oc: + (1 +/)//l (given in Theorem 5 in 
Section 4.14) and the HLc; curve and that H" and HL' cross for -4 <17 < 0 and 0 < ( <<l 
as in Figure 1 in Section 4.15. Also, note that the point H: is on the H 0 line, the point 
HL: is on the HLc curve and the c: curve joins these two points as in Figure 1. Also, 
with the exception of the bifurcation of the TB0 line, described above, the other parts of 

:z. 
the charts in Figure 6 in Section 4.14 remain the same. 

One last comment: For /a~ -4 and O< i<< 1, we have the point HL" on the curve HC 
moving out of the region E and then the point ~ on the curve H" m~ing out of the 
region E as (&decreases from -4 (for points below the C curve shown in Figure u\ in 
the Appendix). This leads to Chart 1 in the Appendix. 
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Problem 71 in the Appendix: 

(a) In order to see how the charts in FigureC change as ~increases for a fixed /3 <<-1, 
say ~= -10, first of all note that for p = -10 and o = 3, we obtain Chart 5 as in Figure 23 in 
Section 4.14 and for~= 3.5, we obtain Chart 6 as in Figure 20 in Section 4.14; and then 
for '1= 5.09 graph the functions 

+ H : c = 1 +ol(o<.+p+ S )/2 
al-"- s 

H~ c =oc _._ ( 1 + {').113 

and SS: c = (r/.. +ft+ S )/2 

with S ={(pl.-p)i. -4Y'-
1 

obtained from Theorem 5 in Section 4.14. According to the 
atlac; in FigureQ, for {J=-10 and f= 5.09, you should obtain Chart 7 since 41: defined 
above, corresponds to 't;t 5.07 and [',also defined above, corresponds to Y = 5.1. Then 
sketch in the HI7° and c; curves to Jonform to Chart 7. Note that it was established in 
Section 4.13 that the H+=and HL+ curves approach the TB;-point (given by 

TB!: t;(=,8+ 2 't, c = 11\,8+2~) +,d+~ 
in Section 4.14) tangent to the S~line (ol= p+2 ~with the H7curve between the IIL+ 
curve and the SN+line. 
Hint: In order to see the detail near the TB~point, including the H!and Hi:; points ac; 

well as the c;-curve (similar to that shovm in Figure 20 in Section 4.14 ), it will be 
necessary to do an enlargement of the graphs near the TB~ point similar to that shown in 
the figure below. 

HL.._ 



Next, graph the above functions H-+: H
0

, and SS for i= 5.11. According to the 
atlas in FigureQ, for~= -10 and o= 5.11, you should obtain Chart 8 since~~ defined 
above, corresponds to f';!t 5.18. Then sketch in the HL+ and ~urves to conform to 
Chart 8. _ 

Finally, graph the above functions H+, H'°, and SS for Y= 5.1 corresponding to a 
point on the TBjcurve, C; and then sketch in the HL+-and C~urves (similar to those 
in Chart 8), noting that, as

1
in the last figure in this appendix, the ~and HL+-curves are 

transverse to the SN+line at the point TB; as is established below where it is shov-m that 
for /= -10, dc/dct = -24.5 at the point TS~n the line SN~ 
(b) From Theorem 4' in Section 4.15, afthe point T~ we haveo(=f+ 2'J \.\~th ff 0 (i.e., 
TB j ESN~, ( ~+ 2 i)( c -d... + ¥) = 1 (i.e., Ts; c.TB~ ), and ~~ 2jlt° ~ 2 = 0 (i.e., the 
point<;.~ )frr;.). Thus, at Ts;. J"= cp 2)12,lf~and c,(.= 211pJforf< 0. Show that on 

the curve c_ = 'Jf f 
.+ 

H : c = 1 -t-IJ((ol..~~+ S)/2 
Ol. + s 

.. ! z !l'1 with S = ·y (o(-i8) - 4d' , we have 

de --+ 2-fl 
2.. 

do( 4 

as ol.~2.ll,sl for a fixed ft< o and i = c;!"+ 2)12L/3 J . 

