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PREFACE

This set of problem solutions for the 3rd edition of the author’s book Differential Equations
and Dynamical Systems is intended as an aid for students working on the problem sets that appear
at the-end of each section in the book. Most of the details necessary to obtain the solutions, along
with the solutions themselves, are given for all of the problems in the book. Those solutions not
found in the main body of the solutions manual can be found in the appendix at the end of the
manual.

Any additions, corrections or innovative methods of solution should be sent directly to the
author, Lawrence Perko, Department of Mathematics, Northern Arizona University, Flagstaff,
Arizona 86011 or to Lawrence.Perko@NAU.EDU. The author would like to take this opportunity
to thank Louella Holter for her patience and precision in typing the camera-ready copy for this

solutions manual and the appendix.

Also, several interesting new problems as well as a list of additions and corrections for
the 3" edition of Differential Equations and Dynamical Systems have been added at the

end of the appendix in this solutions manual.
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1. LINEAR SYSTEMS

PROBLEM SET 1.1
Let x = (x}, X,, X3)T = (X, y, 2)T and x(0) = (X, Yo, Z‘O)T.
1. (@) x(t) =xpet, y(t) = y,e!, and solution curves lie on the straight lines y = (yo/xo)x or on the
y-axis. The phase portrait is given in Problem 3 below witha = 1.
(b) x(t) = x,e, y(t) = yye?, and solution curves, other than those on the x and y axes, lie on

the parabolas y = (y,/x2)x2. Cf. Problem 3 below with a = 2.
(€) x(t) = xyet, y(t) = y,€*, and solution curves lie on the curves y = (yo/xf))x3.

(d) x= -y, y=xcanbe written as y = x= —y or ¥ + y = 0 which has the general solution
y(t) = c,cost + c,sint; thus, x(t) = y(t) = —; sint + ¢,cost; or in terms of the initial
conditions x(t) = x,cost — yysint and y(t) = x¢sint + y,cost. It follows that for all t € R,

X2(t) + y(t) = xg + yg and solution curves lie on these circles. Cf. Figure 4 in Section 1.5.

(e) y(t) =c,e and then solving the first-order linear differential equation x+ x = c,e~* leads

t0 x(t) = ¢, e + ¢, te= with ¢, = X, and ¢, = y,. Cf. Figure 2 with A < 0 in Section 1.5,
2. (@) x() =X, y(1) = yoe', z(t) = zy¢!, and E* = R®.

(b) x(t) = xpe, y(t) = yoe, 2(t) = z,¢t, E® = Span {(1, 0, 0)T, (0, 1, 0)T}, and
E® = Span {(0, 0, 1)}. Cf. Figure 3 with the arrows reversed.

(c) x(t) = xycost—y,sint, y(t) = X, sint + y, cost, z(t) = zye; solution curves lie on the
cylinders x2 + y2 = c¢2 and approach circular periodic orbits in the x,y plane as t — o;

E€ = Span {(1, 0, 0)T, (0, 1, 0)T}, E* = Span {(0, 0, 1)T}.



3. x(t) = xgel, y(t) = yo et
A~ T ><
\\ ﬂ/ ) - < > /
a=-1 a=0 a=l/2. a=1 a=2
4. X, (1) = X,0eM, X,(8) = X002, -, X (1) = x_ et Thus, x(t) — 0 as t — o for all

xo€ Rif A, <0, -, A, <0 (and also if R,(A) <O forj=1,2, -, n).

5. If k > 0, the vectors Ax and kAx point in the same direction and they are related by the

scale factor k. If k <0, the vectors Ax and kAx point in opposite directions and are

related by the scale factor Ikl.

6. (a) w(t) = au(t) + bv(t) = aAu(t) + bAv(t) = Alau(t) + bv(1)] = Aw(t) for all te R.

(b) u(t) = (e, O)T, v(t) = (0, e-2)T and the general solution of x= Ax is given by x(t) =

Xou(t) + yov(t).

PROBLEM SET 1.2
1. (a) }\'l =2, },‘2 =4,v,=(1, -DT, v, =(1, DT, P= I:_: ;:l, pPl= ]/2'} —:} and

2 0
=PIAP =
B-P‘AP—[O 4]

4t 2t

2t 2t 21 41
€ 0 e 0 e +e e —e
y(t): l: 34‘] Yo X(t):Pl: 0 e4l] P‘1x0= 1/2|:e4t__ezt e‘“-}-g”}xo'

0

Yo




by A =4,A==2,v,=(, DT, v, =(1,-1)T,

41 4t -2t 4t -2t
e 0 e +e e —e
yt) = |: 0 e—2t] Yo x(t) = 172 |ie4l __e—2t e4[ +e—21:| Xo-
© A =-2,A=0v,=(,-DT,v,=(1,DT,
e2t o eyl 1-e
y©) = Yor x(t) = 172 X,
0 1 l—e 2t [4e2t
Y2 skxz
4~
\ P N
N 4
7/ AN k
2. AM=1,2,=2A=-1v,=(2,-2, DT, v,=(0, 1,0)T, v;=(0,0, )T
e! 2et 0 0
yo=| € Yoo X(D)=172|2(e* —e') 2¢* 0 |[x,,
e el-et 0 2

ES = Span {v,}, E* = Span {v,, v,}.

3. X = AX
0 1 0 1 0
(a) A= (b) A= ) A=10
2 -1 -1 0
-2
(Also, see p. 121 in the appendix.)
4. (a) x(t) = 1/2(3eh —e2, 3e4 +e2) (b) x(t) = 1/2(2et, 62 — 2et, et + Se).

5. l1i_)r2x(t)=0 iff A;<Oforj=1,2,3,,n

— O

N = O



A

6. db(t, x) =P | P-'x, and lim &(t, y,) = d(t, x,) since ylim Yo = Xo
Yo% 0 Xp

e)t,,t

according to the definition of the limit.

(@ (b)

e
N

(c) (d)

DN NN
—x X

(e)

N

PROBLEM SET 1.3
1. (a) HAll= max IAX] = max V4x? + 9y2 < 3Ixl; but for x = (0,7, IAxl = |-3| = 3; thus, Al =3.

(b) Following the hint for (¢), we can maximize IA).(P = x2 + 4xy + 5y? subject to the
constraint x2 + y2 = 1 to find x2 = (2 £ V2)/4 and y2 = 1 — x? which leads to
HAIl =2.4142136; or since AAT = [; ?] with eigenvalues 3 + 22, we have
AN = V34242 = 1 +42.



©

5. (a)

(b)

(©)

We can either maximize JAx|2 = 26x2 + 10xy + y2 subject to the constraint X2 + y2 = 1; or
26 S
find the eigenvalues of AAT = [ 5 1] which are (27 £ V725 )/2; in either case,

A = 5.1925824--.

T(x)

By definition, ||T|| = max [T(x)]. Thus, ||[T]| > max |T(x)|. But max IT(x)| = Sup 1y

since if [x] = a and we set y = x/a for x # 0, then |y| = |x[/a = 1 and since T is linear,

op O 5up PO _ | = s iyl s, < sup (700 < cup T -

< X[ T

max |T(x)|. It follows that [IT]| = max IT(x)| = sup |T(x)|/|x].
x| = Xi= x#0

If T is invertible, then there exists an inverse, T~, such that TT™! =1 and therefore
[TT|| = 1. By the lemma in Section 3, 1 =|[TTY| <|IT|| Tl This implies that ||T|| > 0,
T-Y >0, and ||TY| = e

711> 0,and T4 2y

Given Te L(R») with |[ - T|| < 1. Leta = ||I - T|} < 1 and the geometric series Zak

converges. Thus, by the Weierstrass M-Test, >.(I- T)k converges absolutely to
k=0

S L(Rn). By induction it follows that T[T+ I =T) + - + (I=T)*] = 1= (I - T)n+1,

Thus, TS = T i(I_T)k - iT(I—T)k = lim iT(I—T)k = lim [1—(1—T)““] =1

k=0 k=0 D=3k =(
since lim ||I—T|j**! = 0 which implies that lim (I-T)™! =0 since 0 <||(I-T)**| <
n—oo n—yco

|1 = T)||=+1. Therefore S = T-'.

The eigenvalues and eigenvectorsof A are A, =1, A, =~1,v; = (1, 0)T, v, = (-1, )T;

0 —e”! 1 -1
thus, eA =P © | PT= ¢ e-e where P = )
0 e 0 e_l 0 1

1 0
ef = e[s 11| by Corollary 4.



(d)

(e)

0

6. (a)

(b)

(©)

7. (a)

(b)

The eigenvalues and eigenvectors of A are A, =2, A, =-1, v, =2, DT, v, = (1, )T;

2 2 -1 -l a2 7 1
thus, eA = P[i) 0 :IP‘1 = {26 © 2e 2¢ } where P = [ } }
e

-1 e2 _ e—l 26—1 _62 1 1

oA ez[cos(l) —sin(l)

by Corollary 3.
sin(1) cos(l):‘ y -orofiary

The eigenvalues and eigenvectors of Aare A, =1, A, =-1, v, =(1, DT, v, = (-1, )T,
e O cosh(l) sinh(l) | . 1 -1
thus eA =P e with P = )
0 e sinh(l1) cosh(l) 1 1
Note that A2 =1 and from Definition 2 it therefore follows that eA =1(1 + 1/2! + 1/4! + ) +

Al + 1731+ 1/5! + ) =L cosh(1) +A sinh(1). This remark also applies to part (b).
The eigenvalues are €2, e3; e,e71; e, e; €2, e71; €25 = ez[cos(l) +1i sin(l)]; e, el

If Ax = Ax, then eAx = lim [T+A+A/20 4+ + Ak/k!]lelti_r)g [x+Ax +A2x /2! + - +

Akx [ k!] = erx.

If A = P diag [A;] P!, then by Corollary 1, det e = det {P diag [e}] P-1} = det {diag
[e}‘i]} =M .. eM = etraceA For a 2 x 2 matrix A with repeated eigenvalues A, we have det

A A
eA = det [0 x:l = e? = etmceA; and for a 2 X 2 matrix A with complex eigenvalues, A =
e

[ea cosb —e?sinb

a = ib, we have det eA = det a. A
e“sinb  e“cosb

jl = e2a = etraceA (since the trace A =

A, + A, =(a+ib) + (a—ib)=2ain this case).

e = diagfe, €2, €3].

1 0 0][000}]([1 00
0 2 1{=|0 0 1|+]0 2 O|=N+Sand NS = SN so that by Proposition 2,
002|100 0f 002
1 00] e 0 0
eA=diagle,e2,e2] |0 1 1|={0 e* e? |since N2=0impliesthateN =1+ N.
00 1] [0 0 &



(©)

0112 0O
0[+|0 2 0|=N+S and NS = SN so that by Proposition 2
0] 10 0 2

S = N

- O

N O O
1l

S = O

- O O

1 00
er=eSeN=¢? { 1 1 O]since N3=0 implies that eN =1+ N + N2/2.
172 1 1

1 0

ForA:[
0 0

5l

If T(x)€ E for all xe E, then by induction T2(x)€ E, -, Tk(x) € E and therefore eT(x) =

0 0 e O
and B= we have AB=0#BA =B, eArB = #eheB =
1 0 e—1 1

k
lim [I+T+-+TWk!]x= lim [x +T(x)+ - + I—k—(,x—) ] € E since any subspace E of Rn

is complete and since x, = x + T(x) + - + TX(x)/k! is a Cauchy sequence in E.

PROBLEM SET 1.4

1. (a)

(b)

(©

At
X(() = . Xy =

H t
|0 e yoe*
r A At
o M teh} X" +Yypte
X = X, =
At 0
At
_O e Y€
"cosbt —sinbt Xpcosbt —y,sinbt
X(t) = eal . XO = eat 0 ) yO
| sinbt  cosbt Xgsinbt +ygcosbt
[cost —sint
x(t)y=et| .
© | sint cost} 0




2t
3.@ M=2,A=4,v,=(1,-DT, v, =(, DT, x(t) =P {; 04{} Plx, =
e

20, 4t 4t 2 : 11
I/Z[C +e* e -e }x0=e3‘ [cosht smht} xowherePz[ }

64‘ — eZt e4t + eZl S]nh[ COSh'[ _'1 1

4t
0
(b) }\,] = 4, }\,2 = —2, v, = (l, I)T, v, = (1, —I)T, X(t) = P[Z e“z‘:l Pi=

a -2 2t sinh3t cosh3t 1

4t -2t 4t -2t :

- h3t h3t 11

12|¢, *° ¢ 4 © X,=¢! |:COS o ] X, where P = .
e’ —e e +e 1 -

4. From Problem 2 in Problem Set 2, x(t) = eAt x, = P diag [eM] P =
2etl 0 0 2 00 1 00
1/2[ 2¢* —2¢' 2¢*' 0 |xywhereP=|-2 1 0|andP'=12| 2 2 0
el—et 0 27 10 1 -1 0 2

2 0 0 -1
5. (8 A= + =S + N where S and N commute. Thus,
0 2 0 O

1 -t
x(t) = eAtx, = e [O 1] Xo-

t —sint
(b) x(t) = eAtx, = e {COS sin } .

sint cost
) et 0
© M=LA=-1Lv,=0, DT, v,=C1 DT, x(t) =ertx, =P 0 o Px, =
t

Uyt ol ot : _
e t+e e —e _ [cosht  sinht L I 11
172 liet Lt e +e":|x0 = |:sinht cosht} X, where P = [1 ) P =172 11!

(d A=-21+ =S + N where S and N commute. Thus, x(t) = eAtx, =

<o - O
-0 O
o O O

1 0 0
e [I+ Nt + Na2/2]x,=e2| t 1 0]x,
2/2 t 1



6. Since T(x)€ E for all x€ E and since T(x) = Ax, it follows that if x,€ E then Ax € E and
tAx, € E since E is a linear subspace of Rn. It then follows by induction that (t*/k!)Akx € E
for all ke N. Therefore % Aktkxy/k! € E since E is a linear subspace of R®. Then since a
closed subset of a comp]ektzometric space is complete, it follows that E is a complete normed

linear space; i.e., every Cauchy sequence in E converges to a vector in E. (Cf. Theorem

N
3.11, p. 53 in [R].) Thus, for all te R lim Y, Aktx/k! = eAtx,€ E. And therefore by
N—eok=0

the Fundamental Theorem for linear systems x(t) = eAtx,€ E for all t€ R.

7. Suppose that there is a A < 0 such that Av = Av for some v # 0. Then x(t) = eAtvis a
o kak «~ kqk
solution of (1) with x(0) = v. ButeMv = ) t——A—v =y i—v = eMy since, by
k=0 k! k=0 k!
induction, Akv = Akv. Thus, lim x(t) = lim e*'v = lim eMv =0 since A <0.
1—>oe 1—oo t—roo
8. By the Fundamental Theorem for linear systems, the solution of x= Ax, x(0) = x, is

given by ¢(t, x,) = eAt x,. Thus, forallte R, lim £(t,y)= lim emy =™ lim y=

Y—Xo )'-—)Xo Yo X,
eAtx, = ¢ (1,xp).

PROBLEM SET 1.5

1. (a) 6=-2<0implies that (1) has a saddle at the origin.
(b) 8=8,1t=6,12-48 =4 > 0implies that (1) has an unstable node at the origin.
() &=2,1=0implies that (1) has a center at the origin.
(d) &=5,1t=4,12-40 =-4 implies that (1) has an unstable focus at the origin.

() d=A2+2>0,7=2A,12-48 =-8 <0 implies that for A # 0 (1) has a focus at the origin;

it is stable if A <0 and unstable if A > 0; and (1) has a center at the origin if A = 0.

(f) 8=A2-2,1T=2A,12-48=8> 0 implies that (1) has a saddle at the origin if |A| < V2; (1)
has a node at the origin if [A] > V2; it is stable if A < —V2 and unstable if A > v2; and (1)

has a degenerate critical point at the origin if |A| = V2.



2. (a)
(b)

(c)

4. (a)

(b)

(©)

X,(t) = x,(0)e, x,(t) = x,(0)e. Cf. Problem 3 with a=1 in Problem Set 1.1.
x,(t) = x,(0)e?, x,(t) = x,(0)et. Cf. Problem 3 with a = 1/2 in Problem Set 1.1.

X, (1) = x,(0)et, x,(t) = x,(0)e*. Cf. Problem 3 with a =2 in Problem Set 1.1.

X, (1) = [x,(0) + x,(0)t]e!, x,(t) = x,(0)e!, which follows from eAt x, = e! ‘:(l) ;} Xg-
Cf. Figure 2.

d=2a+b2>0iffa>-b2/2andt=a+ 2 <0iff a<-2. Thus, the system X= AX has a

sink at the origin iff -b2/2 <a < -2.
x(t) = x5eM, y(t) = y,. For A > 0 cf. Problem 3 with a = 0 in Problem Set 1.1.

x(1) = X+ yot, y(1) = y,.

ANSYY

x(1) = xq, y() = y,; every point x,€ R? is a critical point.

The second-order differential equation can be written in the form of a linear system (1)
with A = [g —;]. If b < 0, the origin is a saddle; if b > 0 and a? - 4b > 0, the origin is a
node which is stable if a < 0 and unstable if a > 0; if b > 0, a2 — 4b < 0 and a # 0, the origin
is a focus which is stable if a < 0 and unstable if a> 0; if b> 0 and a = 0, the origin is a

center; and if b = 0, the origin is a degenerate critical point.

X, (1) = x,(0)et, x,(1) = x,(0)e! + [x,(0) - x,(0)]e?; A, = 1,4, =2, v;=(], DTand v, =

(0, 1)T; the origin is an unstable node.

A= +V33)2, A, =(5-V33)/2,v,=(4,3+ V33)T,v,= (4,3 -+33)T; the

separatrices are the four trajectories in E* U EY and the origin.

Since x,(t) = x,(0) cost — x,(0) sint and x,(t) = x,(0) sint + x,(0) cost, r(t) =

Vx2(t) + xX(1) =+/x3(0) + x2(0), a constant and 8(t) = tan-[x,(t)/x,(1)] =

tan-![x,(0)/x,(0)] + t; the origin is a center for this system.
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9. Differentiating r2 = x2 + x? with respect to t leads to 211 = 2X,X; + 2X,%, or I =
(X,X, + X,%)/r for r # 0. Differentiating 8 = tan-(x,/x,) with respect to t leads to § =
(x1%; = X% )/X2[1 + (x,/%)?] = (x,X, — x,%,)/r2 for r # 0. For the system in Problem 8
we easily obtain r = ar and 6= b from these equations. These latter equations with the
initial conditions r(0) = r, and 6(0) = 6, have the solution 1(t) = rye®, 0(t) = 0, + bt. Thus
fora<0,r(t) > 0ast—ooand forb>0 (orb<0),06(t) >ocast— oo (orast—
—oo) as in Figure 3. And for a = 0, r(t) = r, while 8(t) — o0 as t — o (or as t — —oo) for

b >0 (or b <0) as in Figure 4.

PROBLEM SET 1.6

1. A=2xi.ForA=2+1,w=u+iv=(, DT +i(l, O)T,
11 1 -1 2 -1
P=[vu]= ,Pl= ,P7lAP=
0 1 0 1 1 2
t +sint —2sint
and the solution x(t) = Pe# R, P1x, = e |:COS ) - : . } 0
sint cost —sint
t —sint
where R, = [CC.)S St }
sint  cost
-1 10
2. A=lzid=-2w=(l-i,-1,0),v;=(0,0,)T,P=| 0 -1 0|
0 01
-1 -1 0 elcost —e'sint O
P'=| 0 -1 O/andthesolution x(t)=P|e'sint e'cost 0 |P'x,=
0 0 1 0 0 g2t
e'(cost —sint) —2e'sint 0
e'sint e'(sint +cost) 0 |x,.
0 0 e 2t

(Also, see p. 122 in the appendix.)
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-10 0 O
3. 1= LA=2+31,v,=(-10,3,1),w=(0,i, DT,P= 31 0},
1 0 1
-1/10 0 O e! 0 0
P'=| 3/10 1 0|andthesolutionx(®)=P|0 e?'cos3t —e?'sin3t|P! Xo =
1/10 0 1 0 e”sin3t  e*cos3t
e 0 0

(-3¢ +3e? cos3t —e®'sin3t) /10 e*'cos3t -e?'sin3t Xo-
(—e' +3e?'sin3t+e?cos3t) /10  e?'sin3t  eZ'cos3t

4. dy=-l+i A =1+i,w,=(1,,0, 007, wy=(0,0,1-i,-1)T,
01 0 O 0 -1 0 O
-1 0 0 O 1 0 O _
P= , Pl = and the solution x(t) =
0 -1 1 0O 0 -1 -1
0 0 0 -1 0O 0 0 -1
L e 'cost —e 'sint 0 0
p ¢ R 0 pix = e 'sint e ‘cost 0 0
XO - O O t o _2 t . xO'
0 e‘R[ e (cost —sint) e sint
0 0 e'sint e' (sint + cost)

PROBLEM SET 1.7

1 0 -1 1
1. (a) }H=7\2=1§A=[0 1]+[_1 1]=S+NwhereSanchommuteandN?-=O;

1—t t
X(t) = eAtx, = eSteNt x = gt Xq.
® 0 0 —t 1+t|"0

2 0 -1 -1
(b) ?\]=7&2=2;A={0 2}+[1 1J=S+NwhereSanchommutear1dN2=0;

I-t -t
x(t) = eAtx, =eSteNx,=e Xq-
t 1+t
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1 0] |0 1 1t
A = - A= - . — pAty. = pSt pNt v = et )
o0 A=LLA [0 1:l+{0 O}_S+N,x(t)—e Xg=edte xo—eI:O l:lxo

1 0 01
d A =LA =-1;A= {0 1]+[0 0] =S + N, but S and N do not commute; therefore,

1 1 2 1
we must find v, = (1, 0)T, v, = (1, -2)T, P = [O 2], P1=1/2 [0 J and

e 0 ot -t
x(t) = P Plxo=1/2|% © 78 Iy,
0 e—l 0 2e

1 0 0] [0 0 O
2.(a) AM=A=A=1A=|0 1 0{+|2 0 O0|=S+NwhereSandN
0 0 1] 13 20
1 0 0
commute and N3 = 0; therefore x(1) =eAt x,=eteM x,=et| 2t I 0]x,.
3t+2t2 2t 1

(b) A, =A,=-1, A, =1 and we must compute the generalized eigenvectors; v, = (1, 0, 0)T,

v, = (0, 1, 0)T satisfying (A = A, 1)2v, =0, and v; = (0, 2, )T; S =P diag [-1, -1, 1] P! =

-1 0 0 01 -2
0 -1 4 ,N=A-S={0 0 0},Sand N commute, N2 =0 and x(t) = eA'x, =
0O 0 1 0 0 O

eI + Nt] x, =P diag [e, e, e] P [I+Nit]x,=] 0 e 2(e'—e™)|x,.
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() A, =1,A,=A;=2andin this case there is a basis of eigenvectors; v, = (1, 1, -1)T,

v, =(0, 1,00, v; = (0,0, )T; A =P diag [1, 2, 2] P! and x(t) = eAt x, =

e 0 0
P diag [, e, e2]P' x, = |e' —e®' e* 0 |x,.
62( _ el 0 eZt

2 00 0 1 1
(d) Aj=A,=A;=2;A=|0 2 0|+|0 O 2|=S+N whereS and N commute
00 2 0 00
1ot t+t?
and N3 = 0; therefore, x(t) = eAtx,=eZeMx,=e2 |0 1 2t |x,
00 1
3. (@) A, =A,=Ay=A,=0; A=Nisnilpotent with A3 =0 and
1 0 0 0
Y= erng= || l—2t22 l2£2 Yy
t —t°/2 14+t°/2 1t
0 -t t 1
0 00O 0 0 0 O]
1 000 0000
(b) A=A, =A;=A,=2;A=21+NwhereN= 010 0,N2= 100 0
0010 01 0 0]
0000 1 0 0 0]
N3 = 0900 0,N4=0andx(t):eA‘xo=eZ‘eN‘x0=ez‘ 5 oo
0 00O t“/2 t 1 0
1000 /6 t*2 t 1
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(¢) A, =A,=2A;=0,A,= 10 and there is a basis of eigenvectors, v, = (1, -1, 0, 0)T,

1 1 1 1
-1 0 0 2
Vy, = 1707_1701" = 1,0,0,—1T, = 1727374TyP= »
) =( )T, vy =( )5, v, =( ) 0 -1 0 3
0O 0 -1 4
2 -8 2 2
: 3 3 -7 3 ‘ 0 |
P1=1/10 4 6 ,x(1) = eAtxy =P diag [1, 1, 1, e!®] P! =
1 1 1 1
94!l 1460t 14l g4l
—2+2e'0  g42el0 24210t 240!
1710 Xq-

343! 343! 7436 34361
—4+4e!0 44+ 4e0 444100 644!

d) A =LA ==L A;=1+iA=1-i,v,=(1,1,0,07,v,=(1, -1,0,0),

1 I 0 0 172 1/2 0 0
. 100 1/2 -1/2 0 0
w;=(0,0,1, 1), P= ,Pl= , X(1) = eAtx, =
010 0 0 1 0O
0 0 0 1 0 0 0 1
et 0 0 0 cosht sinht 0 0
p|0 et 0 U sinht  cosht 0 0 .
0 0 e'cost —e'sint 071 0 0 e'cost —e'sint | "
0 0 e'sint e'cost 0 0 e'sint  e'cost

() A,=2A,=1+1iand the eigenvectors w, = (i, 1, 0, 0)T, w, = (0, 0, i, 1)T lead to

cost —sint 0 0
PoLA=S=d 1 - dx() = e sint cost 0 0
ShassEaag . anexiEe 0  cost -—sint|

0 0 sint cost
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(f) A, =A,=1+1; the eigenvector w,; = (i, 1, 0, 0)T and the generalized eigenvector

1 010
@, 1,1, DT, satisfying (A - A1 lead to P oo
W, = s 1y 1,y » - = ] t = y
, =1, 1,1, 1)T, satisfying ( D w,=w,, lead to 00 1 0
0 0 01
1 0 -1 O
0 1 -1 I -1 1 -1
pPl= ,S =P diag P! = diag , and
00 0 11 11
00 0 1

0

1 0
therefore N=A-S = [O 001} with SN = NS and N2 = 0; x(t) =eAt x, =

cost —sint tcost —tsint

. cost —sint sint cost tsint tcost
etPdiag | . P11+ Nt] x, = et .

sint cost 0 0 cost  —sint

0 0 sint cost

11

4. @) )\1=AZ=2,Pl=A—21=[_1 1

}, (D) = e, ry(t) = te?, x(1) = eAtx, =

I+t ¢t
[, (O] + ry()P, ]x, = e [ 1= J X,

) M=1L2A=Mm=2{t)=¢, () =e?—e, ry(t) =te? —eX+ e, P, =A-1=

0 00 0 00
-1 1 0,P,=(A-D(A-2D)=| 0 0 O x(t1)=ertx,=
1 11 -1 0 0

e 0 0
[r, (O] + L,(OP, + 15(t)P,] x4 = e —e! e’ 0 |x,
—2e'+(2-1)e? te?!

) Mi=LA=A=2,i(0=¢, () =e2-e,P,=A-1,P, =0,

e 0 0
x(t) = eAtx, = [, (DI + 1,())P,] x, = e‘z—e2‘ et 0
1

et—et 0 e

Xy
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(d) A=A, =k =4, =2,1,(1) = €2, 1,(t) = te?, 13(t) = 2 €2/2, 1,(t) = 13 e2/6,

P, =N, P, = N2, P, = N3, as in Problem 3(b); thus, x(t) = eAt x, =
1 0 00

. t 1 0 0
[, (O] + r,(ON + 1;()N2 + 1, (N3] = e2 22 1 1 olXe
/6 272 t 1
PROBLEM SET 1.8
1. (a), (b), (d), (f) and (h) are already in Jordan canonical form.

1 O ) 20
©, @) A =1,h,=-1 a“‘”:[o —1]’ (g”‘zz’kzzoa““:[o 0}’

' I 1
(l)xlz}\'zz1’61:1,82=2,VI=O,V2=lide=[O 1:'

2. (a), (b), (c), (d) are already in Jordan canonical form.

(e)and f) A, =A,=1,A,=-1,8,=2and J =diag [1, 1, -1].

A 0 0 O A1 00 A1 00
3. (a) 0O A 00 0 A 00 0 A 10
’ 0 0 A O 0 0 A 0 0 0 A O
0 0 0 A 0 0 0 A 0 0 0 A
8,=0,=0;=9,=4 0,=3,0,=8;=0,=4 0,=2,8,=3,8;=0,=4
Vi=4,v,=v3=v,=0 vVi=2,vy=1vy=v,=0 vi=1Lv,;=0,v3=1,v,=0
A1 00 A1 00
0O A 10 0 A 00
0 0 A 1 0 0 A 1
0 0 0 A 0 0 0 A

§,=1,8,=2,8,=3,8,=4  8,=208,=8,=8,=

V=V, =v3=0,v,=1 Vi=v3=v,=0,v,=2
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(b)

>P—= OO

(l) i 8 8 It t“/2 0O
B) x(O=eMx,xO=eMP |y o | o|P' %, x()=€MP 8 (1) ; 8 P! x,,
0 0 0 1 00 0 1
1t 2/2 %76 It 00
2 01 00
x(t) = eM P 8 (1) ; t t/2 Pl xopx()=eMPlg o 1 ¢ |P X
0 0 0 1 0 0 0 1
a] "bl 0 0 a -=b 1 0 a -b 0 0 a -b 0
by a 0 0 b a 0 1 b a 0 0 b a 0
0 0 a, -by| 0 0 a -bp 0 0 A O 0 0 A
0 0 by a 0 O b a 0 0 0 A, 0 0 O
x(t) = P <Ry, Pl xg x() = et P | Rbt Rot | p
- 0 eaztqut ” € 0 Ry *or
[¢*R,, 0 e™R,, O
x(t) =P 0 Mg | Plxgx()=P 0 MM | P,
] 0 ekzt 0 ekl
A Al A1
A A N |
A , A , A
A A A
A A A
Al Al
Al Al
Al , Al R
A Al
A A
Al Al
A Al
Al , A
A Al
A A

61=3,62=5,63=54=85=0



(b)

6. (a)

(b)

©)

(d)

(e)

®

(2)

(h)

272 376 t4/24]

19

It
01 t t2/2 /6
For example, in the fifth case we have x(t) =eMP [0 0 1 t t2/2 | P! Xo-
00 O 1 t
00 0 0 1]
J = diag[l, 2, 3].
AM=LA,=A;=2,8,=2,andJ =diag[1, 2, 2].
1 00
M=LA,=A;=2,8,=1,8,=2andJ={0 2 1]
0 0 2
2 10
AM=A,=23=2,8,=1,08,=2,8;=3andJ=|0 2 1}
0 0 2
J=diag (1, 2, 3, 4].
1 0 0O
0 2 0O
M=LAi=2=2,=2,8=258=3fcr=2)andl=|q 5 5, ;
0 0 0 2
2 10
A=hy=hy=2,=2,8,=2,8,=3,8=4andas in Problem 3(2), J= | § ¢ 5
0 00

A=A, =A=2,=2,8,=1,9,=2,08;=3,8, =4 and see Problem 3(a) solution.

NOOOo
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The solutions, which follow from x(t) = eAtx, = P e P! x;:

2 00 1/72 0 O
(@ x()=ertx,=[-2 1 O|diagleterex]| 1 1 0=
1 - 1 . 3/2 2 1
e 0 0
62! _ el e2t O
et ) 2t+3€3t et _ a2l o3t
L 2 2 .

c e
0 e te?! Xo,
0 0 et
1 0 0] [t t? t%e?/2 1 00
d x®=erx,=|0 1 2| |0 &' ¥ 0 1 2|x,
00 1 0 0 et 0 0 1
2t+1t2/2



(N

(h)

21

1 0 0 0O el 0 0 0 I 0 0 0
-1 0 0 1 0 ' 0 0 1 01 0
x(t) = Al = =
XO=%=) 11 0 0l |0 o0 e 2| 100 0 1]™
0O 0 10 0 0 0 e 1 1 0 0O
e! ] 0 0
el —et e 0 0
2t _ ot 0 e 0 Xo
tez[ tCZK O e2l
10 0 O] 1 t ¢®/2 /611 0 0 0
01 -4 12 |o 1 t t2/2110 1 4 0
X(1) = eAtx, = e =
© 00 1 3/ loo 1 ¢ [ lo o 1 3]
0O 0 0 | 0 0 0 1 0 0 0 1
1t 4t+t2/2 3272+4876
5 |0 1 1 /2t
[+ XO.
0 0 1 t
0 0 0 1

(Also, see p. 122 in the appendix.)

If Q = diag [1, & €2, ..., em1], then Q' =diag [1, 1, L, ..., -~ ] and 'BQ =
€ EZ gm-]

Q'(AI+ N)Q = Al + Q'NQ where Q'NQ =

S O

0 O
LU
N 1
o L
EZ
0 O
1 0
0 1/¢
0 0
0 0

[/

0
]
0

0
0
1

m O

et ]

<
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10.

[0 ¢ 0 0O 0]
0 0 ¢ 0
0 0 0 ¢ 0
= ¢N.
0O 0 0 0 €
0 0 0 O ]

The eigenvalues of a nilpotent matrix are all equal to zero. (This follows from the fact that
any nilpotent matrix is linearly equivalent to a matrix with blocks of the form N¥ along the
diagonal where each Nk has the form of one of the matrices shown on the page following

the statement of the theorem in this section.)

