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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
Houston, Texas M. Golubitsky





Preface to the Third Edition

This book covers those topics necessary for a clear understanding of the
qualitative theory of ordinary differential equations and the concept of
a dynamical system. It is written for advanced undergraduates and for
beginning graduate students. It begins with a study of linear systems of
ordinary differential equations, a topic already familiar to the student who
has completed a first course in differential equations. An efficient method
for solving any linear system of ordinary differential equations is presented
in Chapter 1.

The major part of this book is devoted to a study of nonlinear sys-
tems of ordinary differential equations and dynamical systems. Since most
nonlinear differential equations cannot be solved, this book focuses on the
qualitative or geometrical theory of nonlinear systems of differential equa-
tions originated by Henri Poincarc in his work on differential equations at
the end of the nineteenth century as well as on the functional properties
inherent in the solution set of a system of nonlinear differential equations
embodied in the more recent concept of a dynamical system. Our primary
goal is to describe the qualitative behavior of the solution set of a given
system of differential equations including the invariant sets and limiting
behavior of the dynamical system or flow defined by the system of dif-
ferential equations. In order to achieve this goal, it is first necessary to
develop the local theory for nonlinear systems. This is done in Chapter 2
which includes the fundamental local existence-uniqueness theorem, the
Hartman-Grobman Theorem and the Stable Manifold Theorem. These lat-
ter two theorems establish that the qualitative behavior of the solution set
of a nonlinear system of ordinary differential equations near an equilibrium
point is typically the same as the qualitative behavior of the solution set
of the corresponding linearized system near the equilibrium point.

After developing the local theory, we turn to the global theory in Chap-
ter 3. This includes a study of limit sets of trajectories and the behavior of
trajectories at infinity. Some unresolved problems of current research inter-
est are also presented in Chapter 3. For example, the Poincare-Bendixson
Theorem, established in Chapter 3, describes the limit sets of trajectories
of two-dimensional systems; however, the limit sets of trajectories of three-
dimensional (and higher dimensional) systems can be much more compli-
cated and establishing the nature of these limit sets is a topic of current
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research interest in mathematics. In particular, higher dimensional systems
can exhibit strange attractors and chaotic dynamics. All of the preliminary
material necessary for studying these more advance topics is contained in
this textbook. This book can therefore serve as a springboard for those stu-
dents interested in continuing their study of ordinary differential equations
and dynamical systems and doing research in these areas. Chapter 3 ends
with a technique for constructing the global phase portrait of a dynami-
cal system. The global phase portrait describes the qualitative behavior of
the solution set for all time. In general, this is as close as we can come to
"solving" nonlinear systems.

In Chapter 4, we study systems of differential equations depending on pa-
rameters. The question of particular interest is: For what parameter values
does the global phase portrait of a dynamical system change its qualitative
structure? The answer to this question forms the subject matter of bifurca-
tion theory. An introduction to bifurcation theory is presented in Chapter
4 where we discuss bifurcations at nonhyperbolic equilibrium points and
periodic orbits as well as Hopf bifurcations. Chapter 4 ends with a dis-
cussion of homoclinic loop and Takens-Bogdanov bifurcations for planar
systems and an introduction to tangential homoclinic bifurcations and the
resulting chaotic dynamics that can occur in higher dimensional systems.

The prerequisites for studying differential equations and dynamical sys-
tems using this book are courses in linear algebra and real analysis. For
example, the student should know how to find the eigenvalues and cigenvec-
tors of a linear transformation represented by a square matrix and should
be familiar with the notion of uniform convergence and related concepts. In
using this book, the author hopes that the student will develop an appre-
ciation for just how useful the concepts of linear algebra, real analysis and
geometry are in developing the theory of ordinary differential equations
and dynamical systems. The heart of the geometrical theory of nonlinear
differential equations is contained in Chapters 2-4 of this book and in or-
der to cover the main ideas in those chapters in a one semester course, it
is necessary to cover Chapter 1 as quickly as possible.

In addition to the new sections on center manifold and normal form
theory, higher codimension bifurcations, higher order Melnikov theory, the
Takens-Bogdanov bifurcation and bounded quadratic systems in R2 that
were added to the second edition of this book, the third edition contains
two new sections, Section 4.12 on Frangoise's algorithm for higher order
Melnikov functions and Section 4.15 on the higher codimension bifurcations
that occur in the class of bounded quadratic systems. Also, some new results
on the structural stability of polynomial systems on R2 have been added
at the end of Section 4.1, some recent results for determining the order of
a weak focus of a planar quadratic system have been added at the end of
Section 4.4, and several new problems have been interspersed throughout
the book.
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A solutions manual for this book has been prepared by the author and is
now available under separate cover from Springer-Verlag at no additional
cost.

I would like to express my sincere appreciation to my colleagues Freddy
Dumortier, Iliya Iliev, Doug Shafer and especially to Terence Blows and
Jim Swift for their many helpful suggestions which substantially improved
this book. I would also like to thank Louella Holter for her patience and
precision in typing the original manuscript for this book.

Flagstaff, Arizona Lawrence Perko
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1

Linear Systems

This chapter presents a study of linear systems of ordinary differential
equations:

X = Ax (1)

where x E R", A is an n x n matrix and

X =
dx

dt

H
It is shown that the solution of the linear system (1) together with the
initial condition x(O) = xo is given by

x(t) = eAtxo

where eAt is an n x n matrix function defined by its Taylor series. A good
portion of this chapter is concerned with the computation of the matrix
eAt in terms of the eigenvalues and eigenvectors of the square matrix A.
Throughout this book all vectors will be written as column vectors and AT
will denote the transpose of the matrix A.

1.1 Uncoupled Linear Systems

The method of separation of variables can be used to solve the first-order
linear differential equation

i=ax.
The general solution is given by

x(t) = ceat

where the constant c = x(0), the value of the function x(t) at time t = 0.
Now consider the uncoupled linear system

$1 = -xl
x2 = 2x2.
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This system can be written in matrix form as

* = Ax

where

(1)

A= [ 0 2

Note that in this case A is a diagonal matrix, A = diag[-1, 2], and in general
whenever A is a diagonal matrix, the system (1) reduces to an uncoupled
linear system. The general solution of the above uncoupled linear system
can once again be found by the method of separation of variables. It is
given by

xi(t) = cle-t

x2(t) = c2e2t

or equivalently by

(2)

x(t) _
{e_t

Ot] c (2')

where c = x(0). Note that the solution curves (2) lie on the algebraic
curves y = k/x2 where the constant k = c c2. The solution (2) or (2')
defines a motion along these curves; i.e., each point c E R2 moves to the
point x(t) E R2 given by (2') after time t. This motion can be described
geometrically by drawing the solution curves (2) in the x1i x2 plane, referred
to as the phase plane, and by using arrows to indicate the direction of
the motion along these curves with increasing time t; cf. Figure 1. For
cl = c2 = 0, xI(t) = 0 and x2(t) = 0 for all t E R and the origin is referred
to as an equilibrium point in this example. Note that solutions starting on
the xl-axis approach the origin as t - oo and that solutions starting on
the x2-axis approach the origin as t -. -oo.

The phase portrait of a system of differential equations such as (1) with
x E R' is the set of all solution curves of (1) in the phase space R". Figure 1
gives a geometrical representation of the phase portrait of the uncoupled
linear system considered above. The dynamical system defined by the linear
system (1) in this example is simply the mapping 0: R x R2 -' R2 defined
by the solution x(t, c) given by (2'); i.e., the dynamical system for this
example is given by

1

4(t, c) =
[e_0t

0t1 c.
e

Geometrically, the dynamical system describes the motion of the points in
phase space along the solution curves defined by the system of differential
equations.

The function
f (x) = Ax

on the right-hand side of (1) defines a mapping f: R2 --' R2 (linear in this
case). This mapping (which need not be linear) defines a vector field on
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Figure 1

R2; i.e., to each point x E R2, the mapping f assigns a vector f (x). If we
draw each vector f(x) with its initial point at the point x E R2, we obtain
a geometrical representation of the vector field as shown in Figure 2. Note
that at each point x in the phase space R2, the solution curves (2) are
tangent to the vectors in the vector field Ax. This follows since at time
t = to, the velocity vector vo = *(to) is tangent to the curve x = x(t) at
the point xo = x(to) and since z = Ax along the solution curves.

Consider the following uncoupled linear system in R3:

.it = x1

x2 = -T2 (3)

X3=-X3



4
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Figure 2

X3

Figure 3

The general solution is given by

xi(t) = clet
x2(t) = c2et

x3(t) = c3e-t.

1. Linear Systems

And the phase portrait for this system is shown in Figure 3 above. The
x1, x2 plane is referred to as the unstable subspace of the system (3) and
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the x3 axis is called the stable subspace of the system (3). Precise definitions
of the stable and unstable subspaces of a linear system will be given in the
next section.

PROBLEM SET 1

1. Find the general solution and draw the phase portrait for the follow-
ing linear systems:

(a)
I1 = xl

.+2 = x2

(b)
xl = x1
X2 = 2x2

cx1 = xl

i2 = 3x2

X1 = -x2
(d) y2 = x1

(e) ±1 = -Si + x2
\ .+2=-x2

Hint: Write (d) as a second-order linear differential equation with
constant coefficients, solve it by standard methods, and note that 4+
A =constant on the solution curves. In (e), find x2(t) = c2e and
then the x1-equation becomes a first order linear differential equation.

2. Find the general solution and draw the phase portraits for the fol-
lowing three-dimensional linear systems:

Hint: In (c), show that the solution curves lie on right circular cylin-
ders perpendicular to the x1, x2 plane. Identify the stable and unsta-
ble subspaces in (a) and (b). The x3-axis is the stable subspace in (c)
and the x1, x2 plane is called the center subspace in (c); cf. Section
1.9.
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3. Find the general solution of the linear system

it = xi
i2 = axe

where a is a constant. Sketch the phase portraits for a = -1,a = 0
and a = 1 and notice that the qualitative structure of the phase
portrait is the same for all a < 0 as well as for all a > 0, but that it
changes at the parameter value a = 0 called a bifurcation value.

4. Find the general solution of the linear system (1) when A is the
n x n diagonal matrix A = diag[Aj, A21... ,An]- What condition on
the eigenvalues Al, ... , An will guarantee that limt_,,. x(t) = 0 for all
solutions x(t) of (1)?

5. What is the relationship between the vector fields defined by

x=Ax
and

x=kAx
where k is a non-zero constant? (Describe this relationship both for
k positive and k negative.)

6. (a) If u(t) and v(t) are solutions of the linear system (1), prove that
for any constants a and b, w(t) = au(t) + bv(t) is a solution.

(b) For
_ 11 0A -

0 -2 '

find solutions u(t) and v(t) of k = Ax such that every solution
is a linear combination of u(t) and v(t).

1.2 Diagonalization

The algebraic technique of diagonalizing a square matrix A can be used to
reduce the linear system

k=Ax (1)

to an uncoupled linear system. We first consider the case when A has real,
distinct eigenvalues. The following theorem from linear algebra then allows
us to solve the linear system (1).

Theorem. If the eigenvalues Al, A2, ... , An of an n x n matrix A are mal
and distinct, then any set of corresponding eigenvectors {vl, v2, ... , vn}
forms a basis for Rn, the matrix P = [vi v2 vn] is invertible and

P-' AP = diag[A1,... , An].
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This theorem says that if a linear transformation T: R" - R' is
represented by the n x n matrix A with respect to the standard basis
{el,e2,...,e"} for R", then with respect to any basis of eigenvectors
{v1, v2, ... , T is represented by the diagonal matrix of eigenvalues,
diag[Al, a2, ... , "J. A proof of this theorem can be found, for example, in
Lowenthal [Lol.

In order to reduce the system (1) to an uncoupled linear system using
the above theorem, define the linear transformation of coordinates

Y=P-'x
where P is the invertible matrix defined in the theorem. Then

x=PY,
Y=P-'x=P-'Ax=P-'APy

and, according to the above theorem, we obtain the uncoupled linear system

y = diag[a1,...,A Iy.

This uncoupled linear system has the solution

y(t) = diag[ea't,... , ea"t]Y(0)

(Cf. problem 4 in Problem Set 1.) And then since y(O) = P-1x(0) and
x(t) = Py(t), it follows that (1) has the solution

x(t) = PE(t)P-'x(0) (2)

where E(t) is the diagonal matrix
J1,t

Corollary. Under the hypotheses of the above theorem, the solution of the
linear system (1) is given by the function x(t) defined by (2).

Example. Consider the linear system

Z1 = -x1 - 3x2
22 = 2x2

which can be written in the form (1) with the matrix

A= I 0 2J.

The eigenvalues of A are a1 = -1 and A2 = 2. A pair of corresponding
eigenvectors is given by

V1=I0J, V2=I 1J.
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The matrix P and its inverse are then given by

P =
[10

11
and P-'

=
110

1]
.

The student should verify that

P_'AP = [- 10

2

Then under the coordinate transformation y = P-'x, we obtain the un-
coupled linear system

yl = -Y1
y2 = 2y2

which has the general solution yi(t) = cle t, y2(t) = c2e2t. The phase por-
trait for this system is given in Figure 1 in Section 1.1 which is reproduced
below. And according to the above corollary, the general solution to the
original linear system of this example is given by

[et 1l

x(t) = o
e 221]

P-'c

where c = x(0), or equivalently by

xl(t) = cle-t +
c2(e-t _ e2t)

(3)
x2(t) = c2e2t.

The phase portrait for the linear system of this example can be found by
sketching the solution curves defined by (3). It is shown in Figure 2. The

Y2 x2

L-, YJ J.Py

Figure 1 Figure 2
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phase portrait in Figure 2 can also be obtained from the phase portrait in
Figure 1 by applying the linear transformation of coordinates x = Py. Note
that the subspaces spanned by the eigenvectors vl and v2 of the matrix
A determine the stable and unstable subspaces of the linear system (1)
according to the following definition:

Suppose that the n x n matrix A has k negative eigenvalues A1, ... ,
and n - k positive eigenvalues Ak+1, ... , A, and that these eigenvalues are
distinct. Let {vi,.. . , v,,} be a corresponding set of eigenvectors. Then the
stable and unstable subspaces of the linear system (1), E' and Eu, are the
linear subspaces spanned by {vl,... , vk } and {vk+i, ... , v,,} respectively;
i.e.,

E =Span vl,...,vk
u -E-

If the matrix A has pure imaginary eigenvalues, then there is also a center
subspace Ec; cf. Problem 2(c) in Section 1.1. The stable, unstable and
center subspaces are defined for the general case in Section 1.9.

PROBLEM SET 2

1. Find the eigenvalues and eigenvectors of the matrix A and show that
B = P-'AP is a diagonal matrix. Solve the linear system yy = By
and then solve is = Ax using the above corollary. And then sketch
the phase portraits in both the x plane and y plane.

(a) A = [1 3]

(b) A = [3
1]

(c) A

2. Find the eigenvalues and eigenvectors for the matrix A, solve the
linear system Sc = Ax, determine the stable and unstable subspaces
for the linear system, and sketch the phase portrait for

1 0 0

is = 1 2 0 X.
1 0 -1

3. Write the following linear differential equations with constant coeffi-
cients in the form of the linear system (1) and solve:

(a) x+th-2x=0
(b) x+x=0
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(c)-2-i+2x=0
Hint: Let xl = x,x2 = il, etc.

4. Using the corollary of this section solve the initial value problem

x = Ax
x(0) = xo

(a) with A given by 1(a) above and xo = (1, 2)T
(b) with A given in problem 2 above and xo = (1, 2,3)T.

5. Let the n x n matrix A have real, distinct eigenvalues. Find conditions
on the eigenvalues that are necessary and sufficient for limt.,,. x(t) _
0 where x(t) is any solution of * = Ax.

6. Let the n x n matrix A have real, distinct eigenvalues. Let 4i(t, xo)
be the solution of the initial value problem

is = Ax
x(0) = x0.

Show that for each fixed t E R,

lim 0(t, YO) = 0(t, x0).Yo-xo
This shows that the solution 0(t, xo) is a continuous function of the
initial condition.

7. Let the 2 x 2 matrix A have real, distinct eigenvalues A and Ez. Suppose
that an eigenvector of A is (1, 0)T and an eigenvector of µ is (-1,1)T.
Sketch the phase portraits of is = Ax for the following cases:

(a) 0<A<µ (b) 0<1z<A (c) A<,u<0
(d) A<0<,u (e) µ<0<A (f) A=0,µ>0.

1.3 Exponentials of Operators

In order to define the exponential of a linear operator T: Rn -+ Rn, it is
necessary to define the concept of convergence in the linear space L(Rn) of
linear operators on Rn. This is done using the operator norm of T defined
by

IITII = max IT(x) I
IxI<1

where Ixi denotes the Euclidean norm of x E Rn; i.e.,

(xI = xi + ... + xn.

The operator norm has all of the usual properties of a norm, namely, for
S,T E L(Rn)
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(a) IITII>0and11TI1=0iffT=0

(b) 11kT1I = Ikl IITII for k E R

(c) IIS+TI1 <_ IISII+IITII.

It follows from the Cauchy-Schwarz inequality that if T E L(R") is rep-
resented by the matrix A with respect to the standard basis for R", then
11AI1 <_ nI where Q is the maximum length of the rows of A.

The convergence of a sequence of operators Tk E L(R) is then defined
in terms of the operator norm as follows:

Definition 1. A sequence of linear operators Tk E L(R) is said to con-
verge to a linear operator T E L(R) as k oo, i.e.,

lim Tk = T,
k-.oo

if for all E > 0 there exists an N such that fork > N, IIT - Tk II < E

Lemma. For S,T E L(R") and x E R",

(1) IT(x)l511T111x1

(2) 1ITSII 511T1111S11

(3) IITk1I <_ IITIIk for k = 0,1,2.....

Proof. (1) is obviously true for x = 0. For x # 0 define the unit vector
y = x/IxI. Then from the definition of the operator norm,

IITII >_ IT(y)I = X11T(x)I

(2) For IxI < 1, it follows from (1) that

IT(S(x))I <_ IITII IS(x)I

5 IITII 11S11 1x1

<_ IIT11 IIS1I

Therefore,

IITS11= max ITS(x)1511T1111SII

and (3) is an immediate consequence of (2).

Theorem. Given T E L(R") and to > 0, the series

Tktk
00

E
k=O

k!

is absolutely and uniformly convergent for all Itl < to.
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Proof. Let IITII = a. It then follows from the above lemma that for Iti < to,

Tktk
k!

IITIIkItIk aktoc
k!

_ k!

But

°°1: akt
0k

k=O
k!

eato.

It therefore follows from the Weierstrass M-Test that the series

is absolutely and uniformly convergent for all Iti < to; cf. [R], p. 148.
The exponential of the linear operator T is then defined by the absolutely

convergent series

00 Tk
eT

=
ki

k_o

.

It follows from properties of limits that eT is a linear operator on R" and
it follows as in the proof of the above theorem that IleTII < eliTli.

Since our main interest in this chapter is the solution of linear systems
of the form

is = Ax,

we shall assume that the linear transformation T on R" is represented by
the n x n matrix A with respect to the standard basis for R" and define
the exponential eAt

Definition 2. Let A be an n x n matrix. Then for t E R,

eAt u= r Aktk
k=0 k!

For an n x n matrix A, eAt is an n x n matrix which can be computed
in terms of the eigenvalues and eigenvectors of A. This will be carried out
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in the remainder of this chapter. As in the proof of the above theorem
IIeA`II < eHiAIIItI where IIAII = IITII and T is the linear transformation
T(x) = Ax.

We next establish some basic properties of the linear transformation eT
in order to facilitate the computation of eT or of the n x n matrix eA.

Proposition 1. If P and T are linear transformations on Rn and S =
PTP-1, then e's = PeTP-1.

Proof. It follows from the definition of es that
n n ,kPT -' k)

k!
P-1 = PeTP-1.es = n ( = Pn

k
k=0 k=0

The next result follows directly from Proposition 1 and Definition 2.

Corollary 1. If P-1AP = diag[A,] then eat = Pdiag[eai°]P-1.

Proposition 2. If S and T are linear transformations on Rn which com-
mute, i.e., which satisfy ST = TS, then es+T = eSeT.

Proof. If ST = TS, then by the binomial theorem

(S+T)n = n! SSTk

j+k=n j !k!

Therefore,

00 k °O °° Tk
eS+T = L L SjT

= = eseT T.iL- k!
n=Oj+k=n j=0 k=0

We have used the fact that the product of two absolutely convergent series
is an absolutely convergent series which is given by its Cauchy product; cf.
[R], p. 74.

Upon setting S = -T in Proposition 2, we obtain

Corollary 2. If T is a linear transformation on Rn, the inverse of the
linear transformation eT is given by (eT)-1 = e-T.

Corollary 3. If

then

A = [a -b
b a

A - a cosb -sinbe - e sinb cos b
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Proof. If A = a + ib, it follows by induction that

ra -b1 k - -Im(Ak)
b

a Im(Ak) Re(Ac)

where Re and Im denote the real and imaginary parts of the complex
number \ respectively. Thus,

a a) -ImRe ( Tr
eA =

k-0 Irn \"'/ Re \k/
-Im(ea)1

Im(ea) Re(ea)

=e° cosb -sin b
sinb cos b

Note that if a = 0 in Corollary 3, then eA is simply a rotation through
b radians.

Corollary 4. If

then

A = [0
a]

eA =
ea

[01 b]
1

Proof. Write A = al + B where
r 1

B= 10
b]

0 0 '

Then al commutes with B and by Proposition 2,

eA = ealeB = eaeB.

And from the definition

since by direct computation B2 = B3 = = 0.
We can now compute the matrix eAt for any 2 x 2 matrix A. In Section 1.8

of this chapter it is shown that there is an invertible 2 x 2 matrix P (whose
columns consist of generalized eigenvectors of A) such that the matrix

B = P-'AP

has one of the following forms

B = 10 µ] ' B= 10 A]
or B = [b a] .
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It then follows from the above corollaries and Definition 2 that
ateBt=

[
e

0

e e l01 eBt-eat [1 tJ
or eBt=e

[cosbt -sinbt
' 10 1 sin bt cos bt J

respectively. And by Proposition 1, the matrix eAt is then given by
eat = PeBtP-1

As we shall see in Section 1.4, finding the matrix eAt is equivalent to solving
the linear system (1) in Section 1.1.

PROBLEM SET 3

1. Compute the operator norm of the linear transformation defined by
the following matrices:

(a)
[20

_O
3J

(b)
1

0

-2

1

[1

5 11'(c) °
Hint: In (c) maximize IAxI2 = 26x + 10xjx2 + x2 subject to the
constraint xi + z2 = 1 and use the result of Problem 2; or use the
fact that IIAII = [Max eigenvalue of ATA]1/2. Follow this same hint
for (b).

2. Show that the operator norm of a linear transformation T on R"
satisfies

IITII = max IT(x)I = sup IT(x)I
IxI=1 x#o IxI

3. Use the lemma in this section to show that if T is an invertible linear
transformation then IITII > 0 and

IIT-' II ?
IITII

1

4. If T is a linear transformation on R" with IIT - III < 1, prove that T
is invertible and that the series Ek o(I - T)k converges absolutely
to T-'.
Hint: Use the geometric series.

5. Compute the exponentials of the following matrices:

(a) 10
2

-3J (b) 10 -1J (c) [51
1 01
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(d) 13
5

-4] (e)
11

2] (f) rl 0,

6. (a) For each matrix in Problem 5 find the eigenvalues of eA.

(b) Show that if x is an eigenvector of A corresponding to the eigen-
value A, then x is also an eigenvector of eA corresponding to the
eigenvalue ea.

(c) If A = Pdiag[Aj]P-1, use Corollary 1 to show that

det eA = etraceA

Also, using the results in the last paragraph of this section, show
that this formula holds for any 2 x 2 matrix A.

7. Compute the exponentials of the following matrices:

1 0 0 1 0 0 2 0 0
(a) 0 2 0 (b) 0 2 1 (c) 1 2 0.

0 0 3 0 0 2 0 1 2

Hint: Write the matrices in (b) and (c) as a diagonal matrix S plus
a matrix N. Show that S and N commute and compute es as in
part (a) and eN by using the definition.

8. Find 2 x 2 matrices A and B such that eA+B # eAeB

9. Let T be a linear operator on R" that leaves a subspace E C R"
invariant; i.e., for all x E E, T(x) E E. Show that eT also leaves E
invariant.

1.4 The Fundamental Theorem for Linear
Systems

Let A be an n x n matrix. In this section we establish the fundamental fact
that for xo E R" the initial value problem

x = Ax
(1)

x(0) = xo

has a unique solution for all t E R which is given by

x(t) = eAtXO. (2)

Notice the similarity in the form of the solution (2) and the solution x(t) =
eatxo of the elementary first-order differential equation i = ax and initial
condition x(0) = xo.
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In order to prove this theorem, we first compute the derivative of the
exponential function eAt using the basic fact from analysis that two con-
vergent limit processes can be interchanged if one of them converges uni-
formly. This is referred to as Moore's Theorem; cf. Graves [G], p. 100 or
Rudin [R], p. 149.

Lemma. Let A be a square matrix, then

dteAt = AeAt.

Proof. Since A commutes with itself, it follows from Proposition 2 and
Definition 2 in Section 3 that

d _ eA(t+h) - eat_ _
dte

At
h-0 h

1)
At (eAh -=lime

h-.o h

=each 0k-moo A +
A2h Akhk-12' +...+

k!
/f

C

\

= AeAt.

The last equality follows since by the theorem in Section 1.3 the series defin-
ing eAh converges uniformly for Phi < 1 and we can therefore interchange
the two limits.

Theorem (The Fundamental Theorem for Linear Systems). Let A
be an n x n matrix. Then for a given xo E R", the initial value problem

X=Ax
x(0) = xo (1)

has a unique solution given by

x(t) = eAtxo
(2)

Proof. By the preceding lemma, if x(t) = eAtxo, then

x'(t) = d eAtxo = AeAtxo = Ax(t)

for all t E R. Also, x(0) = Ixo = xo. Thus x(t) = eAtxo is a solution. To
see that this is the only solution, let x(t) be any solution of the initial value
problem (1) and set

y(t) = e-Atx(t)
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Then from the above lemma and the fact that x(t) is a solution of (1)

y'(t) = -Ae-Atx(t) + e-Atxe(t)
= -Ae-At x(t) + e-AtAx(t)
=0

for all t E R since a-At and A commute. Thus, y(t) is a constant. Setting
t = 0 shows that y(t) = xo and therefore any solution of the initial value
problem (1) is given by x(t) = eAty(t) = eAtxo. This completes the proof
of the theorem.

Example. Solve the initial value problem

X=Ax

X(0)= [0J

for
1_2 -1

-2J
and sketch the solution curve in the phase plane R2. By the above theorem
and Corollary 3 of the last section, the solution is given by

cost -sin t 1 costx(t) = eAtxo = e-2t
sin t cos t I [0] = e-2c [sin t]

It follows that jx(t)I = e-2t and that the angle 0(t) = tan-'x2(t)/x1(t) = t.
The solution curve therefore spirals into the origin as shown in Figure 1
below.

Figure 1
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PROBLEM SET 4

1. Use the forms of the matrix eBt computed in Section 1.3 and the
theorem in this section to solve the linear system is = Bx for

(a) B= [0µ°]

(b) B =
[0 A]

(c) B = [b
a -b

a]
.

2. Solve the following linear system and sketch its phase portrait

X-[
1

X.

The origin is called a stable focus for this system.

3. Find eAt and solve the linear system x = Ax for

(a) A =
[1 3]

(b) A = [31]

Cf. Problem 1 in Problem Set 2.

4. Given
1 0 0

A= 1 2 0 .

1 0 -1
Compute the 3 x 3 matrix eAt and solve x = Ax. Cf. Problem 2 in
Problem Set 2.

5. Find the solution of the linear system is = Ax where

(a) A = 120

21

(b) A = [1

2 -1

2]

0,(c) A =

10

-2 0 0

(d) A = 1 -2 0 .

L0 1 -2
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6. Let T be a linear transformation on R" that leaves a subspace E c
R" invariant (i.e., for all x E E, T(x) E E) and let T(x) = Ax with
respect to the standard basis for R". Show that if x(t) is the solution
of the initial value problem

is = Ax
x(0) = xo

with xO E E, then x(t) E E for all t E R.

7. Suppose that the square matrix A has a negative eigenvalue. Show
that the linear system x = Ax has at least one nontrivial solution
x(t) that satisfies

lim x(t) = 0.
t-.00

8. (Continuity with respect to initial conditions.) Let ¢(t,xo) be the so-
lution of the initial value problem (1). Use the Fundamental Theorem
to show that for each fixed t E R

yi 0(t,Y) =4(t,xo)

1.5 Linear Systems in R2

In this section we discuss the various phase portraits that are possible for
the linear system

* = Ax (1)

when x E R2 and A is a 2 x 2 matrix. We begin by describing the phase
portraits for the linear system

x = Bx (2)

where the matrix B = P-1AP has one of the forms given at the end of
Section 1.3. The phase portrait for the linear system (1) above is then
obtained from the phase portrait for (2) under the linear transformation of
coordinates x = Py as in Figures 1 and 2 in Section 1.2.

First of all, if
r 1

B= 10 µ]' B [0 A]' or B = Ib a]'

it follows from the fundamental theorem in Section 1.4 and the form of the
matrix eBt computed in Section 1.3 that the solution of the initial value
problem (2) with x(0) = xo is given by

x(t) = 1e0t e0°] xo, x(t) = eat 1 1 1] xo,



1.5. Linear Systems in R2 21

or

cos bt - sin btlatx(t) = e
sin bt cos bt x0

respectively. We now list the various phase portraits that result from these
solutions, grouped according to their topological type with a finer classifi-
cation of sources and sinks into various types of unstable and stable nodes
and foci:

1

Case I. B = [0 µ] with A < 0 < µ.

X I

Figure 1. A saddle at the origin.

The phase portrait for the linear system (2) in this case is given in
Figure 1. See the first example in Section 1.1. The system (2) is said to
have a saddle at the origin in this case. If p < 0 < A, the arrows in
Figure 1 are reversed. Whenever A has two real eigenvalues of opposite
sign, A < 0 < µ, the phase portrait for the linear system (1) is linearly
equivalent to the phase portrait shown in Figure 1; i.e., it is obtained from
Figure 1 by a linear transformation of coordinates; and the stable and
unstable subspaces of (1) are determined by the eigenvectors of A as in the
Example in Section 1.2. The four non-zero trajectories or solution curves
that approach the equilibrium point at the origin as t - ±oo are called
separatrices of the system.

Case II.B= I0 0] with A<u<0orB= 10 11 with A<0.

The phase portraits for the linear system (2) in these cases are given in
Figure 2. Cf. the phase portraits in Problems 1(a), (b) and (c) of Problem
Set 1 respectively. The origin is referred to as a stable node in each of these
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cases. It is called a proper node in the first case with A = µ and an improper
node in the other two cases. If A > p > 0 or if A > 0 in Case II, the arrows
in Figure 2 are reversed and the origin is referred to as an unstable node.
Whenever A has two negative eigenvalues A < µ < 0, the phase portrait
of the linear system (1) is linearly equivalent to one of the phase portraits
shown in Figure 2. The stability of the node is determined by the sign of
the eigenvalues: stable if A < u < 0 and unstable if A > u > 0. Note that
each trajectory in Figure 2 approaches the equilibrium point at the origin
along a well-defined tangent line 0 = 00, determined by an eigenvector of
A, ast -.oo.

x2 x2 x2

X=µ

X1

Figure 2. A stable node at the origin.

Case III. B = I
b

al with a < 0.

b>O
b<O

Figure S. A stable focus at the origin.

X<0

The phase portrait for the linear system (2) in this case is given in
Figure 3. Cf. Problem 9. The origin is referred to as a stable focus in these
cases. If a > 0, the trajectories spiral away from the origin with increasing
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t and the origin is called an unstable focus. Whenever A has a pair of
complex conjugate eigenvalues with nonzero real part, a ± ib, with a < 0,
the phase portraits for the system (1) is linearly equivalent to one of the
phase portraits shown in Figure 3. Note that the trajectories in Figure 3 do
not approach the origin along well-defined tangent lines; i.e., the angle 0(t)
that the vector x(t) makes with the x1-axis does not approach a constant
Bo as t -+ oo, but rather I9(t)I -+ oo as t - oo and Ix(t)I - 0 as t - oo in
this case.

Case IV. B = lb
0 -b

0]
The phase portrait for the linear system (2) in this case is given in

Figure 4. Cf. Problem 1(d) in Problem Set 1. The system (2) is said to
have a center at the origin in this case. Whenever A has a pair of pure
imaginary complex conjugate eigenvalues, fib, the phase portrait of the
linear system (1) is linearly equivalent to one of the phase portraits shown
in Figure 4. Note that the trajectories or solution curves in Figure 4 lie on
circles Ix(t)I = constant. In general, the trajectories of the system (1) will
lie on ellipses and the solution x(t) of (1) will satisfy m < Jx(t)I < M for all
t E R; cf. the following Example. The angle 0(t) also satisfies I0(t)I --' 00
as t -+ oo in this case.

b>0 b<0

Figure 4. A center at the origin.