Hint: Note that S=O at TB_t so it is necessary to use L'Hospital's Rule for that part of 
dc/dr;( having the form 0/0 for a fixed f<O and 't= Cf 2-+ 2)/2 \pl as ot. ~ 2l,\f31· 

c 

2 

D 

/ 

The Hopf Bifurcation Surface H+ for B = -10 with Y> n ""rl 1,. 1 .-- ., 



6. ADDITIONS AND CORRECTIONS 

p:21"1 ' I. 2.. 7; 

p. 239, I. 39: has at most a finite number of critical points in any compact subset 

p. 261, I. 33: of a finite number of elementary critical points (i.e., critical points with at 
least one nonzero eigenvalue) on the equator 

p. 272, I. 12, 13: And for z = 0 we have -x = x - (ol + 1) x ~ + x3 in (10). Therefore, 
x > 0 for x < 0 and x < 0 for x > 0 on the x-axis. · .. · 

,, 
p.279, I.~: around the unit circle with velocity _y = R: (£) tangent to Cat the point cf; (g) .. 

- --ti. 

p. 285, 1.7: having a nonzero eigenvalue (to which the theorems in Section 2.8 .... 

p. 408, 1. 23: (2) has a unique hyperbolic periodic orbit of saddle type, x ,(t) = x, + O(E.. ), 
of period T. [,t, 20 .' ·R.~,,teic,-' ~L(t} b 'j ~ r (1. LJ -

p. 409: Replace (~(t) by ~dt) in Figure2, 

p.417,1.14,15: ±x=xiz2 -xi;+£r;t.xz 4 +&fJx.l-z;z, 
±z = xz1 - x~ z +l" tXz3 +t.[J x 2z. 

p.417, I. 18, 19: Replace ((3 ,0) by (f-f ,0). 

p.428, l. 10: Replace n-dimensional by m-dimensional 

p. 433, 1. 4: Replace f C-a'c;(t)) by f (~ (t)). - - - _ .. 
p.443, I. 33, 34: Replace (4) by (1). 

p. 445, I. 6: Replace Pt (x,y,f-) by ~(x,hft). 

p.480, 1. 17: accomplished for(i~ 0 in Figures-15 and 16 below and in the Appendix at the 
end of Section 4.15 for{J<< -1 (e.g.,{?>< -5); but for -5 <f <O it is still ... 

?. 3Lf(oJ l.1.:1.' ,.. +ct,, b;zo) . 



p. 486: Replace . I by -I in Figure 4. 

p. 493. I. 34: below_ for.B? 0 and in FiguresJf and C (for f <<-I) in the Appendix at the 
end ot Sect10n 4.1 ~ . . . . · 

p. 495. I. 16: 
I. 23: 

p. 502. 1.14: 
1.21: 
1.26: 

.... for B:;:;:. 0 and in the Appendix at the end of Section 4.15 for /3 << - I. 
I ' 

The .. atlas"" sho\.\-n in Figurev{ in l53J and in the Appendix at the end 
of Section 4.15 (as well in Figure 15 belo\V for p ~ 0 ). 

together \vi th the atlas and charts in [ 53 J and in the Appendix can be used ... 
values of (J. as described in the Appendix, and also .... 
19, 20. and 22 below and also in Chart 6 in the Appendix at the end of 
Section 4.1 ~ .... 

p. 503. I. 11: scale in Figure 20 which is the same as Chart 6 in the Appendix ..... 

p. 505. I. 8: .... it has a flat contact with HL" at I-IL: (which is outside the region E in 
this example). Cf. Chart 6 in the Appendix. 

I.I I: .... 23. Cf. Chart 5 in the Appendix. We see .... 

p. 506. 1.14: .... atlinely equivalent to the BQS with 

p. 512. I. I 0: arc shown in Figures 15 and 16 for (3 ~ 0 and in the Appendix at the end 
of Section 4.15 for [J<< -I. · 

p. 528. I. 6: 

p. 539. I. 16.17: .... Note that in the region between I-IL+ and ct in Figure C ..... 
).. 

I. 3 7: ..... it terminates at N 2. . This leads to 

p. 540. I. I: .... It also terminates at N .z. . 