By the corollary in this section, each coordinate of the solution x(t) of the initial value
problem (4) is a linear combination of functions of the form tke®cosbt or tke2'sinbt where
k 1s a non-negative integer and the coefficients depend on the initial conditions x,. But if
all of the eigenvalues of A have a negative real part, then a = Re(A) < 0 in these functions
and since for all a < 0 and all integers k, t< e — 0 as t —> oo (and since Icosbt] < and
Isinbtl < 1), it follows that for all x,& R® each coordinate of x(t) approaches zero as

t— oo ie., x(t) > 0ast — oo,

If the elementary blocks in the Jordan form of A have the form B = diag [A, ...,AJorB =
diag [D, ..., D} where D is a 2 x 2 matrix of the form in the theorem stated in this section,
then each coordinate in the solution x(t) of the initial value problem (4) will be a linear
combination of functions of the form eM, e cosbt or e sinbt. Furthermore, if all of the
eigenvalues of A have non-positive real pén, i.e., if A<0and a <0 in the above forms,
then each of the coordinates of x(t) are bounded by constants (depending on x,€ R") for
all t > 0 and therefore for each x,€ R®, there exists a positive constant M such that Ix(Ol <

Mforallt=20.



11.

12.

(a)

(b)

(c)

(d)

(e)

()
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Example 4 in Section 1.7 has [A| = I and yet the functions tcost and tsint are not bounded

as t = oo (or as t — —~o0). In particular, the solution with x, = (1, 0, 0, 0)T has [x(t)l =

V1+t24sin2t+tsin2t > ]t - 1| and therefore |x(t)| — o0 as t — o°. Also, note that any
solution of Example 4 in Section 1.7 with x,€ Span {(0, 0, 1, 0)T, (0, 0, 0, 1)T} remains

bounded for all te R.

Since this problem is closely related to Problem 5 in Set 9, we shall use the notation and
theorems of the next section and do both of these problems at the same time; the corollary
in this section tells us that the components of x(t) are linear combinations of functions of

the form tkeatcosbt or tkeatsinbt withA=a+iband0<k<n-1.
This case occurs iff x € E* ~ {0}.
This case occurs iff x,€ E" ~ {0}.

This case occurs if x,€ E° ~ {0} and A is semisimple. (It may also occur if x,€ E® ~ {0}
even if A is not semisimple as in Example 4 in Section 1.7.) That [x(t)| = m follows from
the fact that x(t) is a periodic solution which does not intersect the critical point at the

origin.
This case occurs if ES # {0}, E" # {0} and x,€ E* @ E* ® E° ~ (E* U E* U E°). (It may
also occur for certain x,€ E° ~ {0} as in Example 4 in Section 1.7; cf. Problem 11 above.)

This case occurs if E* # {0}, E° # {0} and x,€ E* @ E° ~ (E" U E°).

This case occurs if ES # {0}, E° # {0} and x,€ E* @ E°® ~ (E* U E°).
Furthermore, these are the only possible types of behavior that can occur as t — o0

according to the corollary in this section.
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PROBLEM SET 1.9

1. (@) E®=Span {(0, )T}, E¥ = Span {(1, 0)T}, E® = {0}.
(b) ES=E"={0},E°=R2
() E*=E°={0},E"=
(d) E°=Span {(1,0)T}, E* = Span {(1,-1)T}, E° = {0}.
(e, ) E* = Span {(1 -1)T}, E* = Span {(1, 0)T}, E° = {0}.
() E®=Span {(0, )T}, E" = {0}, E® = Span {(1, 0)T}.
(h) ES=E"={0}, E=R2
(i) ES=RZ ES=E°={0}.

The flow e?!is hyperbolic exactly when E¢ = {0}.

2. (a) E*=Span {(1,0,0)T, (0, 1,07}, E* = Span {(0, 0, 1)T}, E° = {0}.
(b) ES=Span {(0,0, DT}, E¥ = {0}, E° = Span {(1, 0, )T, (0, 1, 0)T}.
(c) ES=Span {(1,0,0)T, (0,0, DT}, E* = Span {1, -1, 0)T}, E¢ = {0}.
(d) ES=Span {(1,-1,0)T, (0,0, DT}, E¥ = Span {(1, 0, 0)T}, E° = {0}.

The flow is hyperbolic in (a, c, d).

3. A=#2i, A, =6, w,=u, +iv, = (10, 0, -3)T +i(0, 10, -1)T, v, = (0, 0, )T

ES = {0}, E" = Span {(0, 0, )T}, E® = Span {(0, 10, -1)T, (10, 0, -3)T}.

{ 0 10 0 cos2t -—sin2t O 01 0
x(t)—— 0 O| |sin2t cos2t O 1 0 O0jx,=
—1 -3 1 0 0 e 13 1 1
| 10cos2t 10sin2t 0
T —10sin2t 10cos2t 0 |x,.

10 6t

sin2t —3cos2t +3e®  —cos2t —3sin2t +e® e

For x, = (0, 0, c)Te EY, x(t) = (0, 0, e%'c)Te EY; for X, € ES, ie., forx, =
(10a, 10b, =3a — b)T, x(t) = (10(acos2t + bsin2t), 10(bcos2t — asin2t),

—3(acos2t + bsin2t) — (bcos2t — asin2t))T € EF; and for X, =0€ E5, x(1) = 0€ ES.
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4. (a) E*=Span {(1,0,0)T, (0, 1,07}, E* = Span {(0, 2, )T}, E° = {0}.

(b) ES=E°={0}, E"=R3.

See Problem 12 in Set 8.

If L : ax; + bx, = 0 is an invariant line for the system (1), then for x,€ L; eA' x,€ L for
all te R. But x4 = (x,, x,)T€ L and x, # 0 implies that x, = k,(-b, a)T with k; # 0. And
then eAt x € L for all te R implies that for all te R et k,(-b, a)T = k,(-b, a)T, and in
particular that efv = kv withk = kzlkl and v = (-b, a)T. As in Section 1.5, if (1) has an
invariant line then A = PBP-! and either B = [g 3:] orB= [g i:| In the first case, if
A # W it follows that either k = e* and P-v = (1, 0)T is an eigenvector of B, i.e., vis an
eigenvector of A, or k = e¥ and P~y = (0, 1)T is an eigenvector of B, i.e., vis an
eigenvector of A. Also, in the first case if A = , then any vector ve R? is an eigenvector
of A and, in particular, v = (-b, a)T is an eigenvector of A. In the second case k = ¢* and
P-ly = (1, 0)T is an eigenvector of B, i.e., v is an eigenvector of A and we are done. (The
converse of Problem 6, that if v = (v,, v,)T is an eigenvector of A, then v,x, — v;x, =0 is

an invariant line of (1) follows immediately from Problem 6 in Set 3.)

PROBLEM SET 1.10

1.

Let ®(t) be a fundamental matrix solution of (2) and let x(t) = D(t)c(t). Then ¢(0) =
@-1(0)x, and x(t) = d(D)e(t) + P()E () = AD()e(t) + DAL while Ax(t) + b(t) =
A®(t)e(t) + b(t). It then follows from (1) that D())é(t) = b(t), i.e., that ¢(t) = ¢(0) +
L;CD"(T)b(r)dt = O-1(0)x, + j;cb“(r)b(r)dr. Thus x(t) = D()c(t) = DE)-1(0)x, +

d(1) L;@’l(‘c) b(t)dt which is equation (3).



AM=1L2A=-1,v,=(1,0)7, v,=(1,-2)T and a fundamental matrix ®(t) with (0) =11is

1 1 e 0 1 1/2 t t -t
given by @(t) = eAt = = [e (e e—t )/ 2}.
0 -2 0 et |0 -1/2 0 e .

Note that &-1(t) = ®(-t) and then

e | P Pt | Y R s
e S e e B

-

2tsint  —cost

g } . — .
—2e tsint +e 2t cost  —sint

~2e 2 cost —e”

@0={

cost sint }

= -1(t) = et
] AQDE, P10 = e [_e_ztsim R,

t COST SINT 1
@-1(0) = I, and x(t) = D()P-1(0)x, + P(t) ferT[—Ze_ZI sint o2t COSJ(e—zf) dt =

o2t . 3
?(2cost +sint)—cost + 3
o0 x| -

(2cost —sint) + cost — %

D)X, + —

1 2cos?t —4sint cost + 3sint + e 2! (—5c052t +2sint cost —sin®t + 3cost)
5| sin®t + 2sint cost + Scos’t — 3cost +e—2[(—20032t — 4sint cost +3sint) .



27

2. NONLINEAR SYSTEMS: LOCAL THEORY

PROBLEM SET 2.1

1+x3 2xpx, 1 0 2 0
1. Df(x)= DO =| LD, =] |

2X] -1+ 2)(2

2x1y, +2x
D0, 1)(x, y) = [ v 2y‘J

2x1y) +2x3y, .

(Also, see p. 123 in the appendix.)

2.  (@E=R2~{0}. (bE={xeR?|x,>-1,x,>-2x #1} ~ {0}
2 0,t>0 2/4,t20
3.0 aw=1{ 50 =1 () =  x() = 0.
-t“/4,t<0 -t°/4,t<0 0,t<0
4. x()=2/+1-8t for-oo<t< 1/8 and x(t) > oo ast — 1/8~.
5. x(t) =Vt is a solution on (0, =) but not on [0, ) since x’(t) = 1/2+t is undefined at t =
0.
f 2 2
6. "F X) F "_maX'\ —Yi al —yZ)az] +[(Y2_X2)al +(X1 —yl)az] .

fal=1
Thus, if [x — y| <, then |x; — y,| < 8, |x, - y,| < 8 and therefore

[F(x) - F(y ”<r|n|a>l(8 (a]+az)2+(a,+a2)2328=€if8=8/2.

PROBLEM SET 2.2

1. (@) y =1+t u()=14+t+2+633, u5()=1+t+2+6+2t43 + /3 +t5/9 + t7/63.
Mathematical induction: u;(t) =1 +t, u,(t) = 1 + t + 2 + 0(t?) and for n = 1, assuming

U =1+t+ 2+ + 10+ 00™) we find thatu,, () =1+ f§ [1+s+s2+ - +s1+
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(b)

(c)

O(s™H]2ds =1+ [) [1+2s+3s2+ - + (ntD)sn+ O(s™*)]ds = 1+t + 2 4 -« + (™1 +

0(1*+2). QED.

By separating variables and integrating we find that x(t) = 1/(c — t) and the initial condition
implies that ¢ = 1. For x(t) = (1 — t)-!, we have that x(t) = (1 — t)-2 = x2(t) for t £ 0; and
since x(0) = 1, te (—o0, 1), and this function is a solution of the IVP in part (a) according
to Definition 1. The Taylor series for x(1) = 1/(1 =t) = 1 + t + - + t* + -, which agrees

with the first (n + 1)-terms in u (t) found in part (a).

X(1) = (3t)23 = 1/x2(t) for all t # 0; hence the function x(t) = (3t)13 is a solution of the
given differential equation on the interval (—o<, 0) or on the interval (0, o). Clearly this
function satisfies x(1/3) = 1, 1/3 €(0, o0) and hence x(t) = (3t)3 is a solution of the given

IVP on the interval (0, o) according to Definition 1.

u(t) = Xg, U, (1) = X + Axg, -, u () =T+ A + .-+ + AKk!)x, and iim u, (1) = eAtx,

absolutely and uniformly on any interval [0, t,].

By the lemma in this section, f is locally Lipschitz in E. Therefore, given x,€ E, there
exists a K, > 0 and an € > 0 such that N,(x,) CE and for all x, y € N(x,), [f(x) - f(y)| <
K, |x - y|- Next, Tou(t) is continuous at t = 0. Therefore for € > 0 there exists a § > 0
such that if |t} < & then [Tou(t) - Tou(0)| = [Tou(t) — x,| < €. Choose a > 0 such that

a < min(3, 1/K). Then for I = [-a, a], te land u, ve V = {ue C(I)l Ju—x,] <e},
[Tou®) - Tov()| = Ij(t)[f(u(s)) —f(v(s))|ds | < Jolf(u(s)) — £(¥(s)) |ds < c u - v]| where

¢ = Kya < 1. Thus, by the contraction mapping principle, there exists a unique

u(t)e Vc CJ) such that Tou(t) = u(t) for all te 1.

If x(t) is a continuous function on I that satisfies the integral equation, then x(0) = x, and
X(1) = %L; f(x(s))ds = f(x(t)) for all te I by the fundamental theorem of calculus since

f(x(1)) e C(1); and therefore x(t) is differentiable and it satisfies the initial value problem



10.(a)

(b)
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(2) for all te 1. Conversely, if x(t) is a solution of the initial value problem (2) for all te I,
then x(1) is differentiable and hence continuous on I and x(t) € E for all t€ I; therefore,
x'(t) = f(x(t)) implies that x(t) = J(:f(x(s))ds+ ¢ for all te I and clearly ¢ = x(0) = x,,

Thus, x(t) satisfies the integral equation for all te 1.

X(1) = % [£(x(t))] = DE[x()]x(t) = DE[x®]E(x(t)) € CI) by the chain rule since

x(t) € E, Df[x(t)] and f(x(t)) are continuous for all te I.

Since a continuous function on a compact set is bounded, Df is bounded on E. It then

follows immediately from Theorem 9.19 in [R] that f satisfies a Lipschitz condition on E.

Suppose that there is a constant K, > 0 such that for all x, ye E, |f(x) - f(y)[ <K, Ix - y|.
Then, given £ > 0, choose & = €/K, > 0 to get that for x, ye E with [x ~ y| <8,

|f(x) - f(y)l <K, |x - y] < K48 = &. Therefore, f is uniformly continuous on E.

Follow the hint for § < 1; and for 8 > 1, choose x = 1 and y = 1/3 to show that

fx) - f(y)|=2>1=¢

Usc the result of part (a) and Problem 9 to show that f(x) = 1/x does not satisfy a Lipschitz

condition on (0, 1).

If f is differentiable at x;, then there exists a linear transformation Df(x,) such that given
€ = 1, there is a § > 0 such that for [x — x| <8, [f(x) — f(x,) — Df(x)(x - Xp)| < |x — X,|-

Thus, for K, = 1 + ||Df(x,)|], we obtain the desired result.

PROBLEM SET 2.3

1.

The initial value problem has the solution u(t, y) = eAty. Thus, ®(t) =g—q(t, y) =ehl
y

which is the unique fundamental matrix satisfying ® = A® and ®(0) = I.



30

@ ut,y) =y, et u(t, y) = —y2 e 2+ (y2 + yy)etand uy(t, y) = (-y/3)e 2 + (Y33 + y;)et.

¢(l)=§—u(t,y)= 2y +2ye™ et 0|, ®0)=Iand
y

2 9 2 t
-—vy.e T +=vye 0 e
BEROEERERE ]

i - 0 0 -1 0 0
$(0) = |{dye ™™ -2y, —e' 0 |=Dffult, y)]P®) =|2y,e™ -1 0] D.
L%ch_2[+§Ylet 0 ¢ 2yet 0 1

(I-y)?> 0
(b) d(1) = d-cy/y? €IC. (See p. 124 in the Appendix.)
—e)iyy ¢

0
By the corollary in this section, it follows from Liouville’s Theorem that det 55 (t, xy) =
y

expj(; trace Df [u(s, x,)] ds = epr-(:V f(u(s, xg))ds since trace Df = V-f.

From vector calculus, i.e., from the hint, it follows that y = u(t, y,) is volume preserving

iff J(x) = det g_u (t, x) = 1 for all te [0, a]. But, from Problem 5, this follows iff
X
J(;va(u(s, ¥o))ds = 0 for all te [0, a] and y,€ E; and by continuity, this follows iff

V-f(x) =0 for all xe E.

PROBLEM SET 2.4
1. (@) x(1) =xy/(1 = xy); (o0, B) = (—oo, 1/x,) for x> 0 and x(t) = ec as t — (1/xy)7; (o, B) =

(—o0, o0) for x4 = 0; and (o, B) = (1/x,, @) for X, < 0 and x(t) = —o0 as t — (1/xy)*.

(b) (o, B)=(=1, 1) and x(t) = sin"'(t) > Fn/2e East = a* orast — B~ where E =

(-n/2, /2).
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() x(t) = -2 tanh(2t) and (&, B) = (—oo, ).

(d) x(t) =[x /(1 -2x21)12, (a, B) = (o0, 1/2x2) and x(t) — oo as t — (1/2x2)".

&) x,()=y/(Q -y, x)=(y,~ 1 + lUyDet + (1 +t - U/y)), (¢, B) = (-oo, /y,) and

x(t)] = eeast— (I/y,)~.
@ x; ==t x() =t+e, (a, B) = (o, 1) and [x()] = 0 ast — I-.

(b) X, =1+, %0 = -7, (a0, B) = (=1, 1), x(t) = (0, .5)Te Eas t — (-1)*, where

E={x,>0},and |x(t)] 5> 0 ast— I~

©) %, =~T+t,x,(0) = 23)1 + )"+ 1/3, (o, B) = (=1, ) and x(t) = (0, 1/3)T€ E as

t— (-1)*, where E = {x, > 0}.

Asssume [§ < oo, If}i‘l’_ x(t) does not exist, then there exists a sequence t, — [~ such that
{x(1,)} is not Cauchys; i.c., there exists an € > 0 such that for all integers N, there exist
integers n > m 2 N such that lx(tn) — x(tm)l 2 €. Thus, for N = 1, there exists integers

n, >m,; 2 I such that [x(tnl) - X(tm,)l > g; for N = n;, there exist integers n, > m, 2 n;

> m;

such that |x(tn2) - x(tmz)[ >¢g, -~ forN= n, there exist integers n i 2 1 such that

j+1

Ix(tnj) - x(tmj)| > €. Hence, the arc length of ", > i Ix(tm) - x(tn)l > E‘, Ix(tnj) - x(tmj)l 2
n=1 =1

™

€ = oo, Hence if B < oo and the arc length of ", is finite, it follows that ]iréx x(t) exists.
) =P

i
In cylindrical coordinatest = 0, 8= r2/x2=1/xand %, = 1. Thus, r = 1, X3(t) = t + 1/n
and B(t) = —(t + 1/n)"L. (o, B) = (=1/m, ©0), and lim x(t) as t — (-1/m)* does not exist (I’
spirals down toward the unit circle in the X, x, plane as t — (=1/m)*); also, I', and I"_both

have infinite arc length (cf. Problem 3).

Suppose Iirgl x(1) = x, € E. Then since E is open, there is an € > 0 such that N,,(x,)CE

and N(x,)C E. Assume that < co. Then there is a § > 0 such that for |t - B| < §,



lx(t) - xll < €. Since x(t) is continuous and [0, § — 8] is a compact set, K = {ye Rn l y=
x(1), te [0, - 81} U {ye Rn | |y - x;| <€} is a compact subset of E; furthermore,
I", € K. Thus, by Corollary 2, § is not finite; i.e., B = oo. Next, we show that f(x,) = 0.
Suppose that f(x,) # 0, say ]f(xl)l = 0> 0. Then by the continuity of f, there exists an € >0
such that |x — x| < € implies that x € E and [f(x)| > 8/2. Since x(t) — x, and X(t) = v, =
f(x,) as t — oo, it follows that for this € > 0, there exists a t; = 0 such that for all t > 1,

|[x(1) - x| < € and [x(t) - v,| <&, i.e., for all t 2 t,, |%()] = [6(x(t))| = &/2 and |v,-X (V)] =
|v|| Ii(t)l- Icos()](l)l > Iv,l 8/4 where 0,(1) is the angle between x(t) and v, and lcosB,(t)l >
1/2 for all t 2 t,. Then by the mean value theorem, for all t > t;, there is a T € (t,, t) such that
VXD = vix(tg) = (t = t)v,-x(T); thus, |v,| [x(t) — x(t)] = |v,-[x(t) = x(t)]] =

|t = to] [vi-x(D)] = |t =t} |v,] 874 and therefore |x(1) — x(ty)] = |t - t,] 8/4 > 2¢ for t > ¢, +
8¢/8. Since |x(ty)] < €, this implies that for t > t, + 8¢/8, [x(t) — x,| = |x(0) — x(tp)] -

|x(to) - x| 2 2€ - € = €, a contradiction since [x(t) - x;| < € for all t > t,. Thus, f(x,) = 0;
and x, is an equilibrium point of (1), i.e., x(t) = x, is the solution of (1) satisfying the initial

condition x(0) = x,.
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PROBLEM SET 2.5 .
1. x(1) = xo/(1 = x40). —

3. ¢, (x) = diag[e, e2t]x. N

S. b(y) = (y,e, -yle2/4 + (dy, + y)e/4) T If y, = —yf/4, then ¢ (y) = (y,e, -yle2/4)e S.

6. $ () =(y, e, —ylet +yet+ylet, —y e /3 + 3y, + y)et/3).T If y; = —y¥/3, then
d(y) = (y,e7, -yZe 2 + y,et + yle, -y Ze2/3)e S,

7. O(%0) = (3t + x2)1A. For x4 > 0, (ct, B) = (-x3/3, =) and ¢(x,) — 0€ East— (—x3/3)*.

PROBLEM SET 2.6
1. (a) (0, 0) asource, (1, 1) and (-1, 1) saddles.

(b) (4, 2) asource, (-2, -1) a sink.

(¢) (0, 0) a source, (0, -2), (xV3, 1) saddles.

(d) (0, 0, 0) a saddle.

(e) See the hint concerning the origin. For k > 1, (im i Jk—-1 Jk— 1) are sinks.

2. See Problem 1(e) regarding the nature of the equilibrium points of the Lorenz system; two
new equilibrium points bifurcate from the equilibrium point x = @ at the bifurcation value

i = 1 in a “pitchfork bifurcation.” Also, see Example 5 in Section 4.5.

3. H-'(x) = (x,, X, — X2, x5 — x3/3)T is continuous on R3 and if y = H(x), then y =
(X, % + 2%,%, %3 + 2x,%,/3)T = (=x}, =%, - X%, %3 + X¥¥/3) = (-y,, ~y,, y3)T =

Df(0)y.
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PROBLEM SET 2.7

1.

31 R -1
AM==3,2=7v,=G,-2),v,=(1, DT,P= JPl= 3
-2 1

[

.y =P'x and
2 3

y = diag [-3, 7]y + (~6¥} +y1y + ¥3, -9y} — 6y,y, - y))".

u(t, a) = (cta,, 0)T, u@(t, a) = uG)t, a) = (e*a,, —<2?/3)T, and ul(t, a) — u(t, a) =

(cay, € 2a3/3)T. Thus, S : x, =—x¥/3 and U : x, = 0.

by0)=(ciet, c2e 3+ (/3 +c)e)T, S, =43, for xe S, ¢ (x) =

(x,e,—x?¢2/3)Te S,and U : x, = 0.

u()(t, a) = (ca,, e'a,, 0)T, u@(t, a) = (ea,, e(a,, a2) ~ e 2a?, —e~2al/3)T, uG)(t, a) =
ut)(t, a) = (e, eYa, + a?) — e a2, —e#al/5 + ead(a, + a?)/2 - e M(a, + 22)Y3)T. S 1 x =
Y5(X,, Xy) where ys(a,, a)) = uy(0, a,, a,, 0) = —a¥f3 - ?a,/6 — a¥/30;ie.,S: x5 =

-x3/3 - x3x,/6 - x}/30. To find U, lett —» —tto get X; = x,, X, = X, — xJand X; =

—X; — x2. For this system u()(t, a) = u®(t, a) = (e*a,, 0, 0)T. Thus, U:x,=0,x,=0,ie,

U is the x;-axis.

x;() = ¢ e, x,(1) == Ze 2 + (¢, + e, x5(1) = ¢ fe¥/5 + (¢, + e W2 -
(cy + 2223 + (30c; + ¢ + 5¢2¢, + 10C§)€‘/30;‘]_i>1‘013 ¢(c) = 0iff 30c; + ¢t + 5c?e, + 10c3
= 0; therefore, S : x; = —x/3 — x2x,/6 — x%/30; and lim &(¢) = 0iff ¢, = ¢, = 0; therefore U

:x,=0andx, =0.

Since F e CI(E), it follows that for all € > 0, there exists a 8 > 0 such that for all £€
N;(0), |[DF(£) - DF(0)]| = ||[DF(£)]] < €. Thus, for all x, y € N;(0), [F(x) - F(y)| < |DF@)]|

|x -y]<el|x -yl
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U, ={xeS'|y>0}, hi(x,y) =%, h'x) = (—X,W)T; U,={xe S!'|y<0},
hy(x, y) = x, h5'(x) = (x, —H)T; U;= {xe S| x>0}, hyx, y) =y, 5\ (y) =
(W y)T; and U, = {xe ' | x <0}, hy(x, y) = -y, bj'(y) = (—v’r-?, y)T-
UinU, =0, U;nU, = 6 hy(U,AU,) = {ye R|0<y < 1}, hyoh:i(y) = —+/1 - y? and
Dh, oz (y) = y/y1 - y2 >0 for y€ hy(U,AUs); hy(U,AU, = {ye R | -1 <y <0},
hyoh:'(y) = 41— y2 and Dh,ehi\(y) = —y/4/1 - y? >0 for ye h(U,AU,); and it is

similarly shown that Dh-loh;’(x) >0 forxe hy(UnNU) fori=2,j=3,4 etc.

hyohi!(z, x) = (x, \;1 x2 -z )hloh“‘(x 2)=(x,-Vl-x%-2z )h,oh Wy, z)=
(Y1-y? -z ,y),h]ohg (2 )= (-y1-y* 2%, y); Dh,oh;!(z, x) =

0 1 1 0
-z —X , Dhyoh7i(x, z) = X Z ,
\/1—)&2—22 1-x%-2? \/l—xz—z2 V1-x% -22
_Z 7
Dhyohi(y,2)= | y1-y2-22 |1-y2-2% |
0

- .

Dthh;l(Z, y) = \h—y2—22 \/l_yZ_ZZ

> 0 for (z, x)€ hy(U,NU;) = {(z, x)e R? | x2+ 22 < |,

det Dh,oh7l(z, X) = r
b \/l—xz—z2
Z
z >0}, det Dhyoh?!(x, z) = ————
b \/l—xz—z2
z
z2<1,z>0},det Dhohi!(y, 2) = ——v
i \{l—yz—z2

Z
{(v,2)e R?| y2 +22< 1,2 > 0}, det Dh,oh’'(z, y) = ————— >0 for (z, y) €
™% fl_yz_zz

> 0 for (x, )€ h,(U,nU,) = {(x, z)e R?| x2

+

> 0 for (y, z)€ hy(U,nUs) =

hy(U,nUy) = {(z, y)e R?| y2 + 22 < 1, 2 > 0}, and so forth.
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PROBLEM SET 2.8

1. Let ¥;(0) = y;o: then y (1) = y g€, y,(1) = yppet + zﬁ(ez‘ —-eN/3, z(1) = zye!; Py, z) =
12 ¥, @1y, 2 = (y), ¥, — €2k 2)T, @y(y, 2) = (¥, ¥, — e 2ko(1 + e3)z22)T,
D,(y, 2) = (y,, ¥y, — e2ko(1 + €3 + e6)z2)T, ---, where k, = (€3 - 1)/3e; P (y, 2) =
(1, Y2 = 2235 Wy, 2) = 2, Hy(y, 2) = (y,, ¥, - 223, 2)T, L' H Ty, 2) =
(Y, ¥2—- 223, 2)", H(y, 2) = (y,, y, - 23, ), and H'\(y, 2) = (y,. y, + 2%/3, 2)T, E’ =
{xe R3| x,=0} and H'(E%) = {xe R?| x; = 0}; E* = {xe R3 | x, =x, =0}, and
HU(EY) = {xe R3 | x = (0, z/3, z)} = W¥(0).

2. y(t)=ypet, z,(t) = 2)9€", Zy(t) = Zypet + Y2 — e /3 + ygz,0(et - 1); Wly, 2) =
(2, 2)T, Y (y, 2) = (2, z, + ko y¥e + k,yz,/e)T, Wo(y, 2) = (z,, 2, + ko y2(1 + e3)e + k,yz,(1
+eNfe)T, Wiy, 2) = (2, 2, + kg Y2(1 + e3 + e9)/e + k,yz,(1 + e! + e2)/e)T, .-+, where k, =
(€3-1)/3etandk,=e- ;¥ (y,2) > (z,, 2, + Y3 + yz)T; D, (y, 2) =
i Hly,2) = (y, 2, 2, + Y3 + yz))", H'(y, 2) = (y, 2}, 2, - y¥#3 —yz); E* =
{xe R3| x, =x; =0}, H'(E) = {xe R3| x, =0, x; = —x¥/3}; E* = {xe R3| x, =0},

HYE" = {xe R3| x, = 0}.

3.y =yet v () = yet+ydet —e ), z(t) = zpet + y Het - e /3 W(y, 2) =
2, W\ (y,2) =z + kgye, Yoy, ) =z + kgyA1 + ed)e, ¥s(y, 2) =z + koy? (1 + €3 +
eS)fe, -+, where kg = (€2 — 1)/3e?, and ¥\ (y, 2) = z + y¥/3; @(y, 2) = (y,, ¥,)",
D\(y, 2) = (y), Y2 + kieyDT, @x(y, 2) = (y, y2 + kieyl(1 + €))7, Dy(y, 2) =
(yi y, +kjeyX (1 + et + €))7, -+, where k; = (e — 1)/e? and @, (y, 2) — (y,, ¥, + yIT;
H(y, z) = (yp, Yo + Y2 2+ ¥23), H'(y, 2) = (y;, y, - Y% z — y2/3); Es = {xe R3| x; = 0},
H'(ES) = {xe R3| x3 = x¥3}; E* = {xe R3| x, =x, =0}, H'(E") =

{xe R3| x,=x,=0}.
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Y.(2) = (z), 2, + mz)T — (zyy°)- If H(z) satisfies (9), then H(e?z,, ez, +e*z?) =
diag[e?, e*]H(z); therefore, Hy(e?z), 4z, + e422) = e*H, (z,, z,) and e*9H,/dz,(z,, 2,) =
0H/0z,(e?z,, €2, + e422)-c2 + OH,/0z,(e22;, ¢4z, + e*22)-2e*z,; setting z, =2, = 0

If there exists a C* function H samtymg (6) “then
implies that 0H,/dz,(0, 0) = 0/(1. second differentiation with respect to z, yields
et 02 Hy/92%(0, 0) = e2[02H /9z2-¢? + 02 H,/0z, 0z, 2ez,] + 2e*z| [0*H,/0z,0z,¢? +
0*H,/0z2-2¢4z2,] + 2¢* 9H,/0z,, the right-hand side being evaluated at (e?z,, e*z, + e*Z2);
setting z, = 2, = 0 then implies that 0> H,/0z2(0, 0) = 9> H,/0z%(0, 0) + 20H,/9z,(0, 0), i.e.,
that dH,/0z,(0, 0) = 0. Thus J(z) = det DH(z) = 0 at z = 0. Finally, if H! exists, then
HoH'(z) = z and then by the chain rule, if H! were differentiable at z = 0 we would
get DH(H'(z))-DH"!(z) = I which would imply that 0 = det DH(0)- DH'(0) =1, a

contradiction. [ This contradlcts artman’s Theorem, p. 123. Therefore. there does not
exist a C* function H satisfying (9).}

PROBLEM SET 2.9

1.

2. (a)
(b)
(©)

4. (a)

(b)
()

(a, c, d) all unstable, (b) (4, 2) is unstable and (-2, —1) is asymptotically stable, (¢) 0 is

asymptotically stable for k<1 and fork > 1, 0 is unstable and (zvk - 1 , vk - 1,
k — 1) are asymptotically stable.
(1, 0) is an unstable proper node and (-1, 0) is an unstable saddle.

(-1, -1) and (2, 2) are unstable saddles, (2, 0) is an asymptotically stable proper node
and (V2 , 0) is an unstable proper node.

(1, 0) is an unstable saddle and (0, 2) is an asymptotically stable node.

V(x) < 0 for x # 0 so 0 is asymptotically stable.
V(x) > 0 for x # 0 so 0 is unstable.

V(x) = 0 for all xe R2 50 0 is a stable equilibrium point which is not asymptotically

stable and solution curves lie on circles centered at the origin.
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5. (a)

(b)

(c)

(d)

For V(x) = x? + x2, (x) < 0 for x # 0; therefore, 0 is‘asymptotically stable.

For V(x) = x3 + x, it follows that on any given straight line x, = mx, with Im -2 | <v3,

Wx) <0 for all sufficiently small |x| # 0 and on any given straight line x, = mx, with

|m - 2} >3, V(x) > 0 for all sufficiently small [x| # 0; i.e., 0 is a saddle and is unstable.
This follows more easily from the Hartman-Grobman theorem since the eigenvalues of the

linear part A = 1 + V3. (Also, see p. 126 in the appendix.)

For V(x) = x? + 2x2/3, it follows that V(x) < 0 for 0 < x| < 1; therefore, 0 is asymptotically
stable. This also follows from the Hartman-Grobman theorem since the eigenvalues of the

linear part A = -2 + iV5.

For V(x) = (x; — X, — 4)* - exp[(x,X,#+ X; = X, + 12) / (4 + x, — x)], V(x) = 0 and thercfore
0 is a center. This Liapunov function can be found by making the rotation of coordinates u =
X, + X5, V = X; — X, to get du/dv = (u/2 + v¥/2 + 4v)/(uv — 4u); and then letting w = u? to get
dw/dv = (w + 8v + v2) / (v — 4), a linear differential equation. The solution of this linear
differential equation then yields the Liapunov function V(x,, x,). Also, note that the u, v

system is symmetric with respect to the v-axis; cf. Theorem 6 in Section 2.10.