If one (or both) of the eigenvalues of A is zero, i.e., if det A = 0, the
origin is called a degenerate equilibrium point of (1). The various portraits
for the linear system (1) are determined in Problem 4 in this case.

Example (A linear system with a center at the origin). The linear
system

* = Ax
with

A- r0 -41
1 0
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has a center at the origin since the matrix A has eigenvalues A = ±2i.
According to the theorem in 1Section 1.6, the invertible matrix

P = I2 0J with P-1 = 11//2 0l

reduces A to the matrix

B = P-1AP = 12
01 .

The student should verify the calculation.
The solution to the linear system is = Ax, as determined by Sections 1.3

and 1.4, is then given by

cos 2t - sin 2t _ 1 _ cos 2t -2 sin 2t
X(t) = P sin 2t cos 2t

P c - 1/2 sin 2t cos 2t ] c

where c = x(0), or equivalently by

x1(t) = c1 cos 2t - 2c2 sin 2t

x2(t) = 1/2c1 sin 2t + c2 cos 2t.

It is then easily shown that the solutions satisfy

xl(t)+4x2(t)=c +4c2

for all t E R; i.e., the trajectories of this system lie on ellipses as shown in
Figure 5.

Figure 5. A center at the origin.

Definition 1. The linear system (1) is said to have a saddle, a node, a
focus or a center at the origin if the matrix A is similar to one of the
matrices B in Cases I, II, III or IV respectively, i.e., if its phase portrait
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is linearly equivalent to one of the phase portraits in Figures 1, 2, 3 or 4
respectively.

Remark. If the matrix A is similar to the matrix B, i.e., if there is a nonsin-
gular matrix P such that P-1 AP = B, then the system (1) is transformed
into the system (2) by the linear transformation of coordinates x = Py. If
B has the form III, then the phase portrait for the system (2) consists of
either a counterclockwise motion (if b > 0) or a clockwise motion (if b < 0)
on either circles (if a = 0) or spirals (if a # 0). Furthermore, the direction
of rotation of trajectories in the phase portraits for the systems (1) and
(2) will be the same if det P > 0 (i.e., if P is orientation preserving) and
it will be opposite if det P < 0 (i.e., if P is orientation reversing). In either
case, the two systems (1) and (2) are topologically equivalent in the sense
of Definition 1 in Section 2.8 of Chapter 2.

For det A 34 0 there is an easy method for determining if the linear system
has a saddle, node, focus or center at the origin. This is given in the next
theorem. Note that if det A 36 0 then Ax = 0 iff x = 0; i.e., the origin is
the only equilibrium point of the linear system (1) when det A 3A 0. If the
origin is a focus or a center, the sign o of i2 for x2 = 0 (and for small
xl > 0) can be used to determine whether the motion is counterclockwise
(if o > 0) or clockwise (if o < 0).

Theorem. Let b = det A and r = trace A and consider the linear system

x = Ax.

(a) If 6 < 0 then (1) has a saddle at the origin.

(1)

(b) If 6 > 0 and r2 - 46 > 0 then (1) has a node at the origin; it is stable
if r < 0 and unstable if r > 0.

(c) If 6 > 0, r2 - 45 < 0, and r 3k 0 then (1) has a focus at the origin; it
is stable if r < 0 and unstable if r > 0.

(d) If 5 > 0 and r = 0 then (1) has a center at the origin.

Note that in case (b), r2 > 4161 > 0; i.e., r 0 0.

Proof. The eigenvalues of the matrix A are given by

r ± r -45
2

Thus (a) if 6 < 0 there are two real eigenvalues of opposite sign.
(b) If 5 > 0 and r2 - 45 > 0 then there are two real eigenvalues of the

same sign as r;
(c) if 5 > 0, r2 - 45 < 0 and r 34 0 then there are two complex conjugate

eigenvalues A = a ± ib and, as will be shown in Section 1.6, A is similar to
the matrix B in Case III above with a = r/2; and
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(d) if 6 > 0 and r = 0 then there are two pure imaginary complex
conjugate eigenvalues. Thus, cases a, b, c and d correspond to the Cases I,
II, III and IV discussed above and we have a saddle, node, focus or center
respectively.

Definition 2. A stable node or focus of (1) is called a sink of the linear
system and an unstable node or focus of (1) is called a source of the linear
system.

The above results can be summarized in a "bifurcation diagram," shown
in Figure 6, which separates the (r, 6)-plane into three components in which
the solutions of the linear system (1) have the same "qualitative structure"
(defined in Section 2.8 of Chapter 2). In describing the topological behavior
or qualitative structure of the solution set of a linear system, we do not
distinguish between nodes and foci, but only if they are stable or unstable.
There are eight different topological types of behavior that are possible for
a linear system according to whether 6 76 0 and it has a source, a sink, a
center or a saddle or whether 6 = 0 and it has one of the four types of
behavior determined in Problem 4.

Sink

Degenerate

Source

0

Saddle

critical point
z

Figure 6. A bifurcation diagram for the linear system (1).

PROBLEM SET 5

1. Use the theorem in this section to determine if the linear system
x = Ax has a saddle, node, focus or center at the origin and determine
the stability of each node or focus:

(a) A = [3 4] (d) A = 12

1 -1
3]
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(b) A = 11 3] (e) A= [1 A]

2

]
.

(c) A = [2 0] (f) A = [1 A

27

2. Solve the linear system is = Ax and sketch the phase portrait for

(a) A = rO 3] (c) A= [0 3]
.

(b) A
[o °]

(d) A = 10, ;] .

3. For what values of the parameters a and b does the linear system
x = Ax have a sink at the origin?

a b

A= b 2

4. If det A = 0, then the origin is a degenerate critical point of x = Ax.
Determine the solution and the corresponding phase portraits for the
linear system with

0]
0

11

0

0

0]'

Note that the origin is not an isolated equilibrium point in these cases.
The four different phase portraits determined in (a) with A > 0 or
A < 0, (b) and (c) above, together with the sources, sinks, centers and
saddles discussed in this section, illustrate the eight different types of
qualitative behavior that are possible for a linear system.

5. Write the second-order differential equation

s+ax+bx=0
as a system in R2 and determine the nature of the equilibrium point
at the origin.

6. Find the general solution and draw the phase portrait for the linear
system

xl = xi

-i2 = -x1 + 2x2.
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What role do the eigenvectors of the matrix A play in determining
the phase portrait? Cf. Case II.

7. Describe the separatrices for the linear system

it = x1 + 2x2
i2 = 3x1 + 4x2.

Hint: Find the eigenspaces for A.

8. Determine the functions r(t) = Ix(t)l and 9(t) = tan-lx2(t)/x1(t) for
the linear system

it = -x2
i2 = x1

9. (Polar Coordinates) Given the linear system

i1=ax1-bx2
i2 = bx1 + axe.

Differentiate the equations r2 = xi +x2 and 0 = tan-1(x2/xl) with
respect to t in order to obtain

r - xlil + x212 and 9 = xli2 x211
r r2

for r 96 0. For the linear system given above, show that these equa-
tions reduce to

r=ar and 9=b.
Solve these equations with the initial conditions r(0) = ro and 0(0) _
9o and show that the phase portraits in Figures 3 and 4 follow im-
mediately from your solution. (Polar coordinates are discussed more
thoroughly in Section 2.10 of Chapter 2).

1.6 Complex Eigenvalues

If the 2n x 2n real matrix A has complex eigenvalues, then they occur in
complex conjugate pairs and if A has 2n distinct complex eigenvalues, the
following theorem from linear algebra proved in Hirsch and Smale [H/SJ
allows us to solve the linear system

x=Ax.

Theorem. If the 2n x 2n real matrix A has 2n distinct complex eigenvalues
A, = aj + ibj and A, = aj - ibj and corresponding complex eigenvectors
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w3 = u3 +iv, and w,= u3 - iv3, j = 1,...,n, then {u1iVl,...,un,Vn)
is a basis for R2n, the matrix

P = ]Vl U1 V2 U2 ... Vn un]

is invertible and

P-'AP = diag
[b3 a3,

a real 2n x 2n matrix with 2 x 2 blocks along the diagonal.

Remark. Note that if instead of the matrix P we use the invertible matrix

Q = [u1 V1 U2 V2 ... un Vn]

then

Q-'AQ = diag
aj b

-b3 a3
.

The next corollary then follows from the above theorem and the funda-
mental theorem in Section 1.4.

Corollary. Under the hypotheses of the above theorem, the solution of the
initial value problem

is given by

x(t) = P diag ea

Note that the matrix

* = Ax
x(0) = xo

[
cosbjt -sinb,t

P-Ixo-sinbjt cosb,t

_ cos bt - sin bt
R - [sin bt cos bt

represents a rotation through bt radians.

Example. Solve the initial value problem (1) for

4 -

i -1 0 0
1 1 0 0
0 0 3 2

0 0 1 1

(1)

The matrix A has the complex eigenvalues Al = 1+i and A2 = 2+i (as well
as 1 = 1- i and a2 = 2 - i). A corresponding pair of complex eigenvectors
is

w1 = u1 + iv1 =

i 0
0

0
and w2=u2+iV2= +i

0 1
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1 0 0 0
0 1 0 0

P = (Vl U1 V2 u2j= 0 0 1 1

is invertible,

1

0 0

0

0

0 0 1

P-1 =
0 1 0 0
0 0 1 -1
0 0 0 1

and
1 -1 0

4].
P' AP =

The solution to the initial value problem (1) is given by

et cost -et sin t 0 0

_ et sin t et cos t 0 0
1x(t) P

0 0 e2t cost -e2t sin t P x0
0 0 e2t sin t e2t cos t

et cos t -et sin t 0 0

_ et sin t et cos t 0 0

0 0 e2t (cost + sin t) -2e2t sin t xo.

0 0 e2tsint e21(cost-sint)

In case A has both real and complex eigenvalues and they are distinct,
we have the following result: If A has distinct real eigenvalues Aj and cor-
responding eigenvectors vj, j = 1, ... , k and distinct complex eigenvalues
A, = a3+ib3 and A, = aj-ibj and corresponding eigenvectors wj = u3+ivj
and wj = uj - ivy, j = k + 1, ... , n, then the matrix

P = [vl ... Vk Vk+1 Uk+1 ... V. unj

is invertible and

P-'AP =diag[Ali...,Ak,Bk+l,...,Bn]
where the 2 x 2 blocks

l
B =

ray -bj
B I Ibj aj

for j = k + 1,... , n. We illustrate this result with an example.

Example. The matrix
-3 0 0

A= 0 3 -2
0 1 1
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has eigenvalues AI = -3, A2 = 2 + i (and A2 = 2 - i). The corresponding
eigenvectors

1 0
vl = 0 and w2 = u2 + iv2 = 1 + i

0 1

Thus

and

1 0 0 1 0

`111

= 0 1 1, P-1 =
10.

1

0 0 0

-3 0 0

P-'AP = 0 2 -1
0 1 2

The solution of the initial value problem (1) is given by

e-3t 0 0

x(t) = P 0 e2t cost -e2t Sin t P-1X0

0 e2t sin t e2t cos t

e-3t 0 0

= 0 e2t (cost + sin t) -2e2t sin t xo.

0 e2t sin t e2t (cost - sin t)

The stable subspace E3 is the xl-axis and the unstable subspace E" is the
x2i x3 plane. The phase portrait is given in Figure 1.

X3

Figure 1
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PROBLEM SET 6

1. Solve the initial value problem (1) with

A=[1 3 -2
11.

2. Solve the initial value problem (1) with

0 -2 0
A= 1 2 0 .

0 0 -2

Determine the stable and unstable subspaces and sketch the phase

portrait.

3. Solve the initial value problem (1) with

1 0 0
A= 0 2 -3

1 3 2

4. Solve the initial value problem (1) with

1-1 -1 0 0

1 -1 0 0
A

0 0 0 -2
0 0 1 2

1.7 Multiple Eigenvalues

The fundamental theorem for linear systems in Section 1.4 tells us that the
solution of the linear system

x = Ax (1)

together with the initial condition x(0) = xo is given by

x(t) = eAtxo.

We have seen how to find the n x n matrix eAt when A has distinct eigen-
values. We now complete the picture by showing how to find eAt, i.e., how
to solve the linear system (1), when A has multiple eigenvalues.

Definition 1. Let A be an eigenvalue of the n x n matrix A of multiplicity
m < n. Then for k = 1, ... , m, any nonzero solution v of

(A-AI)kv=0

is called a generalized eigenvector of A.
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Definition 2. An n x n matrix N is said to be nilpotent of order k if
Nk-154 OandNk=0.

The following theorem is proved, for example, in Appendix III of Hirsch
and Smale [H/S].

Theorem 1. Let A be a real n x n matrix with real eigenvalues al, ... , . \n
repeated according to their multiplicity. Then there exists a basis of gener-
alized eigenvectors for Rn. And if {vl, ... , vn} is any basis of generalized
eigenvectors for Rn, the matrix P = [vl . . . vn] is invertible,

A=S+N

where

P'1SP = diag[A,J,

the matrix N = A - S is nilpotent of order k < n, and S and N commute,
i.e., SN = NS.

This theorem together with the propositions in Section 1.3 and the fun-
damental theorem in Section 1.4 then lead to the following result:

Corollary 1. Under the hypotheses of the above theorem, the linear sys-
tem (1), together with the initial condition x(O) = xo, has the solution

1r
x(t) = P diag[eAlt ]P-l I I + Nt + +

Nk(k-
-
ltk1)!-J

xe

If A is an eigenvalue of multiplicity n of an n x n matrix A, then the
above results are particularly easy to apply since in this case

S = diag[A]

with respect to the usual basis for Rn and

N = A - S.

The solution to the initial value problem (1) together with x(O) = xo is
therefore given by

I
Nktk1x(t)=eat I+Nt+ + k J xo.

Let us consider two examples where the n x n matrix A has an eigenvalue
of multiplicity n. In these examples, we do not need to compute a basis of
generalized eigenvectors to solve the initial value problem!
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Example 1. Solve the initial value problem for (1) with

A= [_3 1
1].

It is easy to determine that A has an eigenvalue A
i.e., Al = A2 = 2. Thus,

10S- 2

0 2]

and

= 2 of multiplicity 2;

N=A-S=
1 1 '

It is easy to compute N2 = 0 and the solution of the initial value problem
for (1) is therefore given by

x(t) = eAtxo = e2t[I + Nt]xo

= e2t 1 + t t
-t 1- t] "

Example 2. Solve the initial value problem for (1) with

0 -2 -1 -1-

A
1 2 1 1- 0 1 1 0
0 0 0 1

In this case, the matrix A has an eigenvalue A = 1 of multiplicity 4.
Thus, S = 14, -1 -2 -1 -1

N=A-S= 1 1 1 1

10 1 0 0

0 0 0 0

and it is easy to compute

r-1 -1 -1 -1

N2- 0 0 0 0
1 1 1 1

0 0 0 0

and N3 = 0; i.e., N is nilpotent of order 3. The solution of the initial value
problem for (1) is therefore given by

x(t) = et [I + Nt + N2t2/2]xo

1 - t - t2/2 -2t - t2/2 -t - t2/2 -t - t2
-

/2
t t 1+t t t

- e
t2/2 t + t2/2 1 + t2/2 t2/2

xo.

0 0 0 1
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In the general case, we must first determine a basis of generalized eigen-
vectors for R", then compute S = Pdiag[AA]P-1 and N = A-S according
to the formulas in the above theorem, and then find the solution of the ini-
tial value problem for (1) as in the above corollary.

Example 3. Solve the initial value problem for (1) when

1 0 0
A= -1 2 0

1 1 2

It is easy to see that A has the eigenvalues Al = 1, A2 = A3 = 2. And it is
not difficult to find the corresponding eigenvectors

1 0
vl = 1 and v2 = 0 .

-2 1

Nonzero multiples of these eigenvectors are the only eigenvectors of A cor-
responding to Al = 1 and A2 = A3 = 2 respectively. We therefore must find
one generalized eigenvector corresponding to A = 2 and independent of v2
by solving

1 0 0
(A-21)2v= 1 0 0 v=0.

-2 0 0
We see that we can choose v3 = (0, 1, 0)T. Thus,

1 0 0 1

1

0 0
P= 1 0 1 and -'P-' == [ 22 0 1

We then compute

-2 1 0 - 1 1 0

1 0 0 1 0 0

S=P
0 2 0 P-1 = -1 2

00 0 2 2 0 2

0 0 0
N=A-S= 0 0 0

-1 1 0

and N2 = 0. The solution is then given by

et 0 0

x(t) = P 0 e 2t 0 P'1 [I + Nt]xo
0 0 e2t

et 0 0

= et _ e2t e2t 0 xo

-let + (2 - t)e2t
te2t e2t
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In the case of multiple complex eigenvalues, we have the following theo-
rem also proved in Appendix III of Hirsch and Smale [H/S):

Theorem 2. Let A be a real 2n x 2n matrix with complex eigenvalues
aj = aj + ib, and aj = aj - ibj, j = 1, ... , n. Then there exists genemlized
complex eigenvectors wj = uj + ivy and *3 = u3 - ivy, i = 1, ... , n such
that {ul, v1i ... , un, vn} is a basis for R21. For any such basis, the matrix
P = [v1 ul vn un) is invertible,

A=S+N
where

P'1SP = diag [a3 bbl

the matrix N = A - S is nilpotent of order k < 2n, and S and N commute.

The next corollary follows from the fundamental theorem in Section 1.4
and the results in Section 1.3:

Corollary 2. Under the hypotheses of the above theorem, the solution of
the initial value problem (1), together with x(0) xo, is given by

x(t) = Pdiage°!t rcosb3t -sinb3tl P'1 II + + Nktk xo.[sinbjt cosb3tJ l k!

We illustrate these results with an example.

Example 4. Solve the initial value problem for (1) with

[01

-1 0 0
0 0 0

`4- 0 0 -0

1 0

The matrix A has eigenvalues .\ = i and 1 = -i of multiplicity 2. The
equation

-i -1 0 0

[1Z2(A-al)w= 0 0
i -1 =0

3

2 0 1 -i 4

is equivalent to z1 = z2 = 0 and z3 = iz4. Thus, we have one eigenvector

w1 = (0, 0, i,1)". Also, the equation

-2 2i 0 0 z1

-2i -2 0 0 z22(A -al)w = _2 0 -2 2i z3

_
=0

-4i -2 -2i -2 z4
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is equivalent to zl = iz2 and z3 = iz4 - zl. We therefore choose the general-
ized eigenvector w2 = (i,1, 0, 1). Then ul = (0, 0, 0,1)T, vl = (0, 0, 1, 0)T,
u2 = (0,1,0,1)T, v2 = (1,0,0,0)T, and according to the above theorem,

0 0 1 0 0 0 1 0

0 0 0 1 -1 0 -1 0 1_P-
1 0 0 0

-
' P

1 0 0 0 '
0 1 0 1 0 1 0 0

0 -1 0 0 0 -1 0 0
1 0 0 0

1
1 0 0 0_S-P

0 0 0 -1
-P

0 1 0 -1 '
0 0 1 0 1 0 1 0

0 0 0N=A-S
1

100,

0 0 0

- 0 0
0 0 0

and N2 = 0. Thus, the solution to the initial value problem

cost - sin t 0 0
in t cost 0 0

P-1 [I + Ntjxo
0 0 cost - sin t
0 0 sin t cost

cost -slut 0 0
I sin t cost 0 0

-t sin t sint-tcost cost -sint X0'

sin int cos t -t sin t sin t cost

Remark. If A has both real and complex repeated eigenvalues, a combi-
nation of the above two theorems can be used as in the result and example
at the end of Section 1.6.

PROBLEM SET 7

1. Solve the initial value problem (1) with the matrix

(a)
A

= L_0 1 2]

-11
(b) A = [1 3

11

1
(c) A = 1

10

11

(d) A =
-

[0 1
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2. Solve the initial value problem (1) with the matrix

1 0 0

(a) A= 2 1 0

3 2 1

-1 1 -2
(b) A = 0 -1 4

0 0 1

1 0 0

(c) A = -1 2 0

1 0 2

2 1 1

(d) A = 0 2 2

0 0 2

3. Solve the initial value problem (1) with the matrix

(a) A =

(b) A =

(c) A =

(d) A =

(e) A =

(f) A=

0

0

0

-1

0

0

0

1

0

1

1

0

0 0 0

2 0 0

1 2 0

0 1 2

1 1 1

2 2 2

3 3 3

4 4 4

1 0 0
0 0 0
0 1 -1

0 1 1

-1 0 0

1 0 0

0 1 -1

0 1 1J

-1 1 0

1 0 1

0 1 -1
0 1 1



1.8. Jordan Forms 39

4. The "Putzer Algorithm" given below is another method for comput-
ing eA0 when we have multiple eigenvalues; cf. (WJ, p. 49.

eA` = ri (t)I + r2(t)P1 + - - + rn(t)PP-1

where

P1=(A-A1I),
P. = (A - A1I)...(A - \.I)

and rj(t), j = 1,...,n, are the solutions of the first-order linear

differential equations and initial conditions

ri = A1r1 with r1(0) = 1,

r2 = .12r2 + r1 with r2(0) = 0

rtt = I\nrn + rn-1 with rn(0) = 0.

Use the Putzer Algorithm to compute eAl for the matrix A given in

(a) Example 1

(b) Example 3

(c) Problem 2(c)

(d) Problem 3(b).

1.8 Jordan Forms

The Jordan canonical form of a matrix gives some insight into the form
of the solution of a linear system of differential equations and it is used
in proving some theorems later in the book. Finding the Jordan canonical
form of a matrix A is not necessarily the best method for solving the related
linear system since finding a basis of generalized eigenvectors which reduces
A to its Jordan canonical form may be difficult. On the other hand, any
basis of generalized eigenvectors can be used in the method described in the
previous section. The Jordan canonical form, described in the next theorem,
does result in a particularly simple form for the nilpotent part N of the
matrix A and it is therefore useful in the theory of ordinary differential
equations.

Theorem (The Jordan Canonical Form). Let A be a mat matrix with
real eigenvalues )1j, j = 1, ... , k and complex eigenvalues Aj = aj +ibj and
)1j = aj - ibj, j = k + 1, ... , n. Then there exists a basis {v1, ... , Vk, Vk+l,
uk+1, , vn, un} for R2n-k, where vj, j = 1,... , k and w j =
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k + 1,. .. , n are generalized eigenvectors of A, uj = Re(w,) and vj =
Im(wj) for j = k + 1, ... , n, such that the matrix P = [V1 . . Vk Vk+l
uk+1 . V,, is invertible and

P-'AP =
B1

where the elementary Jordan blocks B = B,, j = 1,. .. , r are either of the
form

A 1 0 0
0 A 1 0

B= (2)

0 A 1

for A one of the real eigenvalues of A or of the form

D I2 0 0

0 D I2 0

B= (3)

0 D I2
0 0 D

with

D= rb aJ, IZ= [10
l

and 0 = [0
01

for A = a + ib one of the complex eigenv

Jalues

of A. L

This theorem is proved in Coddington and Levinson [C/L] or in Hirsch
and Smale [H/S]. The Jordan canonical form of a given n x n matrix A
is unique except for the order of the elementary Jordan blocks in (1) and
for the fact that the 1's in the elementary blocks (2) or the I2's in the
elementary blocks (3) may appear either above or below the diagonal. We
shall refer to (1) with the Bj given by (2) or (3) as the upper Jordan
canonical form of A.

The Jordan canonical form of A yields some explicit information about
the form of the solution of the initial value problem

X=Ax
x(0) = xo (4)

which, according to the Fundamental Theorem for Linear Systems in Sec-
tion 1.4, is given by

x(t) = Pdiag[eBit]P-lxo. (5)
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If B3 = B is an m x m matrix of the form (2) and A is a real eigenvalue of
A then B = Al + N and

eBt = e\teNt = eAt

since the m x m matrix

1 t t2/2! ... tm-1/(m -1)t

0 1 t ... tm_2/(m -2)1
0 0 1 ... tm-3/(m - 3)!

1 t

0 . 0 1

0 1 0 0

0 0 1 ... 0

N=
0 0 1

0 ... 0 0

is nilpotent of order m and

100

0 1 0 0 0 0 0 1

N2= 0 0 1 .. 0 0 0 0 0

0 0 ... 0

Similarly, if B3 = B is a 2m x 2m matrix of the form (3) and A = a + ib is
a complex eigenvalue of A, then

R Rt Rt2/2! . . . Rtm'1/(m -1)!
0 R Rt . . Rtm'2/(m - 2)!

eBt = eat 0 0 R ... Rtm'3/(m - 3)!

R Rt

0 R
where the rotation matrix

_ cos bt - sin bt
R

sin bt cos bt]

since the 2m x 2m matrix
0 12 0 0-
0 0 12 .. 0

B = ...

0 0 12

0 0 0

is nilpotent of order m and

100

0 12 0 0 0 0N20 0 12 ... 0 N'-10 ...
12'
0

0
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The above form of the solution (5) of the initial value problem (4) then
leads to the following result:

Corollary. Each coordinate in the solution x(t) of the initial value problem
(4) is a linear combination of functions of the form

tkeat cos bt or tkeat sin bt

where A = a + ib is an eigenvalue of the matrix A and 0 < k < n - 1.

We next describe a method for finding a basis which reduces A to its
Jordan canonical form. But first we need the following definitions:

Definition. Let A be an eigenvalue of the n x n matrix A of multiplicity
n. The deficiency indices

bk = dim Ker(A - \I)k.

The kernel of a linear operator T: R" Rn

Ker(T) = {x E Rn I T(x) = 0}.

The deficiency indices bk can be found by Gaussian reduction; in fact, bk
is the number of rows of zeros in the reduced row echelon form of (A-AI)k.
Clearly

615

Let vk be the number of elementary Jordan blocks of size k x k in the
Jordan canonical form (1) of the matrix A. Then it follows from the above
theorem and the definition of bk that

61 =

62 = v1+2v2+...+2vn
63 =

6n_1

6n =

Cf. Hirsch and Smale [H/S], p. 124. These equations can then be solved for

v1 = 261 - b2

v2 = 2b2 - b3 - Si

vk = 26k - 6k+1 - 6k_1 for 1 < k < n

vn = bn - 6n_1.
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Example 1. The only upper Jordan canonical forms for a 2 x 2 matrix
with a real eigenvalue A of multiplicity 2 and the corresponding deficiency
indices are given by

L0
o]

and [0 A]

bi=b2=2 61=1,62=2.

Example 2. The (upper) Jordan canonical forms for a 3 x 3 matrix with a
real eigenvalue A of multiplicity 3 and the corresponding deficiency indices
are given by

A 0 0 A 1 01 [J 1 0
O A 0 O A 0

0A1O
O A 0 0 J 0 0 A

61=62=63=3 61=2,62=63=3 61=1,62=2,63=3.

We next give an algorithm for finding a basis B of generalized eigenvec-
tors such that the n x n matrix A with a real eigenvalue A of multiplicity n
assumes its Jordan canonical form J with respect to the basis B; cf. Curtis
[Cu]:

1. Find a basis {vjl) }3 for Ker(A-AI); i.e., find a linearly independent
set of eigenvectors of A corresponding to the eigenvalue A.

2. If b2 > bl, choose a basis 1 for Ker(A -AI) such that

(A - AI)v(2) = V(1)

has 62 -61 linearly independent solutions j = 1, ... , b2-b1. Then
1 = U 16' is a basis for Ker(A - \I)2.

3. If 63 > 62, choose a basis {V2}1 for Ker(A - Al)2 with V(2) E
span{vj2) =,6' for j = 1,...,62-61 such that

(A - Al)v(3) =

has 63 - 62 linearly independent solutions vj3), j = 1, ... , b3 - b2. If

for j = 1, ... , 62 - bl, E62i6' c;v;2), let F62-61

and V(') = V(1) for j = 62 - bl + 1,...,61. Then

1 = 1 U {V(2)}62 i61 U {V(3)}63 162

is a basis for Ker(A

-\l)3.
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4. Continue this process untill the kth step when bk = n to obtain
a basis B = (vvk)} 1 for R. The matrix A will then assume its
Jordan canonical form with respect to this basis.

The diagonalizing matrix P = [vi v,i] in the above theorem which
satisfies P-1AP = J is then obtained by an appropriate ordering of the
basis B. The manner in which the matrix P is obtained from the basis
B is indicated in the following examples. Roughly speaking, each general-
ized eigenvector vii) satisfying (A - Vi-1) is listed immediately

following the generalized eigenvector

Example 3. Find a basis for R3 which reduces

2 1 0

A= 0 2 0
0 -1 2

to its Jordan canonical form. It is easy to find that A
of multiplicity 3 and that

A-AI0 0
roo

1 0

-1 0

2 is an eigenvalue

Thus, 61 = 2 and (A - AI)v = 0 is equivalent to x2 = 0. We therefore
choose

0 and v21)

0

1

rol

V

0

1 0 cl

10

0 vil) + C2vzl) = 0

0 -1 0 c2

This is equivalent to x2 = c1 and -x2 = c2i i.e., cl = -c2. We choose

1 0 1

Vil) = 0 vie) = 1 and VZl) =

1 1

0

-1 0
0

These three vectors which we re-label as v1, v2 and V3 respectively are then
21) _a basis for Ker(A - Al)2 = R3. (Note that we could also choose V(

V3 = (0, 0, 1)T and obtain the same result.) The matrix P = [v1, v2, v3]
and its inverse are then given by

1 0 1

ri

0 -1P0 1 0 andP-11 0
-1 0 0 0 1
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respectively. The student should verify that

2 1 0

P-'AP= 0 2 0
0 0 2

Example 4. Find a basis for R4 which reduces

[01

-1 -2 -1'
_ 2 1 1

`4- 0 1 0
0 1 1

to its Jordan canonical form. We find A = 1 is an eigenvalue of multiplicity
4 and

-1 -1 -2 -1

A- \I - 1 1 1 1

0 0 0 0

0 0 1 0

Using Gaussian reduction, we find b1 = 2 and that the following two vectors

-1 -1
(1) 1 (1) 0V1 -

0
v2 - 0

0 1

span Ker(A - Al). We next solve

(A - AI)v = clv(1) + c2v21).

These equations are equivalent to x3 = c2 and x1 + x2 + X3 + x4 = c1. We
can therefore choose cl = 1, c2 = 0, x1 = 1, x2 = x3 = x4 = 0 and find

vi(2) = (1,0,0,0)T

(with V(') _ (_1,1,0,0)T) ; and we can choose cl = 0, a2 = 1 = x3,
x1=-1,x2=x4=0 and find

(2) T

(with VZl) _ (-1, 0, 0,1)T). Thus the vectors Vil), v12), V21)1 v22), which
we re-label as v1, v2, v3 and v4 respectively, form a basis B for R4. The
matrix P = [vl . . . V4) and its inverse are then given by

-1 1 -1 -1 0 1 0 0
1 0 0 0

1
1 1 1 1_P=

0 0 0 1 '

_
P

0 0 0 1

0 0 1 0 0 0 1 0



46 1. Linear Systems

and
1 1 0 0

P_1AP = 0 1 0 0

0 0 1 1

0 0 0 1

In this case we have 61 = 2, b2 = b3 = b4 = 4, v1 = 261 - 62 = 0,
v2=262-b3-b1=2andv3=v4=0.
Example 5. Find a basis for R4 which reduces

[01

-2 -1 -1
2 1 1A=
1 1 0
0 0 1

to its Jordan canonical form. We find A = 1 is an eigenvalue of multiplicity
4 and

r-1 -2 -1 -1

A- Al- 1 1 1 1

0 1 0 0

0 0 0 0

Using Gaussian reduction, we find 61 = 2 and that the following two vectors

-1 -1
V(I)1 - 1 v2

0

0 1

span Ker(A -AI). We next solve

(A - AI)v = c1v11) + c2v(1).

The last row implies that c2 = 0 and the third row implies that x2 = 1.
The remaining equations are then equivalent to x1 + X2 + X3 + X4 = 0.
Thus, V11) = vi1) and we choose

v(2) _ (-1,1,0,0)T.

Using Gaussian reduction, we next find that b2 = 3 and {V(1),v12)3 V21)}
with V21) = v21) spans Ker(A - AI)2. Similarly we find b3 = 4 and we
must find 63 - 62 = 1 solution of

(A - al)v = V(2)

where V12) = v12). The third row of this equation implies that x2 = 0 and
the remaining equations are then equivalent to x1 +x3+x4 = 0. We choose

(3) Tv1 = (1,0,0,0)
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Then B = {v(
1

3), v23), v33), v43>} _ {Vi1), V12), Vi31, V21)} is a basis for
Ker(A - \I)3 = R. The matrix P = [v1 v4], with v1 = V(1), V2 =
Vi21, v3 = vi31 and v4 = V21), and its inverse are then given by

-1 -1 1 -1 0 0 1 0

P 0 1 0 0
and P-1- 0 1 0 0

1 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

respectively. And then we obtain

1 1 0 0

0 1 1 0P-'AP =
0 0 1 0 1

0 0 0 1

In this case we have Si = 2, b2 = 3, b3 = b4 = 4, vl = 261 - b2 = 1,

v2=262-63-61=0,v3=2b3-64-b2=1andv4=b4-b3=0.
It is worth mentioning that the solution to the initial value problem (4)

for this last example is given by

1 t t2/2 0

x(t) = eAtxo = Pet 0 1 t 0 P-1X0
0 0 1 0
0 0 0

1- t - t2/2 -2t - t2/2 -t - t2/2 -t - t2/2[
t t 1+t t t-

=e
t2/2 t + t2/2 1 + t2/2 t2/2 Xo.