Let x, = x and X, = —g(x,). Then X+ f(x) x + g(x) = 0 is equivalent to X; = —g(x,) - f(x,)x,
X, — F'(x,)x, since F'(x,) = f(x,). And this last equation is (up to an arbitrary constant)
equivalent to X; = x, — F(x,). Let V(x) = x2/2 + G(x,). Then V(x) > 0 forx # 0 if G(x) >0
and V(x) = —g(x,) F(x,) < 0 if g(x) F(x) > 0. And since g(0) = 0, we have V (x) € 0 with
V (x) = 0 on the x,-axis. Thus, Theorem 3 implies that 0 is stable. To show that 0 is
asymptotically stable, we may apply LaSalle’s Invariance Principle: Let K be a bounded and
positively invariant region in R and suppose that V(x) is defined on K and that V(x)<0in
K. Let L be the subset of K where V (x) =0 and let M be the largest invariant subset of L.
Then the w-limit set of every orbit starting in K is in M and the orbit approaches M as t = c.
Cf. [67], p. 30. In this problem, we can let K = N(0), L = Kn{x; =0} and then M = {0)
since orbits are transverse to the x,-axis for x, # 0. Thus, by the above principle, 0 is

asymptotically stable.

F(x) = £(x3 - 3x)/3, G(x) = x¥2 > 0 for x # 0, and g(x) F(x) = ex2(x2-3)/3 <0 fore >0
and 0 < |x| < V3; therefore, for € > 0 the origin is an unstable equilibrium point of the van der

Pol equation (using LaSalle’s Invariance Principle).
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PROBLEM SET 2.10

1. (@) t=r, 0=1;the origin is an unstable focus.
(b) T=ry?, 0= 1; the origin is an unstable focus.

() T=(x6+yS)/r >0 and 6= 1+ xy(y* - x*) / 12 > 0 for sufficiently small r > O; the origin is

an unstable focus.

3. Let F(x) = f(x) — Df(0)x. Then according to the definition of differentiability, Definition

1 in Section 2.1, [F(x)| / |x| = 0 as || = 0, i.e., as x — 0.

4. (a) (0,0)is an unstable proper node, (1, 1) and (-1, 1) are topological saddles.
(b) (4, 2)is an unstable node and (-2, —1) is a stable focus.
(c) (0, 0)is an unstable proper node and (0, -2), (+V3, 1) are topological saddles.

(d) (0, 1)is a center since the system is symmetric with respect to the y-axis and (0, 1) is a

topological saddle.

(e) (0, £1) are centers since the system is Hamiltonian and also since it is symmetric with

respect to the y-axis and (1, 0) are topological saddles.

(f) (1, 0)1is an unstable node and (-1, 0) is a topological saddle.

PROBLEM SET 2.11

1. In Theorem 2, n = m = 1 is an odd integer, b, =4 # 0 and A = § > 0; therefore the system
has a critical point with an elliptic domain at the origin. For V(x) = y — x¥/(2 £ V2) we
have V(x) = 0 on y = x2/(2 + ¥2); thus y = x2/(2 + 2) are invariant curves of the system.

This system is best understood by drawing its global phase portrait; cf. Section 3.1 | Prob.5"

2. (a, b, e, f) 0 is a saddle-node. (c) 0 is a node (and it is unstable). (d) 0 is a topological
saddle.



40

3. (a, b) 0 is a cusp. (c) 0 is a saddle-node. (d) 0 is a focus or center according to Theorem
2 and using V(x) = x* + 2y2 with V(x) = —4x2y2, it is a stable focus. (e) 0 is a topological
saddle. (f) 0 is a focus or center according to Theorem 2; use the coordinate ransformation

€ = x,n =x +Yy to put the system into the normal form (3). Also, it can be shown that 0 is

a stable focus.

PROBLEM SET 2.12
1. Substituting h(x) = a, x2 + a; x>+ --- into (5) yields a, = 0 and na, + a,, = O for integer
n 2 2; and this implies thata; = a, = --- = 0, i.e., that h(x) = 0. For the function h(x, c)
given in this problem, we have h'(x, ¢) = 0 for x > 0 and h’(x, ¢) = —ceV*/x2 for x < 0.
Substitution into equation (5) yields 0 = O for
x 2 0 and —ce*/x?[x2] — (—ce¥*) = 0 for x < 0; =2
i.e., h(x, c) satisfies equation (5) for all xe R. C-1

Also, since h(x, c) is (real) analytic at each point C=0

X # 0 with h®Xx, ¢) — 0 as x — 0 and since 0 X
-C=1
hM(0,c)=0foralln=1,2, :--, it follows that
-C=2
h(x, ¢) € C=(R).
2. Diagonalization yields a system of the form x= (X + y)2 -y(Xx + y), y=-y - a(x + y)2 +

y(x + y); then from (5), h(x) = —0x2 + ox3 + --- and on W¢(0), x= ax2? + 0(x3); so for

o # 0, 0 is a saddle-node. For a = 0, h(x) = 0 and the x-axis is a line of critical points.

3. The linear part of the system is already in diagonal form and from (5), h(x) = -x2 - 2x4 + ---;

on W¢(0), x=-x3 + --- and the origin is a stable node.

4. From (5) we have for h(x) = a,x2 + a;x + - that (2a,x + 3a,x2 + 4a,x3 + ) (-x3) + (a,x?
+a3x3 + a,x4 + a;x5 + --) — x2 = 0 identically in x for |x| < 8. Therefore setting the
coefficients of like powers of x equal to zero yields a, = 1, a; =0, 2a, = a,,a;,=0,4a, =

ag, a;,=0,,ie,a,=1,a,=2a,=2,a,=4a, =24, -, a,, = 2"n! and a,,,, = 0. Thus,



5. ()
(b)
(c)

6.

7.
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h(x) = iZ"n! x21+2 diverges except at x = 0 and this polynomial system has no analytic
center r:;zifold. However, since X = —x3 < 0 for x > 0 and x = —x3 > 0 for x < 0, any
trajectory y*(t) with y*(0) = (x*(0)), y*(0)) and x*(0) > 0 or x-(0) < 0 can be represented
by a function y = f*(x) which is analytic for x > 0 or x < 0 respectively. And since W<¢(0)
is invariant under the flow, it follows from Theorem 1 that given f+(x), there exists an

f-(x) such that the function h(x) = {f*(x) for x > 0, 0 for x = 0, f~(x) for x < 0} represents

a C= center manifold, W<(0), and x = —x3 on W¢(0); thus, the origin is a stable node.

From (5), h(x) = =x? = x2 + ---; on We(0), X, = -x, + O([x[?), X, = x; + O(|x[*) and the

origin is topologically a stable focus on W¢(0) which follows using the Liapunov function
V(x) = (x2 + x2)/2 or by showing that r = —13 + 0(r*) and 0= 1 + O(r) for the system on

W<(0); hence, 0 is a symptotically stable critical point.
There 1s a saddle-node at the origin on W¢(0).

There is a critical point with two hyperbolic sectors at the origin on W¢(0).

Let h(x) = a,x2 4+ a;x3 + ---; then from (5), h(x) = dx? + (ed - 2ad)x3 + --- and on W¢(0),
x= ax? + bdx3 + 0(x#). Thus, for a # 0, the origin is a saddle-node; for a =0 and bd > 0,

the origin is a saddle; for a =0 and bd < 0, the origin is a stable node; fora=b =0 and
cd # 0, x= cd?x* + 0(x5) on W¢(0) and the origin is a saddle-node. If a =d =0, the

x-axis consists of critical points.

h(x) = x2 + 0(]x?); on W<(0), %, = -x> = x3 + O(|x}*); X, = x? - x3 + O(|x*) and the origin
is topologically a stable focus on W<(0) which follows using the Liapunov function

V(x) = (x* + x§)/4; hence 0 is an asymptotically stable critical point.
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PROBLEM SET 2.13

[

L;[h,(x)] = (byox2 + (by; — 2a,0)xy + (bgy — a,,)y?, —2byg xy — by, ¥2)T and for
a9, = 4y, = 0, 2y = (b + /2, by, = —¢, by, = f and byg = ~a, Lj[h,(x)] + F,(x) =

(0, dx2 + (e + 2a)xy)".

2. Since Ly[hy(x)] = byp(x3, ~3x2y)T + b,,(x2y, =2xy2)T + b (xy2, —y3)T + (by; — a;,) (¥3, 0)T
— 3a50(x2y, 0)T - 2a,,(xy2, 0)T, the result for L,(H;) follows; and then it is clear that H, =

L,(H,)®G,.

3. As in the paragraph preceding Remark 1, for F, = fz =0, the system x= Jx + F5(x) +
O(|x|*) can be reduced, by letting x = y + hy(y), to a system of the form y = Jy + F 4(y) +
O(|x|*) with F ;€ G;, i.e., to a system of the form =y + O(|x|*), ¥= ax3 + bx2y + O(|x|*)
fora,be R. And letting y + O(|x|*) — y, we get a system of the form (3) in Section 2.11;
according to Theorem 2 in 2.11, for a > 0 there is a topological saddle at the origin and for

a < 0 there is a focus or a center at the origin.

4. Similar to Problem 3, we get a system of the form (3)in 2.11: x = y, y=ax* + bx3y +

O([x|5) which, for a # 0, has a cusp at the origin.

S. For x; = y, and x, = y, — ¥, the given system reduces to x=y — x> + xy2 — y3 + O(|x[*),
y=x2+3x3 + x2y + O(|x}*) and then for x = (y;, y, + Y’ —y,¥2 + y2)Tory =
(X} X, = X3+ x;x2 = x3)T, this system reduces to y; =y, + 0(|x[*); y, =

y2 + 3y3 - 2y2y, + O(jx|*).
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PROBLEM SET 2.14

1. (a) H(x,y)=a;, Xy +a;;y¥2 —a,,x3/2 + Ax?y — Bxy? + Cy¥3 - Dx3/3. (b) If x = f(x) is
Hamiltonian, then f = (H,, - H,) for x€ E and thercfore V-f = 9H,/dx — 0H,/dy = 0 for
x€ E. On the other hand, if V-f =0, i.e., if df /dx = —9f,/dy in a simply connected
region E, then the first-order differential equation —f,dx + f,;dy = 0 is exact. (See, for
cxample, Theorem 2.8.1 in W.E. Boyce and R.C. Di Pima, “Elementary Differential

Equations and Boundary Value Problems,” J. Wiley, NY, 1997.) Thus, there exists a
function He CXE) such that dH = H,dx + H,dy = -f,dx + {;dy and therefore the system

x=f, = H,, y=f, = -H, is Hamiltonian on E.

2. H(x, y) = T(y) + U(x) = y2/2 + x2/2 — x3/3; U(x) has a strict local minimum at x =0 and a
strict local maximum at x = 1; and therefore the Hamiltonian system has a center at (0, 0)

and a saddle at (1, 0).
3. H(x, y) = y¥/2 + x/2 — x4/4; there is a center at (0, 0) and saddles at (x1, 0).

(a) The Hamiltonian system has a center and the gradient system has a stable node at (0, 0).

19/

(c) The Hamiltonian and gradient systems have saddles at (nmt, 0) forne Z.

(e) The Hamiltonian system has a center and the gradient system has a stable node at (-4/3, -2/3).

6. (a) The surfaces V(x, y, z) = constant are paraboloids with their vertices on the z-axis and
trajectories, other than the z-axis, approach the positive z-axis asymptotically as t — oo,

(b) The surfaces V(x, y, z) = constant are concentric ellipsoids and the origin is a stable,

three-dimensional node.

(¢) Each of the surfaces V(x, y, z) = constant has a strict local maximum at the origin, a strict
local minimum at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0, 4/3, 0); the gradient system
has a source at the origin, a sink at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0, 4/3, 0).
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11.

12.

Since x, is a strict local minimum of V(x), there is a 8 > 0 such that V(x) — V(x,) > 0 for
0 < |x] <& and d/dt[ V(x) - V(x,)] = [0V/0x]-x = —[(aV/x,)? + -+ + (9V/9x,)?] < O for
0<|x|<é.

First of all (x,, 0) is a critical point of the Newtonian system (3) iff U’(xy) = 0. Since

det Df(x,, 0) = U”(x,) and trace Df(x,, 0) = 0, it follows that (x,, 0) is a saddle of the
Newtonian system (3) if U”(x,) <0, i.e., if x4 is a strict local maximum of U(x); and
since (3) is symmetric with respect to the x-axis, it follows that (x,, 0) is a center of the
Newtonian system (3) if U”(x,) > 0, i.e., if X is a strict local minimum of U(x); finally, if
X, is a horizontal inflection point of U(x), then U’(x,) = 0 and the first nonvanishing
derivative of U(x) at x,, is odd; therefore, it follows from Theorem 3 in Section 2.11 that

(x4, 0) 15 a cusp for the Newtonian system (3).

Let x, =X, X,=y,y, =xand y, = y. The two-body problem is a Hamiltonian system
with H(x, X5, y,, ¥5) = (¥ + y2)/2 - (x2 + x2)""2. The gradient system orthogonal to this
system is X; = =X, /(x2 + x2P2, X, = x,/(x2 + x)¥2, y, = -y}, ¥, = ~y,.

By Problem 1(b), if x= f(x) is Hamiltonian, then V-f =0 in E (even if E is not simply

connected) and then by Problem 6 in Scction 2.3, the flow defined by this system is area

preserving.
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3. NONLINEAR SYSTEMS: GLOBAL THEORY

PROBLEM SET 3.1

6. (a)

$(t, x) =eAtx = X.

The differential equation X = x2/(1 + x2) is separable; its solution is x(t) =
(t +tety(t+e)? + 4}/2; for x4 # 0, x(0) = x,if ¢ = Xy — 1/x, and the * sign is chosen as

X/ |x,| and this yields the result in Example 1; for x, = 0 the solution is x(t) = 0.

If f(x) # 0 at x € E, then DIf(x)| = |f(x)| f'(x)/f(x); and this then yields DF(x) =
/(1 + |f(x)|)2; if f(xo) = 0 at x,€ E, then DF(x) = Lir{)l [F(xo, + h) — F(xy)}/h =
lim f(xg + h)/(1 + [{(xo + )})/h = {'(x) and then lim DF(x) = lim £'(x)/(1 + [{(x)[)? = £'(xo)

since "€ C(E) and since f(x,) = 0; hence Fe C!(E).

f(x) = =2x/(1 + x2)2 and f'(x) assumes its maximum/minimum at x = ¥ 1/V3 ; thus |F(x)| <
|[f'(1/N3 )| = 3v3 ; then by the mean value theorem |f(x) — f(y)| < 3V3 |x - y| for x, ye R,
The differential equation X = 1/(1 + x2) is separable and its solution satisfying x(0) = x, is

given by the solution of the cubic x3 + 3x — (3t + kg) = 0 with k; = x3 + 3x,; the solution of

173 1/3
this cubic is x(t) = {[(m +ko)+ \,’(3t +ko) 4} + [(St +ko)—y(3t+ko)* + 4] }/2”3

and x(t) D £ ast — + oo,

If X, is an equilibrium point of (1) then ¢ (x;) = X, for all t€ R; and since 1(x,, t) maps

R onto R, it follows that }. (H(xy)) = H(¢ (x,)) = H(x,) for all 1€ R; i.e., H(xy) is an

equilibrium point of (2). Alternatively, one may follow the hint given in Problem 6.



46

(b) If ¢ (x,) is a periodic solution of (1) with period t,, then ¢t0(x0) = X, and therefore if
Ty = T(X, tp), it follows that s (H(xp)) = H((I)lo(xo)) = Hi(xy), i.e., P (H(xy)) is a

periodic solution of (2) of period 1.

(Cf. [Wi], p. 25-26.) Differentiating (*) wih respect to t yields DH(é(x))d¢ (x)/dt =
Jt(x, )/ot-0u (H(x))/0t which at t = 0 yields DH(X)f(x) = d1(x, 0)/dt-g(H(x)). Then
differentiating this last equation with respect to x yields D2H(x)f(x) + DH(x)Df(x) =

d1(x, 0)/ot-Dg(H(x))DH(x) + d21(x, 0)/dxdt-g(H(x)). And then setting X = X,, this
yields ADf(x)A~! = 91(x,, 0)/0t-Dg(H(x,)). Thus, the eigenvalues of Df(x,) and the

eigenvalues of Dg(H(x,)) are related by the positive constant k, = 9T(x,, 0)/0t.

ForF(x,y)=(y, ix +y -y and pu # 0, F'(x, y) = (y — x + x3, ux)/;

0 1 (—l+3x2)/u 1/
are continuous; and an

DF(x, y) = { j| and DF(x, y) =

po1-3y°
easy computation yiclds F(V’H, \/ﬁ) = (\/ﬁ, \/E)

I 0

PROBLEM SET 3.2

1.

2.

There is a saddle at (0, 0) and stable nodes at (x1, 0). [-1, 1] is an attracting set, but it is
not an attractor since it does not contain a dense orbit. (0, 1] is not an attractor since it s
not closed. [1, o) is an attractor. (0, o), [0, o=} and (-1, o) are not attracting sets. [-1,

oo) and (—oo, o) are attracting sets.

(a) By the theorem of Hurwitz given in this problem, for any irrational number ¢ and any

integer N > 0, there are positive integers m, n such that n > N and Iom - m| < 1/n. Further-

more, for any € > 0, if we choose N > 2nt/e, then [2tan — 2nm| < 2n/n < € and then for a =

exp[2mia], |a — 1} < €. Let 8 = 2ntnot — 2nm; then 0 < |0] < € and there exists an integer K
such that K[| < 2m < (K + 1)|8]. Thus, for any point a, on the unit circle C, there is an

integer j€ {1, ---, K} such that [a — a;| < €; therefore {ak|k =1, 2, ---} is dense in C.
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(c)

(d)
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The flow ¢ (w, z) = (e2ritw, e2mviz); it follows that ¢ (w, z) = (e2Tinw, e2runilz) = (w, anz).

Let x, = (w, zy)€ T2 Given any point (w,, z,) € T?, let t, = argw, — argw,. Then
c?miow, = w and for 7, = e2ndizy, b, (wy, Z) = (W), Z) since ¢ (W, Zg) =

(e2mitwy, e2ritz ) Then for any z, € C and €, = I/n, there is a positive integer k, > n such
that | Z, exp[2naik,] - z, | < 1/n; this follows from part (a) with a, = z,/Z, and € = 1/n.

Thus, for any point (w, z,)€ T?, if we let t, =ty + Kk, then t, — oo and ¢ _(w, 2g) =

n?’

i, 0 (W, 20) = Py, (W), Zp) > (wy, ;) as n — oo; therefore, (wy, 2} € w(Ix,); 1€,

o(Ix,) = T2. Similarly, it is shown that o(Ty,) = T2.

Any trajectory of this system is a solution of the Hamiltonian system with two degrees of
freedom x = -2mQly, y= 2n0x; u= —27v, v = 27nu; with H(x) = -nfo(x2 + y2) +

(u? + v2)]. Thus, trajectories lie on the ellipsoidal surfaces E, = {xe R¢ | a(x? +y?) +
(u2 +v2?) =k2}. For a given ke R and xq€ E,, it follows from part (c) that w(T,) is the
torus T2 = {x€ R#| u2 + v2=h?, x2 . y2=(k2-h)/a} =C, x C, withh’' =

\,(kz - hz) / ¢ and, as in Section 3.6, for a given k€ R, we can project from the north
pole of the surface E, to obtain the projection of the tori "lfk onto R3; cf. Figure 5 in

Section 3.6.

Reflexive: I ~ I since ¢ (X)) = ¢4 (X)) for t; = 0. Symmetric: If Ty ~ I then ¢ (x;,) =
& 41,(X)) which is equivalent to ¢, (x;) = ¢ (x)), i.e,, [ ~ I Transitive: If I} ~ T, and
I3 ~ T3 then (X)) = by, (X)) and b (X3) = b1y (X) = Doy (X)), thus T ~ T, This
equivalence relation partitions the set of solution curves of (1) into equivalence classes

called trajectories.

w(I") cannot consist of one limit orbit and two equilibrium points; in case (d) there are two
different topological types given by the top two figures in Figure 4 in Section 3.3.

(Also, see p. 129 in the appendix).



48

6. (a)

(b)

(©)

(d)

Replacing x by —x and y by —y does not change the system.

Forx =y =0,x=0, and y= 0, so the z-axis is invariant and consists of three

trajectorics: the origin together with the positive and negative z-axes.

Substituting the coordinates for the equilibrium points into the right-hand side of the

-—

system gives zero; for ¢ > 0 and p > 1, the linear part at the origin has two negative

eigenvalues and one positive eigenvalue.

V(x) = -20[(px — y)? + Bz?] < 0 except on the line z =0, y = px; thus, for0<p < 1,0

1s globally asymptotically stable.

PROBLEM SET 3.3

1. (a)

(b)

(b)

P=r(l —12) sin[l/\[l—rzl],é= landi=0ifr= Vli(l/nznz).’l‘his defines a

sequence of limit cycles I“ﬁwhich approach the cycle I on r = 1; the limit cycles I‘:”: are

stable for n odd and unstable for n even.

Similarly, 0 = 1, r=r(1 - r2) sin[1/(1 =12)] = 0 if r = /1~ (1/ n7), n a nonzero integer;
I, 1s stable for n odd and positive or n even and negative and I, is unstable for n even and

positive or odd and negative.

O6=landr=r(1-r)2=0ifr=1landr>0forr#0or 1.

From the example in Section 1.5 we have a one-parameter family of cycles lying on the

ellipses x(t) = acos2t, y(t) = (0/2) sin2t with parameter a.€ (0, e) and period T, = 7.

t=0and 6=r>0forr>0; by substitution into the system of differential equations,

x(1) = ocosat, y(t) = osinat is a periodic solution with period T, = 2n/a for ae (0, ).



4-6.

7. (a)
(b)

8.

9.
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Use the result of Problem 1 in Section 2.14 to show that the system is Hamiltonian and
then use Theorem 2 in Section 2.14 to determine which critical points are saddles and

which are centers. (Also, see p. 130 in the appendix.)

0=1,1= (1 ~ 12 (4 - r2) has two limit cycles T : v,(t) = (cost, sint)T and I, : v (t) =
(2cost, 2sint)™; T} is stable and T, is unstable; 0, T}, T, are the only limiT sets of this

system.

0=1,1=r(l —r2—zg)(4—r2—z(2])forz:zo;thcspheress, :r2+z2=1and

S, : r2 +z2 =4 are invariant; there is no attracting set; cf. Example 2 in Section 3.2.

O=1,fr=r(1-r2) (4 - 12), z(t) = zoe"; I, and T}, are unstable, W¥(I)) = {x€ R? | z2=0,
0<r<2}, W) ={xeR3¥|r=1}, W) =T, Wi(I,) = {xe R3| I <r<eo}. The

unit cylinder is the only attracting set for this system.

I, is a stable periodic orbit W¥(I,) = {x€ R3 l 1 <r<oo}; the origin, I, the z-axis and
the cylinder r = 2 are attracting sets for this system; and the origin and [, are the only

attractors for this system.

PROBLEM SET 3.4

1.

Substitution into the system of differential equations shows that y(t) is a periodic solution.
Since V-f(v(1)) = -2 (since 1 — x2/4 — y2 =0 on ¥(1)), it follows from the corollary to

Theorem 2 that I"is a stable limit cycle.

Substitution shows that y(t) is a periodic solution. In cylindrical coordinates r = r(1 - r2),
0= 1 and 2=z, which has the solution ¢(ry, 8y, zg) = ([1 + (1/22 = D)e-2]72, t + 0,
ze")T; thus P(ry, zg) = ([1 + (/12 — 1)e*"]712, 2,e2)T, DP(ry, 7o) = diag[c*‘"‘ra3 .

[1+ (1/r = 1)en]22, 62“] and DP(1, 0) = diag [e~7, e2n] = ¢27B where B = diag [-2, 1].
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3. (@)
(b)

4.

5.

For x, = (xq, 0), $(xg) = et Ry, X, = ex(x,cosbt, x,sinbt)T; at t = 21/|b|, we get P(x,) =
Xgexp [2ma/|b|]; for d(x) = P(x) - x = x exp [2na/[b]] — x, d"(0) = d'(x) = exp [27m/’]b|] -1

and clearly d(-x) = —d(x).

P(s) = [1 + (1/s2— 1)e=#7]"'2 for s # 0 and P(0) = 0; and this is equivalent to P(s) =
s[s2+ (1 — s?)e=*7]~"2 which is (real) analytic for all s€ R since s + (1 —s?)e4"* =
e 4+ (1 —e~*%)s2> 0 for all s€ R; since P'(s) = e+ [s2(1 — e~ ") + e*5]-¥2 for all se R,

P’(0) = ¢Z® and d’(0) = €2® — 1 > 0; thus, the origin is a simple focus which is unstable.

0= 1, r=r(1 - r2)2and (1) = (cost, sint)T is a semi-stable limit cycle of this system;
since V-£(y(1)) =0, it follows from Theorem 2 that d(0) = d’(0) = 0 and hence k> 2 in

Definition 2, i.e., I" is a multiple limit cycle.

Ifa=0,b=0,a,;+ ay, = by, + by, =0, then according to equation (3), 6 =d”’(0) =0
and therefore the first non-vanishing derivative d¥(0) #0 has k =2m+ 1 25, 1.e,, the

origin is cither a center or a focus of multiplicity m = 2.

PROBLEM SET 3.5

1.

Direct substitution shows that y(t) is a periodic orbit of the system. The linearization about

0 -1 O cost —sint O
Y()has A=Df(y(1))=|1 0 O|and®()=|sint cost O |asitsfundamental
0 0 -1 0 0 e

matrix satisfying ®(0) = 1. It follows that d(t) = Q(t)eB with Q(t) given in Example 1 and
B = diag [0, 0, —1]; therefore, the characteristic exponents of Y(t) are A, =0 and A, = -1
and the characteristic multipliers are 1 and e-2%; dim S(I') = 2, dim C(I') = 2 and

dim U(I') = 1.
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2. Direct substitution shows that ¥(t) is a periodic solution of period ; the linearization about
—2cos?2t  —4-2sindt 0
v(t) has A(t) = DE(Y(t)) = | 1 - (sin4t) /2 —2sin? 2t 0 | and direct substitution
0 0 1

into x = A(t)x shows that the given ®(1) is a fundamental matrix for this non-autonomous

linear system; ®(t) = Q(t)eB with B = diag[-2, 0, 1] and Q(t) =
cos2t -2sin2t 0
1 .
Esm 2t cos2t 0 |. The characteristic exponents of y(t) are A, =2 and A, = 1

0 0 1
and the characteristic multipliers are exp(—2n) and exp(n); dim S(I') = dim U(I') = 2 and
dim C(I') = 1. The periodic orbit ¥(t) is an ellipse in the x,y planc; W¥(T') is a vertical,

elliptical cylinder through I', W5(I') is the x,y plane without the origin and W¢(I") =T.

cost  —sint 0
4. (ab) ¢ (xy) =| sint cost 0 |x, = P(1)x, where for u(t, x,) = ¢ (xy), (1) =
l—-cost sint 1

D (x0) = du(t, x,)/0x,.

(c) y(t)is the periodic solution through the point (1,0, 0)T at t =0, A = Df(v(1)) =
P

0 -1 0
1 0 0] and direct substitution shows that ®(t) satisfies the linear differential
0O 10

equation (2) and ¢(0) = 1.
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7.

(a)

(b)

1 I: det — 2t 2(6—21 _et)'

!
e 0
hl = P-! = ¢Bit yecording to Proposition 1 in
3 2(e‘—e_2‘) 4e7 ¢! | [ :I & P

T -2
! _;J Thus, O(1) = Q(t)eB! with Q(t) =

2 2

2 2
Section 1.3 where P = [l and B, = l:

diag [R,, I;] and B = diag [0, 0, B,, 0] where I, is the 3 x 3 identity matrix; it follows that
the characteristic exponents of I' are 0, 0, 1, -2 and that dim W%(I") = 2, dim WY(I") = 2,
and dm W¢(I') = 3.

Similarly, ®(t) = Q(t)eBt with Q(t) = diag[R,,, A(t), 1] and B = diag [-3, -3, 3, 3, 0]
where R,, is a 2 x 2 rotation matrix and A(t) =[1, 0; t, O]; it follows that dim Ws(I") =

dim W%T') = 3 and dim W¢(I') = 1.

Direct substitution shows that y(t) is a periodic solution of the given system and that the

given fundamental matrix ®(t) is a solution of x = A(t)x with A(t) = Df(v(1)) =

—8acos’ 4t -2 —4asin4tcos4t acos4t
8 —16asin4tcos4t —8asin? 4t 2asin4t | provided aft) and B(t) satisfy the
0 0 cosdt —a?

nonhomogeneous, periodic system given in this problem (it is not necesssary to solve the
system for c(t) and B(t) in order to finish the problem); ®(t) = Q(t)eB! with B =

cosdt  —1/2sindt a(t)e'/4sn4t

diag [-8a, 0, -a?] and Q(t) = | 2sind4t  cosdt  P(t)e!*5"¥ | The characteristic
0 O el/4sin4l

exponents are A; = —8a and A, = —a; the characteristic multipliers are e~ and
exp(—a2n/2); for a > 0 dim W) = 3 and dim W) = 1 while for a < 0, dim W) =
dim W¥(I') = 2.
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PROBLEM SET 3.6

1.

2. (a)
(b)
(©)

4,

dim W¢(I') = 4; solving the w, Z equation for w leads to | —w =
[l +V1-h%-h?z? ] / (1 + Zz) and substituting this into the first equation following

Figure 5 and simplifying leads to the result for Tﬁ.

The Hamiltonian H(x, y, z, w) = (Bx2 + By2 + 22 + w2)/2; thus, for H = 1/2, trajectories
lie on the ellipsoidal surface B(x2 + y2) + z2 + w2 = 1 and for he (0, 1) if x2 + y2 = h/B,

then z2 + w2 = 1 — h?, i.e., trajectorics lie on the tori TZ,

AsinProblem 1,wefind 1l —w = [1 ++1 - h? - h?z2 ] / (l + 22) and then

72 + B(X - 1/mVB)2 = (1 — h2)/h2,

According to Problem 2 in 3.2, the flow is dense in each of the tori T,2, if B is irrational;

and it consists of a one-parameter family of periodic orbits if f is rational.

Under the projective transformation in Problem 3, I'; gets mapped onto Z =W =0, i.e.,
the Y-axis; I, gets mapped onto Y = y/(k - x), Z = 1/(k - x), W = 0 and then substitution
into H(x, y, z, w) = k2/2 leads to (Z — 3k)? + 3Y2 = 3(3k2 - 1), the equation of an ellipse;
the linearization about I'; shows that I'; has characteristic exponents A, = A, =0,A; =1

and A, = -1 and dim W) = dim W¥*T’) = 2 as in Section 3.5.
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PROBLEM SET 3.7

1. (a)

(b)

(©)

2. (1)

(b)

r=15-33+rand @=1soi<0onr=1andi>0onr=2; thus, the o-limit set of any
trajectory that starts in A, is in A, and by the Poincaré-Bendixson theorem o(I') is a

periodic orbit (since A, contains no critical points).

Since the eigenvalues of the linear part, Df(0), are +2i and since r> 0 for sufficiently
small r > 0, the origin is an unstable focus; thus, the w-limit set of any trajectory that starts

in A,isin A,, etc.
r=V3 - v5/v2isastable limit cycle and r =3 + V5 /2 is an unstable limit cycle.

r=r-r13(cos?0 + sin*0) = r — r3 + 13 sin220/2; thus, 1< r(1 - r2/2) =
(V2+e)(V2e-e2/2)<0forr=V2+cande>0;121r(l —12) = (1 —€) 2 —€)e > 0 for
r=1-¢gand 0 < €< 1. Thus, for 0 <€ < I, any trajectory I' entering the annular region
A,={1-e<r<v2+e}att=1tyremainsin A, for all t > t,. Since there arc no critical
points in A,, it follows from the Poincaré-Bendixson theorem that there is a periodic orbit
[y = o(I') C A, and since this is true for all €€ (0, 1), it follows that I, C A. Also, the
only points on the circle r = 1 where a limit cycle could intersect r = 1 are the points on
r=1 where 0 =0, 1/2, i, 3n/2 (where r= 0). But at all other pointsonr=1,r>0; so it
is impossible for any limit cycle to intersect r = 1. A similar argument shows that no limit

cycle can intersect r = V2 ; thus, there is at least one limit cycle in the annular region A.

Using Dulac’s Theorem, this analytic system has a finite number of limit cycles and since

the boundary of A, is “incoming” for all €€ (0, 1), at least one of these limit cycles must

be stable.



4. (a)

(b)

6. (a)

®)
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The only two phase portraits that are topologically distinct in the annular region A are the
two for which the cycles r = 1 and r = 2 have either the same or the opposite orientations;
all other possible phase portraits are equivalent to one of these two under the

homcomorphism of A given either by H(x, y) = (x, —y) or H(x, y) = 2/Vx2 + y2.

As in the proof of Poincaré’s theorem: On any ray 8 = 0,, we have 6>0onr=1and
8<0onr =2 or vice versa; thus by the intermediate value theorem 0= 0 at some point
re (1, 2); then, by continuity, there is a closed curve I’ of points on which 0=0; ic., on
which the motion is radial; let I'; be the curve ¢, (I'y) with t; > 0; then since the flow ¢, is
arca preserving, it follows that I'y and I'; must enclose the same area and therefore they
must cross at least twice; if they cross exactly twice, at x, and x,, then r must have the
opposite sign on the arcs X;X, and x,x, of Iy and therefore, by continuity, r = 0 at x, and
x, which are thus critical points of (1) since i = 8 = 0 there; if there are more points of

intersection, it can still be shown that r changes sign at least twice.

Even though the points x, may not lie on a straight line, by Lemma 1 there is a transversal
€ through the point x, € I'; and since x, — X,, it follows from Lemmas 1 and 2 that "
crosses € exactly once at a point X, (for all sufficiently large n); thus, by Theorem I in
Section 3.4, ¢ (X, ) =X, i.e,, (X, ) = T, and ©(xy) = T,; therefore, by the continuity

of 1, T, — T, as n — oo since X, — X, as n — oo,
See Figure 6 in Section 4.5

The phase portrait is given by the separatrix

configuration shown here; and even though

the critical point (1, 0) is the w-limit set of
every trajectory, except for the critical point

at 0, (1, 0) is not a stable critical point.
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Fory = -1, we have y = 0 and x=-1; i.e,, the line y = -1 is a trajectory. Also, the
origin is the only critical point of this system and since Df(0, 0) = [0, I; -1, 1], the origin
is an unstable focus. Since ri = y2(1 +y) / (1 + y2) > 0 for y > -1, there are no limit
cycles around the origin in the half plane y > -1. Thus, according to the Poincaré-
Bendixson Theorem for analytic systems, any trajectory starting on the positive y-axis has

the separatrix cycle consisting of the trajectory y = —1 and the point at infinity on the

Bendixson sphere as its w-limit set; i.e., this system has an unbounded oscillation. Since

as y — — oo, it follows that any trajectory in the half plane y < -1 (which can be
represented as a function y(x) since X = y < ~1), satisfies y(x) = y, — x¥/2 + 0(1/x) as [x|
— oo, i.e., as t — teo. The phase portraits on R? and on the Bendixson sphere are given

by the following figures:

s

N

7

//i

©
@

Rncare Sphece
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PROBLEM SET 3.8
2. f has exactly two positive zeros at a; , = 5+ V17 /2, £(x) > 0 for x > /5 / 2 and hence

for x > a,, and the function F(x) = .32x5 — 4x3/3 + .8x satisfies F(a,) > 0 and F(a,) < 0.
3. a, =-72,a,=392/3, a; = -224/5 and a, = 128/35.

4. The system in Theorem 6 with a, = 1152, a; = —6560/3, a; = 4368/5, a; = -768/7, and
ag = 256/63 (and all other a’s = 0) has exactly four limit cycles asymptotictor=1, 2, 3,4

as e — 0.

By the symmetry with respect to the y-axis, the critical point (0, F(0)) is a center,

wn

(Also, see p. 134 in the appendix.)

6. By Licnard’s theorem (or its corollary in this section), van der Pol’s system has a unique

limit cycle and it is stable.

(a) By Theorem 6, the limit cycle is asymptotic to the circler=2 asu — 0.

(b) Under the given transformation we get x'(t) = ) 3
u=x/3-x
p2(u + x - x3/3) and u’(1) = —x and then with /
_ > 2w —>———H~L ¢
t=p2rand €= 1/p2, we get X=u + x = x3/3 5 25 7 ¢
- . h % & N
and U= —ex. For 0 <& << | we have 0 < |q] 2 < 7 ¥ <
> < N7 —< X
. . L < <
<<1,u>0forx<0andu<O0forx>0;and > - <

since X changes sign on the curve u = x¥/3 - x,
it follows that the limit cycle is approximated by the darkened curve shown in Figure 8
as € — 0, i.e., as 0 — oo. Cf. F. Dumortier’s analysis of the “canard” phenomenon in

Section 5 of his article in NATO Adyv. Studies, C408 (1993) 20-73.
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PROBLEM SET 3.9

1.

3. (a)

(b)

4. (a)

m
If (1) has a separatrix cycle S= U Fj C E, then by Green’s theorem with R = int(S),
j=1

m

I= [[ V-fdxdy = [ (Pdy-Qdx) = 2‘; | (Py-Qx)dt=0 sincex =P and y= Q on
J:

I5; but if V-f is not identically zero and does not change sign in E, then |T|>0,a

contradiction; thus, there is no separatrix cycle S of (1) lying entirely in E.

Suppose there is a periodic orbit I" lying in E and let R = int(T’), a simply connected region;
then by Green’s theorem 1= [ V-(Bf)dxdy = [ B(Pdy - Qdx) = [ B(Py~Qi)dt =0 and
this leads to a contradiction as in Problem 1. Next, suppose there are two periodic orbits I'; and
I, in the annular region A and let [, be an arc from a point on I} to a point on I, which lies in
the region between I and I;; then for ' =T, + I}, - I, - I, the simply connected region R =
int(I) C A and by Green’s thcorem I = H -(Bf )dxdy = J-Fn -[I‘ L‘—z IFO B(Pdy - Qdx) =

J} B(Pdy - Qdx) - _[ B(Pdy — Qdx) =0 and this leads to a contradiction as above.
1

V£ =1-3r2<0 forr> 1/V3; there is no contradiction to Bendixson’s theorem because

A is not a simply connected region.

From Problem 2 in Section 7, there is at least one limit cycle in the region A and then by

Theorem 2 (with B = 1) there is at most one limit cycle in A.

SinceV-f =1 —x2> 0 for [x| < 1, it follows from Bendixson’s criteria that any limit cycle
of van der Pol’s equation must cross both of the lines x= +1. (Note that van der Pol’s
system is invariant under X — —x and y — -y and therefore any limit cycle of this system

is symmetric with respect to the origin.)



(b)

5. (b)
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First of all, if f has no positive zeros then F'(x) = f(x) is either increasing or decreasing
and therefore by the corollary to Theorem 3, there is no limit cycle of (1); if x, is the
smallest zero of f then since V-f = -F'(x) = ~f(x) # 0 for |x| < x,, it follows as in part (a)

that any limit cycle of (1) must cross x = x, and x = —x,.

Change the time scale to obtain X = y, y=—x + y(l + x2 + x#) and then compute V-f

(or r) for this system to show that it has no limit cycle in R?.

PROBLEM SET 3.10

1. (a)

(b)

The stable manifold is tangent to the stable subspace ES = {(y, z)€ R?| y = 0} at 0; and

since for y = 0, y=-5z2 < 0, the stable manifold is as shown in Figure 6.

Since y< 0 for y = 0, the separatrix I" having (1, 0, 0) as its w-limit point approaches

(1, 0, 0) through points where y > 0; since there are no critical points in the finite plane,
there are no cycles there and hence, by the generalized Poincaré-Bendixson theorem, o(I")
1s a critical point on the equator of the Poincaré sphere with y > 0; it cannot be the stable

node at (1, 2, 0)/Y5; so it must be the unstable node at (-1, 2, 0)/\5.

By the theorem in Section 1.5, 0 is an unstable focus for the linear part of this system at 0;
by Theorem 4 in Section 2.10 (or by the Hartman Grobman theorem and Theorem 2 in
2.10), 0 is an unstable focus for the nonlinear system as well; and since x = —y for x = 0,
x<0if y>0and x> 0if y <0; therefore, the flow swirls counterclockwise around the
focus at 0. Since 0 is unstable and there are no other critical points in R?, it follows from
the generalized Poincaré-Bendixson theorem that the (unique) stable limit cycle established

in Section 3.8 is the w-limit set of every trajectory, except the equilibrim point 0.
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3. (a) We have an unstable node at the origin; stable nodes at (+1, 0, 0); and saddles at (0, x1, 0).

(¢) We have an unstable focus at the origin, with a counterclockwise flow; there is a cycle on

the equator of the Poincaré sphere and no limit cycles in R? for this linear system.

You should determine that (4, 2) is an unstable node and (-2, —1) is a stable focus for
this nonlinear system. (Cf. Sections 1.5 and 2.10.) Also, determine that there is a stable
node at (0, 1, 0), an unstable node at (0, —1, 0), and saddles at +(y2, 1, 0)/v/3 and at
+(V2, -1, 0)/Y3 on the equator of the Poincaré sphere. Note that y< 0 on y = 0 and that
V-f =10y <0 for y < 0; so there are no limit cycles. The global phase portrait is

determined by Figure 12(i).

You should determine that (0, 0) is an unstable node and that (0, —2) and (+V3, 1) are
saddles. (Cf. Sections 1.5 and 2.10.) Also, determine that there are stable nodes at (0, 1, 0)
and (23, -1, 0)/2, and that there are unstable nodes at (0, -1, 0) and (+v3, 1, 0)/2 on the
equator of the Poincaré sphere. Note that the y-axis consists of trajectories and that y< 0 for

y = 0. The global phase portrait is determined by Figure 12(vii).

You should determine that there is a center at (0, 1) (using the symmetry with respect to
the y-axis) and that there is a saddle at (0, —1). (Cf. Sections 1.5 and 2.10.) Also,
determine that there are nodes at the critical points (1, 0, 0) on the cquator of the Poincaré
sphere. Use the symmetry with respect to the y-axis to aid in drawing the global phase

portrait which is determined by Figure 12(v).

You should determine that there are centers at (0, +1) using the symmetry with respect to
the y-axis (also, this system is Hamiltonian) and that there are saddles at (1, 0). Also,
you should determine that there are nodes at the critical points (x1, 0, 0) on the equator of
the Poincaré sphere. Use the symmetries to aid you in drawing the global phase portrait

which is given by Figure 12(v1).
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8. You should determine that (1, 0) is an unstable node and that (-1, 0) 1s a saddle for the
nonlinear system. (Cf. Sections 1.5 and 2.10.) Also, using Theorem 1 in Section 2.11,
determine that there are saddle-nodes at the four critical points (£1, *1, 0)/N2 and also that
there are nodes at the critical points (+1, 0, 0) on the equator of the Poincar¢ sphere.
Detcrmine that the x-axis consists of trajectories and that the global phase portrait 1s given

by Figure 12(i1).

9. (a) The equation of the tangent plane to a level surface F(x) = I is given by VF(x)-(x - x,) =0
at a point X, on the surface and this leads to x-x, = 1.

(b) At each point x€ S, f(x) must satisfy f(x)-x = 0.

(c) Follow the hint to obtain f and then show that f(x)-x = 0.
10. a1, beovil, ceo v, de v, e as determined in Problems 4-8.
11. 10, liec lied iveg vee viof, viiob.
12. The homoclinic loop at the saddle point (0, —1) is given by (x2 + y2 — 2y + 1)ey = 4/e.

13. (a) This follows directly by converting to polar coordinates since T = (xXx + yy)/r = r(x2 — y2)

and 0 = (xy — yX)/r2 = 2xy.

(b) Substituting x = &/p? and y = 11/p? into the equation obtained in part (a) yields dp/d0 =
—p(E2 —12)/2En which can be written as p = (£2 - n2)/p, 6= —2En/p? and therefore £ =

pcos —pOsin® =& and i = psinB + pOcos 6 = —.

(c) The flow on S?in Figure 4 follows exactly as in Example 1 and then projecting from the
north pole of S? onto the &,  plane at the south pole of S? yields the flow in Figure 14(a);
the “blow-up,” shown in 14 (a), reduces the complicated critical point at the origin to four
hyperbolic critical points (nodes) on the unit circle; shrinking this circle to the point at the

origin yields Figure 14(b).



62

PROBLEM SET 3.11

1.

In Figure 5 there are four (parabolic) strip regions; in Figure 7 there are three (parabolic)

strip regions; and in Figure 9 there is one (hyperbolic) strip region and one spiral region.

You should determine that (0, 2) is a stable node and that (1, 0) is a saddle for the non-
linear system. (Cf. Sections 1.5 and 2.10.) You should also determine that according to
Theorem 1 in Section 2.11, there are saddle-nodes at (+1, 0, 0) and according to Theorem
2 1n Section 2.11, there are critical points with an elliptic domain at (0, =1, 0). Finally,

you should determine that the phase portrait is given by Figure 12(iv) in Section 3.10.

You should determine that (2, 2) is a stable node, that (-1, —1) is an unstable focus, and
that (0, —2) is a saddle for the nonlinear system. (Cf. Sections 1.5 and 2.10.) You should
also determine that according to Theorem 2 in Section 2.11 there are saddles at +(1, 2, 0)/
V5 and a critical point with an elliptic sector at (0, 1, 0) and (0, -1, 0) on the equator of
the Poincaré sphere. Finally, you should determine that the phase portrait is given by

Figure 12(iii) in Section 3.10.

For a > 0 you should determine that (0, 0) is an unstable node and that (~q, 0) is a saddle
for the nonlinear system. Then determine that there are stable nodes at (0, =1, 0) and using
Theorem 1 in Section 2.11 determine that there are saddle-nodes at (1, 0, 0). Draw the
global phase portrait using the fact that the x and y axes and the straight line x = -0t consist of
trajectories. For the bifurcation value o = 0, determine that there is a saddle-node at (0, 0)
and that for & < 0, the saddle and the node have interchanged their relative positions from

those with a > 0.

You should determine that there is an unstable node at the origin and stable nodes at (0, a/b)
and (a/b, 0) as well as a saddle at (r — b, s — b)a/(rs — b?) for the nonlinear system. (Cf.

Sections 1.5 and 2.10.) Also, determine that there are saddles at (+1, 0, 0) and (0, =1, 0)

and nodes at #(r— b, s - b, 0)/\/(r —b)? +(s—b)? on the equator of the Poincaré sphere.
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Use the fact that the x and y axes and the straight line y(r — b) = x(s — b) consist of
trajectories to aid in drawing the global phase portrait. If the initial numbers of the two
competing species X, and y, (are positive and) lie on the above-mentioned straight line, then
x(t) = a(r - b)/(rs — b?) and y(t) — a(s — b)/(rs — b2) as t — oo; but the probability of

choosing a point in the first quadrant on that line is zero.

According to Definition 1, the separatrices consist of the straight lines x =nmn, n =0,
*1, ..., since any other trajectory of the system can be embedded in a parallel region N
with two other (curved) trajectories I} and I, satisfying the definition while the straight

line trajectories x = n7 cannot. The flow is described by the following phase portraits:

/ L\ 71 \ | I 7 -\
soey / \ A/ \ Yoo ooy ’/\/ \ Yoo
/ V| \ \ (! %

1 | \ N Al |
l M I . /|l \
| I | = |l I
X=-N x=0 X=T X=-T x=0 X=T

PROBLEM SET 3.12

1.

[¢(C) = (1/ 2m) (xdy - ydx ) (x*+y?)= 1/2n)j (c0526+sin28)d9=1=1g(C).

1,(C) y2)=(1/2m)f " (sin? 0 + cos? 0)d0 = 1.

(1/ Zn)J.C(—ydx + xdy)/(x2 +

[,(C)=(1/ 2n)fc(—xdy +ydx)/ (x2 + y2) = (1/ 27:)[?(—0052 0 —sin? G)dO =-1.

Let v = (1 —s)v+swforO<s<1.Thenvy=v#0and v, =w # 0. Suppose that for
some s€ (0, 1), vs = 0; this implies that w = [-(1 = s)/s]v; i.e., that w and v have the

opposite directions; and that contradicts the hypotheses of Lemma 2. Next, for s€ [0, 1],
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W

. (a)

(b)

v, is continuous since the sum of the two continuous functions (1 — s)v and sw is

continuous. Finally, it follows from the continuity of v with respect to s for s€ [0, 1]
and the fact that I, (C) is an integer that I, (C) = Iy,(C); otherwise there would exist a
point s*€ [0, 1] at which the value of I (C) jumps by at least one unit; but this would

contradict the continuity of I (C) with respect to s.

In Section 2.11, Figure 2 has e = h = 1 and therefore I(0) = I; Figure 3hash=2,e=0
and I{0) = 0; Figure 4 has h =2, e = 0 and I(0) = 0; and Figure Shash=0,e =2 and
I(0) = 2.

From Figure 10, T=12,v=6,€ =18 and thus ¥(T?)=T+v-£ =0.

Since p = 1 for the Klein bottle K, %(K) = 2(1 — p) = 0 and since the uniform parallel

flow f shown in Figure 11 has no critical points, I(K) = 0 = X(K).

By Theorem 7 a saddle-node (sn) has index 0 and a critical point with an elliptic domain
(ed) has index 1. Thus, in Section 3.10, Figures 4 and 7 have 2 saddles (s) and 4 nodes
(n) on S2 and thus 1(S2) = 2; Figure 9 has two foci (f) on S and 2 sn on the equator of S2
and thus I(S?) = 2; Figure 12(i) has 4 non S2, 2 n and 4 s on the equator of S? and thus
I(S2) = 2; Figure 12(ii) has 2 s and 2 n on S2, 2 n and 4 sn at infinity and thus I(S%) = 2;
Figure 12(iii) has 2 f, 2 s and 2 n on S2 and 2 s and 2 ed at infinity and thus I(S%) = 2;
Figure 12(iv) has 2 s and 2 n on S? and 2 s and 2 ed at infinity and thus I(S?) = 2; Figure
12(v) has 2 s and 2 centers (c) on S? and 2 n at infinity and thus I{S%) = 2; Figure 12(vi)
has 4 s and 4 c on S2 and 2 n at infinity and thus I(S§%) = 2; Figure 12(vii)has 2 nand 6 s
on S2 and 6 n at infinity and thus I(S2) = 2. Also, Figure 5 in Section 3.10 has 1 s in R?
and 2 n at infinity and thus I(P) = 1. In Section 3.10, Problem 3(a) has Inin R?, 1 n and
1 s at infinity and thus I(P) = 1; Problem 3(b) has an infinite number of nonisolated critical
points at infinity and we cannot compute I(P); and Problem 3(c) has 1 f on R? and no

critical points at infinity and thus I(P) = 1.

The indices are 1, -2 and 2 respectively.
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There is a flow on S? with (i) one critical point which has two elliptic sectors and I(S?) =
2; (i) two nodes and I(S?) = 2; and (iii) one critical point which has two elliptic sectors

and two saddle-nodes in which case I(S?) = 2.

(b) There is a flow on T? with (i) no critical points, i.e., a winding around T2, and thus

(©)

1(T?) = 0; (ii) one critical point and a homoclinic loop at that critical point which then has

two hyperbolic sectors and thus (by Bendixson’s index theorem), I[(T?) = 0.

There is a flow on the anchor ring with two saddles and [ = -2.

(d) There is a flow on the double anchor ring (which has p = 3) with four saddles and I = 4.

(e)

()

A flow with a center at the origin and a cycle at infinity (such as x = y, y = —x) describes
a flow on the projective plane, P, with one critical point; and a flow with a saddle node

and a node in R? and a cycle at infinity describes a flow on P with two critical points.

Similar to the parallel flow on the rectangle, R, in Figure 11, you can describe a flow on R
with a saddle-node which (as in Figure 11) would describe a flow on the Klein bottle with

one critical point.

You should find X = rkcosk8 and y= rksink® and therefore r = rkcos(k—1)6 and

6= rk-Tsin(k—1)8. For k =1 there is a proper node at 0; for k = 2 there are two ray
solutions at 6 =0 dnd 9= Tgand two elliptic sectors, hence I = 2; for k = 3 there are four
ray solutions, 0 = 0, /2, =, 3n/2 and four elliptic sectors, hence I = 3; in general there are
2(k — 1) ray solutions and elliptic sectors and hence I = 1 + (k — 1) = k. The second
equation yields r = rkcos(k + 1)6 and 6@‘( ~lgin(k +1)0; there are 2(k + 1) ray solutions
and hyperbolic sectors and hence I = 1 — (k + 1) = -k. The phase portraits fork =2 and 3

in these two equations are given by
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4. NONLINEAR SYSTEMS: BIFURCATION THEORY

PROBLEM SET 4.1

1. (@

(b)

3. (a)

(b)

4. (a)

(b)

Since f(x) - g(x) = -ux, Dx =Iand ||1]}= 1, ||f - g}, = |1 |(max [x| + 1).

The first system has a center at the origin and therefore lim ¢ (x) # 0 for x # 0. For

p # 0, for example if p < 0, then the second system hasl::ink at the origin and therefore
lim ¥s(x) = 0 for all xe R. But if there were a homeomorphism H and a strictly
itn—c;;asing 1T : R-e R such that ¢, = H ' H; then it would follow that lim ¢ (1, 0) =
H! tli,n; P (H(1, 0)) = 0, a contradiction; the case pu > 0 is treated in thels—a);:le way by

considering t — —oo; thus, the two systems are not topologically equivalent for p # 0.

det Df(0) = —1 and therefore the origin is a saddle for the nonlinear system; det Df(x1, 0) =
2, trace Df(1, 0) = p and therefore (21, 0) are stable (or unstable) foci for p <0 (or p > 0);
actually, they are foci for Ju] < V8 and p # 0 while they are nodes for Ju| > V8. (Cf. Sections
1.5 and 2.10.) Also, for pu # 0, V-f(x) = u does not change sign and Bendixson’s criteria

imply that there are no cycles (or separatrix cycles) in R?,

As in Problem 1, the fact that ¢,(2, 0) — 0 and (2, 0) —= (1, 0) as t— oo (for u < 0)
can be used to show that for arbitrarily small || # O the system in Example 3 is not

topologically equivalent to the system with = 0.

I "
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It can be shown that ||f - g||, = | 1] (maxlx] + l). Thus, f and g are C!-close on any

xeK
compact K for sufficiently small Ju| # 0. For the flow in (a), |$,(.5, 0)] = 1 as t — oo and
for the flow in (b), |1[xt(.5, 0)| — o0 as t — oo for y # 0 and this can be used to show that

the two flows are not topologically equivalent as in Problem 1.
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AGY)

According to the Corollary to Peixoto’s theorem, only (vii) is structurally stable on S2; (i, ii, 1%

veé) are structurally stable on R? (under strong C!-perturbations) according to Theorem 4; (1i1)

(a)

(b)

(©)

(d)

j & not structurally stable on R? (under strong C!-perturbations) according to Theorem 4 since
it has a saddle connection between a saddle in R? and a SAI, however it is structurally stable
on any bounded region of RZ; and (v, vi) are not structurally stable on bounded regions in

R? since they have saddle connections and nonhyperbolic critical points in R2.

There is only one critical point (0,0), a stable node, which is hyperbollc and
there is no SAI therefore, the system is structurally stable on R* (with re-
spect to the C* strong topology) by Theorem 4. (Itisnots.s.on S? by Cor. 1,
but it is s.s. on any bounded region of R* which is what G/H ask for on p- 42)

There is a nonhyperbolic critical point at (0,0) and the system is therefore not
Structurally stable by Theorem 4.

There is a nonhyperbolic critical point at (0, 0) and also saddle connections and therefore the

system 1s not structurally stable bj Therem A,

There is a nonhyperbolic critical point (with A = £ 1) at the origin and therefore the system is
not structurally stable by Theorem 4. (Note that, by symmetry, the origin is a center for this
system.) | A
This system is structurally unstable since there
is a nonhyperbolic critical point (with A = *1)
at the origin; and also since there are saddle

connections.

\\(,‘;

For Example 2 with u <0, Q = {0}; withu =0, Q = {0, "} where I'" is the semxstable

limit cycle; and with u >0, Q = {0, I}, I,} where I} and I, are the limit cycles shown in
Figure 2. For Example 3 with i1 <0, Q = {(0, 0), (1, 0)} with u = 0, Q@ = R2; and with
u>0,Q={(@,0), (x1, 0)}.

Q2 consists of the set of critical points, limit cycles and graphics in each of the phase

portraits in Figure 5.
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PROBLEM SET 4.2

1.

The critical points are at x = +2+/u and x = +.fu for p > 0. The bifurcation value is

i = 0. And the phase portraits are given by

3. ()

(b)

(©)

N
>
N
[ ]
N
bed
x

pu<o p=0 p>0
The critical points are at x = 0 and x = u?; and the bifurcation value is p.= 0.

(x) = 3x#sin {i/x) — x cos (1/x) for x # 0 and f(0) = limx2sin(1/x) = 0; since lingf*(x) =
0 = f(0), f’ is continuous at x = 0 and also for all x # (f(l) For p = O there are c;idt’ica]
points at x = 1/nm, n = +1, +2, --- and at x = 0; since f'(1/nn) = «(~1)"/nn # 0, the
nonzero critical points are hyperbolic and alternate in stability; and since f(0) = 0, the

origin is a nonhyperbolic critical point.
i = 0 is a bifurcation value since there are an infinite number of critical points in that case.

From the bifurcation diagram, it can be seen

that there are an infinite number of saddle-node

+—3— 1]
bifurcations (at the points p, with vertical H,F My

tangent lines) and that they accumulate at p = 0.

X0=(0,0),1y=0,A= AT =[0, 0; 0, ~1] and the corresponding eigenvectors v =w =
(1, O)T. Since fu(x, 0) = (x, O)TDfu(x, 0) =[1, 0; 0, 0] and Df(x, n) = [-2, 0, ---, 0], it
follows that wT £,(0,0) =0, wTDfu(O, 0)v = 1 and wTD2£(0, 0) (v, v) = -2; thus the
conditions (3) are satisfied. For p = 0, dimW?*(0) = 1, dimW*(0) = 0 and dim W¢(0) = 1.

Similar to Problem 4 except that D2f(x, p) = [-6x, 0, --, 0], D2{(0, 0) = 0, D3f(x, p) =
[-6, 0, ---, 0] and it follows that wT f,(0, 0) =0 and wTDf,(0, O)v = 1 as above, but
D21(0, 0) = 0 and wT D3£(0, 0)(v, v, v) = -6. For p = 0 dimW5(0) = dimW<(0) = 1
and dimWU(0) = 0.
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PROBLEM SET 4.3
1. (a) Let ACR?3 be the region above all the surfaces in Figure 3, B CR3 the region below all

the surfaces in Figure 3, and C C R3 the shaded region in Figure 3. We then have

2 1
<o —< —<—o—<—o—< < <—o—>—o—<—
SN, SNlrwSNl+ B C, oG,
<—eo—<
0 where SN; denotes the two pieces of the SN, surface

that bound part of the shaded region in Figure 3.

(b) The phase portraits for the given system in R? follow from those in part (a) and y = -y;

for example, we have

_ /' \ /‘ /' !‘ ‘\‘ /' S
Yo Y g
_—’u J\\\ Y ,//L: -a’u Y {\ Y A\ /p ,"’L /L,
D> ——Segez ¢ —— O D> e =T 7 ¢
-~ Pt SO -~ Ve ’ SN =L T
w A /’f A \R\ “AF A A Y TR TN,
1 \ V! i \ N \
1 ] 1 ] t ] ) Y
A SN, B
2. As in Problem 3 in Section 2.12, the flow on the center manifold, W¢(0) : y=x2 + ---, is

determined by x = x3 + 0(x4). This system therefore reduces to the normal form x = x3,
y=—y and as in Example 1 of the cusp bifurcation in R?, we have the universal unfolding
X =W, + HXx + x3, y=—y for this normal form or for the given system. For 0 < |p| << 1

and , <—/4p3 /27, 1, = —/4p3 /27 and —~/4p3 /27 <, < /43 / 27 respectively,

we have:
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6. (a)

(b)

(©)

As in Problem 4 in Section 2.12, the flow on the center manifold is determined by
x = x2 + 0(x3). We therefore have the normal form x = x2, y= —y for this system. The
universal unfolding is given as in equation (4), i.e., X = iU + x2, y= -y and the various

phase portraits are given in Figure 7 in Section 4.2 (with x — —x).

The flow on W¢(0) is determined by x = ~x* + 0(x5) and the universal unfolding as in
equation (8) is given by X = p; + PyX + u;x2 — x4, y= —y. The various phase portraits can

easily be determined from those in Problem 1.

If a # 0 then the system (after normalizing the time) has the normal form x = x2 + 0(x3) on
the center manifold; cf. Problem 6 in Section 2.12. And, as in Problem 3, the universal
unfolding is given by x = n; + x2, y=-y. It follows that for a # 0, this system has a

codimension-one saddle-node bifurcation at p; = 0.

If a =0 and bd # O then the system (after rescaling the time) has the normal form x =
—x3 + 0(x*%) on the center manifold; cf. Problem 6 in Section 2.12. And, as in Example 1,
the universal unfolding is given by X = p; + p,x — x3, y=—y. It follows that fora=0

and bd # 0, this system has a codimension-two cusp bifurcation at p = 0.

For a=b =0 and cd # 0, this system (after rescaling the time) has the normal form
x = —x* + 0(x3) on the center manifold; cf. Problem 6 in Section 2.12. And, as in equation
(8), the universal unfolding is given by x = p; + U,X + p;x% — x4, y= ~y. It follows that for

a=b=0and cd # 0, this system has a codimension-three swallow-tail bifurcation at p. = 0.
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PROBLEM SET 4.4

1. (@)
(b)
2. (a)

According to equation (3), 0 = 67(a + b). Thus, ¢ has the same sign as (a + b) and
according to Theorem 1, if (a + b) < 0 then a unique stable limit cycle bifurcates from the
origin as W increases from zero; i.e., we have a supercritical Hopf bifurcation at the origin
at the bifurcation value p = 0 if (a + b) < 0; and if (a + b) > 0 then a unique unstable limit
cycle bifurcates from the origin as p decreases from zero; i.e., we have a subcritical Hopf

bifurcation at the origin at the bifurcation value p = 0 if (a + b) > 0.

According to equation (3), 6 = 12na. Thus o has the same sign as a and according to
Theorem 1, if a < 0 then a unique stable limit cycle bifurcates from the origin as
increases from zero, i.e., we have a supercritical Hopf bifurcation at the origin at the
bifurcation value p = 0 if a < 0; and if a > 0 then a unique unstable limit cycle bifurcates
from the origin as p decreases from zero, i.e., we have a subcritical Hopf bifurcation at
the origin at the bifurcation value p = 0 if a > 0. For this particular problem, we can also
deduce that for a < 0 the origin is a stable, weak focus for i = 0 by computing r = ar3 for
u =0 and thus 1< 0 for a < 0 and r > 0. (Also, see p. 139 in the appendix.) We also note

that, as in Definition 1 of Section 4.6, we have

P Q
Pu Qu

P Q
Xy

= —r2(1 +br2)<0

for the system in 1(b) provided b > 0 or provided b < 0 and 12 < 1/|b|. Thus, the system in

1(b) defines a one-parameter family of negatively rotated vector fields with parameter i

according to Definition 1 in Section 4.6. A similar result holds for the system in 1(a).

For example f,(x, y) = -1~ xcos — -1 as (x, y) — 0 since lcos6| < 1 and f,4(0,0) =

lim[f,(0, k) - £,(0, 0)}/k = lim(-k/k) =-1.

k=0 k—0
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(b)

(©)

3.

5.

6.

7.

8. (3
(b)

6=1andi= r(1 — 1); thus for u > 0 there is a unique stable limit cycle r = 1 and for
1 < 0, r<0 for r # 0 and there is no limit cycle around the origin. The phase portraits

are similar to those in Figure 1.

The bifurcation diagram is similar to that in Figure 2 except that r = (L is a cone in

(X, y, n)-space.

X =y, y=—Xx — 1y + x3. From equation (3’), 6 = 0 since all of the coefficients a, by; are
zero except by = 1 and by, does not appear in (3'). For L = 0 this is a Hamiltonian system

with H(x, y) = (y2 + x2)/2 — x4/4. The phase portrait is given in Figure 4 in Section 4.10.
The multiplicity of the weak focus at the origin is three. (See p. 139 1n the appendix.)

Setting (p — u'3/4) (p — ui3) (p - 2u13) equal to —a,/2 - 3a, p/8 — Sa; p2/16 — 352,/128p3
yields a, = p (the coefficient of x in the problem), a;(u) = —22u%3/3, ay(n) = 52u'43/5 and
a, = —128/35.

For a,y=a, a;; = b, ag, =0, b,; = €, b;; = m and by, = n, equation (3) yields

6= 32’3[—2a6+ab-m(n+e)]= %"w,

with W given in Theorem 4.

W, =-1 -m(n + 1). Thus, according to Theorem 4, this system with y = 0 has a weak focus
of multiplicity one at the origin iff m(n+ 1)+ 1 #0. If m=0orn=-1, W, =-1 (so 06 <0)
and there is a supercritical Hopf bifurcation at the origin at the bifurcation value p =0

according to Theorem 1.

W,=(2+m) 3 -m)(n+ 1) (n?-2). Thus, according to Theorem 4, this system withu =0
and m(n + 1) + 1 = 0 has a weak focus of multiplicity two at the origin iff (m, n) # (-2,

~1/2), (3, —4/3) or (-1/(1 £ 2), £ ¥2). According to Theorem 5 and Table 1 in Section 4.6,
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(d)
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for W, > 0 an unstable limit cycle bifurcates from the origin as p decreases from 0 and for

W, <0 a stable limit cycle bifurcates from the origin as p increases from zero.

W3=(2+m)(2+n)(n+1)(n?-2). Thus, according to Theorem 4, this system with u =0
has a weak focus of multiplicity 3ifff m(n+ 1) + I =0andm=3,ie,ifff m=3andn=

—4/3. In this case W3 > 0 and, according to Theorem 5 in Section 4.6, an unstable limit cycle

bifurcates from the origin as p decreases from 0.

For (m, n) = (-2, -1/2), or (-1 / (1 £V2), +\2), W, = W, = W; = 0 and according to
Theorem 4, this system with i = 0 has a center. The system withm=-2 andn=-1/2is

Hamiltonian.

PROBLEM SET 4.5

1.

w

Since V-f(x, u) = 2u — 4|x

2, V-£(v (1), p) = -2u and DP(r,, p) = exp[-4un].