0 0 0 1

PROBLEM SET 8

1. Find the Jordan canonical forms for the following matrices

1]

(a) A = [0

1

(b) A = [0 1]

(c) A= [10]

(d) A = [0 -1]

(e) A = [0 -1]
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(f) A =
10

o]

(g) A =
Ll 11

1 1

(h) A = L-1 1]

L10_11
1(i) A = .

2. Find the Jordan canonical forms for the following matrices

1 1 0

(a) A= 0 1 0
0 0 1

1 1 0

(b) A = 0 1 1

0 0 1

1 0 0

(c) A = 0 0 -1
0 1 0

1 1 0

(d) A = 0 1 0
0 0 -1

1 0 0

(e) A = 0 1 1

0 0 -1

1 0 0

(f) A= 0 0 1

0 1 0

3. (a) List the five upper Jordan canonical forms for a 4 x 4 matrix
A with a real eigenvalue A of multiplicity 4 and give the corre-
sponding deficiency indices in each case.

(b) What is the form of the solution of the initial value problem (4)
in each of these cases?

4. (a) What are the four upper Jordan canonical forms for a 4 x 4
matrix A having complex eigenvalues?

(b) What is the form of the solution of the initial value problem (4)
in each of these cases?

5. (a) List the seven upper Jordan canonical forms for a 5 x 5 ma-
trix A with a real eigenvalue A of multiplicity 5 and give the
corresponding deficiency indices in each case.
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(b) What is the form of the solution of the initial value problem (4)
in each of these cases?

6. Find the Jordan canonical forms for the following matrices

1 0

(a) A = 1 2

1 2

1

(b) A = -1
1

1

(c) A = 10 2

0

1

(d) A = 10 2

(e)A=I1
2

2

(f) A= I
1 0

(g) A= 0 0

0

0

3

0 0

2 0
0 2

2

1

2

2

1

2

0 0
0 0

3 0

3 4

0 0

0 0

2 0

0 2

4 0

1 0
2 0

0

0

2

0

2

1

1

2

0 0 2j
1 4 0
2 1 -1(h) A= I

0 0 2 1

0 0 2

Find the solution of the initial value problem (4) for each of these
matrices.

7. Suppose that B is an m x m matrix given by equation (2) and that
Q = diag[1, e, e2, ... , e'"_ 1 J. Note that B can be written in the form

B=AI+N
where N is nilpotent of order m and show that for e > 0

Q-1 BQ = JAI + eN.
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This shows that the ones above the diagonal in the upper Jordan
canonical form of a matrix can be replaced by any e > 0. A similar
result holds when B is given by equation (3).

8. What are the eigenvalues of a nilpotent matrix N?

9. Show that if all of the eigenvalues of the matrix A have negative real
parts, then for all xo E R"

slim x(t) = 0
00

where x(t) is the solution of the initial value problem (4).

10. Suppose that the elementary blocks B in the Jordan form of the ma-
trix A, given by (2) or (3), have no ones or I2 blocks off the diagonal.
(The matrix A is called semisimple in this case.) Show that if all
of the eigenvalues of A have nonpositive real parts, then for each
xa E R" there is a positive constant M such that Ix(t)I < M for all
t > 0 where x(t) is the solution of the initial value problem (4).

11. Show by example that if A is not semisimple, then even if all of the
eigenvalues of A have nonpositive real parts, there is an xa E R" such
that

slim Ix(t)I = 00.
00

Hint: Cf. Example 4 in Section 1.7.

12. For any solution x(t) of the initial value problem (4) with det A 36 0
and xo 36 0 show that exactly one of the following alternatives holds.

(a) slim x(t) = 0 and
t

limo Ix(t)I = 00;
00 --

(b) slim Ix(t) I = oo and
t

lim o x(t) = 0;
Oc --

(c) There are positive constants m and M such that for all t E R

m < Ix(t)I < M;

(d)

(e)

(f)

lim Ix(t)I = oo;
t-.±oo

slim Ix(t)I = 00,
t
limo x(t) does not exist;

00 -
lim Ix(t)I = oo, lim x(t) does not exist.

t-.-*O

Hint: See Problem 5 in Problem Set 9.
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1.9 Stability Theory

In this section we define the stable, unstable and center subspace, E°, Eu
and E` respectively, of a linear system

x=Ax. (1)

Recall that E" and Eu were defined in Section 1.2 in the case when A had
distinct eigenvalues. We also establish some important properties of these
subspaces in this section.

Let w3 = uj + ivy; be a generalized eigenvector of the (real) matrix A
corresponding to an eigenvalue Aj = a3 + ibj. Note that if bb = 0 then
vj = 0. And let

B = {u1,... suksuk+1,Vk+1,...,Un,Vm}

be a basis of R" (with n = 2m - k) as established by Theorems 1 and 2
and the Remark in Section 1.7.

Definition 1. Let )j = aj + ib wi = u3 + ivy and B be as described
above. Then

E° = Span{uj, v, a3 < 0}

E` = Span{ul,v, a3 = 0}

and

Eu = Span{uj, v, a3 > 0);

i.e., E°, E` and E° are the subspaces of R" spanned by the real and imag-
inary parts of the generalized eigenvectors wj corresponding to eigenvalues
Aj with negative, zero and positive real parts respectively.

Example 1. The matrix

-2 -1 0

A= 1 -2 0
0 0 3

has eigenvectors

w1 = u1 + iv1 + i

rll
1

0 corres ponding to Al = -2 + i

o 0

and
0

U2 =

1011

corresponding to A2 = 3.
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The stable subspace E' of (1) is the x1, x2 plane and the unstable subspace
E" of (1) is the x3-axis. The phase portrait for the system (1) is shown in
Figure 1 for this example.

Figure 1. The stable and unstable subspaces E' and E" of the linear
system (1).

Example 2. The matrix

0 -1 0
A= 1 0 0

0 0 2

has Al = i,u1 = (0,1,0)T,v1 = (1,0,0)T,A2 = 2 and u2 = (0,0,1)T. The
center subspace of (1) is the x1,x2 plane and the unstable subspace of (1)
is the x3-axis. The phase portrait for the system (1) is shown in Figure 2
for this example. Note that all solutions lie on the cylinders x1 + x2 = c2.

In these examples we see that all solutions in E' approach the equilibrium
point x = 0 as t - oo and that all solutions in E° approach the equilibrium
point x = 0 as t -+ -oo. Also, in the above example the solutions in E°
are bounded and if x(0) 96 0, then they are bounded away from x = 0 for
all t E R. We shall see that these statements about E' and E" are true in
general; however, solutions in E° need not be bounded as the next example
shows.
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Figure 2. The center and unstable subspaces E` and El of the linear
system (1).

Example 3. Consider the linear system (1) with
10 0 x1 = 0A=
1 0

i.e.,
X2 XI2 1

X2

X1

Figure 3. The center subspace E° for (1).
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We have Al = a2 = 0, u1 = (0,1)T is an eigenvector and u2 = (1, 0)T
is a generalized eigenvector corresponding to A = 0. Thus E' = R2. The
solution of (1) with x(0) = c = (cl,c2)T is easily found to be

z1(t) = Cl

X2(t) = c1t + C2.

The phase portrait for (1) in this case is given in Figure 3. Some solutions
(those with cl = 0) remain bounded while others do not.

We next describe the notion of the flow of a system of differential equa-
tions and show that the stable, unstable and center subspaces of (1) are
invariant under the flow of (1).

By the fundamental theorem in Section 1.4, the solution to the initial
value problem associated with (1) is given by

x(t) = eAtxo

The set of mappings eAt: R" R" may be regarded as describing the
motion of points xo E R" along trajectories of (1). This set of mappings
is called the flow of the linear system (1). We next define the important
concept of a hyperbolic flow:

Definition 2. If all eigenvalues of the n x n matrix A have nonzero real
part, then the flow eAt: R" - R" is called a hyperbolic flow and (1) is
called a hyperbolic linear system.

Definition 3. A subspace E C R" is said to be invariant with respect to
the flow eAt: R" , R" if eAtE C E for all t E R.

We next show that the stable, unstable and center subspaces, E8, E" and
E° of (1) are invariant under the flow eAt of the linear system (1); i.e., any
solution starting in E°, E° or E` at time t = 0 remains in E°, E" or E`
respectively for all t E R.

Lemma. Let E be the generalized eigenspace of A corresponding to an
eigenvalue A. Then AE C E.

Proof. Let {v1, ... , vk } be a basis of generalized eigenvectors for E. Then
given v E E,

k

V = Cj

j=1

and by linearity
k

Av = E cjAvj.
j=1
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Now since each vj satisfies

(A-aI)ksvj=0

for some minimal kj, we have

(A-.\I)vj =Vj

where Vj E Ker(A - A1)k,-1 C E. Thus, it follows by induction that
Avj = Avj + Vj E E and since E is a subspace of R, it follows that

k

kcjAvj E E;
j=1

i.e., Av E E and therefore AE CE.

Theorem 1. Let A be a real n x n matrix. Then

Rn=Es ®Ell ®E`

where E', E° and E` are the stable, unstable and center subspaces of (1)
respectively; furthermore, E', E" and E` are invariant with respect to the
flow eat of (1) respectively.

Proof. Since B = {u1, ... , uk, uk+1, Vk+1, , um, Vm} described at the
beginning of this section is a basis for Rn, it follows from the definition of
E', E° and E° that

Rn=E'®E"®E`.
If xo E E' then

n.xocjVj
j=1

where V. = vj or uj and C B is a basis for the stable subspace
E' as described in Definition 1. Then by the linearity of eAt, it follows that

n.
e ttxo = cjeAtVj

j=1

But

Vj E E'eAtVj kym
L

I + At + ... + Aktk
k! J00

since for j = 1,... , n, by the above lemma AkV j E E' and since E' is
complete. Thus, for all t E R, eAtxo E E' and therefore eAtE' C E'; i.e.,
E' is invariant under the flow eAt. It can similarly be shown that E° and
E` are invariant under the flow eat
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We next generalize the definition of sinks and sources of two-dimensional
systems given in Section 1.5.

Definition 4. If all of the eigenvalues of A have negative (positive) real
parts, the origin is called a sink (source) for the linear system (1).

Example 4. Consider the linear system (1) with

-2 -1 0

A= 1 -2 0 .

0 0 -3

We have eigenvalues Al = -2 + i and A2 = -3 and the same eigenvectors
as in Example 1. E' = R3 and the origin is a sink for this example. The
phase portrait is shown in Figure 4.

x2

Figure 4. A linear system with a sink at the origin.

Theorem 2. The following statements are equivalent:

(a) For all xo E R", slim eAtxo = 0 and for xo 34 0, limo leAtxol = oo.
00 t--

(b) All eigenvalues of A have negative real part.

(c) There are positive constants a, c, m and M such that for all xo E R"

Ieatxol < Me-ctlxol

for t > 0 and
leatxol >- me-atlxol

fort<0.
Proof (a = b): If one of the eigenvalues ..\ = a + ib has positive real part,
a > 0, then by the theorem and corollary in Section 1.8, there exists an
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xo E R",xo 0 0, such that leAtxOI > e°tlxol. Therefore IeAtxoI - no as
t - oc: i.e.,

lim eAtxo 0 0.t-oo

And if one of the eigenvalues of A has zero real part, say A = ib, then by the
corollary in Section 1.8, there exists xo E R", xo 0 such that at least one
component of the solution is of the form ctk cos bt or ctk sin bt with k > 0.
And once again

lim eAtxo 54 0.to0
Thus, if not all of the eigenvalues of A have negative real part, there exists
xo E R" such that eAtxo 74 0 as t -* oo; i.e., a = b.

(b c): If all of the eigenvalues of A have negative real part, then
it follows from the Jordan canonical form theorem and its corollary in
Section 1.8 that there exist positive constants a, c, m and M such that
for all xo E R"IeAtxol < Me-`tIxol for t > 0 and IeAtxol > me-atlxol for
t<0.

(c = a): If this last pair of inequalities is satisfied for all xo E R', it
follows by taking the limit as t -i ±oc on each side of the above inequalities
that

slim leAtxol = 0 and that t limy leAtxoI = 00
00 --

for xo # 0. This completes the proof of Theorem 2.

The next theorem is proved in exactly the same manner as Theorem 2
above using the theorem and its corollary in Section 1.8.

Theorem 3. The following statements are equivalent:

(a) For all xo E R". eAtxo = 0 and forxo 0 0, limt.,,. leAtxoI _
00.

(b) All eigenvalues of A have positive real part.

(c) There are positive constants a, c, m and M such that for all xo E R"

leAtxol < Me`tlxol

for t < 0 and

IeAtxol > meatlxol

fort>0.
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Corollary. If xo E E', then eAtxo E E' for all t E R and

lim eatxo = 0.

And if xoE E", then eAtxoEEL for alit ER and

lim eAtxo = 0.t-.-oo

Thus, we see that all solutions of (1) which start in the stable manifold
E' of (1) remain in E' for all t and approach the origin exponentially fast
as t -+ oo; and all solutions of (1) which start in the unstable manifold
E° of (1) remain in E° for all t and approach the origin exponentially fast
as t -+ -oo. As we shall see in Chapter 2 there is an analogous result for
nonlinear systems called the Stable Manifold Theorem; cf. Section 2.7 in
Chapter 2.

PROBLEM SET 9

1. Find the stable, unstable and center subspaces E8, E° and EC of the
linear system (1) with the matrix

(a) A = [0
1

-0]

](b) A = [_0
p1

(c) A = 1 0L1
(d) A = [ 0 2]

(e) A = [0
2 3

-1]
2 4

(f) A = [0 -2]

(g) A = 10 -ii

0J

0

(h) A

10

(i) A

Also, sketch the phase portrait in each of these cases. Which of these
matrices define a hyperbolic flow, eAt?
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2. Same as Problem 1 for the matrices

-1 0 0
(a) A = 0 -2 0

0 0 3

0 -1 0

(b) A= 1 0 0
0 0 -1

-1 -3 0

(c) A = 0 2 0

0 0 -1

2 3 0

(d) A = 0 -1 0 .

0 0 -1

3. Solve the system

59

0 2 0

is = -2 0 0
X.

2 0 6

Find the stable, unstable and center subspaces E', E" and E° for
this system and sketch the phase portrait. For xo E E`, show that
the sequence of points xn = eAnxo E E`; similarly, for xo E E' or
E", show that xn E E' or E" respectively.

4. Find the stable, unstable and center subspaces E', E" and E° for the
linear system (1) with the matrix A given by

(a) Problem 2(b) in Problem Set 7.

(b) Problem 2(d) in Problem Set 7.

5. Let A be an n x n nonsingular matrix and let x(t) be the solution of
the initial value problem (1) with x(0) = xo. Show that

(a) if xo E E' - {0} then slim x(t) = 0 and
a

lim o Ix(t)l = 00;
00 --

(b) if xo E E" - {0} then slim jx(t) I = oo and t limox(t) = 0;-00 -
(c) if xo E Ec - {0} and A is semisimple (cf. Problem 10 in Sec-

tion 1.8), then there are positive constants m and M such that
for alltER,m<jx(t)I <M;

(dl) if xo E E` N {0} and A is not semisimple, then there is an
xo E Rn such that t lim Ix(t)I = oo;

±00

(d2) ifE'96 {0},E",0{0}, and x0 E5 E"-'(E°UE"),then
lim Ix(t)I = oo;

t-.±oo
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(e) if E' 0 {0}, E` 0 {0} and xo E E° ® E` (E" U E`), then
slim Ix(t)I = oo; t limox(t) does not exist;

00 -
(f) if E' 54 {0}, E° 34 {0}, and xo E E° ® E° - (E' U E°), then

time jx(t)I = oo, tlim x(t) does not exist. Cf. Problem 12 in-00
Problem Set 8.

6. Show that the only invariant lines for the linear system (1) with x E
R2 are the lines ax, + bx2 = 0 where v = (-b, a)T is an eigenvector
of A.

1.10 Nonhomogeneous Linear Systems

In this section we solve the nonhomogeneous linear system

is = Ax + b(t) (1)

where A is an n x n matrix and b(t) is a continuous vector valued function.

Definition. A fundamental matrix solution of

is=Ax (2)

is any nonsingular n x n matrix function 4i(t) that satisfies

4i'(t) = A4>(t) for all t E R.

Note that according to the lemma in Section 1.4, 6(t) = eAt is a fun-
damental matrix solution which satisfies 4i(0) = I, the n x n identity mar
trix. Furthermore, any fundamental matrix solution 4;(t) of (2) is given by
4i(t) = eAtC for some nonsingular matrix C. Once we have found a fun-
damental matrix solution of (2), it is easy to solve the nonhomogeneous
system (1). The result is given in the following theorem.

Theorem 1. If 4i(t) is any fundamental matrix solution of (2), then the
solution of the nonhomogeneous linear system (1) and the initial condition
x(0) = xo is unique and is given by

x(t) = 4?(t)4i-1(0)xo +
J

4b(t)4i-1(r)b(r)dr.t
0

Proof. For the function x(t) defined above,

x'(t) =-V(t/)4 '(0)xo+.+t(t)t-1(t)b(t)

+ J t4i'(t)4>-1(r)b(r)dr.
0

(3)
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And since 4(t) is a fundamental matrix solution of (2), it1follows that

tx'(t) = A [(t)_'(O)xo
o

+
J

b(t)

= Ax(t) + b(t)

for all t E R. And this completes the proof of the theorem.

Remark 1. If the matrix A in (1) is time dependent, A = A(t), then
exactly the same proof shows that the solution of the nonhomogenous linear
system (1) and the initial condition x(0) = xo is given by (3) provided that
4'(t) is a fundamental matrix solution of (2) with a variable coefficient
matrix A = A(t). For the most part, we do not consider solutions of (2)
with A = A(t) in this book. The reader should consult [C/L], [H] or [W]
for a discussion of this topic which requires series methods and the theory
of special functions.

Remark 2. With 4i(t) = eat, the solution of the nonhomogeneous linear
system (1), as given in the above theorem, has the form

rt
x(t) = eAtxo + eat e-a,b(r)dr.

0

Example. Solve the forced harmonic oscillator problem

+x= f(t).

This can be written as the nonhomogeneous system

21 = -x2

x2=x1+f(t)

or equivalently in the form (1) with

A= [0 and b(t) =

e =At _ [cost - sin ti R(t),

sin t cost =

a rotation matrix; and

at _ cost sin t
e- - - sin t cost = R(-t).
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The solution of the above system with initial condition x(O) = x0 is thus
given by

x(t) = eAtxo + eAt f e-Arb(r)dr
0

r r
= R(t)xo + R(t)

ft

I f(r)
sin

r, dr.

It follows that the solution x(t) = x1(t) of the original forced harmonic
oscillator problem is given by

x(t) = x(O) cost - i(0) sin t + J f (r) sin(r - t)dr.t
0

PROBLEM SET 10

1. Just as the method of variation of parameters can be used to solve
a nonhomogeneous linear differential equation, it can also be used to
solve the nonhomogeneous linear system (1). To see how this method
can be used to obtain the solution in the form (3), assume that the
solution x(t) of (1) can be written in the form

x(t) = 4)(t)c(t)

where 4(t) is a fundamental matrix solution of (2). Differentiate this
equation for x(t) and substitute it into (1) to obtain

c'(t) = t-1(t)b(t).

Integrate this equation and use the fact that c(O) = t'1(0)xo to
obtain

tc(t) = c-1(0)xo + J
-1(r)b(r)dr.

0

Finally, substitute the function c(t) into x(t) = I'(t)c(t) to obtain
(3).

2. Use Theorem 1 to solve the nonhomogeneous linear system

x - [
o -1] X + (1)

with the initial condition

X(0) = ().



1.10. Nonhomogeneous Linear Systems 63

3. Show that

[

e -2t cos t - sin t
fi(t)

e-2t sin t cos tJ

is a fundamental matrix solution of the nonautonomous linear system

is = A(t)x

with
A(t) _ 2 cost t -1 -sin 2t

- 11 - sin 2t -2 sine t ]

Find the inverse of 4(t) and use Theorem 1 and Remark 1 to solve
the nonhomogenous linear system

is = A(t)x + b(t)

with A(t) given above and b(t) = (l,e-2t)T. Note that, in general,
if A(t) is a periodic matrix of period T, then corresponding to any
fundamental matrix fi(t), there exists a periodic matrix P(t) of period
2T and a constant matrix B such that

I'(t) = P(t)eat.

Cf. [C/L), p. 81. Show that P(t) is a rotation matrix and B =
diag[-2, 0] in this problem.





2

Nonlinear Systems: Local
Theory

In Chapter 1 we saw that any linear system

*= Ax (1)

has a unique solution through each point xO in the phase space R"; the
solution is given by x(t) = eAtxo and it is defined for all t E R. In this
chapter we begin our study of nonlinear systems of differential equations

is = f(x) (2)

where f: E --+ R" and E is an open subset of R". We show that under
certain conditions on the function f, the nonlinear system (2) has a unique
solution through each point xo E E defined on a maximal interval of exis-
tence (a, Q) C R. In general, it is not possible to solve the nonlinear system
(2); however, a great deal of qualitative information about the local behav-
ior of the solution is determined in this chapter. In particular, we establish
the Hartman-Grobman Theorem and the Stable Manifold Theorem which
show that topologically the local behavior of the nonlinear system (2) near
an equilibrium point xo where f(xo) = 0 is typically determined by the be-
havior of the linear system (1) near the origin when the matrix A = Df(xo),
the derivative of fat xo. We also discuss some of the ramifications of these
theorems for two-dimensional systems when det Df(xo) 36 0 and cite some
of the local results of Andronov et al. [A-I] for planar systems (2) with
det Df(xo) = 0.

2.1 Some Preliminary Concepts and Definitions

Before beginning our discussion of the fundamental theory of nonlinear
systems of differential equations, we present some preliminary concepts
and definitions. First of all, in this book we shall only consider autonomous
systems of ordinary differential equations

x = f(x) (1)
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as opposed to nonautonomous systems

is = f(X,t) (2)

where the function f can depend on the independent variable t; however, any
nonautonomous system (2) with x E R" can be written as an autonomous
system (1) with x E R^+1 simply by letting t and to+1 = 1. The
fundamental theory for (1) and (2) does not differ significantly although
it is possible to obtain the existence and uniqueness of solutions of (2)
under slightly weaker hypotheses on f as a function of t; cf. for example
Coddington and Levinson (C/L]. Also, see problem 3 in Problem Set 2.

Notice that the existence of the solution of the elementary differential
equation

x = f (t)

is given by

tx(t) = x(0) +
J

f (s) ds
0

if f (t) is integrable. And in general, the differential equations (1) or (2)
will have a solution if the function f is continuous; cf. [C/L], p. 6. However,
continuity of the function f in (1) is not sufficient to guarantee uniqueness
of the solution as the next example shows.

Example 1. The initial value problem

i = 3x2/3

x(0) = 0

has two different solutions through the point (0, 0), namely

u(t) = t3

and

v(t) 0

for all t E R. Clearly, each of these functions satisfies the differential equa-
tion for all t E R as well as the initial condition x(0) = 0. (The first solution
u(t) = t3 can be obtained by the method of separation of variables.) Notice
that the function f (x) = 3x2/3 is continuous at x = 0 but that it is not
differentiable there.

Another feature of nonlinear systems that differs from linear systems
is that even when the function f in (1) is defined and continuous for all
x E R°, the solution x(t) may become unbounded at some finite time t =#;
i.e., the solution may only exist on some proper subinterval (a,,6) C R.
This is illustrated by the next example.
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Example 2. Consider the initial value problem

i = x2

x(0) = 1.

67

The solution, which can be found by the method of separation of variables,
is given by

x(t) =
1 -

This solution is only defined for t E (-co,1) and

in x(t) = 00.t1-
The interval (-00,1) is called the maximal interval of existence of the
solution of this initial value problem. Notice that the function x(t) = (1-
t)-1 has another branch defined on the interval (1, co); however, this branch
is not considered as part of the solution of the initial value problem since
the initial time t = 0 ¢ (1, oo). This is made clear in the definition of a
solution in Section 2.2.

Before stating and proving the fundamental existence-uniqueness theo-
rem for the nonlinear system (1), it is first necessary to define some termi-
nology and notation concerning the derivative Df of a function f: R"
R".

Definition 1. The function f: R" -+ R" is differentiable at xo E R" if
there is a linear transformation Df(xo) E L(R") that satisfies

lim
If(xo + h) - f(xo) - Df(xo)hl = 0

IhI-.o IhI

The linear transformation Df(xo) is called the derivative of f at xo.

The following theorem, established for example on p. 215 in Rudin [R],
gives us a method for computing the derivative in coordinates.

Theorem 1. If f: R" -+ R" is differentiable at xo, then the partial deriva-
tives , it j = 1, ... , n, all exist at xo and for all x E R",

Df(xo)x ='E . (xo)xj.
9

Thus, if f is a differentiable function, the derivative Df is given by the
n x n Jacobian matrix

Df 8fi= 8x
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Example 3. Find the derivative of the function

f(x) xl - x2

-x2 + X1X21

and evaluate it at the point xo = (1, -1)T. We first compute the Jacobian
matrix of partial derivatives,

afl afl
Df = axl axe =

[X2

1 -2X2 1
aft aft -1+x1
aXI axe

and then

1 2
Df(1,-1) = _1 0

In most of the theorems in the remainder of this book, it is assumed that
the function f(x) is continuously differentiable; i.e., that the derivative
Df(x) considered as a mapping Df: R" - L(R') is a continuous function
of x in some open set E C R". The linear spaces R" and L(R") are
endowed with the Euclidean norm I I and the operator norm II ' II, defined
in Section 1.3 of Chapter 1, respectively. Continuity is then defined as usual:

Definition 2. Suppose that V1 and V2 are two normed linear spaces with
respective norms II III and II 112; i.e., VI and V2 are linear spaces with
norms II ' III and II ' 112 satisfying a-c in Section 1.3 of Chapter 1. Then

F: VI -+ V2

is continuous at xo E VI if for all e > 0 there exists a 6 > 0 such that
x E VI and IIx - xoIII < b implies that

IIF(x) - F(xo)II2 < e.

And F is said to be continuous on the set E C V1 if it is continuous at each
point x E E. If F is continuous on E C V1, we write F E C(E).

Definition 3. Suppose that f: E -# R" is differentiable on E. Then If E
CI(E) if the derivative Df: E -+ L(R") is continuous on E.

The next theorem, established on p. 219 in Rudin [R], gives a simple test
for deciding whether or not a function f: E -+ R" belongs to CI (E).

Theorem 2. Suppose that E is an open subset of R" and that f: E R".
Then f E CI (E) if the partial derivatives , i, j = 1, ... , n, exist and
are continuous on E.
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Remark 1. For E an open subset of R, the higher order derivatives
Dkf(xo) of a function f: E - R" are defined in a similar way and it can
be shown that f E Ck(E) if and only if the partial derivatives

akf.
ax ... axjx

with i, j1, ... , jk = 1, ... , n, exist and are continuous on E. Furthermore,
D2f(xo): E x E R" andfor(x,y)EExEwehave

DZf(xo)(x,Y) _ E
82f(xo)
0 x xjIyj2

j1,32=1 J'axJ7

Similar formulas hold for Dkf(xo): (E x x E) R"; cf. [R], p. 235.
A function f: E -+ R" is said to be analytic in the open set E C R" if

each component fj (x), j = 1, ... , n, is analytic in E, i.e., if for j = 1, ... , n
and xo E E, f3(x) has a Taylor series which converges to f3(x) in some
neighborhood of x0 in E.

PROBLEM SET 1

1. (a) Compute the derivative of the following functions

xl +x1x2
l xl +xix2+x,x32

f(x)= _ 2 2J, f(X)= -x1+x2-x2x3+x1x2x3
x2+x2+x1 2x2+x3-x1

(b) Find the zeros of the above functions, i.e., the points xo E R"
where f(xo) = 0, and evaluate Df(x) at these points.

(c) For the first function f: R2 -+ R2 defined in part (a) above,
compute D2f(xo)(x, y) where x0 = (0, 1) is a zero of f.

2. Find the largest open subset E C R2 for which

(a) f(x) = I is continuously differentiable.
x

(b) f(x) = [Vx I I y'' 1 I is continuously differentiable.
1 + 1 - x2 + 2

3. Show that the initial value problem

.i = Ixll/2

x(0) = 0

has four different solutions through the point (0, 0). Sketch these so-
lutions in the (t, x)-plane.
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4. Show that the initial value problem

2=x3
x(0) = 2

has a solution on an interval (-oo, b) for some b E R. Sketch the
solution in the (t, x)-plane and note the behavior of x(t) as t -+ b-.

5. Show that the initial value problem

has a solution x(t) on the interval (0, oo), that x(t) is defined and
continuous on [0, oo), but that x'(0) does not exist.

6. Show that the function F: R2 L(R2) defined by

F(X) -
L-x2 x1,

is continuous for all x E R2 according to Definition 2.

2.2 The Fundamental Existence-Uniqueness
Theorem

In this section, we establish the fundamental existence-uniqueness theorem
for a nonlinear autonomous system of ordinary differential equations

* = f (x) (1)

under the hypothesis that f E C1(E) where E is an open subset of R".
Picard's classical method of successive approximations is used to prove this
theorem. The more modern approach based on the contraction mapping
principle is relegated to the problems at the end of this section. The method
of successive approximations not only allows us to establish the existence
and uniqueness of the solution of the initial value problem associated with
(1), but it also allows us to establish the continuity and differentiability
of the solution with respect to initial conditions and parameters. This is
done in the next section. The method is also used in the proof of the Stable
Manifold Theorem in Section 2.7 and in the proof of the Hartman-Grobman
Theorem in Section 2.8. The method of successive approximations is one
of the basic tools used in the qualitative theory of ordinary differential
equations.
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Definition 1. Suppose that f E C(E) where E is an open subset of R".
Then x(t) is a solution of the differential equation (1) on an interval I if
x(t) is differentiable on I and if for all t E I, X(t) E E and

x'(t) = f(x(t)).

And given xo E E, x(t) is a solution of the initial value problem

x = f (x)
x(to) = xo

on an interval I if to E I, x(to) = xo and x(t) is a solution of the differential
equation (1) on the interval I.

In order to apply the method of successive approximations to establish
the existence of a solution of (1), we need to define the concept of a Lipschitz
condition and show that Cl functions are locally Lipschitz.

Definition 2. Let E be an open subset of R". A function f: E -+ R" is
said to satisfy a Lipschitz condition on E if there is a positive constant K
such that for all x, y E E

If(x) - f(y)I <- KIx- yl.

The function f is said to be locally Lipschitz on E if for each point xo E E
there is an e-neighborhood of xo, N6(xo) C E and a constant Ko > 0 such
that for all x,y E NE(xo)

If(x) - f(y)I 5 Kolx - yJ.

By an e-neighborhood of a point xo E R", we mean an open ball of positive
radius a; i.e.,

NE(xo) = {x E R" I Ix - xoI < e}.

Lemma. Let E be an open subset of R" and let f: E - R". Then, if
f E Cl (E), f is locally Lipschitz on E.

Proof. Since E is an open subset of R", given xo E E, there is an a > 0
such that N6(xo) C E. Let

K = max IIDf(x)II,
Ix-xol<-s/2

the maximum of the continuous function Df(x) on the compact set Ix -
xoI < c/2. Let No denote the c/2-neighborhood of xo, NE12(xo). Then for
x, y E No, set u = y - x. It follows that x + su E No for 0 < s:5 1 since
No is a convex set. Define the function F: [0,1] -' R" by

F(s) = f (x + su).
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Then by the chain rule,

F'(s) = Df(x + su)u

and therefore

f(y) - f(x) = F(1) - F(O)

= I 1 F'(s) ds = fo Df(x + su)u ds.
0 0

It then follows from the lemma in Section 1.3 of Chapter 1 that

If(y) - f()I < f IDf(x + su)uI ds
'0

< f IIDf(x + su) II Jul ds

< KIuJ = KI y - xI.

And this proves the lemma.