S . . I—
0=1,i=r[u-(2-1)2] [n-4(02- 1) andi= 0 forr = 1+ p"? and
r= m It is then easy to show that Yli(t) and Y;-L(t) satisfy the given

differential equations. DP liu“z,u =exp 24;1.3/2 p.”z t 1) and
q

DP(«/I +u2/2, u) = exp[-ap¥2 (2 /251

Because of the xr and yr terms on the right-hand sides of the differential equations, this
system is C! but not C2; cf. Problem 2(a) in Section 4.4. In polar coordinates = 1 and
r=r[u—(-12]andr=0forr=1=%p"2 v*1) = (1 £ u!2) (cost, sint)? defines two
one-parameter families of periodic orbits. The bifurcations for this system are the same as
those in Example 2 except that the stabilities of the periodic orbits and the critical point at

the origin are reversed.
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7. (a)

(b)

8. (3

(b)

P(-1/2, -1/4) = -=1/2 and DP(x, 1) = —2x implies that DP(~1/2, —1/4) = 1; therefore, there
is a nonhyperbolic fixed point x = —1/2 at the bifurcation value p = —1/4; the bifurcation

diagram shows a saddle-node bifurcation at the point (i, x) = (=1/4, -1/2).

P(0, 1) = 0 and DP(x, p) = p - 2px implies that DP(0, 1) = I; therefore, there is a
nonhyperbolic fixed point x =0 at the bifurcation value p = 1; the bifurcation diagram

shows a transcritical bifurcation at the point (4, x) = (1, 0).

P(-1/2, 0; -1/4) = (~1/2, 0)T and DP(x, ) = [-2x, 0; 0, 2] implies that DP(-1/2, 0; -1/4) =
[-1, 0; 0, 2] which has an eigenvalue A; = —1 of unit modulus; thus, here is a nonhyperbolic
fixed point (~1/2, 0)T at the bifurcation value p = —1/4. The bifurcation diagram shows a

saddle-node bifurcation at the point (i, x, y) = (-1/4, -1/2, 0).

P(0; 3/2) = 0 and DP(x, p) = [0, 1; -1/2, p — 3y?] implies that DP(0, 3/2) =
[0, 1; —-1/2, -3/2} which has an eigenvalue A = -1 of unit modulus; thus, there is a
nonhyperbolic fixed point x = 0 at the bifurcation value p = 3/2. The bifurcation diagram

shows a pitchfork bifurcation at the point (i, x, y) = (3/2, 0, 0).

DP(x, ) = ~2x which implies that DP(—I /2+ m /2, u) =1- M which is
equal to -1 at . = 3/4; thus, x = 1/2 is a nonhyperbolic fixed point at the bifurcation value
u = 3/4. For the map F(x, u) = it — (4 ~ x2)? we have F(1/2, 3/4) = 1/2, DF(x, ) =

4x(u - x2), DF(1/2, 3/4) = 1; D?F(x, pn) = 4p - 12x2, D2F(1/2, 3/4) = 0; D3F(x, n) =
-36x, DF(1/2, 3/4) = -18 # 0; F,(x, p) = -2(n - x2),| x
F,(1/2, 3/4) = 0; DF,(x, p) = 4x and DF,,(1/2, 3/4) =
-2 #0. The equation 1 — (1 — x2)? = x has the
solutions x=0,x=1and x = (—li«fg)/Z. The 1 —_—
bifurcation diagram shows a period-doubling bifurca-

tion at the point (i, x) = (3/4, 1/2). Cf. Figure 7(a).
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The one-dimensional maps in Problems 9 and 10 cannot be the Poincaré maps of any two-
dimensional system of differential equations because period-doubling bifurcations cannot

occur in two-dimensional systems since trajectories in the plane cannot cross.

PROBLEM SET 4.6

1.

2. (a)

(b)

Suppose that x = f(x, n) with f = (P, Q)T satisfies det [P, Q; P,. Q) =PQ, -QP,>0and
that y = A(x) is a nonsingular transformation with det DA(x) > 0 (in a region RCR?). Let
DA = [a, b; ¢, d]. Then the system y = DA(x)x = DA(x)f(x, 1) = (aP + bQ, cP + dQ)T
defines a one-parameter family of rotated vector fields if det [aP + bQ, cP + dQ; aPH + bQH,
cP, +dQ,] > 0. But this determinant is equal to det [P, Q; P, Q,] [a, c; b, d] = (PQ, -
QP,)-

det DA(x) which is positive (in the region R).

det [P, Q; P, Q“] =12 > 0 for r > 0; therefore, this system defines a one-parameter family
of rotated vector fields. The conditions of Theorem 5, with p, = 0, are satisfied and since
at i =0 we have r= —12, the origin is a stable weak focus. (It also follows from equation
(2) in Section 4.4 that ¢ = -121.) Thus, from Figure 1 with 6 <0 and @ <0 we have a
supercritical Hopf bifurcation in which a stable limit cycle bifurcates from the origin as p

increases from 0. [This is quite clear since r = r(j — r).]

As in Problem 2(b) in Section 4.4, the determinant of [P, Q; Py, Qu] = -12(1 + br2) <0
for 12 < 1/|b] (or for all r if b 2 0) and this system defines a family of negatively rotated
vector fields with parameter [, according to Definition 1, in the neighborhood of the origin
0<r< lNH for b < 0 (or for all r > 0 for b = 0). According to Theorem 5 and Table 1,
for 0 = 9ma <0, a stable (positively oriented) limit cycle bifurcates from the origin as p
increases from 0 and for ¢ > O (i.e. for a > 0) an unstable (positively oriented) limit cycle
bifurcates from the origin as p decreases from 0. Thus for a < 0, the Hopf bifurcation is

supercritical and for a > 0, the Hopf bifurcation is subcritical.
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det [P, Q; Pu’ Qu] = x2(1 + x)* > 0 except on the lines x = 0 and x = -1; therefore, this
system forms a one-parameter family of rotated vector fields (mod x(1 + x) = 0), defined in
the paragraph preceding Example 3. According to equation (3") in Section 4.4, 6 = 91/2 >0
for the system with p = 0; thus, the origin is an unstable weak focus and the flow swirls
clockwise around 0, i.e., w = —1. It follows from Figure 1 (or from Theorem 1 in Section
4.4) that a unique unstable limit cycle bifurcates from the origin as y decreases from the
bifurcation value [, = 0; i.e., we have a subcritical Hopf bifurcation. Since 0 is the only
critical point, Theorem 6 implies that the one-parameter family of limit cycles terminates as

} — —oo or as the limit cycle expands without bound.

O<p<t

As in Example 3, it follows from the theory of rotated vector fields (cf. Theorems 1 and 6)
that a unique, stable limit cycle is generated in a supercritical Hopf bifurcation at the critical
point (1, 1) at the bifurcation value p = 1/2 and this stable, negatively oriented limit cycle
expands monotonically as p increases from the value g = .5 until, at p = p, = .52, it

intersects the saddle at the origin and forms a separatrix cycle; cf. Figure 8. The global
phase portraits are given by:

@ @

2<pu<i1/2 12 <p<p,
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B=py p1<p<2

(P, Q Py, Qul= y2(1 + y)2. From equation (3') in Section 4.4, o = -91/2 < 0 and clearly
o = -1, therefore, by Figure 1 (or Theorem 1 in Section 4.4), there is a supercritical Hopf
bifurcation in which a stable limit cycle bifurcates from the origin as the parameter pt
increases from the bifurcation value p = 0. In order to draw the global phase portraits, you
must determine the behavior of the critical points at infinity as in Section 3.10; e.g., for

p =0, there is a saddle node at the point (21, 0, 0) at infinity and a critical point with two

hyperbolic sectors at (0, 11, 0).

[P, Q, Pp, Qp] =(=x +y + y2)? > 0 for x # y + y2. There are critical points at (0, 0), (2, 1)
and (12, 4); Df(0) = [-1, 1; -, 4 + u] and thus (0, 0) is a saddle. Df(2, 1) =
[-1,3;-1-u,3u-2],8=5,71=3(n - 1) and thus (2, 1) is a weak focué for u = 1; from
(3") in Section 4.4, with ag, = 1, b;,; = -1 and by, = -1 for p = 1, we find that o = 51/2
and clearly = -1 at (2, 1); thus, from Figure 1 (or Theorem | in Section 4.4) there is a
subcritical bifurcation in which an unstable limit cycle bifurcates from (2, 1) as p
decreases from py= 1. Df(12, 4) = [-1,-7; 4 —p, -7p + 8], 8 =20, T= 7 - 7p and thus
(12, 4) is a weak focus for p = 1; from (3’) in Section 4.4, with ap, = 1, b,; =-1 and

by, =-1forpu=1, we find that ¢ = —1571/56 and clearly ® = +1 at (12, —4); thus from
Figure 1 (or Theorem 1 in Section 4.4 with a + d =7 — 7y in place of p as in Remark 1 in
Section 4.4) there is a supercritical Hopf bifurcation in which a stable limit cycle bifurcates
from (12, —4) as p decreases from p, = 1. For 0 < p < 4, there is a saddle-node at (11, 0, 0)

on the equator of the Poincaré sphere and the global phase portraits are given by:
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Loy (4

O<u<pl pzul
B <p<l 1<pu<4

PROBLEM SET 4.7

1. For p = %1, Df(0) = [0, -1; 1, 0] and from equation (3) in Section 4.4, ¢ = 157/2. Thus,
by Theorem 1 in Section 4.4 a unique unstable limit cycle bifurcates from the origin as the
trace Df(0) = pu? — 1 decreases from zero, i.e., as | decreases from p,=1orasp

increases from i, = —1. (Cf. Remark 1 in Section 4.4.)

2. Note that forr =0 and p = -1, r= 0 and we cannot determine the stability of the origin
simply by computing r; however, from equation (3) in Section 4.4, we find that for p = -1,
O =-48n and then by Theorem 1 and Remark 1 in Section 4.4, we find that a unique stable
limit cycle bifurcates from the origin in a supercritical Hopf bifurcation at the bifurcation
value i, = -1 as the trace Df(0, p) = (1 - 1)2 (u + 1) increases from zero, i.e., as 1
increases from the value p = -1; cf. Figure 4. Note that for p = 1, equation (3) in Section
4.4 yields ¢ = 0; i.e., there is a weak focus of multiplicity two at the origin for p = 1; cf.

Figure 4.
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The bifurcation diagram is given by the graph of the relation [(r2 —2)* + u? - 1] -
[r2+2u2-2] = 0. (See p. 142 in the appendix.)

The bifurcation diagram is given by the graph of the relation [(2—2)* +p2-1] -

[r2+ p2—-3] = 0. (See p. 143 in the appendix.)

PROBLEM SET 4.8

1. (a)

(b)

(©)

(d)

(e)

Replacing (x, y) by (=X, —y) leaves the system invariant. Df(0) = [0, 1; 1, u] has & = -1
and therefore there is a saddle at the origin. (Cf. Sections 1.5 and 2.10.) Df(¢1, 0) =
[0,2; -2, 1+ M) has 6 =4, T=1 + u and there are foci at (x1, 0) for |u| < 3. (Cf. Sections
1.5 and 2.10.)

Fory=#0,[P,Q; P, Q=yXI +1%)>0.

After translating the origin to (1, 0) or (-1, 0) and using equation (3") in Section 4.4, we
see that o = —31/4 and since w = -1, it follows from Theorem 5 and Figure 1 in Section
4.6 that a unique, stable limit cycle bifurcates from each of the critical points (1, 0) and
(-1, 0) as u increases from the bifurcation value u = —1. According to Theorems ! and 6
in Section 4.6, these limit cycles expand monotonically until they intersect the saddle at the
origin simultaneously, in view of the symmetry, and form a grahic, S, with two

homoclinic loops at 0 at the bifurcation value p =, >-1.

By Theorem 3 in Section 4.6, since the limit cycles from part (c) are stable, the graphic S,
is stable. Since 6, = V-f(0) = i, and since S, is stable, it follows that p; <0.

(Numerically deduce that p; =-.74.)

Since in Figure 1 of Section 4.6, the exterior stability of S;, 0 =-1, and sincew=-1, a
unique limit cycle bifurcates on the exterior of Sj as W increases from the bifurcation value
W, = -.74 according to Theorem 3 in Section 4.6. This stable, negatively oriented limit

cycle expands monotonically as W increases. Since for large r, 1 is asymptotic to
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(a)

(b)

(©)

12 + x2y?/r, there must be an unstable limit cycle which contracts with increasing gt and

intersects the above-mentioned stable limit cycle at some bifurcation value L =, >, and
forms a semistable limit cycle. The one-parameter family of limit cycles composed of these
unstable and stable limit cycles thus extends from the graphic S, to infinity. Cf. the family

L, in Figure 9 of Section 4.9.

This problem is meant to illustrate how, using the theory of rotated vector fields, a
separatrix cycle can be obtained from a Hamiltonian system and how limit cycles can then

be made to bifurcate from the separatrix cycle by rotating the vector field.

Clearly this is a Hamiltonian system with H(x, y) = (y2 — x2)/2 + x4/4 and the phase

portrait is given by Figure 3 in Scction 4.9.

The system in this part of the problem satisfies [P, Q; Py, Q) = H(x, y) [y2 + (x = x%)?] <0
for H(x, y) < 0, i.e., inside the two loops of the graphic H(x, y) = 0. Therefore all vectors
of the vector field inside these two loops rotate in the negative direction as & increases; thus,
the two loops of the separatrix cycle, S, are internally unstable; i.e., according to the
paragraph following Theorem 3 in Section 4.6, the negative of the interior stability 0 = -1
and w = -1. Similarly on the exterior of S, we have a positively rotated vector field and

therefore 6 = +1 for the exterior stability of S,

If we fix ¢ at a positive value and embed the vector field of part (b) in a one-parameter
family of rotated vector fields (5), then from Figure 1 and Theorem 3 in Section 4.6, an
unstable limit cycle bifurcates on the interiors of the two loops of S, as W increases from
zero; and an unstable limit cycle bifurcates on the exterior of S, as p decreases from zero.
The trace of the linear part of (5) at (x1, 0) is given by T, = trace Df(£1, 0, p) = —(30/4)-
cosp + 3sinp which is zero for i = u* = tan-1(.1/4) = .025 at o = .1. The behavior of the
system (5) at o = .1 is described in the following phase portraits. Note that this system is

invariant under (X, y) — (=X, —-y).



(d) For a=-.1, the separatrix cycle is internally and externally stable and thus stable limit

cycles bifurcate from the homoclinic loops on their interior as p decreases from zero and

on the exterior of S as [ increases from zero.

4. (a)
(b)
(c)

(d)

(b)

=2 =-1,v,=@3, DT, v,=©, T, ES = {0}, E* = Span {v,}, E¢ = Span {v,}.

A=A, =172, v, =(1,0)7, gen. e. vect. v, = (0, )T, ES=R2, EY = E° = {0}.
1= A | 2

AMo=1zi,|A | =2, EBE=E = {0}, E*=R2%

2= (3+45)/2,0, =(3-+5)/2,v, = (2,14+5) ", v, = (1+45,-2)", E* = Span
{v,}, EY = Span {v,}, E* = {0}.

P(x, y) and P-Y(x, y) = (x + y + %3, X) are clearly continuously differentiable since they

arc polynomial maps.

(x,¥) = (0, 0) is the only fixed point of P; there is a one-dimensional stable manifold
T
W3(0) tangent to ES = Span {(1 +4/5, 2) at the origin; and there is a one-dimensional
T
unstable manifold W"(0) tangent to E" = Span {(2 = \B) } at the origin.
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6.

Ifx=.5;5, = 35;/2, then F(x) = $5;/2/" (mod )= ¥s;,, /2’ = 5,85 ; and
j=1 j=1 j=1
Fr(x)= ¥s;/27" (mod 1) = 38;,, /2% = 5, Sy, -+ It follows that F(.0)=.0 and
j=1 j=1

F(.T) =.1; Fz(.m):.Ol and F%E):E etc. Thus, .0L 01 (with n zeros) is a
periodic orbit of period (n + 1). And if x and y differ in the nth place, then x, =1 and

yn =0 or vice versa, so that [Fn-1(x) - F“‘l(y)l = l.xn s —Yp | =1--=12+--21/2

PROBLEM SET 4.9

1.

For € = 0, ¥,(1) = (acost, asint)T with T, = 2r. Thus, M(w., ) =

—'[(;nxa(l)[ulxa(t) + X2 (1) + qug(t)]dt =

2 g -
_Jo n[ulaz cos?t + p30(4 costti+ u5oc6 cos6 t]dt =
—ﬂaz[ul + 3;13012 /4+ Susoc4 / 8]; and M(p., o) = 0 iff o2 =

[—3u3 +Jou? — 40y, ] / Sps. This yields two positive roots if jizits < 0 and 0 < jt, g <
9;1‘;-/40. Thus, by Theorem 5, for all sufficiently small € # O, this Lienard system has
exactly two limit cycles asymptotic to circles of radii r; and r,, given by the square roots of

the above two positive numbers, as € — 0.

For a = 0 (and 3 = 0) we have the phase portrait shown in Figure 3 and the global phase
portrait shown below with critical points at (0, 1, 0) having two hyperbolic sectors. For
€ > 0, the system (8) with 3 = 0 defines a one-parameter family of rotated vector fields
(mod y = 0) with parameter « since [P, Q; Py, Q,] = €y? > 0 for y # 0. Thus the field
vectors rotate in the positive sense from those in Figure 3 as o increases from zero and we
have the second phase portrait shown below. There will be a sequence of saddle-saddle
bifurcation values (x:, described at the end of this section and in Figure 11, with oc:, — 0.

We thus have the following global phase portraits for (8) with $ =0 and £ > 0:



o <0< O

o> Oy
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For € = 0 the system is Hamiltonian with H(x, y) = (y2 — x2)/2 — x3/3. The homoclinic
loop through (0, 0) is given by H(x, y) = 0 since H(0, 0) = 0. The homoclinic loop I},
through the origin intersects the x-axis at x = —-3/2. Using the symmetry and the fact that

dt = dx/y, the Melnikov function along the homoclinic loop y = +x? +2x7 /3 is given

by M(a) = I:f(YO(‘))’\g(Yo(t), a)dt = [7 y§(t)[o+xo(0)]dt =
QI—Omm(a*X)dx = 2J.0_3/2Xm(a+x)dx = 2(—53—01—%); and

M(a) = 0 iff a = 6/7. Thus, by Theorem 4, for sufficiently small € # 0 there is an o(g) =
6/7 + 0(€) such that this system has a homoclinic loop at the origin in a neighborhood of
I§,. Since Df(-1,0) = [0, 1; -1, (e - 1)]),8 =1 and T=¢(t - 1) =0at a = 1. From (3")
in Section 4.4, 6 = +31/2 and clearly ® = —1; thus, for € > 0 there is a subcritical Hopf
bifurcation at (-1, 0) in which an unstable limit cycle bifurcates from (-1, 0) as a

decreases from the bifurcation value o = 1; viz.

(e

a < a(g)

G

ae)<a< i

X

a = o(e) = 6/7 + 0(g)



4. (a)

(b)

(c)

(d)
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Integration by parts with u = cos wy(t + ), du = —w;sinwy(t + ty)dt, dv = sccht tanht dt,
v =-secht yieldsI = —wojsecht -sin u)o(t + to)dt = —,sin woto‘[secht -cosw,tdt since

secht - sinwyt is an odd function.

Let C be the contour shown and f(z) = cos u)oz/coshz. Then coshz has a simple zero at
z = in/2 and f(z) has a simple pole at z = in/2 and no other singularities inside or on C.
Thus, the residue of f(z) = g(z)/h(z) at z = in/2, Res f(z) = g(in/2)/h’(in/2) =

cos(i wgnt/2)/sinh(in/2) = cosh(w, 1/2)/i = —icosh(wgn/2).

Forz=#a+itand0< 1<, Icos wyz/coshz | < e_a(l + e""’n) / (1 - e_z“) and therefore,

dt

J'n cosmy(ta +i7)

: < ‘Ite"“(l +em°n)/(l —e_za)—> Oasa— . Andforz=t+in=
0 cosh(ta+it)

i a coswg(—u+imn)

C ramin a cosmyu
—u+m,.[ _ f(z)dz:J 0
aHin -

du = cosh U)onj du since

a cosh(-u+im) -a coshu

cosh (-u + im) = —coshu, cos wy(—u + in) = cos W, ucosh w7 + sin wyu-sinh w, 7 and

sinm,u/coshu is an odd function.

3 coswgt

We then have ¢ f(z)dz = 2miRes f(z) = {1 + coshw,7
C 0%/J-a cosht

. "4 0 — i
Inw dt + I costo(za+it) dt. And, finally, letting a — oo and using the

¢ cosh(a+i11) n cosh(—-a+i1)
—WqsinWgtg2mcosh(wgn /2)

results from (a)-(c), we have I = = —TIW, Sin Wyt
(l + cosh won) 0 00

sech(w,7/2) since 2cosh2 (w,7/2)/(1 + cosh wym) = 1.
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PROBLEM SET 4.10

1.

The given differential equation is equivalent to the second-order differential equation
X=y=x-x3+e(ax + Bx2X) = x — x3 + exg(x, p) with g(x, p) = a + Bx2. Similarly,
the Lienard equation is equivalent to X =y + €(14,X + 3u,x2X) = x — x3 + (i, + 3U,x?)x

which is equivalent to the above second-order differential equation with o =, and § = 3,.

For &, =€)}, + €2, + -+ and V(1) = (x4(1), yo(1)) = (ccost, asint), the (first-order)

Melnikov function for this system is given by

M(a, i) —L;n[)\l 1}’3([) + >\21xé(t))’a(t) + (2}\31 +Ayq )xa(()ya(t)

IV (D +AxE (D) = Agxg (D + (205 +Ag) XE Dy (D + kélyg(t)xa(t)]dl

and we have M(a, p) =0 forall a > 0iff A, =0.

The system in Example 3 is equivalent to X = y + €({,X + 31,x2X) = —x + x> +

e(M, + 3u,x2)x and similarly, the system given in this problem is equivalenttoX=y =
—x + x3 + ex(1, + 3u,x2). For € = 0 the given system is clearly Hamiltonian with

H(x, y) = (x2 + y2)/2 — x3/4 and the two heteroclinic orbits are given by 2(x2 + y?) - x* =1
since H(z1, 0) = 1/4. Along the upper heteroclinic orbit y = (1 — x2)/V2 and the Melnikov

function along the upper (or lower) homoclinic orbit is given by

M(p) _Eo f(vo®) A g(vo(), 1) = Eoy(z)(t)[ul + 3’112’((2)([)](1t

J‘_lly(ul + 3u2x2)dx =1/+2 J‘_ll(l - xz)(ul +3u2x2)dx = 2\/5(”1 13+p,/5).
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The function x (t) given in Example 2 satisfies X, () = ; 1- ~ dn'(u) and
/3
X (0= N—hm dn”(u) withu = /2 —a® . Thus, X, — X, + x3 =

o)

V2/(2-o )3/2[dn"(u) - (2 - az)dn(u) + 2dn3(u)] =0. Also x,(1) =

I

/(2 - az)-dn’(u) =—\2a? /(2 —az)-sn(u)-cn(u) =y, (t) given in Example 2.

. ) . e 2 , ..
The function x (1) given in Example 3 satisfies x,(t) = l\/_a, sn’(u)and X () =
+O-
/2

2 2
\/_am sn (u)\nthu-t/\/1+a Thus, X, + X, —x \/—OL/(I-HI) .

(l+a )
[sn"(u) +(1+a?)sn(u) - 2a25n3(u)] =0. Also X (1) = V2a/(1+0?)-sn’(u) =

V2a/ (l + az)-cn(u)-dn(u) = y,(1) given in Example 3.

For the system in Example 2 along the exterior periodic orbit v (1) given in this problem,

. - / 2 o]
with T, =4K() v2u~ -1 and u=t/~2a" -1,

Tll
M(u, ) = Jo [uzxfi(t)+(pl—uz)xé(t)—ulxi(l)]dt

2

7 \3 .
= j;K((1’|:u2[2(i;1llJ cn"(U)+(Ll| —uz)[zigilj Cn"(u)—pl(?iz—ui)cn~(u)},"2u~ —1du
_ ( 22(11)3/2 '|'4K(u)[“74(1 en®(u)+(py — 1y )2 ( )cn (u) u,(Za —l) cn (u)}
=( 08 )5/2{ = [( 3 230 +3)E(0£)+(1— )(150& -19a +8)K(a)]
20 -1

z(pl_uz)(zoﬁ—l)[ 2(202 - 1)E(0) + (2 - 3021 - )K(a)]

e oo
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— 8 U 2 _4\? 2 2
= —ﬁf{?[(za ~1) E(o) - (20 - 1){0 - 1)K(a)
!
6 4 2 4 2
— 1, 200 = g? - - 2
i [_(a o +1)Ee) - (o' 30 + -)K(a)]}.

And therefore we have M(ct, ) = 0 if /1, is equal to the function of o given in this
problem, whose graph is shown in Figure 6. Note that the value p,/p, =24 fora =1

corresponds to the homoclinic loop bifurcation as in Example 2.

For the system in Problem 7 with v (1) = (x4(1), y,(1)) the interior periodic orbit given in

Example 2, with T, = 2K(c)V2 —o® andu=1t/v2 -a?,

T,
Mo, p) = [, (X3 (0 + 1 xE () = X3 (0 - xG (0]t

1 f4K(w) 42
5_[0 15

(
—H (;i—z)dnz(u)} V2 -0o? du

4 . 242
T dn5(u)+u]—2—7dn4(u)_“2—\—23’/‘§‘ dn*(u)
_O(") (2—(x ) o )

o

(2—&“ =
i [l e o eo]-<o-ojeo)
-
_ 1 Mpy2mo + il [(Z—OLZ)E(OL)+2((12 —I)K(Ot)]

(2—&2)3/2 2(2—&2)“2 3

and therefore M0, ) = 01f p /i, = 3not/ 42 (2 o) (o - 2)B(e) +2(1 - o )K(@0)].
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The graph of the ratio p,/y, as a function of a is shown below:

"7
1.92
-1.94
1,8
1,96
1,96
N — . = A B n
' 02 04 os os ' ! oR ™ 096 0% N
And we sec that there is a unique limit cycle for -2, < g, < [t,(€) = —=1.67H,. It is shown
in Problem 8 that {t,(€) = —3np12/4w/§ + 0(¢) is the homoclinic loop bifurcation value and,
using equation (3") in Section 4.4, we can show that this system has a supercritical Hopf
bifurcation at p; = -2u,.
8. The system in Problem 7 is equivalent to the second-order differential equation

X=y+ ()X + 21,xX) = X — x3 + ex(i4; + 214,x) as is the system in Problem 8. The
Melnikov function along the homoclinic loop ¥, (1) which, as in Example 3 in Section 4.9,

lics on the curve y2 = x2 — x4/2, is given by

M) = [ £(V50) A glvg w)de

= V2
j_wyg«)[u, + 2% (1)]dt :2j0 Lx1-x212 (1 +2u,x)dx

221, /3 +2mp, / 4).

And therefore, M() =01if u, =-3 V2 n 1,/8 which leads to the homoclinic loop bifurca-
tion value ﬁl(e) =327 pzl 8 + 0(¢) according to Theorem 3. Note that for y, = 0 the
system in Problem 7 is symmetric about the y-axis and it therefore has a continuous band
of cycles for u; = 0 (even if € # 0). The phase portraits for the asymmetric perturbed

Duffing oscillator in Problem 7 with € > 0, i, > 0 and @, <0 are shown below:
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SIS

Hy < =21, —24, <y <f1y(e) TN

fi,(e) <p, <0

9. For v (1) = (x4(1), ¥,(1)) = (0cost, asint) and T, = 2x, the Melnikov function is given by

M(a, p)

i

"fozn[ulxi(t) + 13X (1) + 1exS (1) + p7xg(t)]dt

—2na’ [—E‘— $ M3 g2 Ms +3illa6]
2 8 16 128

which clearly has three positive roots for appropriate choices of ; in fact, if we want three
particular sized limit cycles, say limit cycles asymptotic to circles of radiir=1,2,3as€ =0,
we simply set the polynomial (a2 — 1) (02 — 4) (a2 - 9), i.e., a® — 140 + 4902 - 36 equal to
the above 6th degree polynomial in & in order to determine that u, = -72, pu, = 392/3, us =
—224/5 and p, = 128/35 will produce three limit cycles of the desired sizes. (Cf. Theorem 6 in
Section 3.8.)
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PROBLEM SET 4.11

1. The solution of the unperturbed problem through a point x = o on the x-uxis at time t =0 is
Y (1) = (cecost, —osint). In the context of Theorem 1, we have M (¢, N) =0, H(x, y) =
y*/2 = U(x) with U(x) = =x%/2, f(x, y, €) = €A% — 2x2 = (2X,, + Ag) )Xy + ¥, g(X, y, €) =
€N 2y — AgyX2 + (4 + Ay )Xy + Ay y2 F(x, y) = joy f(x, s, 0)ds — jox g(s, 0, 0)ds =
=22y — Ay, + A, /2)xy? + y33 + A, x¥/3, G(x, y) = g(x, y, 0) + F,(x, y) =
Xy = A y¥2, Gi(X, ¥) = Ay Xy, Gy(X, ¥) = =hg;¥¥2, G (%, y) = Ay, x/y, Py(x, h) =
J: A5 (s2 = 2h)/2 ds = A5 x3/6 — A5,hx and Py (x, h) = —Ag,x. Thus, according to Theorem
1, with dx = ydt and dy = —xdt to zero order and with h = a/2, we have, with the integrals

taken around I, : x = v (1),

My(e, N) = §[G),P; - G\Pyy,|dx + §[gdx — f dy] 35 [t + gy Jax

= § M,%(%)@ - As) hx] —l“xy(—)\_ﬂx)}dx + §[k,2ydx—k,2 xdy]

§——2x2y—-(k2] +hs 1 2)xy? +y 134060 /3} _
y

[-4x - (z}m +7L51)y + (4 +}\“)x + Zkzly]dx

x*  h
= Ay As i;l:%;——;—ﬂ y dx+k12§[ydx—xdy]

}\' Ag A dx
§|:27\5]x2y2—7y ~hg (Ao +2s 7 2)xy? + “3 21y ]7

4
2n| . nr |
= A A Z_cos*t —ha’cos’t +atcos? +sin?t |dt + A0t sin®t +cos°t |dt
whsi)y |7 2%,

o j [2}.51005 tsin’t — )\Tsm t -)»41(}»21 +Ag,/2 )coszl sin’t +&];\—21cos4t:|dt

1 3 v A 1 2
= Agihg 0 “M——+— |+ A" 2T —
41451 [6 175 4] 12
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which agrees with the formula for d,(a, N) = My(at, N)/¢t in Lemma 1. (Cf. cquation (3)

in Section 4.10 with w, = -1 and |f(Yu(0))| =0.)

Letting y — ~y we get the system in the form of equation (1,): X=y+¢e(eax + y2 -

8xy — 2x2), y = —x + g(eay + 4xy). We therefore have M, (¢, a) = 0, H(x, y) = y¥/2 - U(x)
with U(x) = -x/2, f(x, y, €) = €ax + y2 — 8xy — 2x2, g(x, y, €) = €ay + 4xy, F(x, y) =
yi3—dxy? = 2x%y, G(X, y) = 4y2, G,(x, y) =0, Gy(x, y) = -4y2, P,(x, h) = 2xh - x¥/3,
and P, (x, h) = 2x. Thus, from Theorem | with dx = ydt and dy = —xdt to zero order and
with h = @2, we have, with the integrals being taken around ¥ (1) = (x (1. y (1)) =

(dcost, —osint),

Myt 2) = $[Gyy Py = Gy Poy Jdx + Pz, dx - fEdy]—fﬁg[fx + gy Jdx

uﬁ[ydx - xdy] - ﬂy3 /3—4dxy- 2x2](—8y)dx

ujozn[yi(t) FxG(0]dr+ sjj"[yg([) 13-4 (DYS () - 262 (V)5 (0]t

4
a2nol + 8(% . %Tn —202 ;] = —21toc2(a - ocz).

And since, from equation (3) in Section 4.10, d,(c, a) = -M,(a, a)/a (in view of the fact
that o, = +1 and x = a), we have d,(a, a) = 2no(a — o?) or d(a, €, a) = 2ne2oa — o?) +
0(e3) which agrees with the formula for d(c, €, a) following Corollary 1 to 0(¢3). Using

Lemma 1, we can show that the error 1s 0(€9) as in that formula; cf. Problem 3.
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In order to use Lemma 1 for the system in Corollary 1, we must note that A, = 4,, =0,

Ay =2 k=0, 5, =8, Ay =0, &), = a and all of the other A;; = 0. Thus, from Lemma I,
we have di(x, N) =21, x = 0, dy(x, N) = 27A},X — WA, x3/4 = 2max — n8x3/4 =

2nx(a — x2) and d;(x, M) = d,(x, N) = dy(x, N) = 0. Since A4, # -5, we can not use the
formula for d (x, X) and there may well be 0(€°) terms in d(x, €, N). Thus d(x, €, N\) =

£d (X, N) + €d,(x, N) + -+ = 2me2x(a — x2) + 0(€®) as in the formula for d(x, €, \)
following Corollary 1. It then follows from Theorem 2 that for a > 0 and all sufficiently
small € # 0, the system (4) has exactly onc hyperbolic limit cycle in an 0(€) neighborhood of
the circle of radius x = v/a . This completes the proof of Corollary 1. Corollaries 2 and 3 are
proved in a similar fashion by using Lemma 1 to derive the given formulas for the displace-

ment function d(x, €, w) and by using Theorem 2 and the results cited in Remark 1.

First of all, itis casy to sec that for v (t) = (x (1), yu(t)) = (ceost, —asint), M, («) =
L:n[cxi(t)y“(l) + bxi(t)yu(l) +cxi(t)]dt = 0 for all o. And then with U(x) = -x%/2, f(x. v,
£) = €ax + bxy + €dx? + ex*, g(x, y, &) =cx*, fu(x, y, €) = ax + dx3, g, =0, f,(x, y, 0) =

by +dex?, g, = 0, F(x, y) = bxy/2 + exty — cx5/5, G(x, y) = by¥/2 + dex3y, G,(x, y) =
dex3y, Gox, y) = by¥/2, G(x, y) = 4ex3/y, Py(x, h) = b(hx — x3/b), P, (x, h) = bx.