Picard's method of successive approximations is based on the fact that
x(t) is a solution of the initial value problem

u = f(x)
X(O) = xo

(2)

if and only if x(t) is a continuous function that satisfies the integral equation

x(t) = xo + f f(x(s)) ds.t
0

The successive approximations to the solution of this integral equation are
defined by the sequence of functions

uo(t) = xo

uk+1(t) = x0 + f
e

f(uk(s)) ds (3)
0

for k = 0, 1, 2,.. .. In order to illustrate the mechanics involved in the
method of successive approximations, we use the method to solve an ele-
mentary linear differential equation

Example 1. Solve the initial value problem

z=ax
x(0) = xo
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by the method of successive approximations. Let

uo(t) = xo

and compute

rt
ul (t) = xo + J axo ds = xo(1 + at)

0

/t t2
u2(t)=xo+ J axo(1+as)ds=xo(1+at+a22)

0

rt 32

u3(t) = xo + / axo (1 + as + a22) dso
=xo 1+at+a2 t22i+a3 t33i

C

)

It follows by induction that

tkuk(t) =xo ( 1+at +-.-+akii )

and we see that

73

lim uk(t) = xoeat.
k-oo

That is, the successive approximations converge to the solution x(t) = xoeat
of the initial value problem.

In order to show that the successive approximations (3) converge to a
solution of the initial value problem (2) on an interval I = [-a, a], it is
first necessary to review some material concerning the completeness of the
linear space C(I) of continuous functions on an interval I = [-a, a]. The
norm on C(I) is defined as

Hull =sup IUMI.
I

Convergence in this norm is equivalent to uniform convergence.

Definition 3. Let V be a normed linear space. Then a sequence {uk} C V
is called a Cauchy sequence if for all e > 0 there is an N such that k, m > N
implies that

Iluk - U..ll < 6.

The space V is called complete if every Cauchy sequence in V converges to
an element in V.

The following theorem, proved for example in Rudin [R] on p. 151, estab-
lishes the completeness of the normed linear space C(I) with I = [-a, a].

Theorem. For I = [-a, a], C(I) is a complete normed linear space.



74 2. Nonlinear Systems: Local Theory

We can now prove the fundamental existence-uniqueness theorem for
nonlinear systems.

Theorem (The Fundamental Existence-Uniqueness Theorem). Let E be
an open subset of R" containing xo and assume that f E C'(E). Then
there exists an a > 0 such that the initial value problem

is = f(x)
x(0) = xo

has a unique solution x(t) on the interval [-a, a].

Proof. Since f E C' (E), it follows from the lemma that there is an E-
neighborhood Ne(xo) C E and a constant K > 0 such that for all x,y E
N.(xo),

If(x) - f(y)I <- Klx - yl.
Let b = e/2. Then the continuous function f(x) is bounded on the compact
set

No={xER"IIx-xoI<b}.
Let

M = max If(x)I.
xENo

Let the successive approximations uk(t) be defined by (3). Then assuming
that there exists an a > 0 such that uk(t) is defined and continuous on
[-a, a] and satisfies

max Iuk(t) - xoI < b, (4)
[-a,al

it follows that f(uk(t)) is defined and continuous on [-a, a] and therefore
that

tuk+i(t) = xo + 1 f(uk(s)) ds
0

is defined and continuous on [-a, a] and satisfies

Iuk+i(t) - xol 5 f If(uk(s))I ds < Ma
0

for all t E [-a, a]. Thus, choosing 0 < a < b/M, it follows by induction
that uk(t) is defined and continuous and satisfies (4) for all t E [-a, a] and
k=1,2,3,....

Next, since for all t E [-a, a] and k = 0, 1, 2, 3, ... , uk(t) E No, it follows
from the Lipschitz condition satisfied by f that for all t E [-a, a]

Iu2(t) - ul(t)I 5 f If (u,(s)) - f(uo(s)) I ds
0
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< K f ' Iu1(s) - uo(s)I ds
0

< Ka max Iul(t) - xoI
[-a,al

< Kab.

And then assuming that

max luj(t) - uj-,(t)1:5 (Ka)j-'b
[-a,a]

for some integer j > 2, it follows that for all t E [-a, a]

Iuj+l(t) - uj(t)I <- f if(uj(s)) - f(uj-l(s))Ids
0

(5)

e

< K f Iuj(s) - uj-l(s)Ids
0

< Ka max Iuj(t) - uj-l(t)I
[-a.a]

< (Ka)jb.

Thus, it follows by induction that (5) holds for j = 2,3,.... Setting a = Ka
and choosing 0 < a < 1/K, we see that for m > k > N and t E [-a, a]

m-1

1u-(t) - uk(t)I : Iuj+l(t) - uj(t)I
j=k
00

> Iuj+l(t) - uj(t)I
j=N
00 N

<Ecr'b=la ab.
j=N

This last quantity approaches zero as N -+ oo. Therefore, for all c > 0
there exists an N such that m, k > N implies that

llum - ukll = Max Ium(t) - uk(t)I < e;

i.e., {uk} is a Cauchy sequence of continuous functions in C([-a, a]). It fol-
lows from the above theorem that uk(t) converges to a continuous function
u(t) uniformly for all t E [-a, a] as k -+ oo. And then taking the limit of
both sides of equation (3) defining the successive approximations, we see
that the continuous function

u(t) = km Uk(t) (6)00
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satisfies the integral equation

u(t) = xo + J f(u(s)) dst
0

(7)

for all t E [-a, a]. We have used the fact that the integral and the limit
can be interchanged since the limit in (6) is uniform for all t E [-a, a].
Then since u(t) is continuous, f(u(t)) is continuous and by the fundamental
theorem of calculus, the right-hand side of the integral equation (7) is
differentiable and

u'(t) = f(u(t))

for all t E [-a, a]. Furthermore, u(0) = xo and from (4) it follows that
u(t) E NE(xo) C E for all t E [-a, a]. Thus u(t) is a solution of the initial
value problem (2) on [-a, a]. It remains to show that it is the only solution.

Let u(t) and v(t) be two solutions of the initial value problem (2) on
[-a, a]. Then the continuous function iu(t) - v(t)I achieves its maximum
at some point tj E [-a, a]. It follows that

Hu - VII = imax Iu(t) - v(t)I

= IJ tl f(u(s)) - f(v(s)) ds
0

Ihl
If(u(s)) - f(v(s))Ids

0

K J bu(s) - v(s)I ds- o

< Ka max iu(t) - v(t)I
(-a,a)

<Kaflu - vII.

But Ka < 1 and this last inequality can only be satisfied if Iiu - vII = 0.
Thus, u(t) = v(t) on [-a, a]. We have shown that the successive ap-
proximations (3) converge uniformly to a unique solution of the initial
value problem (2) on the interval [-a, a] where a is any number satisfying
0 < a < min(q, A).

Remark. Exactly the same method of proof shows that the initial value
problem

*=f(X)
x(to) = Xo

has a unique solution on some interval [to - a, to + a].



2.2. The Fundamental Existence-Uniqueness Theorem 77

PROBLEM SET 2

1. (a) Find the first three successive approximations ul(t), u2(t) and
u3(t) for the initial value problem

$=x2
X(0) = 1.

Also, use mathematical induction to show that for all n > 1,
un(t) = 1+t+...+tn+O(tn+l) as

(b) Solve the initial value problem in part (a) and show that the
function x(t) = 1/(1-t) is a solution of that initial value problem
on the interval (-oo, 1) according to Definition 1. Also, show
that the first (n+ 1)-terms in un(t) agree with the first (n + 1)-
terms in the Taylor series for the function x(t) = 1/(1 - t) about
x=0.

(c) Show that the function x(t) = (3t)'/3, which is defined and
continuous for all t E R, is a solution of the differential equation

1x- 2x
for all t # 0 and that it is a solution of the corresponding initial
value problem with x(1/3) = 1 on the interval (0, oo) according
to Definition 1.

2. Let A be an n x n matrix. Show that the successive approximations
(3) converge to the solution x(t) = eAtxo of the initial value problem

X=Ax
x(0) = xo.

3. Use the method of successive approximations to show that if f(x, t)
is continuous in t for all t in some interval containing t = 0 and
continuously differentiable in x for all x in some open set E C RI
containing xo, then there exists an a > 0 such that the initial value
problem

* = f(X, t)
x(0) = xo

has a unique solution x(t) on the interval [-a, a]. Hint: Define uo(t) _
xo and

tuk+1(t) = xo +
J

f(uk(s),a)ds
0

and show that the successive approximations uk(t) converge uni-

formly to x(t) on [-a, a] as in the proof of the fundamental existence-
uniqueness theorem.
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4. Use the method of successive approximations to show that if the
matrix valued function A(t) is continuous on [-ao, ao] then there
exists an a > 0 such that the initial value problem

$=A(t)4?
4i(0) = I

(where I is the n x n identity matrix) has a unique fundamental
matrix solution 4;(t) on [-a, a]. Hint: Define 4io(t) = I and

4k+1(t) = I + As4ik(s) ds,
0

and use the fact that the continuous matrix valued function A(t)
satisfies IIA(t)ll < Mo for all tin the compact set [-ao,ao] to show
that the successive approximations 4ik(t) converge uniformly to 4i(t)
on some interval [-a, a] with a < 1/Mo and a < ao.

5. Let V be a normed linear space. If T: V V satisfies

IIT(u) - T(v)II <- cllu - vii
for all u and v E V with 0 < c < 1 then T is called a contraction
mapping. The following theorem is proved for example in Rudin [R]:

Theorem (The Contraction Mapping Principle). Let V be a complete
nonmed linear space and T: V --# V a contraction mapping. Then
there exists a unique u E V such that T(u) = u.
Let f E C'(E) and xo E E. For I = [-a, a] and u E C(I), let

T(u)(t) = xo + J f(u(s)) ds.t
0

Define a closed subset V of C(I) and apply the Contraction Mapping
Principle to show that the integral equation (7) has a unique contin-
uous solution u(t) for all t E [-a, a] provided the constant a > 0 is
sufficiently small.
Hint: Since f is locally Lipschitz on E and xo E E, there are positive
constants s and KO such that the condition in Definition 2 is satisfied
on NE(xo) C E. Let V = {u E C(I) I llu - xoll 5 e}. Then V is
complete since it is a closed subset of C(I). Show that (i) for all u, v E
V, IIT(u)-T(v)ll < aKollu-vll and that (ii) the positive constant a
can be chosen sufficiently small that fort E [-a, a], Tou(t) E NE(xo),
i.e., T: V -+ V.

6. Prove that x(t) is a solution of the initial value problem (2) for all
t E I if and only if x(t) is a continuous function that satisfies the
integral equation

x(t) = X0 + 10 f(x(s)) ds
0

for alltEI.
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7. Under the hypothesis of the Fundamental Existence-Uniqueness The-
orem, if x(t) is the solution of the initial value problem (2) on an
interval I, prove that the second derivative x(t) is continuous on I.

8. Prove that if f E CI (E) where E is a compact convex subset of R"
then f satisfies a Lipschitz condition on E. Hint: Cf. Theorem 9.19
in [R].

9. Prove that if f satisfies a Lipschitz condition on E then f is uniformly
continuous on E.

10. (a) Show that the function f (x) = 1/x is not uniformly continuous
on E = (0, 1). Hint: f is uniformly continuous on E if for all
e > 0 there exists a S > 0 such that for all x, y E E with
Is - yI < S we have If (x) - f (y) I < e. Thus, f is not uniformly
continuous on E if there exists an e > 0 such that for all S > 0
there exist x, y E E with Ix - yj < S such that If (x) - f (y)I > e.
Choose c = 1 and show that for all S > 0 with S < 1, x = 6/2 and
y = S implies that x, y E (0,1), Ix - yI < S and If(x) - f (y) l > 1.

(b) Show that f (x) = 1/x does not satisfy a Lipschitz condition on
(0,1).

11. Prove that if f is differentiable at xo then there exists a b > 0 and a
KO > 0 such that for all x E N6(xo)

If (x) - f (xo)I <_ KoIx - xoI.

2.3 Dependence on Initial Conditions and
Parameters

In this section we investigate the dependence of the solution of the initial
value problem

x f(x) (1)

x(0) = y
on the initial condition y. If the differential equation depends on a param-
eter µ E R'", i.e., if the function f(x) in (1) is replaced by f(x, µ), then the
solution u(t, y, µ) will also depend on the parameter µ. Roughly speaking,
the dependence of the solution u(t, y, µ) on the initial condition y and
the parameter µ is as continuous as the function f. In order to establish
this type of continuous dependence of the solution on initial conditions and
parameters, we first establish a result due to T.H. Gronwall.

Lemma (Gronwall). Suppose that g(t) is a continuous real valued function
that satisfies g(t) > 0 and

f
g(t) <C+KJcg(s)ds

0
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for all t E [0, a] where C and K are positive constants. It then follows that
for all t E [0, a],

g(t) < CeKt

Proof. Let G(t) = C + K fo g(s) ds for t E [0, a]. Then G(t) > g(t) and
G(t) > 0 for all t E [0, a]. It follows from the fundamental theorem of
calculus that

and therefore that
G'(t) = Kg(t)

G'(t) - Kg(t) < KG(t) - K
G(t) C(t) - G(t)

for all t E [0, a]. And this is equivalent to saying that

dt(log G(t)) <K

or

or

log G(t) < Kt + log G(0)

G(t) < G(0)eKt = CeKt

for all t E [0, a], which implies that g(t) < CeKt for all t E [0, a].

Theorem 1 (Dependence on Initial Conditions).Let E be an open
subset of R" containing xo and assume that f E C'(E). Then there ex-
ists an a > 0 and a b > 0 such that for all y E N6(xo) the initial value
problem

k = f (x)
X(O) = y

has a unique solution u(t, y) with u E C' (G) where G = [-a, a] x N6(xo) C
Rn+l ; furthermore, for each y E N6(xo), u(t,y) is a twice continuously
differentiable function oft for t E [-a, a].

Proof. Since f E C'(E), it follows from the lemma in Section 2.2 that
there is an c-neighborhood NE(xo) C E and a constant K > 0 such that
for allxandyENE(xo),

If(x) - f(Y)1 < Klx - yl.
As in the proof of the fundamental existence theorem, let No = {x E Rn I
Ix - xo) < e/2}, let Mo be the maximum of If(x)I on No and let M, be the
maximum of IIDf(x)II on No. Let b = e/4, and for y E N6(xo) define the
successive approximations uk(t,y) as

uo(t,Y) = Y

uk+l(t,Y) =Y+f
c

f(uk(s,Y))ds.
(2)

0
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Assume that uk(t, y) is defined and continuous for all (t, y) E G = [-a, a] x
N6(xo) and that for all y E N6(xo)

Iluk(t, Y) - xo11 < E/2 (3)

where II' II denotes the maximum over all t E [-a, a]. This is clearly satisfied
for k = 0. And assuming this is true for k, it follows that uk+l (t, y), defined
by the above successive approximations, is continuous on G. This follows
since a continuous function of a continuous function is continuous and since
the above integral of the continuous function f(uk(s,y)) is continuous in
t by the fundamental theorem of calculus and also in y; cf. Rudin [R] or
Carslaw [C]. We also have

Iluk+i (t, Y) - YII <- f If (uk(s, Y))1 da < Moa
0

for t E [-a, a] and y E N6(xo) C No. Thus, for t E [-a, a] and y E N6(xo)
with 6 = e/4, we have

Iluk+l(t,Y) - coil <- Iluk+1(t,Y) - YII + 11Y- xoll
< Moa + E/4 < e/2

provided Moa < E/4, i.e., provided a < E/(4Mo). Thus, the above induction
hypothesis holds for all k = 1, 2,3.... and (t, y) E G provided a < E/(4Mo).

We next show that the successive approximations uk(t,y) converge uni-
formly to a continuous function u(t, y) for all (t, y) E G as k -+ oo. As in
the proof of the fundamental existence theorem,

11u2(t,y) - ui(t,Y)II 5 Kallui(t,Y) - YII
< Kallul (t, y) - xoll + Kally - xoll
< Ka(e/2 + e/4) < Kae

for (t, y) E G. And then it follows exactly as in the proof of the fundamental
existence theorem in Section 2.2 that

11uk+1(t,Y) - uk(t,Y)II 5 (Ka)kE

for (t, y) E G and consequently that the successive approximations converge
uniformly to a continuous function u(t, y) for (t, y) E G as k -* oo provided
a < 1/K. Furthermore, the function u(t,y) satisfies

c

(u(s, y)) dsu(t, y) = y + fo f

for (t, y) E G and also u(0, y) = y. And it follows from the inequality
(3) that u(t, y) E Ne12(xo) for all (t, y) E G. Thus, by the fundamental
theorem of calculus and the chain rule, it follows that

u(t, y) = f(u(t, y))
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and that
ii(t, y) = Df(u(t, y))u(t, y)

for all (t, y) E G; i.e., u(t, y) is a twice continuously differentiable function
of t which satisfies the initial value problem (1) for all (t, y) E G. The
uniqueness of the solution u(t, y) follows from the fundamental theorem in
Section 2.2.

We now show that u(t, y) is a continuously differentiable function of y
for all (t, y) E [-a, a] x N512(xo). In order to do this, fix yo E N6/2(xo) and
choose h E R" such that IhI < 6/2. Then yo +h E N6(xo). Let u(t, yo) and
u(t, yo + h) be the solutions of the initial value problem (1) with y = yo
and with y = yo + h respectively. It then follows that

f(u(s,Yo+h))-f(u(s,Yo))IdsIu(t,Yo+h)-u(t,Yo)I <_ IhI+ fo It

<- IhI + K f lu(s, yo + h) - u(s, Yo)I ds

for all t E [-a, a]. Thus, it follows from Gronwall's Lemma that

Iu(t, yo + h) - u(t, yo)I <- IhIe" j`j (4)

for all t E [-a, a]. We next define 4i(t, yo) to be the fundamental matrix
solution of the initial value problem

4i = A(t, Yo)4'
(5)

4'(O,Yo) = I

with A(t, yo) = Df (u(t, yo)) and I the n x n identity matrix. The existence
and continuity of 4;(t, yo) on some interval [-a, a] follow from the method of
successive approximations as in problem 4 of Problem Set 2 and problem 4
in Problem Set 3. It then follows from the initial value problems for u(t, yo),
u(t, yo + h) and 4)(t, yo) and Taylor's Theorem,

f(u) - f(uo) = Df(uo)(u - uo) + R(u, uo)

where IR(u, uo)I/Iu - uoI -+ 0 as Iu - uol -' 0, that

lu(t, yo) - u(t, yo + h) + 4;(t, Yo)hl <- f If (W(s, Yo))t
0

- f(u(s, yo + h)) + Df(u(s, yo)) I (s, yo)hI ds

< f
e

IIDf (u(s, yo)) 11 lu(s, yo) - u(s, yo + h) + 4i(s, Yo)hl d8

+ f IR(u(s, yo + h), u(s, Yo))I ds (6)
0

Since IR(u, uo)I/lu-uoI 0 as lu-uoI -p 0 and since u(s, y) is continuous
on G, it follows that given any eo > 0, there exists a so > 0 such that if
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IhI < bo then IR(u(s,yo),u(s,Yo+h))I <Eolu(s,Yo)-u(s,yo+h)I for all
s E [-a, a]. Thus, if we let

g(t) = Iu(t, yo) - u(t, yo + h) + 4(t, yo)hl

it then follows from (4) and (6) that for all t E [-a, a], yo E N612(xo) and
IhI < min(bo,b/2) we have

e

g(t) 5 Mi f g(s) ds + eolhlaeKa.
0

Hence, it follows from Gronwall's Lemma that for any given eo > 0

g(t) <_ eolhiQeKaeMta

for all t E [-a, a] provided IhI < min(bo, b/2). Thus,

lim
Iu(t, yo) - u(t, yo + h) + b (t, Yo)hl = o

jhl-.o IhI

uniformly for all t E [-a, a]. Therefore, according to Definition 1 in Sec-
tion 2.1,

8y(t,Yo) = Vt,Yo)

for all t E [-a, a] where 4'(t, yo) is the fundamental matrix solution of the
initial value problem (5) which is continuous in t and in yo for all t E [-a, a]
and yo E N612(xo). This completes the proof of the theorem.

Corollary. Under the hypothesis of the above theorem,

-b(t,Y) = i (t,Y)

for t E [-a, a] and y E N6(xo) if and only if y) is the fundamental
matrix solution of

= Df[u(t,y)]F
't(O, Y) = I

fort E [-a, a] and y E N6(xo).

Remark 1. A similar proof shows that if f E C'(E) then the solution
u(t, y) of the initial value problem (1) is in C'(G) where G is defined as in
the above theorem. And if f(x) is a (real) analytic function for x E E then
u(t, y) is analytic in the interior of G; cf. [C/L].
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Remark 2. If x0 is an equilibrium point of (1), i.e., if f(xo) = 0 so that
u(t, xo) = xo for all t E R, then

4b(t,xo) = a-(t,xo)

satisfies

$ = Df(xo)4i
4'(0, xo) = I.

And according to the Fundamental Theorem for Linear Systems

4)(t,xo) = eof(xo)t

Remark 3. It follows from the continuity of the solution u(t, y) of the
initial value problem (1) that for each t E Pa, a)

ylim u(t, y) = u(t, xo).

It follows from the inequality (4) that this limit is uniform for all t E [-a, a].
We prove a slightly stronger version of this result in Theorem 4 of the next
section.

Theorem 2 (Dependence on Parameters).Let E be an open subset of
R°+'" containing the point (xo, µo) where xo E R^ and Iso E R' and
assume that f E C'(E). It then follows that there exists an a > 0 and
a 6 > 0 such that for all y E N6(xo) and s E N6(µ0), the initial value
problem

u = f(x, s)
x(0) = y

has a unique solution u(t, y, lc) with u E C' (G) where G = [-a, a] x
N6(xo) x N6(lb)

This theorem follows immediately from the previous theorem by replac-
ing the vectors x0, x, is and y by the vectors (xo, µo), (x, µ), (*, 0) and
(y, µ) or it can be proved directly using Gronwall's Lemma and the method
of successive approximations; cf. problem 3 below.

PROBLEM SET 3

1. Use the fundamental theorem for linear systems in Chapter 1 to solve
the initial value problem

* = Ax
x(0) = Y.
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Let u(t, y) denote the solution and compute

Show that '(t) is the fundamental matrix solution of

-6 =A4'
I.

2. (a) Solve the initial value problem

is = f(x)
X(O) = y

for f(x) = (-XI, -x2 + xi, x3 + xi)T. Denote the solution by
u(t, y) and compute

Ilu
4(t,Y) = 2ji(t,y)-

Compute the derivative Df(x) for the given function f(x) and
show that for all t E R and y E R3, 4)(t, y) satisfies

4i = A(t, Y)4

'I(O,Y) = I

where A(t,y) = Df [u(t, y)].

(b) Carry out the same steps for the above initial value problem
with f(x) = (xl,x2+xi I)T

3. Consider the initial value problem

* = f (t, X, IL)

X(O) = xo. (*)

Given that E is an open subset of R"+'+i containing the point
(0, xo, µo) where xo E R" and µo E Rm and that f and Of/Ox are
continuous on E, use Gronwall's Lemma and the method of successive
approximations to show that there is an a > 0 and a 6 > 0 such that
the initial value problem (*) has a unique solution u(t, µ) continuous
on [-a, a) x N6(jAo).

4. Let E be an open subset of R' containing yo. Use the method of
successive approximations and Gronwall's Lemma to show that if



86 2. Nonlinear Systems: Local Theory

A(t, y) is continuous on [-ao, ao] x E then there exist an a > 0 and
a 6 > 0 such that for all y E N6(yo) the initial value problem

4i = A(t,Y)4
I

has a unique solution 4i(t, y) continuous on [-a, a] x N6(yo). Hint:
Cf. problem 4 in Problem Set 2 and regard y as a parameter as in
problem 3 above.

5. Let 4;(t) be the fundamental matrix solution of

-6 = A(t)4i

and the initial condition
4?(O) = I

for t E [0, a]; cf. Problem 4 in Section 2. Use Liouville's Theorem (cf.
[H], p. 46), which states that

tdet 4;(t) = exp J trace A(s) ds,
0

to show that for all t E [0, a]

det - (t, xo) = exp zt V V. f(u(s, x0)) ds

where u(t, y) is the solution of the initial value problem (1) as in the
first theorem in this section. Hint: Use the Corollary in this section.

6. (Cf. Hartman [H], p. 96.) Let f E Cl (E) where E is an open set in
R" containing the point x0. Let u(t, yo) be the unique solution of
the initial value problem (1) for t E [0, a] with y = yo. Show that the
set of maps of yo --+ y defined by y = u(t, yo) for each fixed t E [0, a]
are volume preserving in E if and only if V f(x) = 0 for all x E E.
Hint: Recall that under a transformation of coordinates y = u(x)
which maps a region R0 one-to-one and onto a region R1, the volume
of the region Rl is given by

V = r ...JJ(x)dxl...dx"
Ro

where the Jacobian determinant

J(x) = det 8x (x)
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2.4 The Maximal Interval of Existence

The fundamental existence-uniqueness theorem of Section 2.2 established
that if f E C1(E) then the initial value problem

x f(x) (1)

x(0) = xo

has a unique solution defined on some interval (-a, a). In this section we
show that (1) has a unique solution x(t) defined on a maximal interval of
existence (a,#). Furthermore, if /3 < oo and if the limit

x1 = lim x(t)
t-.6-

exists then x1 E E, the boundary of E. The boundary of the open set
E, k = E - E where E denotes the closure of E. On the other hand, if
the above limit exists and x1 E E, then /3 = oo, f(x1) = 0 and x, is an
equilibrium point of (1) according to Definition 1 in Section 2.6 below; cf.
Problem 5. The following examples illustrate these ideas.

Example 1 (Cf. Example 2 in Section 2.1).The initial value problem

x = x2 x(0) = 1

has the solution x(t) = (1-t)-1 defined on its maximal interval of existence
(a, /3) = (-oo, 1). Furthermore, lim x(t) = oo.

t1-

Example 2. The initial value problem

_1_
x

2x

x(0) = 1

has the solution x(t) = 1- t defined on its maximal interval of existence
(a, /3) _ (-00,1). The function f (x) = -1/(2x) E C1(E) where E = (0, oo)
and E _ {0}. Note that

1im x(t) = 0 E E.t1-
Example 3. Consider the initial value problem

-x2i1 = 2
3

X1
X2=

3

i3=1
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with x(1/7r) = (0, -1,1/7r)T. The solution is

X3

Figure 1. The solution x(t) for Example 3.

sin 1/t
x(t) = cos 1/t

t

on the maximal interval (a 6) = (0, oo). Cf. Figure 1. At the finite endpoint
a = 0, lim x(t) does not exist. Note, however, that the arc lengtht0+

Jt Ix(r)Idr>Jt
x1(r)+x2(r)dT ft d =1-7r

Co
1/7r 1/irx3(T)T T t

as t -, 0+. Cf. Problem 3.

We next establish the existence and some basic properties of the maximal
interval of existence (a, Q) of the solution x(t) of the initial value problem
M.
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Lemma 1. Let E be an open subset of R" containing xo and suppose
f E C'(E). Let ul(t) and u2(t) be solutions of the initial value problem (1)
on the intervals Il and I2. Then 0 E II n I2 and if I is any open interval
containing 0 and contained in Il n 12, it follows that ul(t) = u2(t) for all
t E 1.

Proof. Since ul(t) and u2(t) are solutions of the initial value problem (1)
on Il and I2 respectively, it follows from Definition 1 in Section 2.2 that
0 E Il n I2. And if I is an open interval containing 0 and contained in
Il n I2, then the fundamental existence-uniqueness theorem in Section 2.2
implies that ul (t) = u2(t) on some open interval (-a, a) C I. Let I' be
the union of all such open intervals contained in I. Then I' is the largest
open interval contained in I on which ul(t) = u2(t). Clearly, I' C I and if
I' is a proper subset of I, then one of the endpoints to of I' is contained
in I C Il n I2. It follows from the continuity of ul(t) and u2(t) on I that

lim U1(t) = lira u2(t).
t-.to t.to

Call this common limit uo. It then follows from the uniqueness of solutions
that ul(t) = u2(t) on some interval Io = (to - a, to + a) C I. Thus,
U1(t) = u2(t) on the interval I' U 1o C I and 1' is a proper subset of
1' U Io. But this contradicts the fact that I' is the largest open interval
contained in I on which ul(t) = u2(t). Therefore, I' = I and we have
u1(t)=u2(t) for alltEI.

Theorem 1. Let E be an open subset of R" and assume that f E C1(E).
Then for each point xo E E, there is a maximal interval J on which the
initial value problem (1) has a unique solution, x(t); i.e., if the initial value
problem has a solution y(t) on an interval I then I C J and y(t) = x(t)
for all t E I. Furthermore, the maximal interval J is open; i.e., J = (a,#).

Proof. By the fundamental existence-uniqueness theorem in Section 2.2,
the initial value problem (1) has a unique solution on some open interval
(-a, a). Let (a,#) be the union of all open intervals I such that (1) has
a solution on I. We define a function x(t) on (a, /j) as follows: Given t E
(a, P), t belongs to some open interval I such that (1) has a solution u(t)
on I; for this given t E define x(t) = u(t). Then x(t) is a well-defined
function of t since if t E Il n I2 where Il and 12 are any two open intervals
such that (1) has solutions ul(t) and u2(t) on Il and 12 respectively, then
by the lemma ul(t) = u2(t) on the open interval Il n I2. Also, x(t) is a
solution of (1) on (a,/3) since each point t E is contained in some
open interval I on which the initial value problem (1) has a unique solution
u(t) and since x(t) agrees with u(t) on I. The fact that J is open follows
from the fact that any solution of (1) on an interval (a, Q) can be uniquely
continued to a solution on an interval (a,# + a) with a > 0 as in the proof
of Theorem 2 below.
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Definition. The interval (a,#) in Theorem 1 is called the maximal interval
of existence of the solution x(t) of the initial value problem (1) or simply
the maximal interval of existence of the initial value problem (1).

Theorem 2. Let E be an open subset of R" containing xo, let f E C' (E),
and let (a,/3) be the maximal interval of existence of the solution x(t) of
the initial value problem (1). Assume that /3 < oo. Then given any compact
set K C E, there exists a t E (a,,8) such that x(t) 59 K.

Proof. Since f is continuous on the compact set K, there is a positive
number M such that If(x)I < M for all x E K. Let x(t) be the solution
of the initial value problem (1) on its maximal interval of existence (a, /3)
and assume that /3 < oo and that x(t) E K for all t E (a,#). We first show
that lim x(t) exists. If a < t1 < t2 < /3 then

Ix(t1) - x(t2)I <- f
t,

If(x(s))I ds < MIt2 - t1I.
e,

Thus as t1 and t2 approach /3 from the left, Ix(t2) - x(tl)I -+ 0 which, by
the Cauchy criterion for convergence in R" (i.e., the completeness of R°)
implies that lim x(t) exists. Let x1 = lim x(t). Then xl E K C E since

K is compact. Next define the function u(t) on (a,,81 by

_ 1XI
x(t) for t E (a,,3)

U(t)
for t = 8.

Then u(t) is differentiable on (a, /3]. Indeed,

t

u(t) = xo + f f(u(s)) ds
0

which implies that

u'(/3) = f(u(R));

i.e., u(t) is a solution of the initial value problem (1) on (a, /3]. The function
u(t) is called the continuation of the solution x(t) to (a,#]. Since x1 E E, it
follows from the fundamental existence-uniqueness theorem in Section 2.2
that the initial value problem x = f(x) together with x(/3) = x1 has a
unique solution x1 (t) on some interval (/3 - a, )3 + a). By the above lemma,
x1(t) = u(t) on (/3 - a,#) and x1(/3) = u(/3) = xl. So if we define

v(t) =1V(t)
for t E (a,/3]

xl (t) for t E [/3, /3 + a),

then v(t) is a solution of the initial value problem (1) on (a, /3 + a). But
this contradicts the fact that (a, /3) is the maximal interval of existence for
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the initial value problem (1). Hence, if /3 < co, it follows that there exists
a t E (a,#) such that x(t) ¢ K.

If is the maximal interval of existence for the initial value problem
(1) then 0 E (a, /3) and the intervals [0,)3) and (a, 0] are called the right
and left maximal intervals of existence respectively. Essentially the same
proof yields the following result.

Theorem 3. Let E be an open subset of R" containing xo, let f E C'(E),
and let (0, /3) be the right maximal interval of existence of the solution x(t)
of the initial value problem (1). Assume that /3 < oo. Then given any
compact set K C E, there exists a t E (0, /3) such that x(t) ¢ K.

Corollary 1. Under the hypothesis of the above theorem, if /3 < oo and if
lim x(t) exists then lim x(t) E E.ep- t-.p-

Proof. If xl = lim x(t), then the functiontp-

u(t) =
(x(t) for t E [0,/3)
xl for t = /3

is continuous on [0, /3]. Let K be the image of the compact set [0, /3] under
the continuous map u(t); i.e.,

K = {x E R" I x = u(t) for some t E [0, /3]).

Then K is compact. Assume that xl E E. Then K C E and it follows
from Theorem 3 that there exists a t E (0, /3) such that x(t) §f K. This is a
contradiction and therefore xl 0 E. But since x(t) E E for all t E [0, 0), it
follows that xl = lim x(t) E E. Therefore xl E E - E; i.e., xl E E.

Corollary 2. Let E be an open subset of R' containing xo, let f E Cl (E),
and let [0, /3) be the right maximal interval of existence of the solution x(t)
of the initial value problem (1). Assume that there exists a compact set
K C E such that

{y E R" I y = x(t) for some t E [0, t3)) C K.

It then follows that /3 = oo; i.e. the initial value problem (1) has a solution
x(t) on [0,oo).

Proof. This corollary is just the contrapositive of the statement in Theo-
rem 3.

We next prove the following theorem which strengthens the result on
uniform convergence with respect to initial conditions in Remark 3 of Sec-
tion 2.3.
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Theorem 4. Let E be an open subset of R" containing x0 and let f E
C'(E). Suppose that the initial value problem (1) has a solution x(t,xo)
defined on a closed interval [a, b]. Then there exists a 6 > 0 and a positive
constant K such that for all y E N6(x0) the initial value problem

x = f(x) (2)
x(0) = Y

has a unique solution x(t, y) defined on [a, b] which satisfies

I x(t,Y) - x(t, xo)l < ly - xojeK1tj

and

lim x(t, y) = x(t, x0)
Yxo

uniformly for all t E [a, b].

Remark 1. If in Theorem 4 we have a function f(x,p) depending on a
parameter p E R' which satisfies f E CI (E) where E is an open subset
of R"+, containing (xo, µo), it can be shown that if for µ = µo the initial
value problem (1) has a solution x(t, xo, µo) defined on a closed interval
a<t<b,then there isa5>0andaK>0such that forallyEN6(xo)
and I. E N6(µ0) the initial value problem

is = f(x, µ)
x(0) = y

has a unique solution x(t, y, µ) defined for a < t < b which satisfies

Ix(t,Y,IA) - x(t,xo, µo)1 <- []y - xoI + 11A - pol]eKItI

and

lim x(t, y, pt.) = x(t, xo, s0)
(Y,lA)-.(xo,µo)

uniformly for all t E [a, b]. Cf. [C/L), p. 58.

In order to prove this theorem, we first establish the following lemma.

Lemma 2. Let E be an open subset of R" and let A be a compact subset of
E. Then if f: E -+ R' is locally Lipschitz on E, it follows that f satisfies
a Lipschitz condition on A.

Proof. Let M be the maximal value of the continuous function f on the
compact set A. Suppose that f does not satisfy a Lipschitz condition on A.
Then for every K > 0, we can find x, y E A such that

If(Y) - f(x)I > Kly - xl.
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In particular, there exist sequences xn and yn in A such that

If(Yn) - f(xn)I > nlYn - XnI (*)

f o r n = 1, 2, 3, .... Since A is compact, there are convergent subsequences,
call them xn and yn for simplicity in notation, such that xn x' and
yn -' y' with x' and y' in A. It follows that x = y' since for all n =
1,2,3,...

IY* - X'I = limo IYn - Xn15 -If(Yn) - f(xn)I <
2M1

Now, by hypotheses, there exists a neighborhood No of x' and a constant
KO such that f satisfies a Lipschitz condition with Lipschitz constant Ko
for all x and y E No. But since xn and yn approach x' as n -+ oo, it follows
that xn and yn are in No for n sufficiently large; i.e., for n sufficiently large

If(Yn) -f(xn)I: KIYn - xnI

But for n > K, this contradicts the above inequality (*) and this establishes
the lemma.

Proof (of Theorem 4). Since [a, b] is compact and x(t, xo) is a continuous
function of t, {x E Rn I x = x(t, xo) and a < t < b} is a compact subset of
E. And since E is open, there exists an E > 0 such that the compact set

A= Ix ERn I Ix-x(t,xo)I <Eanda<t<b}

is a subset of E. Since f E C' (E), it follows from the lemma in Section 2.2
that f is locally Lipschitz in E; and then by the above lemma, f satisfies a
Lipschitz condition

If (y) - f(x)I 5 KIY - xl
for all x, y E A. Choose b > 0 so small that b < e and b < re-K(b-°). Let
y E N5(xo) and let x(t, y) be the solution of the initial value problem (2) on
its maximal interval of existence (a,#). We shall show that [a, b] C (a,#).
Suppose that 3 < b. It then follows that x(t, y) E A for all t E (a, /3)
because if this were not true then there would exist a t' E (a, (3) such that
x(t, xo) E A fort E (a, t') and x(t', y) E A. But then

Ix(t,Y) - x(t,xo)I <- IY - xoI +f If(x(s,Y)) - f(x(s,xo)Ids
0

5IY-xol+K f Ix(s,Y)-x(s,xo)Idst
0

for all t E (a, t'J. And then by Gronwall's Lemma in Section 2.3, it follows
that

I x(t",Y) - x(t`, xo)I 5 IY - xoleKj` j < beK(b-a) < 6



94 2. Nonlinear Systems: Local Theory

since t' < # < b. Thus x(t', y) is an interior point of A, a contradiction.
Thus, x(t, y) E A for all t E (a,#). But then by Theorem 2, (a, /3) is not
the maximal interval of existence of x(t, y), a contradiction. Thus b < ,0.
It is similarly proved that a < a. Hence, for all y E No(xo), the initial
value problem (2) has a unique solution defined on [a,b]. Furthermore, if
we assume that there is a t' E [a, b) such that x(t, y) E A for all t E [a, t*)
and x(t', y) E A, a repeat of the above argument based on Gronwall's
Lemma leads to a contradiction and shows that x(t, y) E A for all t E [a, b]
and hence that

[x(t,Y) - x(t,xo)1 < [Y - xo[eKjtj

for all t E [a, b]. It then follows that

lim x(t, Y) = x(t, xo)y X0

uniformly for all t E [a, b].

PROBLEM SET 4

1. Find the maximal interval of existence (a, /3) for the following initial
value problems and if a > -oo or 6 < oo discuss the limit of the
solution as t -* a+ or as t -* ,0- respectively:

x=x2
(a) x(0) =

xo

x=secx
(b) x(0) = 0

x=x2-4
(c) x(0) = 0

d)
xx3

( x(0) = xo > 0

(e) Problem 2(b) in Problem Set 3 with yl > 0.

2. Find the maximal interval of existence (a, /3) for the following initial
value problems and if a > -oo or P < oo discuss the limit of the
solution as t -* a+ or as t -* /3- respectively:

(a)

xl = X2 x1(0) = 1

x2 = x2 + x1 x2(0) = 1

(b) xl = 2x1 x1(0) = 1

x2 = x2 x2(0) = 1
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1
(c) it = 2x1

x2 = xl

x1(0) = 1

x2(0) = 1

3. Let f E C1(E) where E is an open set in R" containing the point
xo and let x(t) be the solution of the initial value problem (1) on its
maximal interval of existence (a, /3). Prove that if /3 < oo and if the
arc-length of the half-trajectory r+ = {x E R" I x = x(t), 0 < t < /3}
is finite, then it follows that the limit

x1 = lim x(t)
t '6-

exists. Then by Corollary 1, x1 E E. Hint: Assume that the above
limit does not exist. This implies that there is a sequence t converg-
ing to /3 from the left such that x(t") is not Cauchy. Use this fact to
show that the arc-length of r+ is then unbounded.

4. Convert the system in Example 3 to cylindrical coordinates, (r, 0, z)
as in Problem 9 in Section 1.5 of Chapter 1, and solve the resulting
system with the initial conditions r = 1, 0 = -1r, z = 1/7r at t = 0.
What is the maximal interval of existence in this case?

5. Use Corollary 2 to show that if x1 = lira x(t) exists and x1 E E,tp-
then /3 = oo; and then show that f(xi) = 0 and note that x(t) _- x1
is a solution of (1) and x(0) = x1.

2.5 The Flow Defined by a Differential Equation

In Section 1.9 of Chapter 1, we defined the flow, eAt: R" - R", of the
linear system

x = Ax.
The mapping 4t = eAt satisfies the following basic properties for all x E
R":

(1) 40(X) = x

(ii) 4,(4t(x)) = 4',+t(x) for all s, t E R

(iii) O-t(Ot(x)) _ -Ot(O-t(x)) = x for all t E R.

Property (i) follows from the definition of eAt, property (ii) follows from
Proposition 2 in Section 1.3 of Chapter 1, and property (iii) follows from
Corollary 2 in Section 1.3 of Chapter 1.

In this section, we define the flow, 0t, of the nonlinear system

is = f(x) (1)
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and show that it satisfies these same basic properties. In the following
definition, we denote the maximal interval of existence (a, /3) of the solution
¢(t, xo) of the initial value problem

is = f(x) (2)
X(0) = xo

by I(xo) since the endpoints a and /3 of the maximal interval generally
depend on x0; cf. problems 1(a) and (d) in Section 2.4.

Definition 1. Let E be an open subset of R" and let f E C'(E). For
xo E E, let 0(t, xo) be the solution of the initial value problem (2) defined
on its maximal interval of existence I(xo). Then for t E I(xo), the set of
mappings 0i defined by

0, (X0) _ 46(t, xo)
is called the flow of the differential equation (1) or the flow defined by the
differential equation (1); 0, is also referred to as the flow of the vector field
f (x).

If we think of the initial point x0 as being fixed and let I = I(xo),
then the mapping xo): I --+ E defines a solution curve or trajectory of
the system (1) through the point xo E E. As usual, the mapping xo)
is identified with its graph in I x E and a trajectory is visualized as a
motion along a curve r through the point xo in the subset E of the phase
space R^; cf. Figure 1. On the other hand, if we think of the point xo as
varying throughout K C E, then the flow of the differential equation (1),
¢,: K - E can be viewed as the motion of all the points in the set K; cf.
Figure 2.

Figure 1. A trajectory r of the Figure 2. The flow 0i of the
system (1). system (1).
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If we think of the differential equation (1) as describing the motion of a
fluid, then a trajectory of (1) describes the motion of an individual particle
in the fluid while the flow of the differential equation (1) describes the
motion of the entire fluid.

We now show that the basic properties (i)-(iii) of linear flows are also
satisfied by nonlinear flows. But first we extend Theorem 1 of Section 2.3,
establishing that ¢(t, xo) is a locally smooth function, to a global result.
Using the same notation as in Definition 1, let us define the set fl C R x E
as

S2={(t,xo)ERxEItEI(xo)}.

Example 1. Consider the differential equation

1i
x

with f (x) = 1/x E C' (E) and E = {x E R I x > 01. The solution of this
differential equation and initial condition x(0) = xo is given by

¢(t, xo) = 2t + xo

on its maximal interval of existence I(xo) = (-xo/2, oo). The region fl for
this problem is shown in Figure 3.

XO

X0= J: -21 n

0

Figure S. The region fl.

Theorem 1. Let E be an open subset of R" and let If E C'(E). Then Q
is an open subset of R x E and 0 E C'(Sl).

Proof. If (to, xo) E Sl and to > 0, then according to the definition of the
set fl, the solution x(t) = xo) of the initial value problem (2) is defined
on [0, to]. Thus, as in the proof of Theorem 2 in Section 2.4, the solution
x(t) can be extended to an interval [0, to +e] for some e > 0; i.e., 0(t, xo) is
defined on the closed interval [to - e, to +e]. It then follows from Theorem 4
in Section 2.4 that there exists a neighborhood of xo, No(xo), such that
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4,(t, y) is defined on [to-c, to+e) x N6(xo); i.e., (to -e, to+e) x N6(xo) C fl.
Therefore, fl is open in R x E. It follows from Theorem 4 in Section 2.4
that 0 E C'(G) where G = (to - e, to + e) x N6(xo). A similar proof holds
for to < 0, and since (to, xo) is an arbitrary point in fl, it follows that
0EC'(fl)
Remark. Theorem 1 can be generalized to show that if f E C''(E) with
r > 1, then 0 E C(0) and that if f is analytic in E, then 0 is analytic in
Q.

Theorem 2. Let E be an open set of R" and let f E C'(E). Then for all
xo E E, if t E I(xo) and s E I(4t(xo)), it follows that s + t E I(xo) and

0.+t(xo) = 0a(Ot(xo))

Proof. Suppose that s > 0, t E I(xo) and s E I(4t(xo)). Let the maximal
interval I(xo) = (a, /3) and define the function x: (a, s + t) E by

x(r) = 4,(r, xo)
0(r - t, 4t(xo))

ifa<r<t
ift<r<s+t.

Then x(r) is a solution of the initial value problem (2) on (a, s + t]. Hence
s + t E 1(xo) and by uniqueness of solutions

0s+t(xo) = X(s + t) = 4,(s, 4t(xo)) = 0a(Ot(xo))-

If s = 0 the statement of the theorem follows immediately. And if 8 < 0,
then we define the function x: [s + t,,0) -a E by

x(t) _
(4,(r, xo) if t < r <0

10(r-t,4t(xo)) ifs +t <r <t.

Then x(r) is a solution of the initial value problem (2) on [s + t,,8) and the
last statement of the theorem follows from the uniqueness of solutions as
above.

Theorem 3. Under the hypotheses of Theorem 1, if (t, xo) E SZ then there
exists a neighborhood U of xo such that {t} x U C M It then follows that
the set V = 4, (U) is open in E and that

.0-t(ot(x)) = x for all x E U

and

Y't(Y'-t(y))= y for ally E V.

Proof. If (t, xo) E 1 then if follows as in the proof of Theorem 1 that there
exists a neighborhood of xo, U = N6(xo), such that (t - e, t + e) x U C fl;
thus, {t} x U C fl. For x E U, let y = Ot(x) for all t E I(x). Then
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-t E 1(y) since the function h(s) = ¢(s + t,y) is a solution of (1) on
[-t,0] that satisfies h(-t) = y; i.e., 0_t is defined on the set V = 4t(U).
It then follows from Theorem 2 that 0_t(¢t(x)) = 0o(x) = x for all x E U
and that Ot(¢_t(y)) = 4o(y) = y for all y E V. It remains to prove that V
is open. Let V' D V be the maximal subset of E on which 0_t is defined.
V' is open because ft is open and ¢_t: V* -+ E is continuous because by
Theorem 1, 0 is continuous. Therefore, the inverse image of the open set U
under the continuous map 46_t, i.e., Ot(U), is open in E. Thus, V is open
in E.

In Chapter 3 we show that the time along each trajectory of (1) can be
rescaled, without affecting the phase portrait of (1), so that for all xo E E,
the solution 0(t, xo) of the initial value problem (2) is defined for all t E R;
i.e., for all xo E E, I(xo) = (-oo, co). This rescaling avoids some of the
complications found in stating the above theorems. Once this rescaling has
been made, it follows that S2 = R x E, 0 E C' (R x E), Ot E Cl (E) for all
t E R, and properties (i)-(iii) for the flow of the nonlinear system (1) hold
for all t E R and x E E just as for the linear flow eAt. In the remainder of
this chapter, and in particular in Sections 2.7 and 2.8 of this chapter, it will
be assumed that this rescaling has been made so that for all xo E E, -O(t, xo)
is defined for all t E R; i.e., we shall assume throughout the remainder of
this chapter that the flow of the nonlinear system (1) 0t E C'(E) for all
tER.
Definition 2. Let E be an open subset of R", let f E CI(E), and let
¢t: E -+ E be the flow of the differential equation (1) defined for all
t E R. Then a set S C E is called invariant with respect to the flow 0t if
0t(S) C S for all t E R and S is called positively (or negatively) invariant
with respect to the flow ¢t if 0t(S) C S for all t > 0 (or t < 0).

In Section 1.9 of Chapter 1 we showed that the stable, unstable and
center subspaces of the linear system is = Ax are invariant under the linear
flow 0t = eat. A similar result is established in Section 2.7 for the nonlinear
flow Ot of (1).

Example 2. Consider the nonlinear system (1) with

I -XI
f(x) =

1x2+xi

The solution of the initial value problem (1) together with the initial con-
dition x(0) = c is given by

cle-t

We now show that the set

S= {xER2Ix2=-xi/3}
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is invariant under the flow fit. This follows since if c E S then c2
and it follows that

= -c21/3

r cle-t

t(c) = I-2ze_2t E S.
L 3

Thus 4t(S) c S for all t E R. The phase portrait for the nonlinear system
(1) with f(x) given above is shown in Figure 4. The set S is called the
stable manifold for this system. This is discussed in Section 2.7.

x2

Figure 4. The invariant set S for the system (1).

PROBLEM SET 5

1. As in Example 1, sketch the region fl in the (t, xo) plane for the initial
value problem

z=x2
x(0) = xo.

2. Do problem 1 for the initial value problem

2 = -x3
x(0) = xo.

3. Sketch the flow for the linear system x 1= Ax with

A=I 0 2]
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and, in particular, describe (with a rough sketch) what happens to a
small neighborhood NE(xo) of a point xo on the negative xl-axis, say
N, (-3, 0) with e = .2. (Cf. Figure 1 in Section 1.1 of Chapter 1.)

4. Sketch the flow for the linear system is = Ax with

d -

and describe 4c(NE(xo)) for xo = (-3,0), e = .2. (Cf. Figure 2 in
Section 1.2 of Chapter 1.)

5. Determine the flow Oc: R2 -+ R2 for the nonlinear system (1) with

-xf(x)

[2X'x]l

and show that the set S = {x E R2 I x2 = -x12/4} is invariant with
respect to the flow 0,

6. Determine the flow 0c: R3 -+ R3 for the nonlinear system (1) with

-x1
if(x) _ -x2 + x

X3 + xi

and show that the set S = {x E R3 I x3 = _2:2 /3} is invariant
under the flow 0, Sketch the parabolic cylinder S. (Cf. Example 1
in Section 2.7.)

7. Determine the flow 0c: R {0} R for

1x- 2x

and for xo 36 0 determine the maximal interval of existence 1(xo) _
If a > -oo or /3 < oo show that

clim 0c(xo) E E or clim Ocxo) E E

where E = R N {0}. Sketch the set fl = {(t,xo) E R2 I t E I(xo)}.
Show that Oc(O,(xo)) = 0c+8(xo) for s E 1(xo) ands+t E 1(xo).

2.6 Lineaxization

A good place to start analyzing the nonlinear system

* = f(x) (1)
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is to determine the equilibrium points of (1) and to describe the behavior
of (1) near its equilibrium points. In the next two sections it is shown that
the local behavior of the nonlinear system (1) near a hyperbolic equilibrium
point xo is qualitatively determined by the behavior of the linear system

x = Ax, (2)

with the matrix A = Df(xo), near the origin. The linear function Ax =
Df(xo)x is called the linear part of f at X.

Definition 1. A point xo E R" is called an equilibrium point or critical
point of (1) if f(xo) = 0. An equilibrium point xo is called a hyperbolic
equilibrium point of (1) if none of the eigenvalues of the matrix Df(xo)
have zero real part. The linear system (2) with the matrix A = Df(xo) is
called the linearization of (1) at xo.

If xo = 0 is an equilibrium point of (1), then f(0) = 0 and, by Taylor's
Theorem,

f(x) = Df(0)x+ Dzf(0)(x,x)+

It follows that the linear function Df(0)x is a good first approximation
to the nonlinear function f(x) near x = 0 and it is reasonable to expect
that the behavior of the nonlinear system (1) near the point x = 0 will be
approximated by the behavior of its linearization at x = 0. In Section 2.7
it is shown that this is indeed the case if the matrix Df(0) has no zero or
pure imaginary eigenvalues.

Note that if xo is an equilibrium point of (1) and Ot: E -' R" is the flow
of the differential equation (1), then ¢t(xo) = xo for all t E R. Thus, xo is
called a fixed point of the flow 0t; it is also called a zero, a critical point,
or a singular point of the vector field f: E R' . We next give a rough
classification of the equilibrium points of (1) according to the signs of the
real parts of the eigenvalues of the matrix Df(xo). A finer classification is
given in Section 2.10 for planar vector fields.

Definition 2. An equilibrium point xo of (1) is called a sink if all of the
eigenvalues of the matrix Df(xo) have negative real part; it is called a
source if all of the eigenvalues of Df(xo) have positive real part; and it
is called a saddle if it is a hyperbolic equilibrium point and Df(xo) has
at least one eigenvalue with a positive real part and at least one with a
negative real part.

Example 1. Let us classify all of the equilibrium points of the nonlinear
system (1) with

z z
f(x) xl-x2-1

2xz
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Clearly, f(x) = 0 at x = (1,0)T and x = (-1,0)T and these are the only
equilibrium points of (1). The derivative

Df(x) = [2x1
0

2 2J , Df(1, 0) = [0 2] ,

and
-2 0Df(-1,0) 0 2]

Thus, (1,0) is a source and (-1,0) is a saddle.

In Section 2.8 we shall see that if xo is a hyperbolic equilibrium point
of (1) then the local behavior of the nonlinear system (1) is topologically
equivalent to the local behavior of the linear system (2); i.e., there is a
continuous one-to-one map of a neighborhood of xo onto an open set U
containing the origin, H: NE(xo) --, U, which transforms (1) into (2), maps
trajectories of (1) in NE(xo) onto trajectories of (2) in the open set U, and
preserves the orientation of the trajectories by time, i.e., H preserves the
direction of the flow along the trajectories.

Example 2. Consider the continuous map

Si
H(x) = S2

IX2 + 3

which maps R2 onto R2. It is not difficult to determine that the inverse of
y = H(x) is given by

H"' (y)
yl

=
7/2 g

and that H-1 is a continuous mapping of R2 onto R2. Furthermore, the
mapping H transforms the nonlinear system (1) with

f(x) =
-xl

IX2+ XI

into the linear system (2) with

A = Df(0) = [
1

o]

in the sense that if y = H(x) then J

3xixi] = [x2 +xi + 3[xz x 1+ x1(-xl)J - [ y2]

i.e.
_ 1 0

y - 0 1
Y.
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We have used the fact that x = H-1(y) implies that xl = yl and x2 =
1/2 - yi /3 in obtaining the last step of the above equation for y. The phase
portrait for the nonlinear system in this example is given in Figure 4 of
Section 2.5 and the phase portrait for the linear system in this example is
given in Figure 1 of Section 1.5 of Chapter 1. These two phase portraits
are qualitatively the same.

PROBLEM SET 6

1. Classify the equilibrium points (as sinks, sources or saddles) of the
nonlinear system (1) with f(x) given by

(a)

(b)

(c)

(d)

x1 -

x1x21
2X2 - x1

4x2 + 2x1x2 - 8

L
2 2

4x2 - x1

r 2x1 - 2x,x2
12x2 - xl + x2J

-x1
-x2 + xi
x3 + xi

X2 - x1

(e) kxl - X2 - x1x3
x1x2 - x3

Hint: In 1(e), the origin is a sink if k < 1 and a saddle if k > 1. It is
a nonhyperbolic equilibrium point if k = 1.

2. Classify the equilibrium points of the Lorenz equation (1) with

x2-x1
f(x) _ /4x1 - x2 - x1x3

x1x2 - x3

for µ > 0. At what value of the parameter µ do two new equilibrium
points "bifurcate" from the equilibrium point at the origin? Hint: For
µ > 1, the eigenvalues at the nonzero equilibrium points are A = -2
and A = (-1 ± Vr5----Tj-i)/2.

3. Show that the continuous map H: R3 -+ R3 defined by

x1

H(x) = x2 + xl

x3 + 3
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has a continuous inverse H-': R3 -+ R3 and that the nonlinear
system (1) with

-x 1

f(x) _ -x2 + x2

x3+xi
is transformed into the linear system (2) with A = Df(0) under this
map; i.e., if y = H(x), show that Sr = Ay.

2.7 The Stable Manifold Theorem

The stable manifold theorem is one of the most important results in the lo-
cal qualitative theory of ordinary differential equations. The theorem shows
that near a hyperbolic equilibrium point xo, the nonlinear system

x = f(x) (1)

has stable and unstable manifolds S and U tangent at xo to the stable and
unstable subspaces E' and E" of the linearized system

is = Ax (2)

where A = Df(xo). Furthermore, S and U are of the same dimensions as
E' and E", and if 0t is the flow of the nonlinear system (1), then S and
U are positively and negatively invariant under 0t respectively and satisfy

slim Ot(c) = xo for all c E S
00

and

lim ¢t (c) = xo for all c E U.
t 00

We first illustrate these ideas with an example and then make them
more precise by proving the stable manifold theorem. It is assumed that
the equilibrium point xo is located at the origin throughout the remainder
of this section. If this is not the case, then the equilibrium point xo can
be translated to the origin by the affine transformation of coordinates x
x - xo.

Example 1. Consider the nonlinear system

21 = -Si

x2 = -x2 + xi

23=x3+X .
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The only equilibrium point of this system is at the origin. The matrix

-1 0 0

A= Df(0) = 0 -1 0
0 0 1

Thus, the stable and unstable subspaces E8 and E" of (2) are the xl,x2
plane and the x3-axis respectively. After solving the first differential equa-
tion, it = -x1, the nonlinear system reduces to two uncoupled first-order
linear differential equations which are easily solved. The solution is given
by

xl(t) = cle-c

x2(t) = C2e-t + cj(e-t - e-2t)

x3(t) = c3et + I(et - e-2t)

where c = x(0). Clearly, lim 4t(c) = 0 if c3 + c21/3 = 0. Thus,t00
S = {cER31c3=-ci/3}.

Similarly, urn 4c(c) = 0 if cl = c2 = 0 and thereforet-.-00

U={cER3Icl=c2=0}.
The stable and unstable manifolds for this system are shown in Figure 1.
Note that the surface S is tangent to E8, i.e., to the xl,x2 plane at the
origin and that U = E°.

X3

Figure 1

Before proving the stable manifold theorem, we first define the concept
of a smooth surface or differentiable manifold.
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Definition 1. Let X be a metric space and let A and B be subsets of
X. A homeomorphism of A onto B is a continuous one-to-one map of A
onto B, h: A -4 B, such that h-1: B -' A is continuous. The sets A
and B are called homeomorphic or topologically equivalent if there is a
homeomorphism of A onto B. If we wish to emphasize that h maps A onto
B, we write h: A 4 B.

Definition 2. An n-dimensional differentiable manifold, M (or a manifold
of class Ck), is a connected metric space with an open covering (Ua,}, i.e.,
M = U. UQ, such that

(1) for all a, UQ is homeomorphic to the open unit ball in R", B = {x E
R" I Jxi < 1), i.e., for all a there exists a homeomorphism of U. onto
B, h,,: U,, --+ B, and

(2) if U. n Up 3k 0 and ha: U,, -+ B, hp: Up -+ B are homeomorphisms,
then h,,,(U,, n Up) and hp(U,, n Up) are subsets of R" and the map

h=haoh.1: hp(UQnUp)-.h.(U.nUp)

is differentiable (or of class Ck) and for all x E hp(Uo n Up), the
Jacobian determinant detDh(x) 0 0. The manifold M is said to be
analytic if the maps h = hQ o ho 1 are analytic.

The cylindrical surface S in the above example is a two-dimensional dif-
ferentiable manifold. The projection of the x1, x2 plane onto S maps the
unit disks centered at the points (m, n) in the x1x2 plane onto homeomor-
phic images of the unit disk B = {x E R2 I xi + x2 < 1}. These sets
Umn C S then form a countable open cover of S in this case.

The pair (U,,, hc,) is called a chart for the manifold M and the set of
all charts is called an atlas for M. The differentiable manifold M is called
orientable if there is an atlas with detDhc o h0 1(x) > 0 for all a,Q and
x E hp(UQ n Up). Cf. Problems 7 and 8.

Theorem (The Stable Manifold Theorem). Let E be an open subset of
R" containing the origin, let f E C' (E), and let 0t be the flow of the non-
linear system (1). Suppose that f(0) = 0 and that Df(O) has k eigenvalues
with negative real part and n - k eigenvalues with positive real part. Then
there exists a k-dimensional differentiable manifold S tangent to the stable
subspace E' of the linear system (2) at 0 such that for all t > 0, 0, (S) C S
and for all xo E S.

tlinot(xo) = 0;

and there exists an n - k dimensional differentiable manifold U tangent to
the unstable subspace E" of (2) at 0 such that for all t < 0, 0, (U) C U and
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for all xo E U,
lim cpt(xo) = 0.a--00

Before proving this theorem, we remark that if f E C' (E) and f(0) = 0,
then the system (1) can be written as

is = Ax + F(x) (3)

where A = Df(0),F(x) = f(x)-Ax,F E C'(E),F(0) = 0 and DF(0) = 0.
This in turn implies that for all e > 0 there is a 6 > 0 such that lxj < 6
and Iyl < 6 imply that

IF(x) - F(y)l <_ Eix - yl. (4)

Cf. problem 6.
Furthermore, as in Section 1.8 of Chapter 1, there is an n x n invertible

matrix C such that

B=C-'AC= [0 Ql

where the eigenvalues Al, ... , ak of the k x k matrix P have negative real
part and the eigenvalues Ak+1, ... , An of the (n - k) x (n - k) matrix Q
have postive real part. We can choose a > 0 sufficiently small that for
.9 = 1,...,k,

Re(A;) < -a < 0.
Letting y = C-'x, the system (3) then has the form

(5)

y = By + G(y) (6)

where G(y) = C-'F(Cy) E C'(E) where t = C-'(E) and G satisfies the
Lipschitz-type condition (4) above.

It will be shown in the proof that there are n - k differentiable functions
'+GJ (yi, ... , yk) such that the equations

y j = j (yi, . . . , yk), .7 = k+ 1,...,n

define a k-dimensional differentiable manifold S in y-space. The differ-
entiable manifold S in x-space is then obtained from S under the linear
transformation of coordinates x = Cy.

Proof. Consider the system (6). Let

ejt 0 0 0

U(t) = [ 0 01
and V(t) = 0 eQt

Then U = BU, V = BV and

eBt = U(t) + V (t).
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It is not difficult to see that with a > 0 chosen as in (5), we can choose
K > 0 sufficiently large and o > 0 sufficiently small that

IIU(t)II 5 Ke-(°+o)t for all t > 0

and

IIV(t)II < Ke°t for all t < 0.

Next consider the integral equation

u(t, a) = U(t)a+J U(t-s)G(u(s,a))ds- 1,00 V(t-s)G(u(s, a))ds. (7)t
o

If u(t, a) is a continuous solution of this integral equation, then it is a
solution of the differential equation (6). We now solve this integral equation
by the method of successive approximations. Let

u(°) (t, a) = 0

and

u(j+1)(t, a) = U(t)a + J U(t - s)G(u(i)(s, a))dst
0

- f V (t - s)G(u(j) (a, a))ds. (8)
t

Assume that the induction hypothesis

u(j)(t,a) - u(j-1)(t,a)I < KjaIe-Ot (9)

holds for j = 1, 2,. . ., m and t > 0. It clearly holds for j = 1 provided t > 0.
Then using the Lipschitz-type condition (4) satisfied by the function G and
the above estimates on IIU(t)II and IIV(t)II, it follows from the induction
hypothesis that for t > 0

Iu(m+1) (t, a)-u(m)(t,a)I5f IIU(t-s)IIFIu(m)(s,a)-u(m-1)(s,a)Idst
0

+ f IIV(t - s)IIeIu(m)(s,a)-u(m-1)(s,a)Ids
t

<f f tKe-(a+o)(t-8)
KIaIe 1°" da

0

"(t-s) KIaIe-as

Ke
2m-1

ds+e
f'00

< eK2Iale-at eK2IaIe-at

027"-1 + a2m-1
< 1 + 1 KIaIe-et - KIaIe-at

(10)
C4 -4 2m-1 2m
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provided EK/a < 1/4; i.e., provided we choose e < ft
.

In order that the
condition (4) hold for the function G, it suffices to choose KIaI < 6/2;
i.e., we choose IaI < It then follows by induction that (9) holds for all
j=1,2,3,...andt>O.Thus, forn>m>Nandt>0,

00

Iu(")(t,a) - u(m)(t,a)I <- E Iu(j+1)(t a) - u(j)(t,a)I
j=N

00
1 K_ IaI< KIaI E 2N

=N

_1

j
This last quantity approaches zero as N oo and therefore {u(j)(t,a)} is
a Cauchy sequence of continuous functions. According to the theorem in
Section 2.2,

lim u(j) (t, a) = u(t, a)
J- 00

uniformly for all t > 0 and Ial < 6/2K. Taking the limit of both sides of
(8), it follows from the uniform convergence that the continuous function
u(t, a) satisfies the integral equation (7) and hence the differential equation
(6). It follows by induction and the fact that G E C' (E) that uU) (t, a) is
a differentiable function of a for t > 0 and Ial < 6/2K. Thus, it follows
from the uniform convergence that u(t, a) is a differentiable function of a
for t > 0 and IaI < 6/2K. The estimate (10) implies that

Iu(t,a)I <- 2KIale-«t (11)

for t > 0 and IaI < 6/2K.
It is clear from the integral equation (7) that the last n - k components

of the vector a do not enter the computation and hence they may be taken
as zero. Thus, the components uj (t, a) of the solution u(t, a) satisfy the
initial conditions

uj (0, a) = a j for j = 1, ... , k

and

([0
uj (0, a) = - V(-s)G(u(s, a1, ... ak0))ds for j = k + 1, ...

j
F o r j = k + 1, ... , n we define the functions

Oj(a1i...,ak) = uj(0,a1,...,ak,0,...,0). (12)

Then the initial values y j = uj (0, a,,. . . , ak, 0, ... , 0) satisfy

yj for j=k+1,...,n
according to the definition (12). These equations then define a differentiable
manifold S for y1 + + yk < 6/2K. Furthermore, if y(t) is a solution
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of the differential equation (6) with y(O) E S, i.e., with y(O) = u(0, a),
then

y(t) = u(t, a).