Thus, from Theorem | with dx = ydt and dy = -xdt to zero order and with h = /2, we

have, with the integrals being taken around v (t),

M, ()

$[Gin P ~ G, Py Jdx + $[gedx — f.dy] - g[fx + gy Jdx

§ 4cx3b h x3 3 3N dyx
X—F —4ex ybx dx—§(ax+dx )dx

y

2 4.5 3\ dx
§(bxy /2+4+exy—cx /5)(by+4ex ) »

4befj"[hxi(t) -x8 ()76~ x“u(l)yg(t)]dt +jj“[ax§(t) + dxg(t)]d[_
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- jj"[.%bex;(t)yﬁ(n)—4cx§(:)/5]dl

= no? {lca(’ +ibcot4 +§da2 +aJ
16 24 4

2m

which follows using the formulas for J'gncos tdt given at the end of Section 4.10.

5. For v,(1) = (—acost, asint) we have M,(ct) = 0. And then with f(x, y, €) = €ax + €bx? +
£cx® +x6, g(x, y, €) = Ax® + Bx* + Cx2, f,(x, y, 0) = 6x5, fo(X, y, €) = ax + bx? + ¢cx3,

gy =0, g =0, Fx, y) = x% - AX7/7 - Bx5/5 — Cx3/3, G(x, y) = 6x5y, G,(x, y) = 6x3y,
G,(x,¥)=0,G,;(x,y) = 6x5/y, P,(x, h) =0, P,,(x, h) = 0. Thus, from Theorem 1 with
dx = ydt, dy = —xdt to zero order and with h = 0%/2 und the intcgrals being taken around

Y (1), we have

My@) = §[Gyy Py = Gy Poy Jdx + §[gedx ~ fdy] - § g[fx + gy Jdx

—§[ux + byx? +cx5]dy —§[x(’y ~Ax"/7-Bx/5-Cx/ 3][6)(5 / y]dx

= _foz [dxu(l)+bxa(l)+u\u(t)]dt+J. [6Ax (/7 +6Bx}J(1)/ 5+2Cxg ()] dt

naz(ﬁAa'°+@B(xg 35Ca +Sca +3b(x +a)
256 320 32 8 4

where we use the integrals of even powers of cost given at the end of Section 4.10 and the

2
formulas Joncoslotdt —‘— and _[ os' tdt = 2797n which follow from the formula

2m 2my 1 . : .
fo cos” " tdt = m ) 2 given in Theorem 6 in Section 3.8.
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7. With v (1) = (x,(1), y,(1)) = (ccost, —asint), we have M (@) =
& , 3 (0 + 3320y (0 -y =34 - 3n/4 =0
jo [+ bxG (0 + X (DY, (1) + X3 (1) 4 3x2 0y, (0 - Y (1] y (Dt = 37/4 - 31/4 = 0.
And then f(x, y, €) = 0, g(x, y, &) =a + bx + xy + x> + 3x2y - y3, g (x, ¥, &) =
X +3x2-3y2, g, =0, F(x, y) = —ax — bx¥/2 — cx¥/4, G(x, y) = xy + 3x?y — y3,
G (x, y) =xy + 3x2y — y3, G, = P, = P, =0 and G, (x, y) = (x + 3x2 = 3y)/y imply that

_§;§[gy]dx = ﬂux +bx%/2+ext/ 4}[X e 3),2]%

M,(a)

2 .
jon[uxg(t) +3bx5(0)/2 = 3bx% (02 (07 2+ 3ex§(1)/ 4 = 3ex, (D yg (1) / 4]t

na? [a+3bu’ 74+ 3car* /8] = wh[2a + 3bh + 3ch2]

27 . 2n )
where we have used the fact that h = «3/2, [0 cos>t sintdt =7/ 4 , JO cost*tsintdt=7n/8

and the formulas for the integrals of even powers of cost given at the end of Section 4.10.

PROBLEM SET 4.12

1. (2) Youshould find Q= ;35— by + a;3, Q3; = by Qua = 4,2/2, Q3= (b, ~— 2y, + 3byy +
ag)/4, Quy = byy/d, Qg = (ayy = byy + 2042)/3, Qqp = by, Q= gy, Qg = (b + 2y —
)3, Qa = 21¢/2, Q= by, Qg = bgy/2, Q= g and Qg = byg; q(x, y) = (by; — ay)x? ~
(3b,; — 2y + 3bag + ag3)xy/4 + (b, - 2a45)% + (a;, — 2bsg)y; and 0t(h) = (4, ~ by, + 345 -

3byp)h + (ay; — byy)-

(b) Qo= (3ay —3by, +2a,,-2b;; + 8804)/15, Q4 =by Qia=1(a,, - b+ 41104)/3, Q= (by;
b5 +4ag,)/3, qy, = a3, — 4byg, q;, = byy — 4agy,, and qy; = a;5 — 2(b,, — a,, + 4by,)/3; and

)1
a(h) is the same as in part (a). 4°

(c) This problem is done in Iliev’s paper [58].
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2. (a)

(b)

For the system in Problem 2(a), we have f(X, y) = =2x2 = (22,5, + A5))xy + ¥2, g;(X, y) =
A X2+ (4 4+ A )XY + Ao ¥ (X, y) = A% and g5(%, y) = A},y. Therefore Q, = o, =
gdx — fidy = [<A;,x2 + (4 + Ay )xy + Ay y2]dx + [2X2 + (24, + Agy)xy — ¥2]dy, and o,
= g,dx — f,dy = A},vdx — ,,xdy. It then follows from the proof of Lemma | withn =2
that q,(x, y) = (b, — 2ap,)x + (a;; = 2byy)y = (20, + ).Sl - 77L2,)x +(4+ ).41 —4)y = kgX
+ 2y And finally, dyh) = [Q, = [(0, +)0,) = Apz j (y +x2)dt+ j( X+ hgy)
[-25 X3y + (4 + A, )xy2 + };:;h’ ~ 2)1([3. h— (2h,; + Ay )Xy +Ox)'2]dt 27{0(2)»,2 - 2_[ [2A5,x*
= A X7y + A (2R, + Ag)X2y2 — Ag (4 + Ay )X2y2 + Ayl X2y2 = Dy Ay yidt = ZTI(CL Aia

— ths,/8) = 4mthA,, — mh2kg, where we have used dx = ydt, dy = -xd{, x (1) = ccost,

2r 2n 2n
y (1) = asint, | sin’t cosit dt=2n/8, j sinftdt= | cos¥t dt=2m-3/8, | sintcositdt
2n 0 0 0 0
= [ costsindtdi=0and «=+2h.

0
For A, = A}, = A5, =0, consider the system in Problem 2(b): We have f|(x, y) = -2x% -
27Xy + ¥, gi(X0y) = =A5 X7+ (4 4 Ay )xy + Aoy (X, y) = -Agoxy, 2.(x, y) =0
fi(x, ¥) = 2 ;3x and gy(x, ¥) = A3y Then q(x. y) = 24,y (from part a with A5, = 0), Q, =
W, + 0, = Aeaxydy + A,y { [“A5,x2 + (@ + A, )xy + Ay y2]dx + [2%2 + 2, xy ~
y2ldy } = hgoxydy + <A, Ay X2y + Ay (4 + Ay )xy? + Aghg ¥ ]dx + [244,x2y +
2h iy Xy* -
Aqy*ldy. Thus, in determining (y(x, y), we have a,, =0, a,, = —A, Ay, 8y, = Ay (4 + Ay)),
g3 = Ayhyps byg = 0, by = 24, by, = 244, by = -2, and by, = A;,. And from
Problem I(a), we have qy, =0 and q,(x, y) = b;;x + (by, — a,,)x* = (3b,, —a;; + 3by, +
2g3)Xy/4 = Agox — (7?\4, + A5)x2 = (TAy A . -4, - )»241)\()'/4 Therefore, [Qy= [ w,
+q,0, + 0, = Ay J’ (y2 + x2)dt — A s, I x2y2dt + j A2 (4 + Ay )x2 y; § 522::1

Asox2y2 + 0(x3y, xy3, x3, x4y, x3y2, x2y3, xy4)]dt 21[(12A,3 - net*As,/4 = Tth[4X 5 -

2n
As;h] where we have used dx = ydt, dy = —xdt, the integrals in part (a), and [ sin™t cos™t
0

dt =0 for m + n odd.
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Forn=1and Q = (a;x + 8,y + ay5y)dx + (b,oXx + by;y + byy)dy, we have Q = dQ + qdH

+ a(H)ydx + B(H)xydx for Q(x, y) = Qux* + Qxy + Qpay? + QX + Qqy + BgoH(x, y),
q(X, ¥) = qgg» t(h) = &g, BCh) = 0 and H(x, y) = (x2 + y2)/2 — x3/3 provided Q = [ZQZOx
+QuY + Qo+ Byo (x — X2 + qoglx — x2) + ety Jdx + [Qx + 2Qq,y + Qg + Beoy +
%oy}dy? i.e., provided 2Qy + By + qgg = 239, Qyy + % = 8g;, Q) = 20r Bop + dpo =0,
Q) =byg, 2Qy; + By + qop = by, and Qg = by, We can choose By, + q, = 0 (here and for
alln 2 1), Qyy = a,¢/2, Q) = 8gg, Q; = by Qpa = by /2, Qg = by, and &g = 2, — by For
n = 2, you should find, in addition to the above formulas, that Qs = b,/30 —a,,/15 +
a39/3, Qa1 = bag, Q3 = 205 + 3b,,/10, Qgy = byy/3, Byg = =34,¢/4, 10 = 4b,,/5 — Bag/5

and By, =q,, =0.

PROBLEM SET 4.13

1.

As in Section 2.12, we let y = h(x) = ax? + bx3 + --- be the Taylor series for the analytic
center manifold. Substituting this expansion into equation (5) in Section 2.12 results in
(2ax + 3bx2?) (ax? + bx3) — p,y(ax? + bx3) — (x2 + ax?) + 0(x*) =0, i.c., (-p,a — )x2 +
0(x*) = 0 which implies that a = ~1/p, or that the analytic center manifold is approximated
by y = —x2/u, + 0(x3) as x — 0. Equation (6) in Section 2.12 then implies that the flow on
the analytic center manifold is approximated by X = —x*/t, + 0(x3) as x — 0. And for
cither B, > 0 or p, <0, this implies that there is a saddle-node at the origin with two

hyperbolic sectors in the right-half plane for p, # 0.
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2. For 11, # 0, the lincar part of the system (2) has a simple eigenvalue A = 0 with correspond-
ing eigenvector v = (1, 0)T and [Df(0, 0, n,)]T = [0, 0; 1, u,] has an eigenvector w =
(15, —=1)T corresponding to the eigenvalue X = 0. Furthermore, wif, (0.0, 1) =
(M5, =1) (0, )T = =1 2 0 and wT[D3(0, 0, 1) (v, ¥)] = (5, -1) (0, 2)T = =2 # 0. Thus,
for i, # 0, according to Theorem 1 in Section 4.2, the system (2) experiences a saddle-node
bifurcation at the equilibrium point x = 0 as the parameter W, passes through the bifurcation

value u; = 0.

3. Setting v, = -1/4 and translating the origin to the center of the system (4) at (-1/2, 0), i.c.,
letting x =u + 1/2 and y = v, we obtain X = y and y = —x + x2 + e(ay + Bxy) with a0 =
~ 1/2 and § = 1. This system is equivalent to X =y = —=x + x2 + g(aX + fxX) as is the

system x = y + €(ax + bx?), y=—x + x2 with (a, b) = (o, /2). The Melnikov function

along the one-parameter family of periodic orbits ¥, (1) = (x,(1). y(1)) of period T,

8(1 — o2 + o)™ K(w), given in this problem is given by

I

[ Fu0) A g, wdt = [ axZ () + (b = apxd (0 = b 0] at

a JK((L) 9(1 /’—'___
a Frod )’,4_[ Tsn u+ 30’ ( l-o® +a? —l—(x )m u

2
+ %(\Jl—ocz+oc4 —1—012) }du

M(a, p)

4K
A R P
4(1-o +at)

2 3
+ az(VI—a2+a4 —l—ocz) sn2u+$(\,l—(xz+a4 —l—az) ]du

>
sndu + 27a6(\ l—a® +o* -1- az) snlu

b I4K(a)[81a8
2(1 o+ )7’4) 0

4 2 5 3
B i L R

4
+ %(\11—a2+a4 —l—az) }du
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6a

5(l—a2+a

2((14 —a’+ 1) E(a) - (a‘* -30% + 2) K(a)]

4)5/4 [

6b {[7(01“ -3a? + 2)\,m+ 5((16 +ot —do? + 2)]1((0‘)

35(1 -+ a“)m
- [5(2(16 -3a* 3% + 2)+ 14((14 —a’+ 1)3/2]E(a)}

where we have used the formulas for the integrals of even powers of sn(u) given in
Section 4.10 and the formula

FK(Q) 6(1 + az) Juu((a)

8 5 4K(a) 4
sn-(u)dn = ——-+
70? I

sn®udu — — sn udu
Ta

given on page 192 of [40]. It follows that M(a, i) has a simple zero iff

= {[7(054 -3’ + Z)Jm + S(a6 +ot —40® + 2)] K(a)

a
b
- {5(2(16 ~3a! - 302 +2)+14(0* ~o? + 1)”] E(a)}

(ot - +1) " [2(a - o +1)E(@) - (a* - 30 +2)K(a)]

This function is plotted, using Mathematica, as a function of a and as a function of x

below, where from the expression for x,(T /4) we have

2—
X = 20 -1 1 and 2a2=1+(2x—1)w’——1——2.
Wi-o2+ot 2 3+4x—4x

0.2 04 06 08 1 02 o4 06 08 §
I.A‘Ll..,.I,...l....JL,LJ_lc( ,...l..,.l,,.,l...Ll,...lx
[
005 005
01 -0.1%—
§
Q.15 Q.15
[
02 02t

025 025
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From the graphs, we see that for b > 0 and sufficiently small € > 0 the above system has
exactly one limit cycle for —28 --- < a/b < 0. As in the first part of this section, it is easy to
show that the system in this problem has a subcritical Hopf bifurcation in which an
unstable limit cycle bifurcates from the origin as a decreases from zero; according to the
above graphs, it expands monotonically as a decreases from zero to (.28 ---)b.
Computing the Melnikov function along the homoclinic loop shows that this system has a
homoclinic loop for a(e) = -2b/7 + 0(g) = (-.28 ---)b + 0(¢). And for v = —1/4, the
homoclinic loop bifurcation value = a=v, - 1/2=-2/7b + 0(¢) for b= f}/2 = 1/2

corresponds 1o v, = 5/14 + 0(g) as computed carlier in this scction.

For the system (6), Df(x) = [0, I; p; + 3x% — 2xy, U, — x2]. For y, 2 0, the origin is the
only critical point and Df(0) = [0, 1; u,, 4,]; thus, for i, > 0, the origin is a saddle and
for u, = 0 the flow on the center manifold, y = —x3/(311,) + 0(x*), is given by x =
-x3/(3p,) + 0(x*) and we have a topological saddle at the origin. For 1, < 0 we have
critical points at (0, 0) and (i\f——ul, O); the origin is a source for 1, > 0 and a sink for

1, <0 where we must use equation (3°) in Section 4.4 in order to determine the stability of
the origin when p, = 0; since Df(i\F;LT, O) =0, I; =20, Uy + uz], these critical points
are both saddles. Using equation (4) in Section 4.2, we can show that there is a pitchfork
bifurcation for p, = 0 (and p, # 0) in which three critical points bifurcate from the origin
as W, decreases through p, = 0. Since for i, < 0 and , = 0 the origin is stable, it follows
from Theorem 1 in Section 4.4 that there is a supercritical Hopf bifurcation in which a
stable limit cycle bifurcates from the origin as 4, increases from zero. It then follows from
the theory of rotated vector fields in Section 4.6 that for @ = -1 this stable limit cycle
expands as the parameter W, increases until it intersects both of the saddles at (i\f——p—,, O)
at some homoclinic (or heteroclinic) loop bifurcation value p, = h(n,) = -p,/5 + O(Lllz);
this approximation was derived in this section using the results of Example 3 in Section
4.10; we have also used the symmetry of this system about the origin to deduce that the
cxpanding limit cycle intersects both saddle points simultancously. The bifurcation set and

phase portraits for this problem are shown in Figures 7.3.4 and 7.3.5 in {G/H].
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The details in Problem 5 are similar to the details in Problem 4 except that in Problem 5 we
use the results of Theorem 5 and Problem 6 in Section 4.10 to establish the results
concerning the limit cycles for this problem. We also make use of the symmetry of this

system about the origin. (See p. 146 in the appendix.)

If we make the transformation of coordinates (x, y, t, B}, l,) = (X, =y, =t, i}, —l1,), the
system in this problem is transformed into the system (2). Hence, the bifurcation set and
corresponding phase portraits are obtained from Figure 3 by rotating the ft,, u, plane

through 180° about the u,-axis and by rotating the phase portraits through 180° about the

x-axis and reversing the arrows.

For i, > 0 there are no critical points and for p; <0 there are critical points at

(£y-m1, 0). DE(xy=py, 0) = [0, 1 £24/=py, uy s for p, <0, (24/=1, 0) is a saddle
and (—2\,/——1,11, 0) is a sink if 4, <0 and a source if pu, > 0; for u, = 0, by the symmetry
with respect to the x-axis, (—2\,[—;—11, 0) 1s a center. For 4, = w, = 0, there is onc non-
hyperbolic critical point at the origin; and from Theorem 3 in Scction 2.11 it is a cusp. For
i, =0and p, # 0, according to Theorem I in Section 2.11, there is a saddle-node at the
origin. For u, =0 and p, # 0, there is a single zero eigenvalue and according to Theorem

I in Section 4.2 there is a saddle-node bifurcation, viz.:

s §G,

=

A&
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PROBLEM SET 4.14

1. Setting T(x*, \*) =0leads to c(t+S) =1+ uff + ay* with y* = (¢t — B + S)/2 and

f By -
S = \:‘(a - B)" —4y“ :and this in turn yields ¢ = [ 1 + o + 3 + SY/2}/(uw + S) for the

Hopf bifurcation surface H*. For Y =0 and « > [} this reduces to the Hopf bifurcation
surface HY 1 ¢ = (1 + «2)/(2a - B) for (4). In order to show that for T(x*, y*) = 0, the
critical point (x*, y*) is a stable weak focus (and to complete part b of this problem), rather
than using equation (3'), it is casier to use the following formula for the Liapunov number,
o, of the quadratic systemx = -x + Ey + y2, y=Fx + y — xy + cy? with I + EF <0 given
in Lemma 2.3 in [S1): 0 = F[CF3 +(cF+1)(F-E+ 2c)]k with the positive constant k =

3n/|2

2], (This formula also follows directly from ¢q. (3”) in Section 4.4 for
the above quadratic system. Cf. Problem 9 in Section 44 ) For E=f+ 2ytand F=u -¢
—ytwescethato=0iff 22S - PB)c2 + [(u+PB-SHP-2S)+2]c+(P-u-3S)=0
where we have used equation (8) for y*. Solving this quadratic for ¢ then leads to the
equation of the H3 surface given in part (b). (Numerical computation shows that the
solution with the minus sign has no intersection with the H* surface and it can therefore be
ignored.) And then for Y =0 and S = «t = 3, it can be shown that the discriminant b? — 4ad
<0, i.c., that ¢ does not change sign and that for o= 2f3 = . 0 is ncgative. Thus, for

Y =0, a supercritical Hopt bifurcation occurs as ¢ increases.

2. The system (5) experiences a Takens-Bogdanov bifurcation at the origin when both
3(0,0)=y2=0and 10, 0) = -1 +cP-uff-¥*=0,i.c, whenY=0undc = ot + 1/J3;
the lincar part of (5) at the origin then has the form Df(0, 0) = [-1, 3; -1/B, 1} with f 2 0.

3. For o=} +2Y, S = 0 and 8(x*, y*) = £Sy* = 0 and since y* = (o0 ~ B)/2, 1(x2, y*) =
oc -1 —a(a+BY2=(P+2V)c -1 = (B +2Y)(P +7) for o =P + 2Y; it follows that
T(xt, y) £ 0if ¢ # § + Y+ I/(} + 2Y). Wc have for o = B + 2Y that the matrix A = Df(x, y*) =
[-1, c; B+7Y-c, u(c = B -Y)] has one zero eigenvalue with cigenvector v = (a, 1) and one

non-zero eigenvalue with cigenvector v, = (1, ¢ — 3 = Y)T. Transforming the linear part to



103

Jordan canonical form (and normalizing the time) we get B = P-1AP =[1,0; 0, 0] and then it
can be shown that the transformed system x = (0, p)T + Bx + Q,(x) satisfies the conditions of

Theorem | in Section 4.2.

Foro=3+2Y, A=DI(x*, y*)=[-1,c; B+Y—-c, a(c - B -Y)] as in Problem 3. Then
forc=B+Y+1/(B+2Y)=P+7Y+ la, it follows that A = Df(x*, y*) = [-1, a; ~1/u, 1]
and that 8(x=, y*) = 1(x=, y*) = 0; i.e., we have a double-zero eigenvalue bifurcation
occurring in this case, and from the results in Section 4.12, it follows that the quadratic

system (5) experiences a Takens-Bogdanov bifurcation.

Setting 7(0, 0) = 0 leads to ¢ = « + (1 + Y2)/P, the Hopf bifurcation surface, Hv, for the
critical point of (5) at the origin. And then, as in Problem 1, using the simplified formula
for the Liapunov number 6 = F[cF? + (¢F + 1)(F - E + 2¢)]k, from [51], with E = and
F=u-c,wefindthato =0iff (f - 2u)c? + Cu? = uff + L)c + - B = 0. And this
feads to the formula for the multiplicity-two Hopf bifurcation surface given in Problem 5.
(Numerical computation shows that the solution of the above quadratic with the minus

sign has no intersection with the H° surface and it is thercfore disregarded.)

The global existence and analyticity of the homoclinic loop bifurcation surface HL* for the
system (5) follow from the theory of rotated vector fields in Section 4.6 and the
uniqueness of analytic continuations. The system (5) defines a semi-complete family of
rotated vector fields mod x = By + y2 with parameter ¢ € (-o0, o0) according to the
definition in Section 4.6. Let us consider the case when the Liapunov number o in
Problem 1 is negative. (The case when o > 0 is treated in a similar manner.) First of all, it
follows from Thecorem 5 in Section 4.6 that for 6 < 0 a unique limit cycle is bom in a
Hopf bifurcation at a value of ce H*; and then according to Theorems [ and 4 in

Scction 4.6, that limit cycle expands monotonically as ¢ increases until it intersects the

saddle point P~ and forms a homoclinic loop at some value of ¢ = h(c, B, Y). (It follows
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from the Poincaré-Bendixson theorem that the outer boundary of this one-parameter fumily
of limit cycles cannot include the saddle point at (1, 0, 0) on the equator of the Poincaré
sphere.) Thus, for each point (o, B, ¥) € R, defined in Theorem 5, there exists a unique
value of ¢, ¢ = h(a, 3, ¥) at which (5) has a homoclinic loop at the saddle P~. The
analyticity of the function h(ct, B, ¥) then follows from the stable manifold theorem and
the implicit function theorem for analytic functions as in [38]. A similar type of analysis
can be used to establish the existence of the analytic surfaces HL, C3, and C); the
serious student should see Remark 10 in [38] regarding the existence of these latter two

surfaces.

According to Theorem | and Remark 1 in Section 4.8, (5) has a multiple homoclinic loop
bifurcation for the homoclinic loop at the saddle point P~ if 6 = 7(x~, y) = -1 + (c - o) +
(2¢ — )y~ = 0; and then since y~ = [t — B - S]/2, it follows that 6 = 0 iff ¢ =

[1+ oo+ p-S)Y2)(a-05).

The details of this problem are similar to those in Problem 3 and are left to the student to

carry out.

Following the hint given in this problem, we see that the H® and HLP bifurcation curves
enter the region E for 8 < 0 and for points on the HL? curve we have the phase portrait (f)
given in Figure 8; furthermore, for points between the HLY and HP curves, we have the
phase portrait (i’) in Figure 8; and for points on the H? curve and to the right of the H?
curve, we have the phase portrait (h") shown in Figure 8. Finally, there is one last feature,
not shown in Figure 18, that occurs for f§ < 0: as in the figures shown below, there is a
Cg bifurcation curve of multiplicity-two limit cycles emanating from the H(z) point on the

2

HO curve (determined in Problem 6 above) and for points between the 1P curve and the Cj

curve we have the phase portrait (k) in Figure 8. Thus, the charts 1, 2 and 3 in Figure 16
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are transposed into the charts 1, 2 and 3 shown below for -1 << 3 < 0 (and a similar

transposition occurs for charts 4 and S in Figure 16).

PROBLEM SET 4.15

1. From equation (8) in Section 4.14,as Yy —> 0, y* 5 a- B,y — 0, x* > a(a - ) and x-
—0;8(0,0)=y2> 0; and 1(0,0) = -1 + B(c - a) -y2 > ~1 + B(c — ®). Regarding
Sotomayor's Theorem for (2): Since 8(0, 0) =0 and 7(0,0) = -1 + (c — o) # 0, the
matrix A = Df(0, 0) = [-1, B; (&t — ¢), B(c - a)] has a simple eigenvalue A = 0 with
corresponding eigenvector v = (3, 1)T; the matrix AT has an eigenvector w = (a — ¢, 1)7
corresponding to A = 0. Thus, the conditions wT fIu 0,0)=(-¢,1)-0,1)=1%0
and wT[D2£(0, 0) (v, v)] = (at —¢, 1) - (2, -2B + 2¢) = 2(a - B) # 0 are both satisfied
for the system (2) in Theorem 1. They are similarly shown to hold for the system (5) in
Theorem 1’. Thus, according to Sotomayor’s Theorem, the system (2) in Theorem 1
experiences a saddle-node bifurcation (of codimension 1) at the critical point at the origin
at the bifurcation value it = 0 and the system (5) in Theorem 1’ experiences a saddle-node

bifurcation (of codimension 1) at the critical point P+ at the bifurcation value p = 0.

2. Applying the linear transformation x = u + fBv, y = (c - a)u + v or equivalently u = (x -
By)/8, v =[(ct —c)x + y]/8 with & = 1 — B(c ~ a), together with t — -3¢, to the system (1)

withy =0, we find i = (X - By)/d = u + a,qu? + a,uv + agv2 and v = [(a — c)x + y]/d
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= by + by uv + by,v2 where ay, = (U - ¢) (0fic — o + B = Be2 +¢)/82, ay = (<2¢ + 2fe?
=B+ 20 - 2uflc + aff? - )82 ap = (1 + B2 - Pe)/82, by, = (00— ) (&F - we + 1DIS2,
by, = (Quc - Pe - 1 - 202 + «f})/3? and by, = (B - a)/32. We sce that for «. =3, by, = 0.
Thus, on the center manifold, u = —ay.v? + 0(v3), we have v = =bja,v + 0(v) or v =
-v* 4+ O(vY) after rescaling the time. Similarly, applying the above-mentioned linear
transformation to the system (6), we find that the flow on the center manifold is
determined by v = [, + 1,V — v + O(,v, 13, 13, v, ) cf. the proof of Theorem 3.4

and Remark 3.5 in [60)].

Applying the lineuar transformation of coordinates x = (u — villoc-ui=1),y=(c-
uu/(ue — ¢ = 1) or equivalently u= (uc — ¢ — Dy/(c — ), v = (ve - - 1) [v/(c -
@)~ x} to the system (1) withy =0, w# 3, B(c —«) = L and B # 2¢, we find u = v + au?
+buvand v=ul+ecuv witha=(c?-ue - D(uc —a? = )und b=c = /(e — > - 1)
as i the proof of Lemma 3.7 in [60]. We therefore have that e + 2a = —(1 — 2¢2 + 2uc)/

(e —u2=1)20if 1 =2c2+2uc=1-2c(c-u)=1-2/B=0,ie i f=2c
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From the results of Problem 8 (a, b) in Problem Set 4.4, we have that, forp =0, W, =

—l-mand W,=2(m+2)(m-3)forn=0(anda=b=€=1). Thus,foru=0and m=
-1, W, =0and W, = -8 < 0 so that, according to Theorem 4 in Section 4.4, the system in
this problem has a weak focus of multiplicity 2 at the origin and it is stable. Since

det(P, Q; P, Q) = -r> + 0(r*) < 0 in a neighborhood of the origin, this sytem defines a
family of negatively rotated vector fields with parameter p in a neighborhood of the onigin,
according to Definition 1 in Section 4.6. Since 6> 0 near the origin (i.e., w = +1), and
0=31W,/2<0form>-1 and 6 >0 form < -1 (and W, =0 while W, <0 if m=-1), it
follows from Theorem 5 and Figure 1 in Section 4.6 (or Theorem 1 in Section 4.4 for m #
—1) that a stable, positively oriented limit cycle bifurcates from the origin as [t increases if
m > -1 and that an unstable, positively oriented limit cycle bifurcates from the ongin as p
decreases if m < —1. According to Thecorem 2 in Section 4.1, for m = -1 and a fixed p >
0. there exists a & > 0 such that the hyperbolic (stable) limit cycle, which bifurcates from
the origin as W increascs from zero, continues to exist for m < -1 and Im + ]| < 0. For
such a fixed m = my < -1, according to Theorems 1, 2, and 6 in Section 4.6, the
abovementioned stable, positively oriented limit cycle contracts as pt decreases until it
intersects the unstable limit cycle generated in a Hopf bifurcation at p = 0 (which expands
as u decreases from zero) at some value of p = ;< 0 and forms a multiplicity-2 limit
cycle. This defines a point (1, mg) on the multiplicity-2 limit cycle bifurcation curve C,
which, according to the results in [38], is an analytic curve which intersects the Hopf
bifurcation curve i = 0 (i.e., the m-axis) tangentially at the point (i, m) = (0, -1). This

leads to the following bifurcation set similar to Figure 2 in Section 4.15:
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(b) For u=a,;=0,itfollows from cquation (3") in Section 4.4 that o = 0; hence, this system
has a weak focus of multiplicity m = 2 at the origin. But according to Theorcm 5 in
Scction 3.8, m < 2; hence, m = 2. For p = a; =0, r= -16ex%/5r < 0 for ¢ > 0 and x # 0;
hence, the origin is a stable focus. For p = 0 and a, # 0, equation (3") in Section 4.4
implics that 6 = -3ma,e/2. Also, 0 < 0 near the origin (i.c., 0 = —1I) and according to
Definition 1 in Section 4.6, for € > 0 this system defines a family of negatively rotated
vector fields (mod x = 0) with parameter p since [P, Q; P, Q,] = —ex2. Thus, if we let &
denote the stability of the origin, it follows that 6 <0 fora; 20 and 6 >0 fora; <0. It
therefore follows from Theorem 5 and Figure 1 in Section 4.6 (or from Theorem 1 in
Section 4.4 for a; # 0) that a stable, negatively oriented limit cycle bifurcates from the
origin as K decreases from zero if a; > 0 and that an unstable, negatively oriented limit
cycle bifurcates from the origin as W increases from zero if a, < 0. According to Theorem 2
in Section 4.1, for a; = 0 and for a fixed p < 0, there exists a § > 0 such that the
hyperbolic (stable) limit cycle, which bifurcates from the origin as u decreases from zcro,

continues to exist for a; < 0 and |a;| < §. For such a fixed a; = a3 < 0, according to
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Theorems 1, 2, and 6 in Section 4.6, the abovementioned stable, negatively oriented limit
cycle contracts as [ increases until it intersects the unstable limit cycle gencrated in a Hopf
bifurcation (which expands as p increases from zero) at some value of p =, >0 and
forms a multiplicity-2 limit cycle. This defines a point (. a‘;) on the multiplicity-2 limit
cycle bifurcation curve C, which, according to the results in [38], is an analytic curve
which intersects the Hopf bifurcation curve ut = 0 (i.e., the a; axis) tangentially at the
origin of the (W, a,) plane. This leads to the following bifurcation set similar to Figure 2 in

Section 4.15:

T T ; N >

; :é; 2 ;||‘ a SN
] RSN
I !,é;||al! u JERTEES
.;.!'I ! K| i l::_“ - r\
BRI ' i v A :
R IR

T

Finally, for the perturbed system (with small € # 0), we can compute the Melnikov
function as in Example 2 in Section 4.9 to approximate the shape of the C, bifurcation

curve for small € > 0: For Y (1) = (« cost, o sint)T, T, = 21 and w = (4, a3),
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Ml ) = [0 17 (0) A gvet), wdt

2
= —.[ i ;Lxé(t)+a3xé(l)+I—SG-XSL(I)}JI

2n 16
= —J o cos? t + 1130.4 cost t+ ?ac’ cos® t}dt

= —2rtoc2[E + g'13 + a“} = —naz[u + 333012 + 20(4} :
2 8 4

It follows that M(m, &) = —naz(\/ﬁ -2u? )2 iff ay = —8@ /3, 1n which case for
g =1/ 2, M, ag) = My(, 0p) = 0 and Mgg(p, o) = —8mp < 0 for i > 0. Also,
Mu(pr, @) = -ma?, i.e., Mp(m, ¢g) = -7/ / 2 <0 for u > 0. Therefore, by Theorem 2
in Section 4.10, there exists ay = —8\@ /3 + 0(g) such that this system has a unique limit
cycle of multiplicity 2 in an 0(¢) neighborhood of the circle of radius r = {/;_1_"/“2— for all
sufficiently small € > 0; i.e., the multiplicity-2 limit cycle bifurcation curve C, is given by
a3 = =832l /3 + 0(€) = —3.77:/u + 0(¢) for sufficiently small & > 0 and we see that the
curve a3 = —4+/i, for which Example 3 in Section 4.4 has two limit cycles, lics below the
C, bifurcation curve in the above figure (i.e., it lies in the doubly cross-hatched region in
the (i, a3) plane for which the system in this problem has two limit cycles which are

shown in Figure 5 in Section 4.4 fore = .0l and p = .5 or 1).
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5. (a) According to Theorem 3 in Section 3.4, for u; =0, P(0) = 0 and P’(0) = 1. Therefore, the

(b)

(©)

displacement function, d(s) = P(s) — s, satisfies d(0) = d’(0) = 0 and according to the
comment following Theorem 3 in Section 3.4, d”(0) = 0. Next, it follows from equation
(3) in Section 3.4 that for p; =0, 6 = d”’(0) = 12nu, = 0 for p, = 0 and, once again
according to the comment following Theorem 3, this implies that d1V)(0) = 0. Thus,
according to the definition of the multiplicity, m, of a focus in Section 3.4, m 22 for y; =

}12 =0.