It follows from the estimate (11) that if y(t) is a solution of (6) with
y(0) E S, then y(t) -+ 0 as t -+ co. It can also be shown that if y(t) is a
solution of (6) with y(O) VS then y(t) 74 0 as t -' oo; cf. Coddington and
Levinson [C/L].p. 332. It therefore follows from Theorem 2 in Section 2.5
that if y(O) E S, then y(t) E S for all t > 0. And it can be shown as in
[C/L], p. 333 that

02(0)=0

f o r i = 1 , ... , k and j = k + 1, ... , n; i.e., the differentiable manifold S is
tangent to the stable subspace E' = {y E R" I yl = Ilk = 0} of the
linear system y = By at 0.

The existence of the unstable manifold U of (6) is established in exactly
the same way by considering the system (6) with t - -t, i.e.,

y = -By - G(y)

The stable manifold for this system will then be the unstable manifold
U for (6). Note that it is also necessary to replace the vector y by the
vector (yk.k 1, ... , yn, y1, ... , yk) in order to determine the n - k dimensional
manifold U by the above process. This completes the proof of the Stable
Manifold Theorem.

Remark 1. The first rigorous results concerning invariant manifolds were
due to Hadamard [10] in 1901, Liapunov [17] in 1907 and Perron [26] in
1928. They proved the existence of stable and unstable manifolds of sys-
tems of differential equations and of maps. (Cf. Theorem 3 in Section 4.8
of Chapter 4.) The proof presented in this section is due to Liapunov and
Perron. Several recent results generalizing the results of the Stable Mani-
fold Theorem have been given by Hale, Hirsch, Pugh, Shub and Smale to
mention a few. Cf. [11, 14, 30]. We note that if the function f E C"(E)
and r > 1, then the stable and unstable differentiable manifolds S and U
of (1) are of class C. And if f is analytic in E then S and U are analytic
manifolds.

We illustrate the construction of the successive approximations u(i) (t, a)
in the proof with an example.

Example 2. Consider the nonlinear system

xl = -xl - X2 x2 = X2 + X11
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We shall find the first three successive approximations u(') (t, a), u(2) (t, a)
and u(3) (t, a) defined by (8) and use u(3) (t, a) to approximate the function
G2 describing the stable manifold

S: x2 = '2(xl)

For this problem, we have
_A=BOl F(x)=G(x)[_X2

220

J x

1 r 1

1

U(t) =
[e_t

U]
, V(t) = [0

tt]
and a = [ 0 J

We approximate the solution of the integral equation

u(t, a) _
[etai]

+
ft [_e_(t_8)u(s)]

ds - F,
Let-90i

(s), ds

by the successive approximations

u(°) (t, a) = 0

u(1)(t a) = e
eal

0

u(2)(t,a) _ [e
Oal] - J [O28a2] ds = L e3aa 2]

u(3)(t,a)
=

[e_tai]

-
1

f
[e_(t8)e_48a]

ds - J [et_se°_2sa?] ds

[e-'al + 27(e-4t - e-t)ail
_ -3e_2ta1 2 J .

It can be shown that u(4) (t, a)-u(3) (t, a) = 0(a5) and therefore the function
02(al) = u2(0,a1,0) is approximated by

)2(al) = - jai +0(a5)

as a1 0. Hence, the stable manifold S is approximated by

S: x2 = - 3 + 0(x5)

as x1 -. 0. The matrix C = I, the identity, for this example and hence the x
and y spaces are the same. The unstable manifold U can be approximated
by applying exactly the same procedure to the above system with t -+ -t
and xl and x2 interchanged. The stable manifold for the resulting system
will then be the unstable manifold for the original system. We find

U: xl

3
+ 0(x2)
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as x2 -+ 0. The student should verify this calculation. The approximations
for the stable and unstable manifolds S and U in a neighborhood of the
origin and the stable and unstable subspaces E° and E° for is = Ax are
shown in Figure 2.

E°

Figure 2

E`
X,

The stable and unstable manifolds S and U are only defined in a small
neighborhood of the origin in the proof of the stable manifold theorem. S
and U are therefore referred to as the local stable and unstable manifolds
of (1) at the origin or simply as the local stable and unstable manifolds of
the origin. We define the global stable and unstable manifolds of (1) at 0
by letting points in S flow backward in time and those in U flow forward
in time.

Definition 3. Let 0t be the flow of the nonlinear system (1). The global
stable and unstable manifolds of (1) at 0 are defined by

W'(0) = U Ot(S)
t<o

and

Wu(0) = U 4t(U)
t>o

respectively; W'(0) and W"(0) are also referred to as the global stable
and unstable manifolds of the origin respectively. It can be shown that the
global stable and unstable manifolds W'(0) and W"(0) are unique and
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x2

Figure 3

that they are invariant with respect to the flow fit; furthermore, for all
x E W"(0), lim ¢t(x) = 0 and for all x E W°(0), lim Ot(x) = 0.

'-00
00

As in the proof of the Stable Manifold Theorem, it can be shown that in
a small neighborhood, N, of a hyperbolic critical point at the origin, the
local stable and unstable manifolds, S and U, of (1) at the origin are given
by

S={xENI0t(x)--*Oast-*ooand0t(x)ENfort >0}
and

U=Ix t--ooand Ot(x)ENfor t<0}
respectively. Cf. [G/HJ, p. 13.

Figure 3 shows some numerically computed solution curves for the system
in Example 2. The global stable and unstable manifolds for this example are
shown in Figure 4. Note that W8(0) and W°(0) intersect in a "homoclinic
loop" at the origin. W"(0) and W°(0) are more properly called "branched
manifolds" in this example.
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Figure 4

It follows from equation (11) in the proof of the stable manifold theorem
that if x(t) is a solution of the differential equation (6) with x(0) E S, i.e.,
if x(t) = Cy(t) with y(O) = u(0, a) E S, then for any e > 0 there exists a
6 > 0 such that if Ix(0)I < b then

Ix(t)I <- ee-«t

for all t > 0. Just as in the proof of the stable manifold theorem, a is
any positive number that satisfies Re(ad) < -a for j = 1,. .. , k where a
j = 1, ... , k are the eigenvalues of Df (0) with negative real part. This result
shows that solutions starting in S, sufficiently near the origin, approach the
origin exponentially fast as t -, oo.

Corollary. Under the hypotheses of the Stable Manifold Theorem, if S
and U are the stable and unstable manifolds of (1) at the origin and if
Re(,\,) < -a < 0 < Q < Re(Am) for j = I,-, k and m = k + 1, ... , n,
then given e > 0 there exists a 6 > 0 such that if xo E Na(0) fl S then

I0t(xo)I < se-at

for all t > 0 and if xo E Na(0) fl U then

I0t(xo)I << eeP'

forallt<0.

We add one final result to this section which establishes the existence of
an invariant center manifold WC(0) tangent to EC at 0; cf., e.g., [G/H],
p. 127 or [Ru], p. 32. The next theorem follows from the local center mani-
fold theorem, Theorem 2 in Section 2.12, and the stable manifold theorem
in this section.
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Theorem (The Center Manifold Theorem). Let f E C'(E) where E is an
open subset of R' containing the origin and r > 1. Suppose that f(0) = 0
and that Df(0) has k eigenvalues with negative real part, j eigenvalues
with positive real part, and in = it - k - j eigenvalues with zero real part.
Then there exists an in-dimensional center manifold W°(0) of class Cr
tangent to the center subspace E` of (2) at 0, there exists a k-dimensional
stable manifold W'(0) of class Cr tangent to the stable subspace E' of (2)
at 0 and there exists a j-dimensional unstable manifold W"(0) of class
Cr tangent to the unstable subspace E' of (2) at 0; furthermore, W'(0),
W'(0) and W' (0) are invariant under the flow d,, of (1).

Example 3. Consider the system

xl = x21

±2 = -X2-

The stable subspace E' of the linearized system at the origin is the x2-axis
and the center subspace E` is the xl-axis. This system is easily solved and
the phase portrait is shown in Figure 5.

Figure 5. The phase portrait for the system in Example 3.

Any solution curve of the system in Example 3 to the left of the ori-
gin patched together with the positive xl-axis at the origin gives a one-
dimensional center manifold of class C°° which is tangent to E° at the ori-
gin. This shows that, in general, the center manifold W°(0) is not unique;
however, in Example 3 there is only one analytic center manifold, namely,
the x1-axis.

In Section 2.12, we give a method for approximating the shape of the
analytic center manifold near a nonhyperbolic critical point and show that
approximating the shape of the center manifold W°(0) near the nonhyper-
bolic critical point at the origin is essential in determining the flow on the
center manifold; cf. Example 1 in Section 2.12. In Section 2.13, we present
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a method for simplifying the system of differential equations determining
the flow on the center manifold.

PROBLEM SET 7

1. Write the system

in the form

where

it = xl + 6x2 + X1X2
i2 = 4x1 + 3x2 - xl

y=By+G(y)

0
_ ['\'B

A2

Al < 0, A2 > 0 and G(y) is quadratic in yj and y2.

2. Find the first three successive approximations u(1) (t, a), u(2) (t, a) and
U(3) (t, a) for

it = -x1
i2 =x2+xi

and use u3(t,a) to approximate S near the origin. Also approximate
the unstable manifold U near the origin for this system. Note that
u(2)(t, a) = u(3)(t, a) and therefore 0+1) (t, a) = u(') (t, a) for j > 2.
Thus u(>) (t, a) - u(t, a) = u2(t, a) which gives the exact function
defining S.

3. Solve the system in Problem 2 and show that S and U are given by

x2
S: x 12

3

and

U: x1 = 0.

Sketch S, U, E' and E".

4. Find the first four successive approximations u(1)(t, a), u(2) (t, a),
u3(t,a), and u(4) (t,a) for the system

it = -x1
i2=-x2+xi
i3 = X3 + X.

Show that u(3) (t, a) = u(4) (t, a) = and hence u(t, a) = u(3) (t, a).
Find S and U for this problem.
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5. Solve the above system and show that

S: X3 = -3x2 6x1x2 30x

and

U: x1=x2=0.
Note that these formulas actually determine the global stable and
unstable manifolds W"(0) and WI(0) respectively.

6. Let E be an open subset of R' containing the origin. Use the fact that
if F E C'(E) then for all x,y E N6(0) C E there exists a C E N6(0)
such that

IF(x) - F(y)I <_ IIDF(C)II Ix - yI
(cf. Theorem 5.19 and the proof of Theorem 9.19 in [RI) to prove
that if F E C'(E) and F(O) = DF(O) = 0 then given any e > 0 there
exists a b > 0 such that for all x, y E N6(0) we have

IF(x) - F(Y)I < .Ix - yI.

7. Show that the unit circle

C=S1={xER2Ix2+y2=1}

is an orientable, one-dimensional, differentiable manifold; i.e., find an
orientation-preserving atlas (U1, h1), ... , (U4, h4) for C.

8. Show that the unit two-dimensional sphere

S2={xER3Ix2+y2+z2=1}

is an orientable, two-dimensional, differentiable manifold. Do this us-
ing the following orientation-preserving atlas:

U1 = {xES2Iz>0},U2={xES2Iz<O},U3={xES2Iy>O},
U4={xES2Iy<0},US={xES2Ix>0},U6={xES2Ix<0},

hi(x,y,z) = (x,y),hj'(x,y) = (x,y, 1 - x2 - y2)

h2(x,y,z) = (y,x),h21(y,x) = (x, y, - 1 - x2 - y2)

h3(x,y,z) = (z,x),hsl(z,x) = (x, 1 - -x2- z2,z)

h4 (x, y, z) = (x, z), h41(x, z) = (x, - 1 - x2 - z2, z)

hs(x,y,z) _ (y,z),he1(y,z) _ ( 1 - y2 - z2,y,z)

h6(x, y, z) _ (z, y), hs 1(z, y) _ (- 1 yy2 _ z2, y, z)



2.8. The Hartman-Grobman Theorem 119

To show this, compute hi o h., 1(x), Dhi o hh-1(x), and show that
detDhi o h.-1 (x) > 0 for all x E h,(Ui n U;) where Ui n Uj # 0.
Note that you only need to do this for j > i, U1 n U2 = U3 n U4 =
U5 n U6 = 0, and that the atlas has been chosen to preserve outward
normals on S2. Hint: Start by showing that

h1 o h3 1(z, x) = (x, 1 xx2 - z2),

Dh1 o h3-1 (z, x)
0

x
171-77-77-7 71-77-77

det Dh1 o h31(z, x) = z > 0-x -z
forall(z,x)Eh3(U1nU3)={(z,x)ER2Ix2+z2<1,z>0}.

2.8 The Hartman-Grobman Theorem

The Hartman-Grobman Theorem is another very important result in the
local qualitative theory of ordinary differential equations. The theorem
shows that near a hyperbolic equilibrium point xo, the nonlinear system

* = f(x)

has the same qualitative structure as the linear system

* = Ax

(1)

(2)

with A = Df(xo). Throughout this section we shall assume that the equi-
librium point xo has been translated to the origin.

Definition 1. Two autonomous systems of differential equations such as
(1) and (2) are said to be topologically equivalent in a neighborhood of the
origin or to have the same qualitative structure near the origin if there is
a homeomorphism H mapping an open set U containing the origin onto
an open set V containing the origin which maps trajectories of (1) in U
onto trajectories of (2) in V and preserves their orientation by time in the
sense that if a trajectory is directed from x1 to x2 in U, then its image is
directed from H(x1) to H(x2) in V. If the homeomorphism H preserves
the parameterization by time, then the systems (1) and (2) are said to be
topologically conjugate in a neighborhood of the origin.

Before stating the Hartman-Grobman Theorem, we consider a simple
example of two topologically conjugate linear systems.
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Example 1. Consider the linear systems is = Ax and Sr = By with

A -
3
1 -3

-1]
and B = 2 0

0 -4

Let H(x) = Rx where the matrix

R
[i

1

1J
and R-1

= f [-1
T

Then B = RAR-1 and letting y = H(x) = Rx or x = R-'y gives us

Sr = RAR-ly = By.

Thus, if x(t) = eAtxo is the solution of the first system through xo, then
y(t) = H(x(t)) = Rx(t) = ReAtxo = eBtRxo is the solution of the second
system through Rxo; i.e., H maps trajectories of the first system onto
trajectories of the second system and it preserves the parameterization
since

HeAt = eBtH.

The mapping H(x) = Rx is simply a rotation through 45° and it is clearly
a homeomorphism. The phase portraits of these two systems are shown in
Figure 1.

12

H

Figure 1

Y2

Theorem (The Hartman-Crobman Theorem). Let E be an open subset
of R^ containing the origin, let f E C1(E), and let 4t be the flow of the
nonlinear system (1). Suppose that f(0) = 0 and that the matrix A = Df(0)
has no eigenvalue with zero real part. Then there exists a homeomorphism
H of an open set U containing the origin onto an open set V containing
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the origin such that for each xo E U, there is an open interval Io C R
containing zero such that for all xo E U and t E to

H o 0t(xo) = e AtH(xo);

i.e., H maps trajectories of (1) near the origin onto trajectories of (2) near
the origin and preserves the parameterization by time.

Outline of the Proof. Consider the nonlinear system (1) with f E C'(E),
f(O) = 0 and A = Df(O).

1. Suppose that the matrix A is written in the form

A=IP O1

0 Q]

where the eigenvalues of P have negative real part and the eigenvalues of
Q have positive real part.

2. Let 0t be the flow of the nonlinear system (1) and write the solution

x(t, xo) = Ot(xo) =
[Y(tYOZO)]
z(t,Yo, zo)

xo =
[Yol E R°
zo ,

Yo E E3, the stable subspace of A and zo E E", the unstable subspace of
A.

3. Define the functions

Y(Yo, zo) = Y(l, yo, zo) - epyo

and

Z(Yo, zo) = z(1, yo, zo) - e4zo.

Then Y(0) =,2(0) = DY(0) = D2(0) = 0. And since f E C'(E),
Y(yo, zo) and Z(yo, zo) are continuously differentiable. Thus,

IIDY(Yo,zo)II < a

and

IlDZ(Yo,zo)II 5 a
on the compact set IyoI2 +IzoI2 < so. The constant a can be taken as
small as we like by choosing so sufficiently small. We let Y(yo,zo) and
Z(yo, zo) be smooth functions which are equal to Y(yo, zo) and 2(yo, zo)
for IyoI2+IzoI2 < (so/2)2 and zero for IyoI2+IzoI2 ? so. Then by the mean
value theorem

IY(Yo, zo)I 5 a IYoI2 +IzoI2 5 a(IYol + Izol)
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and

IZ(Yo, zo)I <_ a IYo +I+ zo12 < a(IYoI + Izol)

for all (yo, zo) E R'. We next let B = e" and C = eQ. Then assuming
that we have carried out the normalization in Problem 7 in Section 1.8 of
Chapter 1, cf. Hartman [H], p. 233, we have

b=IIBII <1 and c=IIC-'II < 1.

4. For

define the transformations

X=[Z1ER'

L(Y, z) = [Cz,

and

T' Y, z) _
[By + Y(y, z)1
Cz + Z(y, Z) J '

i.e., L(x) = eAx and locally T(x) = 01(x).

Lemma. There exists a homeomorphism H of an open set U containing
the origin onto an open set V containing the origin such that

HoT=LoH.

We establish this lemma using the method of successive approximations.
For x E R', let

H(x) =
[T(Y, zz)]

Then H o T = L o H is equivalent to the pair of equations

B4'(Y,z) = 4(BY+Y(Y,z),Cz+Z(Y,z)) (3)
C`I'(Y,z) = 'I'(BY+Y(Y,z),Cz+Z(Y,z))-

First of all, define the successive approximations for the second equation
by

'yo(Y, z) = z (4)

`pk+1(Y, z) = C-1T k(BY + Y(Y, z), Cz + Z(y, z)).

It then follows b y an easy induction argument that f o r k = 0,1, 2, ... , the
'Irk(y,z) are continuous and satisfy WYk(y,z) = z for IYI + Izi ? 2so. We
next prove by induction that for j = 1, 2....

I'I'i(Y, z) - Wi-1(Y, z)I <_ Mr'(IYI + IzD6 (5)
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where r = c[2 max(a, b, c)]6 with 6 E (0,1) chosen sufficiently small so that
r < 1 (which is possible since c < 1) and M = ac(2so)1-6/r. First of all for

j=1

I'I'1(Y,z) - 4'o(Y,z)I = C-'`I'o(BY+Y(Y,z),Cz+ Z(y, z)) - zI
= IC-' (Cz + Z(Y, z)) - zI

= IC-'Z(Y,z)I <- IIC-'IIIZ(Y,z)I
< ca(IYI + Izi) <- Mr(IYI + IZU6

since Z(y, z) = 0 for IyI + IzI > 2so. And then assuming that the induction
hypothesis holds for j = 1, ... , k we have

I`I'k+1(Y, z) - 'I'k(Y, z) J = I C-''I'k(BY +Y(Y, z), Cz + Z(Y, z))
-C-"I'k-1(BY+Y(Y,z),Cz+Z(Y,z))I
IIC-' III`I'k(") - I'k-1(" )I

< cMrk[I By + Y(y, z)I + ICz + Z(y, z)I]6

< cMr' [bly + 2a(IYI + IzI) + cIzl]6

< cMrk[2 max(a, b, c)]6(IYI + IZU6

= Mrk+'(IYI + IZU6

Thus, just as in the proof of the fundamental theorem in Section 2.2 and the
stable manifold theorem in Section 2.7, %I'k(y, z) is a Cauchy sequence of
continuous functions which converges uniformly as k -+ oo to a continuous
function 4 1 (y, z). Also, ' (y, z) = z for IyI + IzI > 2so. Taking limits in (4)
shows that %P(y, z) is a solution of the second equation in (3).

The first equation in (3) can be written as

B-'4'(Y,z) = 4i(B-'y +Y1(Y,z),C-'z+Z1(Y,z)) (6)

where the functions Y1 and Z1 are defined by the inverse of T (which
exists if the constant a is sufficiently small, i.e., if so is sufficiently small)
as follows:

T -' (Y, z
B-'Y + Y1(Y, z)l

= [C-'z+Z1(Y,z)J

Then equation (6) can be solved for 4'(y, z) by the method of successive
approximations exactly as above with 4io(y, z) = y since b = IIBII < 1. We
therefore obtain the continuous map

(Y,z
H(y,z) = 14,

(Y,Z)

And it follows as on pp. 248-249 in Hartman [H] that H is a homeomor-
phism of R' onto R".
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5. We now let Ho be the homeomorphism defined above and let L` and
T` be the one-parameter families of transformations defined by

Lt(xo) = eA`xo and Tt(xo) = 0t(xo)

Define
r1

H = J L-'HoT' ds.
0

It then follows using the above lemma that there exists a neighborhood of
the origin for which

`H = L`-'HpT'-` dsT`
L

L

ri-c

L-'HoT' dsT`

r ro

j
= I J LHoT' ds + L'HOT' ds]

111

fL-8HoT' dsT` = HT`

since by the above lemma Ho = L-1HoT which implies that

f
0 0

r L-'HoT' ds = J L-'-1HoT'+1 ds
e t

L-'HoT' ds.
1-e

Thus, H o T' = L`H or equivalently

H o ¢t(xo) = eAtH(xo)

and it can be shown as on pp. 250-251 of Hartman [H] that H is a homeo-
morphism on R". This completes the outline of the proof of the Hartman-
Grobman Theorem.

We now illustrate how the successive approximations, defined by (4), can
be used to obtain the homeomorphism H(x) = z), W(y, z)]T. In the
following example, the successive approximations actually converge to a
global homeomorphism which maps solutions of (1) onto solutions of (2)
for all xo E R2 and for all t E R. Of course, this does not happen in general;
cf. Problem 4.

Example 2. Consider the system

l=-y
z=z+y2.
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The solution with y(O) = yo and z(O) = zo is given by

y(t) = yoe-t
0z(t) = zoet + (et - e-2t).

Thus in the context of the above proof B = e-1, C = e, Y(yo, zo) = 0 and

e3-1
Z(yo, zo) = kya with k =

3e2

Therefore, solving

C,P (y, z) = ID (By + Y(y, z), Cz + Z(y, z))

is equivalent to solving

e'I (y, z) ='(e-'y, ez + ky2).

The successive approximations defined by (4) are given by

'I'o(y, z) = z
'I1t(y,z)=z+ke-'y2

W2(y,z) = z + ke-1(1 + e-3)y2

q13(y,z) = z + ke-1(1 + e-3 + e-6)y2

(7)

41 m(y, z) = z + ke-1(1 + e-3 +... + (e-3)m-1]y2.

The serious student should verify these calculations. Thus, as m 00

ti'm(Y,z) -''I'(y,z) =z+ 3

uniformly for (y, z) E R2. The function ft, z) satisfies equation (7). Sim-
ilarly, the function 4)(y, z) is found by solving

B- 1'(y, z) = 4,(B-1y + Yl (y, z), C-1z + Z, (y, z))

where Yj (y, z) = 0 and Z, (y, z) = -eky2. This leads to

4(y, z) = y

for all (y, z) E R2.
Thus, the homeomorphism Ho is given by

Ho(y,z)
y° [Z+2]

and

H '(y,z)
y= z_ iyz .

3
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For L(y, z) = eA(y, z)T = (e-l y, ez)T and T(y, z) = 01(y, z) = (e-'y, ez +
ky2)T, it follows that Ho o T = L o Ho as in the above lemma. The home-
omorphism H is then given by

ri
H=J L-'HOT'ds

0

where

and

Thus,

Lt(y,z) =
e ty

Let zI

e-:

TL(y,z) = etz+ 3 (et- a-2t)

H(y, z) =

and
e-ty

LtH y,z)= , =HoTt(y,z).
( etz + et s

The student should verify these computations. The phase portraits for
the nonlinear system (1) and the linear system (2) of this example are
shown in Figure 2. The stable subspace E' = {(y,z) E R2 I z = 0} gets
mapped onto the stable manifold W'(0) = {(y, z) E R2 I z = -y2/3} by
the homeomorphism H-'; and the unstable subspace E" _ {(y, z) E R2
y = 0} gets mapped onto the unstable manifold W°(0) _ {(y, z) E R2
y = 0} by H-'. Trajectories, such as z = 1/y, of the linear system get
mapped onto trajectories, such as z = u - Z, by H-' and H preserves the
parameterization by time.

Y V

Figure 2
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The above proof of the Hartman-Grobman Theorem is due to P. Hart-
man; cf. [H], pp. 244-251. It was proved independently by P. Hartman [12]
and the Russian mathematician D.M. Grobman [9] in 1959. This theorem
with f, H and H-1 analytic was proved by H. Poincar6 in 1879, cf. [28],
under the assumptions that the elementary divisors of A (cf. [Cu], p. 219)
are simple and that the eigenvalues al, ... , a of A lie in a half plane in C
and satisfy

'\j T ml,\l + ... + m"a" (8)

for all sets of non-negative integers (m1 i ... , m") satisfying m1 +m" >
1. An analogous result for smooth f, H and H-1 was established by
S. Sternberg [33] in 1957. And for f of class C2, Hartman [13] in 1960
proved that there exists a continuously differentiable map H with a contin-
uously differentiable inverse H-1 (i.e., a Cl-difeomorphism) satisfying the
conclusions of the above theorem even without the Diophantine conditions
(8) on Aj:

Theorem (Hartman). Let E be an open subset of R" containing the point
xo, let f E C2(E), and let Ot be the flow of the nonlinear system (1).
Suppose that f(xo) = 0 and that all of the eigenvalues k i ... , An of the
matrix A = Df(xo) have negative (or positive) real part. Then there exists
a C1-difeomorphism H of a neighborhood U of xo onto an open set V
containing the origin such that for each x E U there is an open interval
1(x) C R containing zero such that for all x E U and t E I(x)

H o 0t(x) = eAtH(x) (9)

The student should compare this theorem and the Hartman-Grobman
Theorem in the context of Example 5 in Section 2.10 of this chapter. Also, it
should be noted that assuming the existence of higher derivatives off does
not imply the existence of higher derivatives of H without Diophantine-
type conditions on Aj. In fact, Sternberg showed that in general even if f
is analytic, there does not exist a mapping H with H and H-1 of class C2
satisfying (9); cf. Problem 5.

PROBLEM SET 8

1. Solve the system

y1 = -y1
y2=-112+z2
z=z

and show that the successive approximations 4 k 41 and 'k --+ 41
ask -goo for allx=(yl,y2iz)ER3.Define Ho=(4,4)Tanduse
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this homeomorphism to find

f1
H = J L-'HOT' ds.

0

Use the homeomorphism H to find the stable and unstable manifolds

W'(0) = H-1(E') and W"(0) = H-l(E")

for this system.
Hint: You should find

H(yl, y2, z) = (yl, y2 - z2/3, z)T
W'(0)={xER3Iz=0}

and

W°(0) = {x E R3 I yl = 0, y2 = z2/3}.

2. Same thing for

y=-y
zl = zl
Z2=z2+y2+yz1

3. Same thing for

yl = -yl
y2=-y2+yi
z=z+yl

Hint: Here the successive approximations for 4) as given by (3) con-
verge globally.

4. Show that the successive approximations for 4i as given by (3) or (6)
do not converge globally for the system

yl = -yl
y2=-y2+ylz

Z.

5. Show that the successive approximations (4) for H(z) = %11(z) do not
converge globally for the analytic system

zl = 2z1

Z2 = 4z2 + Z2 .
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Furthermore, show that if H(z) is any C2-function which satisfies
(9), then the Jacobian J(z) = det DH(z) vanishes at z = 0. This in
turn implies that the inverse H-1, if it exists, is not differentiable at
z = 0. (Why?)
Hint: First solve this system to obtain z(t) = Ot(zo). Then show
that if H = (Hl, H2)T satisfies the above equation, (9), for t = 1 we
get

CH(z) = H(Cz + e2e4zi )
where C = e'1, A = diag(2, 4), e2 = (0, 1)T and Inc = 1. Differentiate
the second component of this equation partially with respect to z1 to
get

a
22 (0, 0) = 0.

A second partial differentiation with respect to zl then shows that

OH2

0Z2
(0, 0) = 0;

i.e. the Jacobian J(0) = det DH(0) = 0.

2.9 Stability and Liapunov Functions

In this section we discuss the stability of the equilibrium points of the
nonlinear system

x=f(x). (1)

The stability of any hyperbolic equilibrium point xo of (1) is determined
by the signs of the real parts of the eigenvalues a3 of the matrix Df(xo).
A hyperbolic equilibrium point xo is asymptotically stable if Re(A,) < 0
for j = 1, ... , n; i.e., if xo is a sink. And a hyperbolic equilibrium point xo
is unstable if it is either a source or a saddle. The stability of nonhyper-
bolic equilibrium points is typically more difficult to determine. A method,
due to Liapunov, that is very useful for deciding the stability of nonhyper-
bolic equilibrium points is presented in this section. Additional methods
are presented in Sections 2.11-2.13.

Definition 1. Let ¢t denote the flow of the differential equation (1) de-
fined for all t E R. An equilibrium point xo of (1) is stable if for all e > 0
there exists a 6 > 0 such that for all x E No(xo) and t > 0 we have

4t(x) E NE(xo)

The equilibrium point xo is unstable if it is not stable. And xo is asymp-
totically stable if it is stable and if there exists a 6 > 0 such that for all
x E Nb(xo) we have

lim ¢t(x) = xo.too
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Note that the above limit being satisfied for all x in some neighborhood of
xo does not imply that xo is stable; cf. Problem 7 at the end of Section 3.7.

It can be seen from the phase portraits in Section 1.5 of Chapter 1 that
a stable node or focus of a linear system in R2 is an asymptotically stable
equilibrium point; an unstable node or focus or a saddle of a linear system
in R2 is an unstable equilibrium point; and a center of a linear system in
R2 is a stable equilibrium point which is not asymptotically stable.

It follows from the Stable Manifold Theorem and the Hartman-Grobman
Theorem that any sink of (1) is asymptotically stable and any source or
saddle of (1) is unstable. Hence, any hyperbolic equilibrium point of (1)
is either asymptotically stable or unstable. The corollary in Section 2.7
provides even more information concerning the local behavior of solutions
near a sink:

Theorem 1. If xo is a sink of the nonlinear system (1) and R.e(a,) <
-a < 0 for all of the eigenvalues Aj of the matrix Df(xo), then given
e > 0 there exists a 6 > 0 such that for all x E N6(xo), the flow 4t(x) of
(1) satisfies

I0t(x) - xoI < ee-at

for allt>0.

Since hyperbolic equilibrium points are either asymptotically stable or
unstable, the only time that an equilibrium point xo of (1) can be stable
but not asymptotically stable is when Df(xo) has a zero eigenvalue or a
pair of complex-conjugate, pure-imaginary eigenvalues A = fib. It follows
from the next theorem, proved in [H/S], that all other eigenvalues A. of
Df(xo) must satisfy Re(A,) < 0 if xo is stable.

Theorem 2. If xo is a stable equilibrium point of (1), no eigenvalue of
Df(xo) has positive real part.

We see that stable equilibrium points which are not asymptotically stable
can only occur at nonhyperbolic equilibrium points. But the question as to
whether a nonhyperbolic equilibrium point is stable, asymptotically stable
or unstable is a delicate question.

The following method, due to Liapunov (in his 1892 doctoral thesis), is
very useful in answering this question.

Definition 2. If f E CI (E), V E Cl (E) and 0t is the flow of the differen-
tial equation (1), then for x E E the derivative of the function V(x) along
the solution 4t(x)

V(x) = dtV(Ot(x))It=o = DV(x)f(x).
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The last equality follows from the chain rule. If V(x) is negative in E
then V (x) decreases along the solution 4t(xo) through xo E E at t = 0.
Furthermore, in R2, if V(x) < 0 with equality only at x = 0, then for small
positive C, the family of curves V(x) = C constitutes a family of closed
curves enclosing the origin and the trajectories of (1) cross these curves
from their exterior to their interior with increasing t; i.e., the origin of (1)
is asymptotically stable. A function V: R" - R satisfying the hypotheses
of the next theorem is called a Liapunov function.

Theorem 3. Let E be an open subset of R" containing xo. Suppose that
f E C'(E) and that f(xo) = 0. Suppose further that there exists a real
valued function V E C'(E) satisfying V(xo) = 0 and V(x) > 0 if x 96 xo.
Then (a) if V (x) < 0 for all x E E, xo is stable; (b) if V (x) < 0 for
all x E E - {xo}, xo is asymptotically stable; (c) if V(x) > 0 for all
x E E N {xo}, xo is unstable.

Proof. Without loss of generality, we shall assume that the equilibrium
point xo = 0. (a) Choose e > 0 sufficiently small that N,(0) C E and let
mE be the minimum of the continuous function V (x) on the compact set

SE={XER'IIxI=E}.

Then since V(x) > 0 for x 34 0, it follows that mE > 0. Since V(x) is
continuous and V(0) = 0, it follows that there exists a 6 > 0 such that
lxi < 6 implies that V(x) < me. Since V(x) < 0 for x E E, it follows that
V(x) is decreasing along trajectories of (1). Thus, if 46t is the flow of the
differential equation (1), it follows that for all xo E N6(0) and t > 0 we
have

V(Ot(xo)) < V(xp) < me.

Now suppose that for Jxoi < 6 there is a tl > 0 such that 10t,(xo)l = e;
i.e., such that Ot, (xo) E S. Then since mE is the minimum of V(x) on Sf,
this would imply that

V (ct, (xo)) > M.
which contradicts the above inequality. Thus for Ixol < 6 and t > 0 it
follows that i4t(xo)l < e; i.e., 0 is a stable equilibrium point.

(b) Suppose that V(x) < 0 for all x E E. Then V(x) is strictly decreas-
ing along trajectories of (1). Let 't be the flow of (1) and let xo E N6(0),
the neighborhood defined in part (a). Then, by part (a), if lxoi < 6,
Ot(xo) C N(0) for all t > 0. Let {tk} be any sequence with tk oo.
Then since NE (0) is compact, there is a subsequence of {Ot,, (xo)} that con-
verges to a point in NE(0). But for any subsequence {t,,} of {tk} such that
{¢t, (xo)} converges, we show below that the limit is zero. It then follows
that fit,, (xo) -, 0 for any sequence tk -+ oo and therefore that Qit(xo) - 0
as t -+ oo; i.e., that 0 is asymptotically stable. It remains to show that if
.Ot (xo) - yo, then yo = 0. Since V(x) is strictly decreasing along tra-
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jectories of (1) and since V(Otn(xo)) -+ V(yo) by the continuity of V, it
follows that

V(Ot(xo)) > V(Yo)
for all t > 0. But if yo # 0, then for s > 0 we have V(¢9(yo)) < V(yo)
and, by continuity, it follows that for all y sufficiently close to yo we have
V(0e(y)) < V(yo) for s > 0. But then for y = and n sufficiently
large, we have

V*+t (xo)) < V (YO)
which contradicts the above inequality. Therefore yo = 0 and it follows
that 0 is asymptotically stable.

(c) Let M be the maximum of the continuous function V(x) on the
compact set NE(0). Since V(x) > 0, V(x) is strictly increasing along tra-
jectories of (1). Thus, if 0t is the flow of (1), then for any 6 > 0 and
xoEN6(0)"{0} we have

V(Ot(xo)) > V(xo) > 0

for all t > 0. And since V(x) is positive definite, this last statement implies
that

inf V(O1(xo)) = m > 0.
t>O

Thus,

for all t > 0. Therefore,

V(4t(xo)) - V(xo) > rn,t.

V(Ot(xo)) > mt > it!

for t sufficiently large; i.e., Ot(xo) lies outside the closed set NE(0). Hence,
0 is unstable.

Remark. If V(x) = 0 for all x E E then the trajectories of (1) lie on the
surfaces in R" (or curves in R2) defined by

V (X) = c.

Example 1. Consider the system
3it = -x2

3x2 = x1.

The origin is a nonhyperbolic equilibrium point of this system and

V (X) = xl + X4

is a Liapunov function for this system. In fact

f7 (x) = 4x311 + 4x212 = 0.
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Hence the solution curves lie on the closed curves

xi + x2 = c2

which encircle the origin. The origin is thus a stable equilibrium point of
this system which is not asymptotically stable. Note that Df(0) = 0 for
this example; i.e., Df(O) has two zero eigenvalues.

Example 2. Consider the system

xl = -2x2 + X2X3
x2=X1-X X3
x3 = X1X2.

The origin is an equilibrium point for this system and

0 -2 0
Df (0) = 1 0 0

0 0 0

Thus Df(0) has eigenvalues Al = 0, A2,3 = ±2i; i.e., x = 0 is a nonhyper-
bolic equilibrium point. So we use Liapunov's method. But how do we find
a suitable Liapunov function? A function of the form

V(X) = C1X1 2 + C2X2 + C3X3 2

with positive constants c1, c2 and c3 is usually worth a try, at least when
the system contains some linear terms. Computing V(x) = DV(x)f(x), we
find

2
V(X) = (C1 - C2 +C3)XIX2X3 + (-2c1 +C2)xlx2.

Hence if c2 = 2c1 and c3 = cl > 0 we have V(x) > 0 for x 96 0 and
V(x) = 0 for all x E R3 and therefore by Theorem 3, x = 0 is stable.
Furthermore, choosing cl = c3 = 1 and c2 = 2, we see that the trajectories
of this system lie on the ellipsoids xi + 2x2 + x3 = c2.

We commented earlier that all sinks are asymptotically stable. However,
as the next example shows, not all asymptotically stable equilibrium points
are sinks. (Of course, a hyperbolic equilibrium point is asymptotically stable
if it is a sink.)

Example 3. Consider the following modification of the system in Exam-
ple 2:

21 = -2x2 + X2X3 - xi
i2=x1-X1X3-x2
x3=XIX2-X3.
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The Liapunov function of Example 2,

V (X) = x
1

+ 2x2 + x3,

satisfies V(x) > 0 and

V(x) = -2(x4 + 2x4 + x3) < 0

for x 54 0. Therefore, by Theorem 3, the origin is asymptotically stable,
but it is not a sink since the eigenvalues Al = 0, 1\2,3 = ±2i do not have
negative real part.

Example 4. Consider the second-order differential equation

x + q(x) = 0

where the continuous function q(x) satisfies xq(x) > 0 for x 0 0. This
differential equation can be written as the system

i1 = x2

x2 = -q(xl)

where x1 = x. The total energy of the system

V (X)
= 2 + f

s,
q(s) ds

0

(which is the sum of the kinetic energy Zit and the potential energy) serves
as a Liapunov function for this system.

V(x) = q(xl)x2 +x2[-q(x1)] = 0.

The solution curves are given by V(x) = c; i.e., the energy is constant on
the solution curves or trajectories of this system; and the origin is a stable
equilibrium point.

PROBLEM SET 9

1. Discuss the stability of the equilibrium points of the systems in Prob-
lem 1 of Problem Set 6.

2. Determine the stability of the equilibrium points of the system (1)
with f (x) given by

2 z

(a)
rxI - x2

L 2x2

b
x2-xl+2

() 12x2 - 2x1x21
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4x1 - 2x2 + 4
(c) 21x2

3. Use the Liapunov function V (x) = xi + x2 + x3 to show that the
origin is an asymptotically stable equilibrium point of the system

X2 - xlx2 + x3 - X3
xl+23-x2

2 2 5-21x3 - 23x1 - 22x3 - x3

Show that the trajectories of the linearized system x = Df(O)x for
this problem lie on circles in planes parallel to the x1, x2 plane; hence,
the origin is stable, but not asymptotically stable for the linearized
system.

4. It was shown in Section 1.5 of Chapter 1 that the origin is a center
for the linear system

_ 10 -1
x

1 0
X.

The addition of nonlinear terms to the right-hand side of this linear
system changes the stability of the origin. Use the Liapunov function
V (X) = 1 + x2 to establish the following results:

(a) The origin is an asymptotically stable equilibrium point of

X =
[0 -1

X +
r-x3 - 21x2)

0 3-x2 - 222x1

(b) The origin is an unstable equilibrium point of

3 2

X -
[0 -lJ x + f 21 + 2122]

1 0 1x2 + 2221

(c) The origin is a stable equilibrium point which is not asymptoti-
cally stable for

X =

[0

-1]
x +

[-XIX2
1 0

X2

]

What are the solution curves in this case?

5. Use appropriate Liapunov functions to determine the stability of the
equilibrium points of the following systems:

(a)

xl2

(b) xl

x2

_ -XI + x2 + 21x2
2 3=xl-x2-xl-x2

=x1-3x2+xi
= -xl + x2 - x2
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(c) xl = -xl - 2x2 + xlx2
x2 = 3x1 - 3x2 + x2

(d)
xl =-4x2+x1
x2 = 4x1 + x2

6. Let A(t) be a continuous real-valued square matrix. Show that every
solution of the nonautonomous linear system

is = A(t)x

satisfies

IIA(s)II ds.Ix(t)I <- Ix(O)I expf
0

And then show that if f ;O IIA(s)II ds < oo, then every solution of this
system has a finite limit as t approaches infinity.

7. Show that the second-order differential equation

x + f(x)x + g(x) = 0

can be written as the Lienard system

xl = x2 - F(xl)

x2 = -9(x1)

where

Let

F(xl) =
Jai

f (s) ds.
0

:,
G(xl) = f g(s) ds

0

and suppose that G(x) > 0 and g(x)F(x) > 0 (or g(x)F(x) < 0)
in a deleted neighborhood of the origin. Show that the origin is an
asymptotically stable equilibrium point (or an unstable equilibrium
point) of this system.

8. Apply the previous results to the van der Pol equation

x + s(x2 - 1)x + x = 0.

2.10 Saddles, Nodes, Foci and Centers

In Section 1.5 of Chapter 1, a linear system

x=Ax (1)
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where x E R2 was said to have a saddle, node, focus or center at the origin
if its phase portrait was linearly equivalent to one of the phase portraits in
Figures 1-4 in Section 1.5 of Chapter 1 respectively; i.e., if there exists a
nonsingular linear transformation which reduces the matrix A to one of the
canonical matrices B in Cases I-IV of Section 1.5 in Chapter 1 respectively.
For example, the linear system (1) of the example in Section 2.8 of this
chapter has a saddle at the origin.

In Section 2.6, a nonlinear system

is = f(x) (2)

was said to have a saddle, a sink or a source at a hyperbolic equilibrium
point xo if the linear part of f at xo had eigenvalues with both positive and
negative real parts, only had eigenvalues with negative real parts, or only
had eigenvalues with positive real parts, respectively.

In this section, we define the concept of a topological saddle for the
nonlinear system (2) with x E R2 and show that if xo is a hyperbolic
equilibrium point of (2) then it is a topological saddle if and only if it
is a saddle of (2); i.e., a hyperbolic equilibrium point xo is a topological
saddle for (2) if and only if the origin is a saddle for (1) with A = Df(xo).
We discuss topological saddles for nonhyperbolic equilibrium points of (2)
with x E R2 in the next section. We also refine the classification of sinks of
the nonlinear system (2) into stable nodes and foci and show that, under
slightly stronger hypotheses on the function f, i.e., stronger than f E C' (E),
a hyperbolic critical point xo is a stable node or focus for the nonlinear
system (2) if and only if it is respectively a stable node or focus for the
linear system (1) with A = Df(xo). Similarly, a source of (2) is either an
unstable node or focus of (2) as defined below. Finally, we define centers and
center-foci for the nonlinear system (2) and show that, under the addition
of nonlinear terms, a center of the linear system (1) may become either a
center, a center-focus, or a stable or unstable focus of (2).

Before defining these various types of equilibrium points for planar sys-
tems (2), it is convenient to introduce polar coordinates (r, 0) and to rewrite
the system (2) in polar coordinates. In this section we let x = (x, y)T,
f1(x) = P(x,y) and f2(x) = Q(x,y). The nonlinear system (2) can then
be written as

± = P(x, y)
y = Q(x, Y).

If we let r2 = x2 + y2 and 0 = tan-1(y/x), then we have

rr=xa+yy

(3)

and

r20=xy-yi.
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It follows that for r > 0, the nonlinear system (3) can be written in terms
of polar coordinates as

r = P(r cos 0, r sin 0) cos 0 + Q(r cos 0, r sin 9) sin 9

r9 = Q(r cos 0, r sin 0) cos 0 - P(r cos 9, r sin 9) sin e

or as

(4)

dr
- F(,, 0)

= r[P(r cos 9, r sin 0) cos 0 + Q(r cos 9, r sin 0) sin 0] (5)

d9 ' Q(r cos 9, r sin 9) cos 9 - P(r cos 9, r sin 9) sin 9

Writing the system of differential equations (3) in polar coordinates will
often reveal the nature of the equilibrium point or critical point at the
origin. This is illustrated by the next three examples; cf. Problem 4 in
Problem Set 9.

Example 1. Write the system

i= -y - xy
y=x+x2

in polar coordinates. For r > 0 we have

r- xi+yy = -xy-x2y+xy+x2y =0
r r

and

9- xy - yi = x2+x3+y2+xy2 = 1+x>0
r2 r2

for x > -1. Thus, along any trajectory of this system in the half plane
x > -1, r(t) is constant and 9(t) increases without bound as t -+ oo. That
is, the phase portrait in a neighborhood of the origin is equivalent to the
phase portrait in Figure 4 of Section 1.5 in Chapter 1 and the origin is
called a center for this nonlinear system.

Example 2. Consider the system

-y-x3-xy2
x- y3-x2y

In polar coordinates, for r > 0, we have

t=-r3
and

9=1.
Thus r(t) = ro(1+2rot)-1/2 fort > -1(2ro) and 9(t) = 90 +t. We see that
r(t) -4 0 and 9(t) -' oo as t -' oo and the phase portrait for this system in
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a neighborhood of the origin is qualitatively equivalent to the first figure
in Figure 3 in Section 1.5 of Chapter 1. The origin is called a stable focus
for this nonlinear system.

Example 3. Consider the system

x=-y+x3+xy2
x+y3+x2y

In this case, we have for r > 0

T.=r3

and

9=1.

Thus, r(t) = ro(1- 2rr 2t)-1/2 fort < 1/(2r02) and 0(t) = 00+t. We we that
r(t) -. 0 and l0(t)I -. M as t -. -oo. The phase portrait in a neighborhood
of the origin is qualit lively equivalent to the second figure in Figure 3 in
Section 1.5 of Chapter 1 with the arrows reversed and the origin is called
an unstable focus for this nonlinear system.

We now give precise geometrical definitions for a center, a center-focus,
a stable and unstable focus, a stable and unstable node and a topological
saddle of the nonlinear system (3). We assume that xo E R2 is an isolated
equilibrium point of the nonlinear system (3) which has been translated to
the origin; r(t, ro, 00) and 0(t, ro, 00) will denote the solution of the nonlin-
ear system (4) with r(0) = r0 and 0(0) = 00.

Definition 1. The origin is called a center for the nonlinear system (2)
if there exists a 6 > 0 such that every solution curve of (2) in the deleted
neighborhood N6(0) - {0} is a closed curve with 0 in its interior.

Definition 2. The origin is called a center-focus for (2) if there exists a
sequence of closed solution curves r,, with rn+1 in the interior of I'n such
that I'n - 0 as n -+ oo and such that every trajectory between rn and
1'n+1 spirals toward I'n or I'n+1 as t ±oo.

Definition 3. The origin is called a stable focus for (2) if there exists
a 5 > 0 such that for 0 < ro < 6 and Oo E R, r(t, r0, Oo) -- 0 and
I0(t, ro, 00)I -4 oo as t -+ oo. It is called an unstable focus if r(t, ro, 00) -+ 0
and 10(t, ro, 00)I oo as t -. -oo. Any trajectory of (2) which satisfies
r(t) -- 0 and 10(t) I -- oo as t -- ±oo is said to spiral toward the origin as

Definition 4. The origin is called a stable node for (2) if there exists a
6>0such that for 0<ro<6and 0oER,r(t,ro,00)-.0as t ooand
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lira 0(t, ro, Bo) exists; i.e., each trajectory in a deleted neighborhood of the
t Oo

origin approaches the origin along a well-defined tangent line as t oo.
The origin is called an unstable node if r(t, ro, Oo) 0 as t --+ -oo and

lira 0(t, ro, 00) exists for all ro E (0, b) and 00 E R. The origin is called
00

a proper node for (2) if it is a node and if every ray through the origin is
tangent to some trajectory of (2).

Definition 5. The origin is a (topological) saddle for (2) if there exist two
trajectories r, and r2 which approach 0 as t -+ oo and two trajectories 1,3
and I'4 which approach 0 as t -+ -oo and if there exists a b > 0 such that
all other trajectories which start in the deleted neighborhood of the origin
Nb(0) - {0} leave Nb(0) as t ±oo. The special trajectories r1,. .. , I'4
are called separatrices.

For a (topological) saddle, the stable manifold at the origin s = r1 u
F2 U {0} and the unstable manifold at the origin U = I73 U I'4 U {0}. If the
trajectory Fi approaches the origin along a ray making an angle 0i with the
x-axis where 0i E (-7r, 7r] for i = 1, ... , 4, then 02 = 01 ± 7r and 04 = 03 ± 7r.
This follows by considering the possible directions in which a trajectory
of (2), written in polar form (4), can approach the origin; cf. equation (6)
below. The following theorems, proved in [A-I], are useful in this regard.
The first theorem is due to Bendixson [B].

Theorem 1 (Bendixson).Let E be an open subset of R2 containing the
origin and let If E C1(E). If the origin is an isolated critical point of (2),
then either every neighborhood of the origin contains a closed solution curve
with 0 in its interior or there exists a trajectory approaching 0 as t - ±oo.

Theorem 2. Suppose that P(x, y) and Q(x, y) in (3) are analytic functions
of x and y in some open subset E of R2 containing the origin and suppose
that the Taylor expansions of P and Q about (0, 0) begin with mth-degree
terms y) and Qm(x, y) with m > 1. Then any trajectory of (3) which
approaches the origin as t -+ oo either spirals toward the origin as t -
co or it tends toward the origin in a definite direction 0 = 00 as t -+
oo. If xQm(x, y) - yPm(x, y) is not identically zero, then all directions of
approach, 00, satisfy the equation

cos OoQm (cos Oo, sin 0o) - sin OoPm (cos 0o, sin Oo) = 0.

Furthermore, if one trajectory of (3) spirals toward the origin as t --+ oo
then all trajectories of (3) in a deleted neighborhood of the origin spiral
toward 0 as t -+ oo.

It follows from this theorem that if P and Q begin with first-degree
terms, i.e., if

Pl (x, y) = ax + by



2.10. Saddles, Nodes, Foci and Centers 141

and

Q1(x,y) = cx + dy

with a, b, c and d not all zero, then the only possible directions in which
trajectories can approach the origin are given by directions 0 which satisfy

bsin28+(a-d)sin8cos8-ccos20=0. (6)

For cos 8 # 0 in this equation, i.e., if 6 0 0, this equation is equivalent to

btan28+(a-d)tan0-c=0. (6')

This quadratic has at most two solutions 0 E (-ir/2, it/2J and if 0 = 81 is a
solution then 8 = 81 ± 7r are also solutions. Finding the solutions of (6') is
equivalent to finding the directions determined by the eigenvectors of the
matrix

A= la bJ
Lc d

The next theorem follows immediately from the Stable Manifold Theo-
rem and the Hartman-Grobman Theorem. It establishes that if the origin
is a hyperbolic equilibrium point of the nonlinear system (2), then it is a
(topological) saddle for (2) if and only if it is a saddle for its linearization
at the origin. Furthermore, the directions 8j along which the separatrices
I'j approach the origin are solutions of (6).

Theorem 3. Suppose that E is an open subset of R2 containing the origin
and that f E C1(E). If the origin is a hyperbolic equilibrium point of the
nonlinear system (2), then the origin is a (topological) saddle for (2) if and
only if the origin is a saddle for the linear system (1) with A = Df(O).

Example 4. According to the above theorem, the origin is a (topological)
saddle or saddle for the nonlinear system

i=x+2y +x2_y2

y=3x+4y-2xy

since the determinant of the linear part b = -2; cf. Theorem 1 in Sec-
tion 1.5 of Chapter 1. Furthermore, the directions in which the separatrices
approach the origin as t -i ±oo are given by solutions of (6'):

2tan20-3tan8-3=0.

That is,

8=tan-1

and we have 81 = 65.42°, 03 = -34.46°. At any point on the positive x-axis
near the origin, the vector field defined by this system points upward since
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y > 0 there. This determines the direction of the flow defined by the above
system. The local phase portraits for the linear part of this vector field
as well as for the nonlinear system are shown in Figure 1. The qualitative
behavior in a neighborhood of the origin is the same for either system.

The next example, due to Perron, shows that a node for a linear system
may change to a focus with the addition of nonlinear terms. Note that the

Y

0

r

Figure 1. A saddle for the linear system and a topological saddle for the
nonlinear system of Example 4.

vector field defined in this example f E C1 (R2) but that f % C2(R2); Cf.
Problem 2 at the end of this section. This example shows that the hypoth-
esis f E C' (E) is not strong enough to imply that the phase portrait of a
nonlinear system (2) is diffeomorphic to the phase portrait of its lineariza-
tion. (Hartman's Theorem at the end of Section 2.8 shows that f E C2(E)
is sufficient.)

Example 5. Consider the nonlinear system

i-x- y
In x2 + y2

_ x-y
+ In 7x 2 ++ y2

for x2 + y2 34 0 and define f (0) = 0. In polar coordinates we have

T =-T
9

Fn-r'
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Thus, r(t) = roe-' and 0(t) = eo - ln(1 - t/ Inro). We see that for ro < 1,
r(t) - 0 and 10(t)l -+ oo as t - oo and therefore, according to Definition 4,
the origin is a stable focus for this nonlinear system; however, it is a stable
proper node for the linearized system.

The next theorem, proved in [A-I], shows that under the stronger hy-
pothesis that f E C2(E), i.e., under the hypothesis that P(x, y) and Q(x, y)
have continuous second partials in a neighborhood of the origin, we find
that nodes and foci of a linear system persist under the addition of nonlin-
ear terms. Cf. Hartman's Theorem at the end of Section 2.8.

Theorem 4. Let E be an open subset of R2 containing the origin and let
f E C2(E). Suppose that the origin is a hyperbolic critical point of (2).
Then the origin is a stable (or unstable) node for the nonlinear system (2)
if and only if it is a stable (or unstble) node for the linear system (1) with
A = Df(0). And the origin is a stable (or unstable) focus for the nonlinear
system (2) if and only if it is a stable (or unstable) focus for the linear
system (1) with A = Df(O).

Remark. Under the hypotheses of Theorem 4, it follows that the origin
is a proper node for the nonlinear system (2) if and only if it is a proper
node for the linear system (1) with A = Df(O). And under the weaker
hypothesis that f E C'(E), it still follows that if the origin is a focus for
the linear system (1) with A = Df(O), then it is a focus for the nonlinear
system (2); cf. [C/L].

Examples 1-3 above show that a center for a linear system can either
remain a center or change to a stable or an unstable focus with the addition
of nonlinear terms. The following example shows that a center for a linear
system may also become a center-focus under the addition of nonlinear
terms; and the following theorem shows that these are the only possibilities.

Example 6. Consider the nonlinear system

-y+x x2+y2sin(1/ x2+y2)
x + y x2 + y2sin(1/ x2 + y2)

for x2 + y2 34 0 where we define f(0) = 0. In polar coordinates, we have

r = r2 sin(1/r)
9=1

for r > 0 with r = 0 at r = 0. Clearly, r = 0 for r = 1/(nir); i.e., each
of the circles r = 1/(nir) is a trajectory of this system. Furthermore, for
nir < 1/r < (n + 1)a, r < 0 if n is odd and r > 0 if n is even; i.e., the
trajectories between the circles r = 1/(n7r) spiral inward or outward to
one of these circles. Thus, we see that the origin is a center-focus for this
nonlinear system according to Definition 2 above.
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Theorem 5. Let E be an open subset of R2 containing the origin and
let f E C'(E) with f(O) = 0. Suppose that the origin is a center for the
linear system (1) with A = Df(0). Then the origin is either a center, a
center-focus or a focus for the nonlinear system (2).

Proof. We may assume that the matrix A = Df(0) has been transformed
to its canonical form

A = 0 -bl
lb 0

with b ,-b 0. Assume that b > 0; otherwise we can apply the linear transfor-
mation t --+ -t. The nonlinear system (3) then has the form

x = -by + p(x, y)

y = bx + q(x,y)

Since f E CI(E), it follows that lp(x, y)/rl -+ 0 and I q(x, y)/rl -+ 0 as
r -+ 0; i.e., p = o(r) and q = o(r) as r --+ 0. Cf. Problem 3. Thus, in polar
coordinates we have i = o(r) and 9 = b + o(1) as r --+ 0. Therefore, there
exists a6>Osuch that 9>b/2>Ofor 0<r<6.Thus for 0<ro<6
and 9o E R, 9(t, ro, 90) > bt/2 + 9o oo as t -+ oo; and 9(t, ro, 90) is
a monotone increasing function of t. Let t = h(O) be the inverse of this
monotone function. Define r(O) = r(h(O), ro, 90) for 0 < ro < 6 and 9o E R.
Then r(9) satisfies the differential equation (5) which has the form

dr _ F,
(r

9)
cos 9 p(r cos 0, r- sin 0) + sin 0 q(r- cos 9, r- sin 9)

dB '

_
b + (cos O/rr)q(r cos 9, r sin 9) - (sin O/i)p(r cos 9, r sin 9)

Suppose that the origin is not a center or a center-focus for the nonlinear
system (3). Then for 6 > 0 sufficiently small, there are no closed trajectories
of (3) in the deleted neighborhood N6(0) - {0}. Thus for 0 < ro < 6 and
Oo E R, either r(Oo+2a) < r(9o) or r(0o+2a) > r(Oo). Assume that the first
case holds. The second case is treated in a similar manner. If r(Oo + 2a) <
r(9o) then r(Oo + 2ka) < r-(9o + 2(k - 1)a) for k = 1, 2,3.... Otherwise
we would have two trajectories of (3) through the same point which is
impossible. The sequence r(0o+2ka) is monotone decreasing and bounded
below by zero; therefore, the following limit exists and is nonnegative:

r1 = lim r(90 + 2ka).
k 00

If r`1 = 0 then r(0) -+ 0 as 9 -+ oo; i.e., r(t, ro, 00) 0 and 9(t, ro, 00) -+ oo
as t -+ no and the origin is a stable focus of (3). If rl > 0 then since
IF(r,0)1 < M for 0 < r < 6 and 0 < 0 < 2a, the sequence r(90+0+2ka) is
equicontinuous on [0, 2aJ. Therefore, by Ascoli's Lemma, cf. Theorem 7.25
in Rudin [R], there exists a uniformly convergent subsequence of r(00 +9+
2ka) converging to a solution rl (0) which satisfies rl (0) = r1(9 + 2ka); i.e.,
rl (9) is a non-zero periodic solution of (5). This contradicts the fact that
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there are no closed trajectories of (3) in N6(0) - {0} when the origin is
not a center or a center focus of (3). Thus if the origin is not a center or a
center focus of (3), 0 and the origin is a focus of (3). This completes
the proof of the theorem.

A center-focus cannot occur in an analytic system. This is a consequence
of Dulac's Theorem discussed in Section 3.3 of Chapter 3. We therefore
have the following corollary of Theorem 5 for analytic systems.

Corollary. Let E be an open subset of R2 containing the origin and let f
be analytic in E with f(0) = 0. Suppose that the origin is a center for the
linear system (1) with A = Df(0). Then the origin is either a center or a
focus for the nonlinear system (2).

As we noted in the previous section, Liapunov's method is one tool that
can be used to distinguish a center from a focus for a nonlinear system;
cf. Problem 4 in Problem Set 9. Another approach is to write the system
in polar coordinates as in Examples 1-3 above. Yet another approach is to
look for symmetries in the differential equations. The easiest symmetries
to see are symmetries with respect to the x and y axes.

Definition 6. The system (3) is said to be symmetric with respect to the
x-axis if it is invariant under the transformation (t, y) - (-t, -y); it is
said to be symmetric with respect to the y-axis if it is invariant under the
transformation (t, x) -+ (-t, -x).

Note that the system in Example 1 is symmetric with respect to the
x-axis, but not with respect to the y-axis.

Theorem 6. Let E be an open subset of R2 containing the origin and let
f E C'(E) with f(0) = 0. If the nonlinear system (2) is symmetric with
respect to the x-axis or the y-axis, and if the origin is a center for the linear
system (1) with A = Df(0), then the origin is a center for the nonlinear
system (2).

The idea of the proof of this theorem is that by Theorem 5, any trajectory
of (3) in N6(0) which crosses the positive x-axis will also cross the negative
x-axis. If the system (3) is symmetric with respect to the x-axis, then the
trajectories of (3) in N6(0) will be symmetric with respect to the x-axis
and hence all trajectories of (3) in N6(0) will be closed; i.e., the origin will
be a center for (3).

PROBLEM SET 10

1. Write the following systems in polar coordinates and determine if the
origin is a center, a stable focus or an unstable focus.
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x=x-y
(a) y=x+y

b
i-y+xy2

()y=x+ys

i=-y+x5
(c) y=x+ys

2. Let

f(x) =

forx 0
mlxi

0 forx=0

Show that f'(0) = lira f'(x) = 0; i.e., f E C'(R), but that f"(0) is
X-O

undefined.

3. Show that if x = 0 is a zero of the function f : R --+ R and f E C' (R)
then

f (x) = D f (0)x + F(x)

where I F(x)/xl --+ 0 as x --1- 0. Show that this same result holds for
f: R2 - R2, i.e., show that IF(x)l/lxl --+ 0 as x --+ 0.

Hint: Use Definition 1 in Section 2.1.

4. Determine the nature of the critical points of the following nonlinear
systems (Cf. Problem 1 in Section 2.6); be as specific as possible.

x=x - xy
(a) y=y-x2

i=-4y+2xy-8
(b) y = 4y2 - x2

x=2x-2xy
c y=2y-x2+y2

(d) i = -x2 - y2 + 1
= 2x

(e)
i=-x2-y2+1

2xy

(f)
i=x2-y2-1

2y
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In this section we present some results on nonhyperbolic critical points of
planar analytic systems. This work originated with Poincare [P] and was
extended by Bendixson [B] and more recently by Andronov et al. [A-I]. We
assume that the origin is an isolated critical point of the planar system

th = P(x, y)
(1)y = Q(x, Y)

where P and Q are analytic in some neighborhood of the origin. In Sec-
tions 2.9 and 2.10 we have already presented some results for the case when
the matrix of the linear part A = Df(O) has pure imaginary eigenvalues,
i.e., when the origin is a center for the linearized system. In this section we
give some results established in [A-I] for the case when the matrix A has
one or two zero eigenvalues, but A 0 0. And these results are extended to
higher dimensions in Section 2.12.

First of all, note that if P and Q begin with mth-degree terms P,,, and
Q,,,, then it follows from Theorem 2 in Section 2.10 that if the function

g(O) = cosOQ,,,(cos0,sin0)

is not identically zero, then there are at most 2(m + 1) directions 0 = Oo
along which a trajectory of (1) may approach the origin. These directions
are given by solutions of the equation g(9) = 0. Suppose that g(0) is not
identically zero, then the solution curves of (1) which approach the origin
along these tangent lines divide a neighborhood of the origin into a finite
number of open regions called sectors. These sectors will be of one of three
types as described in the following definitions; cf. [A-I] or [L]. The trajecto-
ries which lie on the boundary of a hyperbolic sector are called separatrices.
Cf. Definition 1 in Section 3.11.

Definition 1. A sector which is topologically equivalent to the sector
shown in Figure 1(a) is called a hyperbolic sector. A sector which is topo-
logically equivalent to the sector shown in Figure 1(b) is called a parabolic
sector. And a sector which is topologically equivalent to the sector shown
in Figure 1(c) is called an elliptic sector.

Figure 1. (a) A hyperbolic sector. (b) A parabolic sector. (c) An elliptic
sector.



148 2. Nonlinear Systems: Local Theory

In Definition 1, the homeomorphism establishing the topological equiv-
alence of a sector to one of the sectors in Figure 1 need not preserve the
direction of the flow; i.e., each of the sectors in Figure 1 with the arrows
reversed are sectors of the same type. For example, a saddle has a deleted
neighborhood consisting of four hyperbolic sectors and four separatrices.
And a proper node has a deleted neighborhood consisting of one parabolic
sector. According to Theorem 2 below, the system

=y
-x3 + 4xy

has an elliptic sector at the origin; cf. Problem 1 below. The phase portrait
for this system is shown in Figure 2. Every trajectory which approaches
the origin does so tangent to the x-axis.

A deleted neighborhood of the origin consists of one elliptic sector, one
hyperbolic sector, two parabolic sectors, and four separatrices. Cf. Defini-
tion 1 and Problem 5 in Section 3.11. This type of critical point is called a
critical point with an elliptic domain; cf. [A-I].

7F
Figure 2. A critical point with an elliptic domain at the origin.
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Another type of nonhyperbolic critical point for a planar system is a
saddle-node. A saddle-node consists of two hyperbolic sectors and one
parabolic sector (as well as three separatrices and the critical point itself).
According to Theorem 1 below, the system

=x2
y=y

has a saddle-node at the origin; cf. Problem 2. Even without Theorem 1,
this system is easy to discuss since it can be solved explicitly for x(t) =
(1/xo - t) - i and y(t) = yoe`. The phase portrait for this system is shown
in Figure 3.

Figure 3. A saddle-node at the origin.

One other type of behavior that can occur at a nonhyperbolic critical
point is illustrated by the following example:

=y
?/= x2.
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The phase portrait for this system is shown in Figure 4. We see that a
deleted neighborhood of the origin consists of two hyperbolic sectors and
two separatrices. This type of critical point is called a cusp.