Using the equations for r and 6 in Section 2.10, we find that the system in this problem

can be written in polar coordinates as

P = r(u, + 12 +r4)

and 0=1.

Thus, if p; = g, = 0, we obtain dr/df = 5. The solution of this differential equation with

-1/4
r(0) = ry is given by r(0) = ro[l - 4r39] . The Poincaré map for the focus at the origin

~174
of this system, as defined in Section 3.4, is then given by P(ry) = r(2n) = ro[l - 8nrf,]

-5/4 ]—9/4

We can then compute P’(ro) = [l -8n r‘é] , P"(ro) =40mn ra [1 -8n ré ,

o + O(ra) and

-9/4 ;
P(ro)=120mrg [1-8mrg]  +0(xf), P (rg) = 2407 rg [1- 87 3]
; -9/4
P (rg) = 240m [1-8r ] +0(r§) as ro — 0. Thus d¥)(0) = P¥)(0) = 240m > 0;
and this implies that the origin is an unstable, weak focus of multiplicity m =2 for

M=, =0.

From part (b) we see that dr/d® = 0 iff r = 0 or r* + pyr2 + p; = 0. The latter equation has

solutions r2 = [—u2 t W% -4, ]/ 2 which are both positive iff uy <0 and u; > 0. For

n = ug_ / 4 and p, <0, we have one (positive) double root r2 = —,/2, which corresponds

to a multiplicity-2 limit cycle described by a circular orbit of radius r = j—p, /2.



(d) Asin part (a), it follows from equation (3) in Section 3.4 that for u; =0, 6 = 12np,.

Thus, by Theorem 1 in Section 4.4, if 1, < 0, a unique stable limit cycle bifurcates from
the onigin as p; increases from zero and if p, > 0, a unique unstable limit cycle bifurcates
from the origin as p; decreases from zero. Next, [P,Q; Py, Qu] = -1 <0forr#0;iec,
the system in this problem defines a one-parameter family of negatively rotated vector
ficlds with parameter p, . Thus, by Theorem 5 in Section 4.6 and the fact that forp; =
1, = 0 the origin is a positively oriented, unstable focus, we find that, according to the
table in Figure 1 in Section 4.6 (adjusted for a negatively rotated vector field by changing
the signs of Al), an unstable, positively oriented limit cycle bifurcates from the origin as
K, decreases from zero. For p, = 0 and g <0, this limit cycle is described by a circular
orbit of radius r = {,’Tll, according to the result in part (c); and then since

V-f =2y, +6r* = —4p, on this limit cycle, we have P/(0)=¢ ™5™ > for i, < 0.
according to Theorem 2 in Section 3.4; 1.c., we have a hyperbolic, unstable limit cycle
for ts =0 and w; < 0. [Sece Note 1 below regarding another method for establishing the
hyperbolicity of this limit cycle and those in Problem 4.} Thus, according to Theorem 2 in
Section 4.1, for p, = 0 and for a fixed (sufficiently small) pu; < 0, there exists a & > 0 such
that the hyperbolic, unstable imit cycle, which bifurcates from the origin for p, =0 as
decreases from zero, continues to exist for -8 < u, < 0. Then by Theorems 1, 2 and 6 in
Section 4.6, for —d < p.g < 0, this unstable, positively oriented limit cycle contracts as p,
increases until it intersects the stable, positively oriented limit cycle (generated in the
supercritical Hopf bifurcation, for p, <0, as p increases from zero) at some value of

W = u? >0 and forms a multiplicity-2 limit cycle. (Cf. the last figure in Figure 5 in
Section 4.6.) The point (u?, ug) lics on the multiplicity-2 limit cycle bifurcation curve C,
which, according to the results in [38], is an analytic curve which intersects the Hopf
bifurcation curve p; = 0 (i.e., the p,-axis) tangentially at the origin of the (1, K,) planc.
As was noted in part (c), u¥ = (u9)? 7 4; i.e., the multiplicity-2 limit cycle bifurcation
curve, C,, 1s given by p, = —2\/;1_1 for u) > 0. Putting all of these facts together leads to

the following bifurcation set (similar to Figure 2 in this section):



() If wereplace x by x /%2 and y by y/#2 in the system of differential equations

. hl ~
X= WX —y—=3uxr- + 2xr?

: 2 2 4
¥y =X+ oy =3uyrT + 2yr

in Example 4 in Section 4.4, we obtain the system

.2 3 2 4
X=u X—)"'"%‘HXI' + Xr

. 2 3 2

y=X-H7y- NEL pyr? +yr*
of part (a) in this problem with pt; = p2 and py = -3/ V25 e, with Uy =
—3Vfu—, 12 = —2.12\/E for uy = 0. This curve lies below C, in the region where this
system has two limit cycles (as shown in the above figure). The system in Example 4 of
Section 4.4 has two limit cycles described by circular orbits of radii r = x[l_l and

r=4/l /2 i.c., the latter system above has two (unstable and stable) limit cycles described
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. . .. 172 2 . .
by circular orbits of radii r = (\5 u) and r= (u / «/—?j)]/ (*) (respectively), obtained by
replacing rby r/ 42 inthe equations r = V’H and r=+/u/ 2. The two equations () above
also follow from the equations for the radii of the two limit cycles, of the latter system

above, found in part (c).

Note 1: We could also have used the theory of multiple foci and limit cycles, in Scctions
4.4 and 4.5 respectively, to establish the hyperbolicity of the (unstable) limit cycle
generated at the origin in Problem 5 for pu, = 0 as p; decreases from zero. The following
argument, a slight variation of which ulso applies to Problems 4(a) and (b}, should have
been included in the solution to Problem 4 above:

Since for p, = 0 (in Problem 5), an unstable (positively oriented) limit cycle bifurcates
from the origin as p, decreases from zero, there exist g5 > 0 and §y > 0 such that for —¢ <
i, <0, there exists an unstable (positively oriented) limit cycle, I'y, in NSO(O)- Since I} is
unstable, it is of odd multiplicity m 2> 1 (otherwise, it would be a semi-stable limit cycle).
Suppose that m > 3. Then according to Theorem 3(i) in Section 4.4, there exists an € >0
and a § > 0 (with € < €y and & < §y) such that any system e-close to the system in Problem
5 with py =, = 0, in the C>™+!_norm, has at most two limit cycles in N(0) since the
origin is a weak focus of multiplicity 2 according to part (b). Then for y, = 0 and
sufficiently small |p;| <€, I’y © Ny(0) and, according to Theorem 2(ii) in Section 4.5,
there exists an analytic system which is e-close to the system in this problem with p, =0
and —€ < i; <0, in the CM-norm (and we can also find an analytic system which is &-closc
to the system in this problem with u, =0 and —€¢ <t; <O in the
C2m+1_norm), and which has m limit cycles in Ng(0). But this is a contradiction for m > 3.

Thus, m =1 and I'; is a simple (i.e., hyperbolic) limit cycle.
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Note 2: As was noted above, a variation of the above argument applies to establish the
hyperbolicity of the limit cycles in Problems 4(a) and (b); however, in Problem 4(b), with
a; =0 and p <0, we can also use the Melnikov theory to establish that the limit cycle, ',
is hyperbolic: As in the solution to Problem 4(b) above, we have, for a3 = 0, that

M(a, p) = —mo2(p + 2a?) which implies that My(o, ) = 2o + 6at). We see that
M(ct, ) = 0iff o= 0 or ot = 4/~7 2 for p < 0; and that M {at, 4= /2) =

4mp m < 0 for u < 0. Therefore, for a3 =0 and pu <0, I’y is a hyperbolic (stable)

limit cycle according to Theorem 1 in Section 4.10 (since € > 0 and wy < 0).
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1. LINEAR SYSTEMS

PROBLEM SET 1.2

.o
3. (a) x={o iy

O 1| 2c' 4™ e'-e™
x(t) = = s . lx
3 Z(f:l - c"‘) e +2¢|7°

:|x has the solution

1 , 1 Y .
which implies that x(1) = =(2e' + e }x{0) + ={e' —e ™" }x(0).
p Q 3( )x(0) 3( )%(0)

0 -
(b) x= [1 O}X. (Sce Problem 1(d) in Problem Set 1.1.)
cost —sint
X(t) :[ ) }.\’0.
sint  cost

Note: This problem can also be written as

0 1
X :!: | 0}& which has the solution

cost  sint
x(1) =[ }xo.

—sint cost

In either case, we get that the (unique) solution of the second-order differential cquation in
3(b) is x(1) = x(0) cost + x(0) sint.

0 1 0
(c) x=| 0 0 1 |x has the solution
-2 1 2

2(3e' +e - e™) 3(e'-e') -3e'+et+2e™
x(1) = 1 2(3e' —e™' —2e”) 3(e'+e™') -3e'-e'+4e™ |x,,
23e' +e7' —4e™) 3e'—e™") -3c'+et +8c”

which implies that

x(t) = %(35 +e =) x(0)+ %(e' —e)%(0)- é(3e‘ —e™' —2e™) %(0).



PROBLEM SET 1.6

2.

PROBLEM SET 1.8

6. (¢) J=diag|l, 2, 3, 4] and the solution

r t !

e 0 (0 0
et - ¢ e 0 0
.‘((): ;C" __ZC:‘ +—¢' 20."( _2ell C_“( 0 |x,.
2 2
%eu _CFI + zc:l Cl 4CJ| _ ()C'“ + 20:1 BCH(L _ l) L“

(g) The solution, according to the remark following Corollary 1 in Section 1.7, 1s given by

] t dt+t°/2 0

+| 0 1 t 0
X{t)=¢" X,.
(1) 0 0 1 o "

0 0 0 1

Note: The solution to Problem 6(h) could also be obtained in this manner.



2. NONLINEAR SYSTEMS: LOCAL THEORY

PROBLEM SET 2.1

1+ x5 +x; 2X,X, 2X,X,
1. Df(x)=| =1+x,x; 1=%,+XX, =X, +XX, |,
-2Xx, I I
1 00 300
Df(0)={-1 1 0O Df(0,-,)=-2 0 1
0 1 1 01 1
PROBLEM SET 2.2
3. As in the proof of the Fundamental Existence Theorem (FET) in this section, we have that

there exist positive constants € and K such that [f(x, t) - f(y, )| < K|x - y] for all

X, ¥, € Ng(xg) C E and for t in some interval (-1, 1p). Let Ny = {(x, 1)| |x - ,\'OI <¢/2,
[t] € 1/2} and let M = max|f(x, )] on the compact set N, Let the successive approxi-
mations ug(t) be defined as stated in this problem and let b = €/2. Then b > 0 and assuming

that there exists an a > 0 such that uy(t) is defined and continuous on [—a, a] and satisfies

u, (1) - x,[<b, (+)

max
[-a.a]

it follows exactly as in the proof of the FET that uy_,(t) is defined and continuous on

[-a, a] and satisfies |u, ;(t) — xg| £ Ma for t € [-q, a]. Thus, choosing 0 < a <

min{b/M, ty/2}, it follows by induction that u(t) is defined and continuous and satisfies
(¥)forallte [-a,alandk =1,2,3 ---. Then since u, (1) € Nyforte [-a,a]and k=
1,2,3 -, by exactly the same sequence of estimates as in the FET (with f(x, t) in place of
f(x)), we obtain that for any € > 0 there exists an integer N such that form,n >N,

llu, —uyj] <€ ie. {u,} is a Cauchy sequence in C([-a, a]). Thus, u, (1) converges
uniformly to a continuous function u(t) on [—a, a]. The remainder of the proof follows

exactly as in the proof of the FET.
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Let A(t) be an nxn continuous matrix valued function on [~ag, ag] and let the successive
approximations to the fundamental matrix solution be defined as stated in this problem.
Then using the matrix norm (defined in Section 1.3), we have &, (1) - 1| < Jli||}|A(t)\| ds <
Mgag for t € [—ag, ag]. It then follows easily by induction that

”(Djﬂ([) - (Dj(t)ll < (M, ao)j” forj=0, 1,2, ---. And then for any positive integer N and m

oo

>k >N wehave @, () - @, (1) < ¥ (Mya, )" <(Ma)™" / (1-aM, ) if the positive

j=N
number a < a5 and a < 1/Mg. Thus, {®, } is a Cauchy sequence of continuous nxn matrices
on [-a, a], a complete metric space. Therefore @, (t) converges uniformly to a continuous

nxn matrix function ®(t) on [-a, a]. The remainder of the proof follows as in the proof of

the Fundamental Existence Theorem in this section.

PROBLEM SET 2.3

2..(b) u(ty)=y,/(1-y1). Uz(t’)’)z(iJrL—l)e‘+t+l—i.
yl y?. Y|
C l_ ' - O 2 O . 2 —_ v 3
(D(t):ﬂ: ( ):lt) Nk Df(x) = I: X_lz ], (D(I)Z yl/(l ?11) 0 _
ay (l—e )/yl' e —X, 1 _elyl—- Ct

Df[u(t, y)] ®().

In this problem, the proof follows exactly as in the proof of Problem 3 in Section 2.2,

contained in this supplement, with f(t, x, ) in place of f(t, x).

The proof follows exactly as in the proof of Problem 4 in Section 2.2, contained in this

supplement.



PROBLEM SET 2.5

2.

4.

i
x(1) = xo(l + 2x3()—”” j—— -
Y/l
/_.___"—:::___i
e—— A
e T P T, L - L
— = — p l
<
B S
N R
et el |V A
e’ e'-e” A
(p((x) :[ O ezl ]X \.]:-t._ _ -
\\
(See Figure 2 in Section 1.2.) ¢_\\

PROBLEM SET 2.8

4.

Vi) =y ()= yue  +yhzote ™ z() = 2ze', Wo(y,z) =z fork=0,1,2 - and
¥(y. z) = z. By cither (3) or (6) we obtain ®,(y, z) = (yl, y. t kyfz) — (y,, t o) for

yz # 0. Thus, the successive approximations for ®(y, z), as defined by (3) or (6), do not
converge globally; however, this does not contradict the fact, established in the proof of the
Hartman-Grobman Theorem, that the successive approximations for d(y, z), as defined by
(6), converge locally. It is simply more difficult in this case to determine the function

d(y, z) to which they converge in a neighborhood of the origin. (This is similar to the fact

that it is easier to show that Z 1/k2 converges than to determine the number to which it

converges.)



PROBLEM SET 2.9

3.

5. (b)

|l . 2 2 2 : :

EV(x) = —x/x3 - X} = X3 —x;x] —x} <0 for x #£ 0; s0 0 is asymptotically stable. The
solution of the lincarized system X = Df(0)x is given by x,(1) = x,, cost — x,, sint,
X2 (t) = X, sint + x, cost, x,(1) = x,,; therefore, the origin of the lincarized system is

stable, but not asymptotically stable.

As noted in the original solutions manual, the easiest way to show that the origin is a saddle
for this problem is to compute the eigenvalues of the linear part, A = 1 £+/3, and to use the
Hartman-Grobman Theorem. In order to use the Liapunov type function V(x)=x; +x
we can use Theorem 3 in Section 3.10, along with the fact that on any given straight line

X, = mx, with |m - 2| <~/3, V(x) <0 for all sufficiently small x| # 0 and that on any
given straight line x2 = mx, with |m = 2]>~/3, V(x)> 0 for all sufficiently small x| # 0
(as was noted in the original solutions manual); also, for all sufficiently small x; >0 and
-x,/ V3 < X, <X, /3, <0 and 820 otherwise. This shows that for x| > 0 there is
a separatrix approaching the origin as t — oo, tangent to the linc x, = x; / A3, which lies
above that line, and a separatrix which approaches the origin as t — —eo, tangent to the line
X, ==X, / /3, which lies above that line. Similar results hold for x| < 0 and there arc no
other trajectories approaching the origin as t — *oo for x # 0. These facts then imply that

the origin is a saddle and is unstable.

Since A(t) is continuous, it is integrable and then by direct substitution into the differential
equation it follows that

x(t)=x(0) epr:A(s)ds
(with the exponent defined as in Definition 2 in Section 1.3). Thus, by the usual propertics

3
of norms, for B(t) = IOA(s)ds, we have
X(U] < [x(O) |1+ B(t)+B*(t)/2!+..|

< x(0)] [+ B+ [BO) 72!+ . ]



= [x(0)f exp[B()] < |x(0) exp [, |A(s)Jas.

And if J:“A(s)”ds < oo, it follows that lll_{Ill\(l)| <|x(0)] cxpﬁj[!r\(s)!{ds < oo,

PROBLEM SET 2.10

2. By definition of the limit, lim f(x) = lim 220, And, by definition,
x—0 x—0 Inlx

.t ) 1 2 g

f’(0)=lim ) lim —— = 0. Also, for x # 0, f'(x)=(In|x|-1) / (In|x])" which is
x—=0 X x-10 ]n‘x

continuous for x # 0 and limf’(x) = {’(0) = 0. Thus, f € C'(R). But

x—0

" - f’ . (In|x|-1 N o .

f7(0) = lim () _ lim (Inx| 2) = *oo does not exist; i.c., {7(0) is undefined.
0 x  xo0 x(In]x|)

PROBLEM SET 2.14

4. The phasc portrait is given below; cf. Example | and Figure 3 in Section 4.9 where

Ux)=-x"/2+x'/4.
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5. (b) Both the Hamiltonian and the gradient systems have saddles at the origin. (The

8.

10.

Hamiltonian system phase portrait is shown as dashed curves.)

(d) Both the Hamiltonian and the gradient systems have saddles at (1, 2).

(f) Both the Hamiltonian and the gradient systems have saddles at (-1, 0).

Vo (x,y)=4x’—6x* +2x=0atx =0, L or /2 and V(x, y) =2y =0 at y = 0. The

critical points are at (0, 0), (1, 0) and (1/2, 0). The discriminant D=V, .V V“:), satisfies

¥y o
D(1/2, 0) = -1 and therefore (1/2, 0) is a saddle point; D(0,0) = D(1,0)=4 and Vyy =2>
0 and therefore (0, 0) and (1, 0) are local minima. Theorem 5 implies that the gradient

system has a saddle at (1/2, 0) and stable nodes at (0, 0) and (1, 0).

The system orthogonal to the system in this problem is linearly equivalent to
X = bx + ay + higher degree terms
y = —ax + by + higher degree terms

with a < 0 and b > 0. In the notation of the theorem in Section 1.5 we have
d=a’+b*>0, T=2b>0 and 7° - 48 = —4a’ < 0. Therefore, according to the theorem

in Scction 1.5 and Theorem 4 (and the Remark) in Section 2.10, we see that the origin is an
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unstable focus with a counterclockwise flow. Similarly if (5) has a nondegenerate critical
point at the origin which is an unstable focus (i.e. a > 0) with a clockwise flow (i.e. b < 0)

then the system (6) orthogonal to (5) has a stable focus with a clockwise flow, etc.

3. NONLINEAR SYSTEMS: GLOBAL THEORY

PROBLEM SET 3.1

S. Exactly the same argument, used in the proof of Theorem 1, based on Corollary 2 in
Scction 2.4, with f(x) / (l + |f(.\')|:) in place of f(x) / (l +|f(x)}), can be used to estublish a

result analogous to Theorem 1 for the differential equation 1n this problem.

8. As in Problem 7 (with t(x, 1) = 1) we find that for A = DH(x,), A Df(xy) A=} = Dg(Hixg)):
i.e., the matrices Df(x,) and Dg(H(xg)) are lincarly equivalent and therefore have the same
eigenvalues. Note that if xg is an equilibrium point of (1), then H(xy) is an equilibrium
point of (2). Also note that it follows by differentiating Ho H-1(x) = x that

DH(x,)) DH-Y(H(xp)) = 1. i.e., the matrix A = DH(xg) is nonsingular.

PROBLEM SET 3.2

(d)

(h) ©




(©) ' Q [ (f)

5. (a) In Figure 1 in Section 1.1, the saddle scparatrices are invariant, but they are not the & or @

limit sets of any trjaectory of that flow.

(b) The cylinder, A, in Example3 (i.c., in Figure 4) is an attracting set, but it is not the w-limit
set of any trajectory in a neighborhood of A. Also, in Problem 1, the interval

[-1, 1] is an attracting set, but it is not the w-limit set of any trajectory in a neighborhood of

-1, I].

(c) The cylinder in Example 3 is an attracting set, but it is not an attractor since it docs not

contain a dense orbit.

PROBLEM SET 3.3

6. The origin is a saddle and there are centers at (1, 0). The compound separatrix cycle is

given by y2 — x2 + x4/2 = 0.

PROBLEM SET 3.5

3. Since ®(t) satisfies @ = A(t)® and ®(0) =1, it follows that x(t) = d(t)x, satisfics
x(1) = d(1)x, = A()P(1)x, = A(1)x(t) and x(0) = I x4 = X,
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5. (a) Let ®(1) be the fundamental matrix for (2) with d(0) = I and let y(t) be a penodic solution
of (1) of period T (where A(1) is a continuous T-periodic matrix). By Theorem 1, ¢(T) =
Q(T)eBT = Q(0)eBT = eBT since Q(0) = ®(0) = I. Thus, the characteristic multipliers, of
Y1), m = CA’T, j=1,---.n, are the eigenvalues of ¢(T) and since the product of the
cigenvalues of O(T) is equal to det d(T), it follows from Liouville’s Theorem that

ﬁ =detd(T) = cxp_[DTtr A(t)dt

)=1

And since the sum of the eigenvalues of @(T) is equal to tr ®(T), it follows that

Zm tr<D

. . 1
(b) For m, = ¢ and m, =1 we have from 5(a) that et = exp_[)trA(t)dt or that
.

Ay = %_Llrz\(l)dl. But A(t) = Df(y(1)) which implies thattr A = tr Df =
of, of,
—_— + PR +
dx, ox,
m; + ms = tr®(T), it follows that 1+ cpr.OV A (v(0))dt = tr O(T).

= V-f and therefore 2, =-J‘ V£ (y(1))dt. Finally. since

6. Since H(t, xg) = P(1) it follows from Liouville’s Theorem and tr A(t) = V- (v(1)) (CT.
5(b)) that det H(l. x(,) = det®d(1) = cxpﬂer(s)ds = epr.(:V (v (s))ds.

PROBLEM SET 3.6

3. This 1s most casily done by showing that

R as
Yzw,2=E and W =0,
D D

where D = k —Vk* =4 cost, satisfy the equation of the ellipse (by substituting these
quantitics into that equation). It can also be accomplished by substituting x =k - n/Z and y

=nY/Zinto x> +y* =k’ - 4.



Under the projective transformation in Problem 3, I gets mapped onto the Y-axis; the

periodic orbits I",: v, (1) = (\ K2 +1/2 cost,—vk* + 1/ 2sint, £ 1, O) respectively get
mapped onto those branches of the hyperbolas (Z + 2k)2 -2Y*= 2(2k2 + l) which do not
intersect the Y-axis (and which are “connected at infinity”). This can be seen by
substituting x =k ¥ 1/Z and

y=Y/Zinto x* + y* =k +1/2 or alternatively by showing that Y = k> +1/2 sint/D
and Z = +1/D, with D=k - \,m cost, satisfy the above equations for the
hyperbolas in the (Y, Z) plane. The lincarization about I'y shows that I'y has characteristic
cxponents A, =A, =0, A, =1 and A, = -1 and that dim W*([';) = dim W*(I';) = 2. The
lincarization about I', shows that I", have four zero characteristic exponents; i.c.,

4.

dim W*(I",)



133

6. The statement of this problem should
have U, = S* ~ {(0 0, l)} and U, =
§* ~{(0,0,-1)}. Then for (x,y,z)e U,

leth, (x,y,z)=(X, Y)and for (x,y,z) €
Up, let hy(x, y, 2) = (5(, ?), where

h;(x, y, z) and h,y(x, y, z) are defined

in the statement of this problem. It then
follows from the similar tnangles in the
figure shown here that (X/Y) = (5( / ?)

) 1 ! AL
andthat X*+Y" = (X2 + Y') . Therefore

hy« b'(X, Y) = (X, Y)/(X* + Y?) and
for (X,Y)eh(U,nU,) =
{(X.Y)eR*X*+Y*#0}, D hyo (X, Y) =

[Y? - X%, ~2XY:-2XY. X* = Y*]/(X* + Y?)" and det D hye h}'(X, Y) =
-1/(X2+Y?) 20,

PROBLEM SET 3.7

3. (a) Since fhas no zeros in A, there are no critical points in A and since f is transverse to the
boundary of A, pointing inward, the w-limit set of any trajectory I' starting in A is in A.
Therefore, by the Poincaré-Bendixson Theorem, w(I) is a periodic orbit which is contained

in A.

(b) If A contains a finite number of limit cycles, I'}, I'y, ---, I',, ordered such that I“j C Int Fj+|
forj=1,.--,n— 1, then I'; must be stable on its interior since it is the w-limit sct of any
trajectory starting in A N Int I'}. Similarly, I, is stable on its exterior. If '} is a stable limit
cycle, we are done. If I'; is not a stable limit cycle, then it must be a semi-stable limit cycle,

unstable on its exterior; and then I'; must be stable on its interior since it is the w-limit set of
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any trajectory starting in Ext I'y M Int ;. Continuing in this way, we find that either there
exists an integer j with 1 <j <n such that T} is stable or that I', is stable on its interior; i.e.,

that I, is a stable limit cycle. In either case there exists at least one stable limit cycle in A.

5. Theonly critical point is at the origin. rf = y*(1-x*-y*)=0onr=1land 0<Oonr=1.
Also, r<O forr>landy#0while r>0 forO<r<1landy#0. Thus, r=11s astable

limit cycle which is the w-limit set of every trajectory in RA{0}.
PROBLEM SET 3.8

1. Clearly F, g € CI(R), F and g are odd functions, xg(x) = x2> 0 for x # 0, F(0) =
F(0) = (x* +4x* ~1)/(x* +1)],0

= —1<0, F has a single positive zero at x = 1 and
since F'(x) > 0 for x >+/5 — 2 (where +/5 -2 < 1), F(x) — oo, monotonically for x > 1, as

x — co. Thus, F and g satisfy the hypotheses of Lienard’s Theorem.

5. (a) There is a center at the origin and the phase portrait is topologically equivalent to Figure 4

in Section 1.5 (with b < 0).

(b) Assuming that F(0) = 0, it follows from Theorem 6 in Section 2.10 that the origin ts a
center for this system since it is symmetric with respect to the y-axis. (In any case, there is
a center at (0, F(0)) according to Theorem 6.)

If g(x) has no zeros, other than x =0, then the : \()Ki =(x,) )

xJ)

phase portrait is topologically equivalent to

Figure 4 in Section 1.5 (with b < 0); however,

if for example g(x) has zeros at £x; and +x,
(where 0 < x| < x;) then, according to

Theorem 3 in [24], the outer boundary of the (X F/xz))

continuous band of cycles around the center

at the origin is a graphic (defined in Section
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3.7) and we could have the phase portrait shown here. It could also happen that the graphic
includes the “point at infinity” on the Bendixson sphere, shown in Figure 1 in Section 3.6,

in which case part of the continuous band of cycles would extend to infinity.

7. If we let x =z and y = -z, then the second-order difierential equation
i+F(2)+2=0 )
can be written in the form of the Lienard system (1) with g(x) = x. Thus, if F(x) satisfies
the hypotheses of Lienard’s Theorem (and g(x) = x), it follows from Lienard’s Theorem
that (1) has a unique stable limit cycle, 1.e., (*) has a unique, asymptotically stable,

periodic solution.

PROBLEM SET 3.9
5.(a) V(Bf)=-b%"" <0 which implies that this system has no limit cycle in R2, by

Theorem 2.

PROBLEM SET 3.10

3. (b) The projection of the flow on the (y, z) and (x, z) planes, according to Theorem 2, is given
by y=0, 2=~z and x =0, z= -z respectively; and the global phase portrait is given by
the following figure which has an unstable proper node at the origin and a circle of critical

points at infinity.
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PROBLEM SET 3.11

5.

First of all, the functions y = x° /(2 i \/5) satisfy the differential equations of this problem
in the form dy / dx = (—x“ + 4xy) /'y since both sides reduce to 2x/ (2 t \5) for

y=x’ /(2 + w@). Next, since the system in this problem is invariant under the
transformation (t, X, y) — (=, =x, y), it is symmetric with respect to the y-axis.

And then for x =0 we have y =0 and J
x>0 fory >0 while x <0 fory <0;

and y >0 above the parabola y = x* /4

for x > 0; and both x <0 and y <0 for

x>0 and y <0. Thus, we have the vector

field and flow shown here. This, combined

with the symmetry, shows that there is a
hyperbolic sector above the parabola y = x* / (2 -2 ) a parabolic sector between

the parabolas y = x* / (2 * \’3) and an elliptic sector below the parabola y = x* / (2 + V’i).
Using equation (7°) in Theorem 2 in Scction 3.10 we find that the projection of the flow on
the Poincaré sphere onto the (x, z) plane at the point (0, 1, 0) satisfies X =z* —4x°z+ x*
and 7 = —4xz” + x'z. This system is symmetric about the z-axis and z = x° /(2 h \5) are
invariant curves of this system in the form dz/dx = (—4)(7.2 + X"Z) / (7.: —4x°z+ x‘) since
both sides reduce to’x /(2 * \/E) forz=x*/ (2 T \5). An analysis similar to that given
above then allows us to complete the description of the types of sectors that this system has
at the origin, as listed in the Hint for this problem. We thus obtain the separatrix configura-
tion shown in this problem (on p. 398) and we see that, according to Definition 1, the four
trajectories which lic on the invariant parabolas y = x* /(2 * w@), which correspond to the
invariant parabolas z = x’ /(2 * \/3) of equation (7’), as given above, for x # 0 are
separatrices since y = x* / (2 - \f2—) lies on the boundary of the hyperbolic sector above this
parabola through the origin, and similarly, y = x> / (2 + \5) lies on the boundary of the two
hyperbolic sectors between this parabola and the equator of the Poincaré sphere at the point

0, 1, 0) at infinity. ‘
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PROBLEM SET 3.12

2.

With the coordinate system and the Jordan curve C,, as described in this problem, it
follows from the uniform continuity of f(x) that for ky > 0, there exists a & > 0 such that if
Cq is contained in a square of side  in E (as in the proof of Theorem 1), then forall x €
Coo [F(x) = £(x, )| < ko /2. This implies that for all x = (x, )T € Cq, |Q(x.¥)| <k, /2 and
IP(x.y) - ky| < k, / 2; and therefore that P(x,y)| > ko/2, i.e., that [Q(x,y)/ P(x,y)| < 1. It
follows that -/ 4 <tan”'|Q(x,y)/ P(x,y)|< 7/ 4 for all (x, y)T € Cy. Thus, as (x, y)

moves around C, in the positive direction, A @< ©t/2 or A @®/21 < 1/4.

4. NONLINEAR SYSTEMS: BIFURCATION THEORY

PROBLEM SET 4.1

2. (a) Asin the solution of Problem I(a), since f(x) — g(x) = —ux, we have

I = g], = ] (max|x| +1).

(b) If there were a homeomorphism H : RZ — R? and a strictly increasing function T: R > R

such that H = ¢, = {; = H, then for x € R? we would have !lml H:e@(x)|=

!1_{2[ $ »H(X) | Butforp>0and 0 <|x|< | wehave| ¢ (x) [ <1 forall t 2 0 and thus
there is a constant M such that | H = ¢ (x) | £ M for all t > 0 (since a continuous function on
a compact set is bounded); and !1_1’13[ Y o H(X) | = e (since for x # 0, H(x) # 0; cf. Figure
2). We therefore have a contradiction. Similarly, foru>0and [ <|x|< | +¢, withe>0
sufficiently small, we have | H - ¢(x) | <M forall t 20 and lim | He s, (x) | = and we
again arrive at a contradiction. Thus the two systems in Example 2 are not topologically

equivalent for p #0.

According to the solution in Problem 10 in Section 3.10, 10 (a, b, ¢, d, ¢) correspond to
the global phase portraits in Figure 12 (i, vii, v, vi, ii). Thus, we see that for 10 (a, b, ¢)

the nonwandering set on the Poincaré sphere, S2, is simply the set of critical points on S2
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as shown in Figure 12 (i, vii, i1) in Scection 3.10. For 10 (c), the nonwandering set consists
of the set of critical points on S and the separatrix cycle or graphic consisting of the
homoclinic loop at the origin and the origin shown in Figure 12 (v). For 10 (d) the
nonwandering set consists of the set of critical points on S and the two graphics consisting
of the hetroclinic loops from (1, 0) to (-1, 0), these two critical points and the piece of the

x-axis between these two critical points shown in Figure 12 (vi).

Problem Set 4.2

6. Let the hyperbolic critical points that occur near X, for pt > g be x,. We then have dim
Ws(x,) =k + 1,dim WY(x,) =n—k - 1, dim Ws(x_) = k and dim Wu(x_) =n - k. If the
conditions (3) are satisfied, then there are two hyperbolic critical points near x, for both
K> Hg and 1<y, and the dimensions of the stable and unstable manifolds are the same as
above. If the conditions (4) are satisficd then there are three hyperbolic critical points near
Xg for > g (or for p < o) and the dimensions of the stable and unstable manifolds are

the same as those above for x_ at two of the critical points and the same as those above for

- . . X,
X, at the remaining critical point. i /

/
7. The critical points are at (ir2\/rt, ()) and ~

~

(i\,ﬁ:, O) for u = 0. The bifurcation ! /
\\

diagram is shown at the right and the NG

. - —~
phase portraits are shown below. ™ —
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PROBLEM SET 4.3
5. A universal unfolding for the system in this problem is given by x =
2 4 . . . .
K+ MoX + Hax” =X, ¥ =—y; and the various phasc portraits for ([, 1o, M3) in the

parameter space shown in Figure 3 can be determined from those in Problem 1.

PROBLEM SET 4.4

1. (b) Writing the system in 1(b), without any O(r*) terms, in polar coordinates leads to r = r(t + ar?)
and 0 = 1. Thus, for p =0, dr/d6 = ar® which has Ihe solution r(0) = ro[l - 2ar(2)()]_”2 This
implies that the Poincaré mdp P(ro) = ro[l - 47rar0] . Thus, P’ (ro) [1 - 47mr0]’3/~

P”(rg) = l”naro[l - 4nar0] and P"'(ry) = 12na[1 - 47mr0] + 0(ry) as ry — 0. This

shows that d(0) = P(0) =0, d'(0) =P’(0) - 1 =0, d’(0) = P”(0) = 0 and that d"’(0) = P"(0) =

121a = o, since from equation (3), ¢ = 12ma.

4, P= r(u - rz)(u - 21'3), 8 = 1. Therefore, for it >0, we have i =0 forr =0,
r= VFLI and r = \.'FE. On v,(1), x(t)= —Vfﬁ sint = ~y(t) and y(t) = f_cost =x(t);
i.e., ¥,(t) is a periodic solution of the system in this problem, as is ¥,(t). Since > Ofor
O<r< \,fu—/Z_ and for r > \/L—L while r <0 for M< r< \."H, we see that v, (t) 1s an
unstable limit cycle and v,(1) is a stable limit cycle of this system; and the origin is an

unstable focus. The phase portraits are given by

s N
: ._/’_ Y \. 1;;
{ \ T— {
Vo
4
S
u<o
r\
o r={p
S. The bifurcation diagram for the o
system in this problem is shown /_,--" = 1/': /72
e P — _
here. // . o Q= i‘/ﬂ' /5’
%—_ _____ - 1
o A
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9. Substitutinga=-1,b=E,c=F,d=1, agp = I, b;; =-1 and by, = ¢ into equation (3')
leads directly to the result stated in this problem. (Cf. Problems I and 5 in Section 4.14 and
note that the division sign should be deleted in the formula for o in Problems | and 5 in the

original Solutions Manual.)

PROBLEM SET 4.5

2. Equation (2) in Example 2 yiclds DP(v, ) = exp'|-:ﬂ4r2(r2 - l)d( = exp[iSTru”"(l + p“z)];
in Example 3 it yields DP(v, u) = eXPJ.:RZrz(l U - rz)dt =exp(4mp) and DP(V,, ) =
expf02n2r2(l - rz)dt = cxp[—4mpu(1+ p)]; and in Example 4 it yields DP(vq, 1) =

exp= | —2r2[u - (r2 - l)]zdt = exp(-4nu) and DP(v;, p) = exp_[:n4r2(l - r“‘)zdt =

exp[Snu(l + u'”)].

3. The surtaces of periodic orbits in Example 3 are given by:

And the surfaces for Example 4 are given by the surface in Figure 3 in Section 4.5 intersected

with the unit cylinder along the p-axis.
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In polar coordinates, these systems have the form f = ry(r, 1), ¢ = L. The bifurcation

diagram is given by w(r, 1) =0 in the (u, r) plane:

() For y(r, ) = (r— 1) (r— = 1), - =

the bifurcation diugram is given
here; there is a Hopf bifurcation
at (-1, 0) and a transcritical

bifurcation at (0, 1).

(b) For yw(r, ) =(r-1) (r-p-1)

(r+ ), the bifurcation diagram

1s given here; there are Hopt
bifurcations at (-1, 0) and at

(0, 0) and transcritical bifurcations

at (=1, 1), (=172, 1/2) and (0, 1). N

() Foryr, )= -1)r-pn-1)
(r+ p+ 1), the biturcation diagram
ts given here; there is a Hopf type
bifurcation at (=1, 0) and trans-

critical bifurcations at (=2, 1) and (0O, 1).

(d) Fory(r, ) =(u-1 @@ -1)
[Ll -1- (r: - 1)2], the bifurcation
diagram is given here; there is a

Hopf bifurcation at (2, 0), a center

N
< N
I o
"'\
]
JU— -4
o

forpu=1andr20, and a higher

codimension bifurcation at (1, 1).

O

~



10.

For P(x, p) = ux(1 = x), x = 2/3 is a fixed point of P(x, 3) = 3x(1 — x) since P(2/3, 3) = 2/3;
it is nonhyperbolic since DP(x, ) = u(1 - 2x) implies that DP(2/3, 3) = —1. We therefore
cxpect a period doubling, or flip bifurcation. As in Problem 9, we see that this is indeed the
case since for F(x, ft) = P2(x, t) = u2x(1 = x) (1 — ux + ux2) we have F(2/3, 3) = 2/3,
DF(x, p) = u(1 = 2x) (1 — 2x + 2ux2) which implies that DF(2/3, 3) = 1, D?F(x, p) =
201 = 2px + 2ux + (1 - 2x)’] which implies that D2F(2/3, 3) = 0, D3F(x, ) = 8331 -
2x) which implies that D3F(2/3, 3) = -72 # 0, F“(x, ) =2px(l = x) (I —pux + ux2) —n?
x2(1 - x)? which implies that F“(2/3, 3)=0 and DFu(x, W) =2u(l = 2x) (1 = 3ux + 4ux?)
which implies that DF,(2/3, 3) = 2/3 # 0. Thus, conditions (4) in Section 4.2 are satisfied for
the map F = P2 and therefore P2 has a pitchfork bifurcation at (2/3, 3). The bifurcation
diagram is obtained by graphing the equation F(x, {) = x; this was donc using Implicit Plot

on Mathematica. The resulting bifurcation diagram is shown here.
i ._.J_x ~

z/ /o ™ —
/3 =+ ///\__

VAR S /

- ] .
O /o Z

PROBLEM SET 4.7

3.

The bifurcation diagram is shown here.
As in the original Solutions Manual, it
-
is given by the graph of the relation 4
[(ﬁ—2)2+u2—1]-[r2+2u2—z]:0 \,\
S
|

in the (W, r) plane. There are subcritical

— —_—tt - — — A
¢ ! !

Hopf bifurcations at (x1, 0), saddle node bifurcations at the nonhyperbolic periodic orbits

corresponding to the points (x1, 1), there are transcritical bifurcations at the periodic orbits



corresponding to the intersection points of these two conic sections with p # 0, and there is

a higher codimension bifurcation at the periodic orbit corresponding to the point (0, V2).

4. The bifurcation diagram is shown here. As in the original Solutions Manual, it is given by

the graph of the relation [(r2 - 2): +u’ - 1]~[r2 +ut - 3] =0

in the (W, r) plane. There are subcritical Hopf r (1"

bifurcations at (i\m, 0), saddle node /fi\\\

bifurcations at (1, 1) and a higher / '\\ _ : o /" \\

codimension bifurcation at (0,2 ). ”.l ; ‘ A —u
— o {

PROBLEM SET 4.8

3. (a) This is a Hamiltonian system with Hamiltonian H(x, y) = y2 — 6x2 + x3. There are critical
points at (0, 0) and (4, 0), a saddle and a center respectively. Note that this system is sym-
metric about the x-axis. The phase portrait is topologically equivalent to Figure 1 in Section

4.9. The homoclinic loop [y is given by y? = 6x2 — x3. And we note that H(4, 0) = -32.

(b) The system x= X(x,y, ®) =y — o H(x, y) (12x — 3x2), y= 12x - 3x2 + oH(x, y)y
satisfies [P, Q: Py, Q] = Hix,y) [y +(12x = 3x°) | <0 for H(x, y) < 0, ., on the
interior of Iy (which is an invariant curve of this system for all ). As in 3(b), for a >0
the loop [y is internally unstable, 6 = -1 and w = —1. The phase portrait is shown below

for o > 0 (and p = 0).

(c) If we fix o at a positive value and embed the vector field (X, Y) of part (b) in a one-
parameter family of rotated vector fields (5), then from Figure 1 and Theorem 3 in Section
4.6 an unstable limit cycle bifurcates from the interior of I'y as i increases from zero. The
trace of the linear part of (5) at the critical point (4, 0) is given by T, = trace Df(4,0,pn) =

13[-320 cosp + sinpu], where f(x, y, pt) is the vector ficld (5). And we have T, = Oforp=
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pw* = tan1(3.2) = 1.27 for o = . 1. The phase portraits for the system (5) are described

below:

(c) For a0 = —.1 the separatrix cycle 'y is internally stable and thus a stable limit cycle

bifurcates from the interior of I'y as p decreases from zero.

PROBLEM SET 4.11

6. For Y,(1) = (-ocost, asint), we have M (o) = 0. And then f(x, y, €) = €a;x + €a,x3 +
gayx5 4 oo 4 ga x2M-1 4 x2m o(x, y, €) = AX2M + Aox2m-2 4 o + A x* + A X7,
fu(x, y, 0) = 2mx2m-1 fe(x, y, €) =ajx + apx3 + - + a x?™- g =0, =0, F(x,y) =
x2my — A\ x20+1/(2m + 1) - Ayx20-1/(2m - 1) — -+ = Amx3/3, G(x, y) = 2mx2m-ly, G (X,

y) =2mx2m-ly G, =0, P, =0, P5;, =0 and G,(x, y) = 2mx2m-1/y_ Thus, from
Y, L2 2 zh lh



Theorem 1 with dx = ydt, dy = —xdt, to first order, and with h = t/2 and the integrals

being taken around Y, (1), we have

M, (@) = jE[G,,,P2 ~G,P,, Jdx +§[g,dx ~fdy|- j;)E[t +g, Jx

— 4t PR , 2m 1
= ﬂa,xﬂu:x +...+a,X ]dy

_§ x:'”y_ “\lx:m” _ A:x:mAl _ B ‘;\mx-‘ melm—l dx
2m+1 ‘m-1 3 y

-7 4 X (0 +a,x O+, +a, x2P (0] dt
[l |

moou

n \ 5 S \ 2m+ 2
+J‘( 2m|:__f__|_x4m(l)+leim ~([)+...+%x; (I):ldl

2m+1 ¢ 2m-

2(2m - l)}(az )'.‘m—Z +

2m -1

= 4mna’ _’\l_(4m)(u2)2"“1 +—fl3___
(2m+1)27"\ 2m (2m - )27

Am [(2m+DY, o a (2m), ... a . .
+ — («?) 4+ (u”) Yoo 2 = nelP, (o)
3.27“ I.‘]+l "?Ill m ") -

where P, («7) is a (2m — 1)th degree polynomial in ¢2. Note that the constant

= ™ # 0 in Problem 6. We have used the formula
2m+ D)2 2m

I p2n 2my ] : . : o
— | cosT™Mtdt= -—— given in Theorem 6 in Section 3.8 in obtaining this result.
2n 7o m /) 2-" -

Thus, we see that for sufficiently small € # 0 the system in Problem 6 has 2m — 1 limit
cycles for an appropriate choice of constants ay, -+, ay, Ay, -+, A, (alternating in sign).
In fact, if we wish to obtain limit cycles asymptotic to circles of radius ri, j=1, -+, 2m -
1, as € = 0, we simply set the (2m — 1)th degree polynomial (a: - rf)(a: - r)

(OL2 - rim_,) in « equal to kP, ,(a*) with any non-zero constant kg, in order to

determine the 2m coefficients ay, =+, a,,, Ay, -, A,
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PROBLEM SET 4.12

2. (c) All of the results necessary for the computation of dy(h) are derived in Problem 1(b). For

My =X =A3=Ag; =Ahsy =0, we have £1(x, ¥) = =2x2 = 2%, xy + y2, g1(X, y) =
A X2+ (4 + Ay + A ¥2 (X, ¥) = ga(X, ¥) = g3(x, ¥) = 0, f3(x, y) = —Ag3Xy,

fi(x, y) = Ayx and gy(x, y) = A 4y. Then q,, g, and Q, are the same as in part (b), with
My =0, and Q= Agy xydy + Ay x { A (2 + Ay X3 + [2q(Thgy — 4 = Ay )4 = (Ayy +2)
gy + D)2y = [Ag )2+ Ay) + (@ + hygy) (Thgy =4 = 2y )4] xy2 ~ Fgy (Thy) -4 -
M)A v3 dx + hgx {2 Q@+ A3 = [225, 2 + Ay ) + (Thy -4 = Ay )2)x2y + [2 4+
Ayp = Aoy (Thoy =4 = 2y I2]xy2 + (Thay — 4 = Xy )y3/4}dy. Then using the formulas in
Problem 1(b), we find q3(X, y) = As3X — A3gx3 + Ay x2y + Apxy? — Apay? with Aqg =
A2+ Agp) (Thgy +4 = A6, Agy = kg [Ag)(Thgy =4 = )4 = (0gy +2) Oy = D)),
A=Ay (Thyy -4 -2,)/4 and Agy = A [2(h4 +2) gy + 5)3 = ha(Thyy — 4 -

hy1)/4]). And this allows us to compute ad (¢, N) = My(a) = '[94 where Q, = +
H-h=a’/2

q 03 + g2y + G300, ©; = g dx - fj dy (with w, = 0) und the gi(x, ), j =1, 2, 3, are
given above. This leads to the formula for dy(o, N) given in Lemma 1 in Section 4.11,

. -~ 27‘ . 4 ki :" . 2 4 :n . (’
using the fact that _[ sin” tcos™ tdt :I sin“tcos tdt=7/8, J. sin” tdt =

0 0 O

2n

L cos®tdt = 5m/ 8and using the integrals in parts (a) and (b).
In order to compute ds(h) and dg(h), it is necessary to obtain the formulas for Q4. q,

25 and q5 contained in [58]. That will not be done here.

PROBLEM SET 4.13

S.

For the system (6) with the minus sign, Df(x) = [0, 1; p; — 3x2 - 2xy, n, — x2]. For

K, <0 the origin is the only critical point and Df(0) = [0, 1; 1|, U,]; thus for p; <0, the
origin is a sink for pu, < 0 and a source for w, > 0. Using equation (3") in Section 4.4, we
find 6 =-3n/ 2|p.li”2 < 0 and the origin is also stable for p; = 0. Furthermore, for p, =0
there is a supercritical Hopf bifurcation at the origin in which a unique stable, negatively

oriented limit cycle bifurcates from the origin as [, increases from zero. It follows from the
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rotated vector field theory in Section 4.6 that this stable limit cycle expands to infinity as [,
increases without bound. For ) = 0 the tlow on the center manifold, y = x3/p; + 0(x*), is
given by X = x’ ,+ O(x‘) and there is an unstable node at the origin. For p; >0, we
have critical points at the origin and at (i\.ﬁ, 0). Using equation (4) in Section 4.2, we
can show that there is a pitchfork bifurcation for pt; = 0 (and p, # 0) in which threc critical
points bifurcate from the origin as |, increases through p, = 0. Since det Df(0) = —t; <0
for py > 0, the origin is a saddle for p; > 0; and since Df(i\/p._], ())z [0.5;—2p,, p, ~ u,],
(i\"E, 0) are sinks for p, < 4 and sources for py > p,. After translating the origin to
(i\:’rp_l, 0) and using equation (3") in Section 4.4, we find that 6 =3n/ \,/Tl, >0 and
thus, according to Theorem 1 in Section 4.4, there are subcritical Hopf bifurcations at
(i\."ﬁ?, O) for u; = 1y in which unique, negatively oriented, unstable limit cycles bifurcate
from (i\ﬁ-l-,‘, O) as W, decreases from . Using the rotated vector field theory in Section
4.0, it follows that these negatively oriented, unstable limit cycles expand as p, decreases
and (since this system is symmectric with respect to the origin) they simultancously intersect
the saddle at the origin and form a compound separatrix cycle with two loops at {y = h(p).
By muaking the rescaling transformation (7) we obtain the system (8). The system (8) was
studied in Example 2 in Section 4.10. It follows from Theorem 5 in Section 4.10 that the
homoclinic-loop bifurcation occurs at gy, = h()) = 4p,/5 + O(uf) as i, = 0". Theorem 5
in Section 4.10 also establishes that for u; >0 and h(u;) < i, < p there is exactly one
limit cycle for this system around each of the cnitical points (i\/u_l, O), neither of which
encloses the origin. Finally, the computation of the Melnikov function for the exterior
Duffing problem in Problem 6 of Section 4.10, which is contained in the original Solutions
Manual, shows that there is a multiplicity-two limit cycle bifurcation surface given by

Hy =c(p,)=.752p, + O(pf) as , — 0%. The bifurcation set and the corresponding phase

portraits arec shown below; cf. Figures 7.3.7 and 7.3.9 in [G/H].
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5

o =
)} ———

This completes the appendix to the Solutions Manual for TAM 7, Differential Equations and
Dynamical Systems. There is nothing to add concerning the Research Problems at the end of
Section 4.15 since, to my knowledge, no further progress has been made on those problems
beyond what is contained in Section 4.15 and in our Journal of Differential Equations paper [60],

published in 2000.
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5. SOME ADDITIONAL PROBLEMS

Problem 6 in Section 2.8: (Sternberg) Rewrite the system

=2x+yz‘

‘L
Il
<

in differential form as dx/dy =2x/y + y and solve this first-order, linear differential
equation to obtain x = y*(c + In| y |). Solve the linearization of this system to obtain

= ¢ y? and note that by Hartman’s Theorem, the linear and nonlinear systems are
C - diffeomorphic (or C*- conjugate as defined in Section 3.1); in fact, all trajectories
(except those on the x-axis) are tangent to the y-axis at the origin. However, the linear
and nonlmear systems are not C 2 dlffeomorphlc since under a C* change of coordinates,
the C* curves x= cy? would go into C* curves and the curves x = y*(c+ Inly]) are not
C*. Note that the “resonance condition” A= m, )t +m )2 is satisfied with m =0,
m,=2>1, )\ 2 and )\— 1. Thus, neither Pomcare s nor Sternberg’s theorems apply.

Problem 8 in Section 2.12:

(a) Use Theorem 2 in Section 2.12 to find the approximation for the flow on the local
center manifold, I, for the system

x=xy+xz—x9
. _ 2
y=-y-x
Z=z+x™

And then sketch the local phase portrait for this system to see that the origin is a type of
topological saddle in R? which is topologically equivalent to the saddle shown in
Figure 3 of Section 1.1 (with t - -t).

Hint; It can be shown that there is a smooth surface S:z=¥(x,y), containing the curve

l'7 and the y-axis such that for all x4€S, 4) (x4) ® 0 astwwa See the figure below on
the left.
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(b) Use Theorem 2 in Section 2.12 to find the approximation for the flow on the local
center manifold, [, for the system

x=xty +x%z - x¥

And then sketch the local phase portrait for this s

ystem to see that the origin is a type of
saddle-node in R? for this system.

Hint: For x >0 there is a surface S containingr' and the y-axis as in part (a); forx<0
there is a topological saddle on S at 0; i.e., there is a topological saddle-nodg on the
surface S at the origin. There is another smooth surface T:y =¢(x,z) containing the
curve ["and the z-axis such that for all Xo=(%,,Y,,%) Withx,<0, ft()-(") >0 as
t-» -0, and there is a topological saddle on T at 0 for x, 3> 0. See the figure below on
e right. ‘
;_\Ihgt_e_:ghln part (a) we also have a surface T:y =¥ (x,z) containing "and the z-axis on
which there is a topological saddle at 0.
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Problem 8 in Section 4.2: (Khellat) Show that the system

;<=/ux—xy
s
y=-x+x*

does not satisfy conditions (2), (3), or (4) in Section 4.2, but that it has a pitchfork
bifurcation at the origin as the parameter 4 varies through the bifurcation value
M =0. Thus, while condition (4) is sufficient for a pitchfork bifurcation, it is not
necessary.

Problem 5 in Section 4.9: Compute the Melnikov function, M(1,), for the following
perturbations of the undamped pendulum in Example 1 of Section 2.14 with Hamiltonian

H(x,y) = yz/2 +1—cos x
And show that M(t, ) has simple zeros.

Note: Theorem 1 in Section 4.9 applies to the flow on the cylinder (obtained by
1dent1fymg X-points mod 2K) in the followmg problems where, for H = 2, we have two
homoclinic orbits I"' X, (t) (x v, y- (1)) at the hyperbolic saddle point

(7, 0) =(-150) mod 21-’ Thus, Lemma 1 implies that the Poincare map, P, . for the
perturbed system has a unique hyperbolic fixed point x, = (17, O) +0(¢) of saddle type
and Theorem | implies that the stable and unstable manifolds W (L‘ yand W* (x,) of
the Poincaré map intersect transversally. Therefore, we have the type of chaotic
dynamics predicted by the Smale-Birkhoff Homoclinic Theorem. Cf. Figure 11 in
Section 4.8 and Figure 9 on p. 158 in [15] which illustrate why an iterate P? of 12 has a
horseshoe map. Also, see p. 158 in [15] for an interesting discussion of why a
periodically perturbed pendulum exhibits sensitive dependence on initial conditions.

(@) X =y
y =-sinX +gcost

Hint: On the homoclinic orbits r'tmth H =2, we have cos x =y*/2—1 and this

allows us to integrate ¥ =-sinx = +,(1 — cos"x'—+ y,{ 1 —y2/4 " to obtain y': (t) =2 secht.
Then use the result of Problem 4 in Section 4.9 to find M(tg) 27sech (/2) cos t,.
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(b) (Poincare 1890; cf. [15], p.155)
X =y
y =-sinx +£cos X cost.
Hint: Follow the hint for part (a), use two integrations by parts to evaluate

<0

j secht tanh®t cost dt

and then use the resuﬁq;f Problem?t in Section 4.9 to find
M(t,) = -2Rsech(17/2) cos t,
asonp. 157 in [15].
(© X =y
y =-sinx +§& 9ucost -y).
Hint: Similar to the result in Example 1 in Section 4.9, you should find that for

M> (44r) cosh 67/2), M(t,) has a simple zero.

Problem 7 in Section 4.15: Use Theorem 4 in Section 4.15 to show that for ¥ = 0 and
g < 0, there is a point

B : =f12 - Ug, c=g 2

On the line TB: : c=ott 1/4 (given in Theorem 3 in Section 4.9) which lies in the
region E = {(o¢, €) [*>@, |c| <2 } provided that -4 <#<0. Cf. Figure 6 in Section 4. 14
and note that the point TB‘ hase># and -2 <c <0 for -4 </.9 <0.
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Note: For -4 <4 <0 and sufficiently small ¥> 0, the unfolding of the TB; point shown
in the bifurcation diagram in Figure 1 in Section 4.15 implies that the points H, , C; and
HL: all lie in the region E in a small neighborhood of the TB; point for small ¥> 0.

Re-draw the charts in Figure 6 in Section 4.14 for -4 <8 <0 and small &> 0, noting that
the TB:~ line bifurcates into the H® line where ¢ =o¢ + (1 +a’L)/g (given in Theorem 5 in
Section 4.14) and the HL® curve and that H® and HL” cross for -4 <@ <0 and 0 < ¥ <<1
as in Figure 1 in Section 4.15. Also, note that the point H is on the H? line, the point
HL is on the HI® curve and the C curve Joms these two pomts as in Figure 1. Also,
w1th the exception of the bifurcation of the TB line, described above, the other parts of
the charts in Figure 6 in Section 4.14 remain the same.

One last comment: For <-4 and 0< ¥<<1, we have the pomt HL on the curve HI®
movmg out of the region E and then the point H2 on the curve H® movmg out of the
region E as /3 decreases from -4 (for points below the P curve shown in Figure

the Appendix). This leads to Chart 1 in the Appendix.
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Problem 13 e Section 7 FiSalving the two-hody problem:

(i) The planar two-body probicm can be wriven in the form

where 1o vy reostE i polar coordingen. Show tha

v

‘e ’y ‘% N .
o e Jrir b
)“‘, { !

where 1 feostisin aad g cosinBeosthy anad that this implies tha

e

(: RSAR (\_

P

Lo, tial the anodar mon cntem 78 - L woconstanl, Then show thet

Fris seeord onders nontimean dittorantal eguation van be reduced toasecond erder, linear
allicrental conation, that can boe =olved. by chunging the dependent variable to v 1y
and by changivg the indecondert variable 1o weith dide - e, Show that this feads,
Lo

y :|.-_ TR

SN
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ciive o h
(14 ¢ costy,
deenic section with cocentricrty o and periapais distenee 1o The dependienc o eand

Foen tean be obtained ronn the inverse of the monoione luncetion

FU" I /" b,

thy Poar b=t the tae-hody problem, we have a linear motion deseribed by

Yoo
ar
° L2
vody v ot
(!l‘

where v -dridn et vo= rand show that dvide -0 dvdda, fes, thi



vdvidu = 1.

Fhus, v 1 /’ {u - ) where ( =y 1 s he total energy and this implies that
L \

duidt 12 -1l )

for Cy< 00 Integration then leads to

T -k G i o

Graph these [unctions, 1 t(r). and from these graphs, obtain the praph ol the inverse

{'nnclion r(t). Note that from the graph ol (1) i is clear that 17 0 wnupunds to v -0
L0 corresponds o v, 0. and > )u)llL\pUlld% G 0 where fm agiven, ~0and

(0 A, 1 4}7 [1/1 (l - TGO s - l/l(o( tan f\{( -Gk ) /\(Ulyo [and v, - ]—\/Z(l/'l;\ 160

For L\dllll)]k.. for (- =Fand o, 0, you should find r(1) as shown below:

)’\
N

16
|
O ‘sk/;i/)
Similaly, for ¢, -0 and 1, ~0, vou should find that
.____——‘—f. .
,{ tj! 1) iC, - In f! 1 Gl —¢/u_1_
TG Gr
Grapl these Tutictions. (). and {rom these graphs, obtain llu. g,_mp'n ol the inverse

function (). From the graph of 1(1), it is clear that 1,<0 corresponds to y, <0 and t,~0
cotresponds to v >0 where G, Ligrg ) and w ~ & JZ( I, 1G, ).
Finally, tor €, =0, you should {ind (1) =2 2% )’/ Tand that Im a given DR VAR N
and v, =1 FZ/—!:



Problem 7/ in the Appendix:

(a) In order to see how the charts in FigureC change as ¥ increases for a fixed 8 <<-1,
say ﬁ= -10, first of all note that for ﬁ= -10 and §= 3, we obtain Chart 5 as in Figure 23 in
Section 4.14 and for = 3.5, we obtain Chart 6 as in Figure 20 in Section 4.14; and then
for ¥=5.09 graph the functions
HY o= 1+elotip+S)P2
o~ S

H° c:ou(1+xz)/ﬁ
and $S: c=(®+8+S)2

with § =/4 (a(-ﬂ)z -4Y* obtained from Theorem 5 in Section 4.14. According to the
atlas in Figure Q. for 8= -10 and ¥=5.09, you should obtain Chart 7 since l:"' defined
above, corresponds to ¥ 5.07 and [, also defined above, corresponds to ¥ = 5.1. Then
sketch in the HI7and C; curves to conform to Chart 7. Note that it was cstablished in
Section 4.13 that the H*and HL curves approach the Tproint (given by

TBf: o(=A+2Y, c=1/(g+2¥) +A+Y
in Section 4.14) tangent to the SN*line (o= At2 Nwith the H "curve between the HLF
curve and the SN*line.
Hint: In order to see the detail near the TB:point, including the H tand HL"; points as
well as the Cz'curve (similar to that shown in Figure 20 in Section 4.14), it will be
necessary to do an enlargement of the graphs near the TB;_' point similar to that shown in
the figure below.

SNT

+

B
2




Next, graph the above functions H+, Ho, and SS for /=5.11. According to the
atlas in Figure @, for8=-10 and ¥= 5.11, you should obtain Chart 8 since IZ - defined
above, corresponds to ¥%'5.18. Then sketch in the HL and C;’curves to conform to
Chart 8. .

Finally, graph the above functions H+, H® and SS for ¥~ 5.1 corresponding to a
point on the T +curve, {’:; and then sketch in the HLTand Clcurves (similar to thosc
in Chart 8), noting that, as in the last figure in this appendix, the Hfand HL curves are
transverse to the SN line at the point TB,_ as is established below where it is shown that
for A= -10, dc/de= -24.5 at the point TB*on the line SN~
(b) From Theorem 4’ in Section 4.15, afthe point T T we have°(=\9+ 2¥ with y# 0 (.e.,
TB} eSNY), (g+2¥)(c-£+¥)=1 (ie, TB} cTB*Bf and 8% 285+2=0 (ic. the

1 +- = - 2 =
ic’::u%g )éf;). Thus, at TB3 &= (/5;'. 2)/2!Fkand X 2/[F]for]¢9< 0. Show that on

c="!
. o
H: ¢c= 1 raf[x-p+ S5)2

. oC + 8§
with S= N[(oc-/a)z-432 . we have

2

dc —» 2-F8

de 4

as o=>2/}g| for a fixed /§< 0and Y= (/f+ 2)/2Lﬁ}

Hint: Note that S=0 at TB:; so it is necessary to use L.’Hospital’s Rule for that part of

dc/d& having the form 0/0 for a fixed f5<0 and Y= (/f? 2)/2} /Bl as e => 2/’\pl.

The Hopf Bifurcation Surface H* for B = 10 with ¥S ) aced | o1 _ =



6. ADDITIONS AND CORRECTIONS

p.217,1.27: -~ @5F

p- 239, 1. 39: has at most a finite number of critical points in any compact subset

p. 261, L. 33: of a finite number of elementary critical points (i.e., critical points with at
least one nonzero eigenvalue) on the equator

p.272,1.12, 13: And for z=0 we have -x =x - (e¢+ 1) x*+ x? in (10). Therefore,
X>0for x<0 and X < 0 for x>0 on the x-axis. --.

p.279,1.23: around the unit circle with velocity v = JZ (p) tangent to C at the point ¢ (p),
— = —t =
p. 285, 1.7: having a nonzero eigenvalue (to which the theorems in Section 2.8 ....

p. 408, 1. 23: (2) has a unique hyperbolic periodic orbit of saddle type, x¢(t) =x,+ 0(¢).
of period T. [{.20 !'Replac ¥ (¢) L’ﬁ Xy ()]

p. 409: Replace yg(t) by x¢(t) in Figure2,

p.417,1. 14,15: -_b'<=x"zz-x"+£;sz;xz’~+g{gx5’-zz
+72=x2° -z +gnz3 +ipx2z.

p-417,1. 18, 19: Replace (F,O) by (5’9 ,0).

p.428, 1. 10: Replace n-dimensional by m-dimensional

p. 433, 1. 4: Replace f (&) by f (5, (D).

p.443, 1. 33, 34: Replace (4) by (1).

p. 445, 1. 6: Replace P)_(x,y,#) by I;(x,h#).

p-480,1. 17: accomplished forg= 0 in Figures15 and 16 below and in the Appendix at the
end of Section 4.15 for/J <<-1 (e.g, /g <-5); but for -5 <@ <Oitisstill ...

p.346 (177 -+ 0, b,,)



P A4 lig: 2o (B) with Qy=
p. 486: Replace .1 by -1 inFigure 4.

p. 493. 1. 34: below for@8= 0 and in FiguresA and C (for/e <<-1) in the Appendix at the

p. 495.

p. 506.

p. S12.

p. 528.

p. 540.

I. 16:
1. 23:

.14

1.21:
1.26:

oI

18

L1 ..

1.14:

1.10:

1. 6:

1.37:

1.1 .

end of Section 4.15 ....

.... for320 and in the Appendix at the end of Section 4.15 for 8 <<-1.
The “atlas™ shown in Figure 4 in [53] and in the Appendix at the end
of Section 4.15 (as well in Figure 15 below forg > 0).

together with the atlas and charts in [53] and in the Appendix can be used ...
values of A. as described in the Appendix, and also ....

19, 20, and 22 below and also in Chart 6 in the Appendix at the end of
Scction 4.15 ...

scale in Figure 20 which is the same as Chart 6 in the Appendix ....

... it has a flat contact with HL® at HL® (which is outside the region E in

this example). Cf. Chart 6 in the Appendix.
.. 23. Cf. Chart 5 in the Appendix. We see ....

.... affinely equivalent to the BQS with

are shown in Figures 15 and 16 forﬁ > 0 and in the Appendix at the end
of Section 4.15 for ﬁ<< -1. ‘

X = fxp )

.1.16.17: .... Note that in the region between HL and CFin Figure . ...

..... it terminates at Nz . This leads to

... [t also terminates at NL i