As we shall see, besides the familiar types of critical points for planar
analytic systems discussed in Section 2.10, i.e., nodes, foci, (topological)
saddles and centers, the only other types of critical points that can occur
for (1) when A 54 0 are saddle-nodes, critical points with elliptic domains
and cusps.

We first consider the case when the matrix A has one zero eigenvalue,
i.e., when det A = 0, but tr A 0 0. In this case, as in Chapter 1 and as is
shown in [A-I) on p. 338, the system (1) can be put into the form

= P2(x,y)

y + g2(x,y) (2)

where p2 and q2 are analytic in a neighborhood of the origin and have
expansions that begin with second-degree terms in x and y. The following
theorem is proved on p. 340 in [A-I). Cf. Section 2.12.

y

Figure 4. A cusp at the origin.
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Theorem 1. Let the origin be an isolated critical point for the analytic
system (2). Let y = 4(x) be the solution of the equation y + q2(x, y) = 0 in
a neighborhood of the origin and let the expansion of the function i,b(x) =
p2(x, ¢(x)) in a neighborhood of x = 0 have the form O(x) = a,nxm +
where m > 2 and a,,, # 0. Then (1) for m odd and an > 0, the origin is
an unstable node, (2) for m odd and an < 0, the origin is a (topological)
saddle and (3) for m even, the origin is a saddle-node.

Next consider the case when A has two zero eigenvalues, i.e., det A = 0,
tr A = 0, but A # 0. In this case it is shown in [A-I], p. 356, that the
system (1) can be put in the "normal" form

akxk [1 + h(x)] + bnxny[1 + 9(x)] + y2R(x, y) (3)

where h(x), g(x) and R(x, y) are analytic in a neighborhood of the origin,
h(0) = g(0) = 0, k > 2, ak # 0 and n > 1. Cf. Section 2.13. The next two
theorems are proved on pp. 357-362 in [A-I].

Theorem 2. Let k = 2m+1 with m > 1 in (3) and let A = 0,+4(m+1)ak.
Then if ak > 0, the origin is a (topological) saddle. flak < 0, the origin is
(1) a focus or a center if bn = 0 and also if b 9' 0 and n > m or if n = m
and A < 0, (2) a node if bn # 0, n is an even number and n < m and also
if bn # 0, n is an even number, n = m and A > 0 and (3) a critical point
with an elliptic domain if bn 0 0, n is an odd number and n < m and also
if bn # 0, n is an odd number, n = m and A > 0.

Theorem 3. Let k = 2m with m > 1 in (3). Then the origin is (1) a cusp
if bn = 0 and also if bn 0 0 and n > m and (2) a saddle-node if bn # 0
and n <m.

We see that if Df(xo) has one zero eigenvalue, then the critical point xo
is either a node, a (topological) saddle, or a saddle-node; and if Df(xo) has
two zero eigenvalues, then the critical point xo is either a focus, a center, a
node, a (topological) saddle, a saddle-node, a cusp, or a critical point with
an elliptic domain.

Finally, what if the matrix A = 0? In this case, the behavior near the
origin can be very complex. If P and Q begin with mth-degree terms, then
the separatrices may divide a neighborhood of the origin into 2(m + 1)
sectors of various types. The number of elliptic sectors minus the number
of hyperbolic sectors is always an even number and this number is related
to the index of the critical point discussed in Section 3.12 of Chapter 3.
For example, the homogenous quadratic system

i=x2+xy
1y= 2y2+xy
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has the phase portrait shown in Figure 5. There are two elliptic sectors and
two parabolic sectors at the origin. All possible types of phase portraits
for homogenous, quadratic systems have been classified by the Russian
mathematician L.S. Lyagina [19]. For more information on the topic, cf.
the book by Nemytskii and Stepanov [N/S].

Remark. A critical point, xo, of (1) for which Df(xo) has a zero eigenvalue
is often referred to as a multiple critical point. The reason for this is made
clear in Section 4.2 of Chapter 4 where it is shown that a multiple critical
point of (1) can be made to split into a number of hyperbolic critical points
under a suitable perturbation of (1).

Y

I

Figure 5. A nonhyperbolic critical point with two elliptic sectors and two
parabolic sectors.

PROBLEM SET 11

1. Use Theorem 2 to show that the system

=y
y = -x3 + 4xy
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has a critical point with an elliptic domain at the origin. Note that
y = x2/(2± f) are two invariant curves of this system which bound
two parabolic sectors.

2. Use Theorem 1 to determine the nature of the critical point at the
origin for the following systems:

(a)
x=x2
y=y

(b)xy=-x2+y2

y-x2
=y2+x3

(c) 2
y=y - x

(d) = y2 _ 3

y=y-X2

= y2 + x4
(e)

y=y-x2+y2
(f) x=y2-xa

y=y-x2+y2

3. Use Theorem 2 or Theorem 3 to determine the nature of the critical
point at the origin for the following systems:

Hint: For part (f), let = x and rl = x + y to put the system in the
form (3).
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2.12 Center Manifold Theory

In Section 2.8 we presented the Hartman-Grobman Theorem, which showed
that, in a neighborhood of a hyperbolic critical point xo E E, the nonlinear
system

* = f(x)

is topologically conjugate to the linear system

X=Ax,

(1)

(2)

with A = Df(xo), in a neighborhood of the origin. The Hartman-Grobman
Theorem therefore completely solves the problem of determining the sta-
bility and qualitative behavior in a neighborhood of a hyperbolic critical
point of a nonlinear system. In the last section, we gave some results for
determining the stability and qualitative behavior in a neighborhood of a
nonhyperbolic critical point of the nonlinear system (1) with x E R2 where
det A = 0 but A 0 0. In this section, we present the Local Center Manifold
Theorem, which generalizes Theorem 1 of the previous section to higher
dimensions and shows that the qualitative behavior in a neighborhood of
a nonhyperbolic critical point x0 of the nonlinear system (1) with x E R"
is determined by its behavior on the center manifold near xo. Since the
center manifold is generally of smaller dimension than the system (1), this
simplifies the problem of determining the stability and qualitative behavior
of the flow near a nonhyperbolic critical point of (1). Of course, we still
must determine the qualitative behavior of the flow on the center manifold
near the hyperbolic critical point. If the dimension of the center manifold
Wc(xo) is one, this is trivial; and if the dimension of Wc(xo) is two and
a linear term is present in the differential equation determining the flow
on W°(xo), then Theorems 2 and 3 in the previous section or the method
in Section 2.9 can be used to determine the flow on Wc(xo). The remain-
ing cases must be treated as they appear; however, in the next section we
will present a method for simplifying the nonlinear part of the system of
differential equations that determines the flow on the center manifold.

Let us begin as we did in the proof of the Stable Manifold Theorem in
Section 2.7 by noting that if f E C'(E) and f(0) = 0, then the system
(1) can be written in the form of equation (6) in Section 2.7 where, in this
case, the matrix A = Df(0) = diag[C, P, Q] and the square matrix C has
c eigenvalues with zero real parts, the square matrix P has s eigenvalues
with negative real parts, and the square matrix Q has u eigenvalues with
positive real parts; i.e., the system (1) can be written in diagonal form

z = Cx + F(x,y,z)

y = Py + G(x, y, z) (3)

z = Qz + H(x, y, z),

where (x, y, z) E RI x R' x R°, F(O) = G(0) = H(0) = 0, and DF(0) _
DG(0) = DH(0) = O.
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We first shall present the theory for the case when u = 0 and treat
the general case at the end of this section. In the case when u = 0, it
follows from the center manifold theorem in Section 2.7 that for (F, G) E
C'(E) with r > 1, there exists an s-dimensional invariant stable manifold
W'(0) tangent to the stable subspace E' of (1) at 0 and there exists a c-
dimensional invariant center manifold W°(0) tangent to the center subspace
E° of (1) at 0. It follows that the local center manifold of (3) at 0,

W,, c(0) = {(x,y) E R` x R' I y = h(x) for IxI < b} (4)

for some b > 0, where h E C'(Ns(0)), h(0) = 0, and Dh(O) = 0 since
Wc(0) is tangent to the center subspace E` = {(x,y) E RI x R' I y = 0}
at the origin. This result is part of the Local Center Manifold Theorem,
stated below, which is proved by Carr in [Ca].

Theorem 1 (The Local Center Manifold Theorem).Let f E C'(E), where
E is an open subset of R" containing the origin and r > 1. Suppose that
f(0) = 0 and that Df(0) has c eigenvalues with zero real parts and s
eigenvalues with negative real parts, where c + s = n. The system (1) then
can be written in diagonal form

is = Cx + F(x, y)
y = Py + G(x,y),

where (x, y) E RC x R', C is a square matrix with c eigenvalues having
zero real parts, P is a square matrix with s eigenvalues with negative mat
parts, and F(0) = G(0) = 0, DF(O) = DG(O) = 0; furthermore, there
exists a 6 > 0 and a function h E C'(Nb(0)) that defines the local center
manifold (4) and satisfies

Dh(x)[Cx + F(x, h(x))] - Ph(x) - G(x, h(x)) = 0 (5)

for lxj < 6; and the flow on the center manifold W°(0) is defined by the
system of differential equations

is = Cx + F(x, h(x)) (6)

for all xE R' with jxj <6.

Equation (5) for the function h(x) follows from the fact that the center
manifold WC(0) is invariant under the flow defined by the system (1) by
substituting is and y from the above differential equations in Theorem 1
into the equation

y = Dh(x)x,

which follows from the chain rule applied to the equation y = h(x) defin-
ing the center manifold. Even though equation (5) is a quasilinear partial
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differential equation for the components of h(x), which is difficult if not
impossible to solve for h(x), it gives us a method for approximating the
function h(x) to any degree of accuracy that we wish, provided that the
integer r in Theorem 1 is sufficiently large. This is accomplished by substi-
tuting the series expansions for the components of h(x) into equation (5);
cf. Theorem 2.1.3 in [Wi-II]. This is illustrated in the following examples,
which also show that it is necessary to approximate the shape of the local
center manifold Wloc(0) in order to correctly determine the flow on W°(0)
near the origin. Before presenting these examples, we note that for c = 1
and s = 1, the Local Center Manifold Theorem given above is the same
as Theorem 1 in the previous section (if we let t -+ -t in equation (2) in
Section 2.11). Thus, Theorem 1 above is a generalization of Theorem 1 in
Section 2.11 to higher dimensions. Also, in the case when c = s = 1, as
in Theorem 1 in Section 2.11, it is only necessary to solve the algebraic
equation determined by setting the last two terms in equation (5) equal to
zero in order to determine the correct flow on W°(0).

It should be noted that while there may be many different functions h(x)
which determine different center manifolds for (3), the flows on the various
center manifolds are determined by (6) and they are all topologically equiv-
alent in a neighborhood of the origin. Furthermore, for analytic systems, if
the Taylor series for the function h(x) converges in a neighborhood of the
origin, then the analytic center manifold y = h(x) is unique; however, not
all analytic (or polynomial) systems have an analytic center manifold. Cf.
Problem 4.

Example 1. Consider the following system with c = s = 1:

2 = x2y - x5

y= -y+x2.

In this case, we have C = 0, P = [-1], F(x, y) = x2y - x5, and G(x, y) _
x2. We substitute the expansions

h(x) = ax 2 + bx3 + 0(x4) and Dh(x) = 2ax + 3bx2 + 0(x3)

into equation (5) to obtain

-x2 =0.

Setting the coefficients of like powers of x equal to zero yields a - 1 = 0,
b = 0, c = 0,.... Thus,

h(x) = x2 + 0(x5).

Substituting this result into equation (6) then yields

2 = x4 + 0(x5)
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WC(O)

Ec-

IES = WS(o)

Figure 1. The phase portrait for the system in Example 1.
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on the center manifold W°(0) near the origin. This implies that the local
phase portrait is given by Figure 1. We see that the origin is a saddle-node
and that it is unstable. However, if we were to use the center subspace
approximation for the local center manifold, i.e., if we were to set y = 0 in
the first differential equation in this example, we would obtain

and arrive at the incorrect conclusion that the origin is a stable node for
the system in this example.

The idea in Theorem 1 in the previous section now becomes apparent
in light of the Local Center Manifold Theorem; i.e., when the flow on the
center manifold has the form

2=amxm+...

near the origin, then for m even (as in Example 1 above) equation (2)
in Section 2.11 has a saddle-node at the origin, and for m odd we get a
topological saddle or a node at the origin, depending on whether the sign
of am is the same as or the opposite of the sign of y near the origin.
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Example 2. Consider the following system with c = 2 and s = 1:

;i1 = xly - xlxz
2
z-+z = x2y - x2xl

y=-y+x1+x2.

In this example, we have C = 0, P = [-1],zF(x,
y) _

(xIY_xlx) and G(x, y) = xi + x2.
x2y - x2x1

We substitute the expansions

h(x) = axi + bxlx2 + cx2 + 0(Ixl3)

and

Dh(x) = [2ax1 + bx2i bxl + 2cx2] + O(Ix12)

into equation (5) to obtain

(2axl + bx2)[xl(ax1 + bx1x2 + cx2) - xlx2]

+ (bxl + 2cx2)]x2(axi + bx1x2 + cx2) - x2xi]

+ (axi + bx1x2 + cx2) - (x1 + x2) + 0(lxl3) = 0.

Since this is an identity for all xl, x2 with lxl < 6, we obtain a = 1, b = 0,
c = 1, .... Thus,

h(xl, x2) = xl + x2 + 0(Ixl3).

Substituting this result into equation (6) then yields

xl = x1 + 0(Ixla)
x2 = x + 0(Ix1°)

on the center manifold W°(0) near the origin. Since rr = xi+x2+0(lxl5) >
0 for 0 < r < 6, this implies that the local phase portrait near the origin
is given as in Figure 2. We see that the origin is a type of topological
saddle that is unstable. However, if we were to use the center subspace
approximation for the local center manifold, i.e., if we were to set y = 0 in
the first two differential equations in this example, we would obtain

xl = -xlx2
22 = -x2xi

and arrive at the incorrect conclusion that the origin is a stable nonisolated
critical point for the system in this example.
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Figure 2. The phase portrait for the system in Example 2.

Example 3. For our last example, we consider the system

i1 = x2 +y
12=y+x21

U = -y+x2+ziy.
The linear part of this system can be reduced to Jordan form by the matrix
of (generalized) eigenvectors

1 0 0 1 0 0
P= 0

1

1 -1 with P-1 = 0
1 1

1 1 .

0 0 1 0 0 1

This yields the following system in diagonal form

:il = x2
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x2 = xi + (x2 - y)2 + xly

y = -y + (x2 - y)2 + xiy

with c = 2, s = 1, P = [-1],

_ 0 1 ( 0
C 0 0 , F x, y) _ (X2

+ (x2 y)2 + xiy)

G(X,y) = (x2 - y)2 + xly.

Let us substitute the expansions for h(x) and Dh(x) in Example 2 into
equation (5) to obtain

(2ax1 +bx2)x2+(bxl+2cx2)[xI +(x2 - y)2+xly]+(ax1 +bx1x2+cx2)
-(x2 - axl -bxlx2-Cx2)2-x1(axi +bxlx2+Cx2)+0(Ixl3) =0.

Since this is an identity for all x1i x2 with lxj < b, we obtain a = 0, b = 0,
C=11 ... , i.e.,

h(x) = x2 + O(IXl3)

Substituting this result into equation (6) then yields

xl = x2
x2=xi+x2+O(IXl3)

on the center manifold W°(0) near the origin.

Theorem 3 in Section 2.11 then implies that the origin is a cusp for
this system. The phase portrait for the system in this example is therefore
topologically equivalent to the phase portrait in Figure 3.

As on pp. 203-204 in [Wi-II], the above results can be generalized to the
case when the dimension of the unstable manifold u ga< 0 in the system (3).
In that case, the local center manifold is given by

WW;c(0)={(x,y,z) E R` x R' x R" I y=h1(x) and z=h2(x) for IxI<6}

for some 6 > 0, where h1 E C''(Nb(0)), h2 E Cr(N6(0)), h1(0) = 0,
h2(0) = 0, Dh1(0) = 0, and Dh2(0) = 0 since W°(0) is tangent to the
center subspace E° = {(x, y, z) E R° x R' x R" I y = z = 0} at the
origin. The functions h1(x) and h2(x) can be approximated to any desired
degree of accuracy (provided that r is sufficiently large) by substituting
their power series expansions into the following equations:

Dh1(x)[Cx+F(x, h1(x), h2(x))] - Ph1(x) - G(x, hi (x), h2(X)) =0

Dh2(x)[Cx+F(x,h1(x),h2(x))]-Qh2(x)-H(x,h1(x),h2(x))=0. (7)
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Figure 3. The phase portrait for the system in Example 3.

The next theorem, proved by Carr in [Ca], is analogous to the Hartman-
Grobman Theorem except that, in order to determine completely the qual-
itative behavior of the flow near a nonhyperbolic critical point, one must be
able to determine the qualitative behavior of the flow on the center man-
ifold, which is determined by the first system of differential equations in
the following theorem. The nonlinear part of that system, i.e., the function
F(x, hl(x), h2(x)), can be simplified using the normal form theory in the
next section.

Theorem 2. Let E be an open subset of R" containing the origin, and
let f E C'(E); suppose that f(0) = 0 and that the n x n matrix Df(0) =
diag[C, P, Q], where the square matrix C has c eigenvalues with zero real
parts, the square matrix P has s eigenvalues with negative real parts, and
the square matrix Q has it eigenvalues with positive real parts. Then there
exists C' functions hl (x) and h2(x) satisfying (7) in a neighborhood of the
origin such that the nonlinear system (1), which can be written in the form
(3), is topologically conjugate to the Cl system

is = Cx + F(x, h, (x), h2(x))

y=Py
z=Qz

for (x, y, z) E Rc x R3 x BY in a neighborhood of the origin.
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PROBLEM SET 12

1. Consider the system in Example 3 in Section 2.7:

i=x2
-y-

By substituting the expansion

h(x) = axe + bx3 +

into equation (5) show that the analytic center manifold for this sys-
tem is defined by the function h(x) = 0 for all x E R; i.e., show that
the analytic center manifold W°(0) = E` for this system. Also, show
that for each c E R, the function

{ce'
0 forx > 0

h(x, c) = I= for x < 0

defines a CO° center manifold for this system, i.e., show that it satisfies
equation (5). Also, graph h(x, c) for various c E R.

2. Use Theorem 1 to determine the qualitative behavior near the non-
hyperbolic critical point at the origin for the system

i= y

y=-y+ax2+xy
for a 96 0 and for a = 0; i.e., follow the procedure in Example 1 after
diagonalizing the system as in Example 3.

3. Same thing as in Problem 2 for the system

i=xy
?l=-y-x2.

4. Same thing as in Problem 2 for the system

i=-x3
?!=-y+x2.

Also, show that this system has no analytic center manifold, i.e.,
show that if h(x) = a2x2 + a3x3 + , then it follows from (5) that
a2 = 1, a2k+1 = 0 and an+2 = na,, for n even; i.e., the Taylor series
for h(x) diverges for x # 0.

5. (a) Use Theorem 1 to find the approximation (6) for the flow on the
local center manifold for the system

it = -x2 + x1y
i2 = x1 + x2y
?%=-y-xi -xZ+y2
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and sketch the phase portrait for this system near the origin.
Hint: Convert the approximation (6) to polar coordinates and
show that the origin is a stable focus of (6) in the XI, X2 plane.

(b) Same thing for the system

2it =xiy - x1xz
2i2 = -2x2X2 - xi +Y

y=-y+xi+x2.
Hint: Show that the approximation (6) has a saddle-node in the
xl,x2 plane. .

(c) Same thing for the system

it =xiy - xix2
2 2 2i2 = -2x1x2 + y

y = -Y + X2 + x2.

Hint: Show that the approximation (6) has a nonhyperbolic
critical point at the origin with two hyperbolic sectors in the
xl,x2 plane.

6. Use Theorem 1 to find the approximation (6) for the flow on the local
center manifold for the system

axe + bxy + cy2

y = -y + dx2 + exy + f y2,

and show that if a 34 0, then the origin is a saddle-node. What type of
critical point is at the origin if a = 0 and bd 96 0? What if a = b = 0
and MOM What if a=d=O?

7. Use Theorem 1 to find the approximation (6) for the flow on the local
center manifold for the system

3ii =-x2-x3l
3

i2 = xiy - x2

y = -y+x1.
What type of critical point is at the origin of this system?

2.13 Normal Form Theory

The Hartman-Grobman Theorem shows us that in a neighborhood of a
hyperbolic critical point, the qualitative behavior of a nonlinear system

x = f(x) (1)
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where x E R" is determined by its linear part. In Section 1.8 we saw
that the linear part of (1) can be put into Jordan canonical form x = Jx,
which makes it easy to solve the linear system. The Local Center Manifold
Theorem in the previous section showed us that, in a neighborhood of a
nonhyperbolic critical point, determining the qualitative behavior of (1)
could be reduced to the problem of determining the qualitative behavior of
the nonlinear system

is = Jx + F(x) (2)

on the center manifold. Since the dimension of the center manifold is typi-
cally less than n, this simplifies the problem of determining the qualitative
behavior of the system (1) near a nonhyperbolic critical point. However,
analyzing this system still may be a difficult task. The normal form theory
allows us to simplify the nonlinear part, F(x), of (2) in order to make
this task as easy as possible. This is accomplished by making a nonlinear,
analytic transformation of coordinates of the form

x = y + h(y), (3)

where h(y) = 0(jyj2) as (yj - 0. Let us illustrate this idea with an example.

Example 1. The linear part of the system

xl = x2 + axi

x2 = X2 + exlx2 +
X3

is already in Jordan form, and the 2 x 2 matrix

0
0110

0
J=[

has two zero eigenvalues. In order to reduce this system to the normal form
used in Theorems 2 and 3 in Section 2.11, we let

x=y+ (°2)
i.e., we let xl = yj and x2 = y2 - ayi or, equivalently, y2 = x2 + axi.
Under this nonlinear transformation of coordinates, it is easy to show that
the above system of differential equations is transformed into the system

it = Y2
y2 = yi + (e + 2a)yly2 + (1 - ae)yi.

The serious student should verify this computation. It then follows from
Theorem 3 in Section 2.11 that the origin is a cusp for the nonlinear system
in this example. Note that the qualitative behavior of the system (2) is in-
variant under the nonlinear change of coordinates (3), which has an inverse
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in a small, neighborhood of the origin since it is a near-identity transforma-
tion; i.e., the two systems in this example are topologically conjugate, and
therefore they have the same qualitative behavior in a neighborhood of the
origin.

The method of reducing the system (2) to its "normal form" by means of
a near-identity transformation of coordinates of the form (3) originated in
the Ph.D. thesis of Poincare; cf. [28]. The method was used by Andronov
et al. in their study of planar systems [A-I], and an excellent modern-day
description of the method can be found in [G/fl or [Wi-II]. If we rewrite
the system (2) as

x = Jx + F2(x) + O(Ix13)

as Ixi - 0, where F2 consists entirely of second-degree terms, then substi-
tuting the transformation (3) into the above equation and using the Chain
Rule leads to

[I + Dh(y)]y = Jy + Jh(y) + F2(Y) + 0(IY3I)

as IyI -, 0. And then, since

[I + Dh(y)]-' = I - Dh(y) + O(1y12)

as IYI -y 0, it follows that

y = Jy + Jh(y) - Dh(y)Jy + F2(y) + O(Iyt3)

= JY + F2(Y) + O(IYI3)

as IYI -+ 0, where

F2(Y) = Jh2(Y) - Dh2(y)Jy + F2(Y) (4)

and where we have written h(y) = h2(y) + 0(IYI3) as IYI -' 0. We now
want to choose h(y) in order to make F2(y) as simple as possible. Ideally,
this would mean choosing h(y) such that F2(y) = 0; however, this is not
always possible. For example, in the system in Example 1 above, we have

10 1 ( ayl
J = L0

0]
and F2(Y)

2
L yl + e

If we let h(y) = h2(y) + 0(IyI3) and substitute the function

i + auyly2 + ao2y2h2(Y) = C
a2oy

)62oyi + bllylyz + 6o2y2

into (4), we obtain

F2(Y) = (b20y?
+ (b11 - 2a2o)yjy2 + (602 - a11)) + I ay)

-2b2oy1y2 - b11y2 `yi + eylyz

(5)

=

0

yi + (e + 2a)yjy2)



166 2. Nonlinear Systems: Local Theory

for the choice of coefficients b2o = -a and a23 = bij = 0 otherwise in (5).
As we shall see, this is as "simple" as we can make the quadratic terms in
the system in Example 1 above. In other words, if we want to reduce the
first component of F2 to zero, then the yl and the yly2 terms in the second
component of t(y) cannot be eliminated by a nonlinear transformation of
coordinates of the form (3). These terms are referred to as "resonance"
terms; cf. (Wi-II).

In order to get a clearer understanding of what is going on in the above
example, let us view the function

Lj[h(y)) = Jh(y) - Dh(y)Jy (6)

as a linear transformation on the space H2 of all second-degree polynomials
of the form (5); i.e., in the case of systems in R2 we consider Lj as a linear
operator on the six-dimensional vector space

0
HZ Span{ \0/' \0/' \0/' \0/' \ y/' \y/I

We now write x = (x, y)T E R2 for ease in notation. A typical element
h2 E H2 then is given by

h2 (x) _
a2ox2 + allxy + ao2y2

(7)- (b20x2 +bllxy+b02y

and it is not difficult to compute

(b20x2 + (bll - 2a2o)xy + (bog - all)y2/

-2b2oxy - bily2

Thus,

Lj(H2) =SPA { (-2xy) ' \-J2/ ' \ 0 \ 0 / I
Spans

(-2xy) I \y2/' (OXO/
Thus we see that

H2 = Li(H2) ® G2,

where

GZ-Span 1(x2)' \0/1
This shows that any system of the form

= y+ax2+bxy+cy2+0(Ix13)
dx2+exy+ fy2+0(Ix13)
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with a general quadratic term F2 E H2 can be reduced, by a nonlinear
transformation of coordinates x x + h2(x) with h2 E H2 given by (7),
to a system of the form

x=y+O(ixI3)
y = dx2 + (e + 2a)xy + O(Ix13)

with F2 E G2. In fact, in Problem 1 you will be asked to show that the
function h2(x), given by (7) with a02 = all = 0, a20 = (b+ f )/2, b02 = -c,
b11 = f, and b20 = -a, accomplishes this task.

This process can be generalized as follows: Writing the system (2) in the
form

is = Jx + F2(x) + F3(x) + 0(Ix14)

as lxj 0, where F2 E H2 and F3 E H3, we first can reduce this to a
system of the form

is = Jx + F2(x) + F3* (x) + O(Ix14)

as jxi - 0 with F2 E G2 and F3 E H3 by a nonlinear transformation
of coordinates (3) with h(x) = h2(x) E H2 as was done above for the
case when (2) is a system with x E R2. We then can apply the nonlinear
transformation of coordinates (3) with h(x) = h3(x) E H3 to this latter
system in order to reduce it to a system of the form

x = Jx + F2(x) + F3(x) + O(Ix14)

with F3 E G3. This is illustrated in Problems 3 and 5. This process then
can be continued to obtain the so-called "normal form" of the system (2)
to any desired degree. This is the content of the Normal Form Theorem on
p. 216 in [Wi-Ill. It should be noted that the normal form of the system (2)
is not unique. This can be seen since, for example, in R2, the linear space of
polynomials G2 complementary to Lj(H2) with the matrix J given in Ex-
ample 1 is spanned by { (x2, 0)T' (0, X2)11 as well as by {(0, xy)T, (0, x2)T }.

Remark 1. As was shown above (and in Problem 1), any system of the
form

is = Jx + F(x)

with

J = [0
1

and F(x) = (axe2 +bxy+ey2
+0(IX13)

0 01 `dx fY2)
as lxi 0 can be put into the normal form

x = y + 0(1xI3)
y = dx2 + (e + 2a)xy + 0(Ix13)
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as IxI 0; furthermore, by letting y y+0(IxI3), the quantity in the first
of the above differential equations, this can be reduced to the normal form

=y
dx2 + (e + 2a)xy + 0(Ixl3)

used in Theorems 2 and 3 in Section 2.11. Then for d 0 0 and (e+2a) # 0, it
follows from Theorems 2 and 3 in Section 2.11 that the O(Ix13) terms do not
affect the qualitative nature of the nonhyperbolic critical point at the origin.
Also they do not affect the types of qualitative dynamical behavior that
can occur in "unfolding" this nonhyperbolic critical point, as is discussed
in Chapter 4. Thus, we can delete these terms in studying the bifurcations
that take place in a neighborhood of this nonhyperbolic critical point and,
after an appropriate normalization of coordinates, we can use one of the
following two normal forms for studying these bifurcations:

=y
x2fxy.

Cf. Section 4.13, where we also see that all possible types of dynamical
behavior that can occur in systems "close" to this system are determined
by the "universal unfoldings" of these two normal forms given by

=y
1/=N1+P2y+X2±xy.

We have almost entirely focused on the case when the linear part J of
the system (1) is non-zero and has two zero eigenvalues. The case when J
has two pure imaginary eigenvalues is more complicated, but it is treated
in Section 3.3 of [G/H] where it is shown that any C3 system of the form

i = -y + O(IxI2)
y = x + O(1xI2)

can be put into the normal form

-y + (ax - by)(x2 + y2) + O(Ix14)

x + (ay + bx)(x2 + y2) + O(Ix14)

for suitable constants a and b. Cf. Theorem 2 in Section 4.4. And, as we
shall see in Problem 1(b) in Section 4.4, the origin is then a stable (or an
unstable) weak focus of multiplicity 1 if a < 0 (or if a > 0).

PROBLEM SET 13

1. Consider the quadratic system

y + ax2 + bxy + cy2

y=dx2+exy+fy2
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with

2 3

H3
=Span {(0)'

(x0y) (xy2

(y0

' xy2/
(Y3)(O x2OY) 0 0

(axe + bxy + cy2
dx2 + exy + f y2

For h2(x) given by (7), compute LJ[h2(x)], defined by (6), and show
that for a02 = all = 0, ago = (b + f )/2, b02 = -c, 611 = f, and
b2o = -a

0
F2(x) = LJ[h2(x)] + F2(x) = (dx2 + (e + 2a)xy

2. Let

and

and F2(x) = I.

J= r0 11

0 0

h3(x) _ (a30x3 + a21x2y + a12xY2 + a03Y3) E H3.
b30x3 + b21x2y + b12xy2 + b03y3

Show that

l lLJ(H3) = Span { ()
, () '

(x2)
'

(p3)

(2)
and that H3 = Lj (H3) G3i where

G3
Span { (.T3)

' (xoy) J

3. Use the results in Problem 2 to show that a planar system of the form

x = Jx + F3(x) + 0(Ix14)

with J given in Problem 2 and F3 E H3 can be reduced to the normal
form

i = y + 0(Ix14)
ax3 + bx2y + 0(Ix14)

for some a, b E R. For a 36 0, what type of critical point is at the origin
of this system according to Theorem 2 in Section 2.11? (Consider the
two cases a > 0 and a < 0 separately.)
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4. For the 2 x 2 matrix J in Problem 1, show that

H4 = Lj(H4) ®G4,

where

O
l (

G4 = Span { ( 4) (jol1y/ 1
What type of critical point is at the origin of the system

k = JX + F4 (X)

with F4 E H4 if the second component of F4(x) contains an x4 term?

Hint: See Theorem 3 in Section 2.11.

5. Show that the quadratic part of the cubic system

2 = y + x2 - x3 + xy2 - y3
y=x2-2xy+x3-x2y

can be reduced to normal form using the transformation defined in
Example 1, and show that this yields the system

=y-x3+xy2-y3+0(Ixi4)
x2 + 3x3 + x2y + 0(Ixl4)

as IxI -+ 0. Then determine a nonlinear transformation of coordinates
of the form (3) with h(x) = h3(x) E H3 that reduces this system to
the system

x=y+0(IxI4)
x2 + 3x3 - 2x2y + 0(IxI4)

as IxI - 0, which is said to be in normal form (to degree three).

Remark 2. As in Remark 1 above, it follows from Theorems 2 and 3 in
Section 2.11 that the x3 and 0(IxI4) terms in the above system of differential
equations do not affect the nature of the nonhyperbolic critical point at the
origin. Thus, we might expect that

=y
y=x2-2x2y

is an appropriate normal form for studying the bifurcations that take place
in a neighborhood of this nonhyperbolic critical point; however, we see at
the end of Section 4.13 that the x2y term can also be eliminated and that
the appropriate normal form for studying these bifurcations is given by

=y
U =x2±x3y
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in which case all possible types of dynamical behavior that can occur in
systems "close" to this system are given by the "universal unfolding"of this
normal form given by

x=y
y Al=+µ2y+µ3xy+X2±x3y.

2.14 Gradient and Hamiltonian Systems

In this section we study two interesting types of systems which arise in
physical problems and from which we draw a wealth of examples of the
general theory.

Definition 1. Let E be an open subset of R2n and let H E C2(E) where
H = H(x, y) with x, y E R. A system of the form

(1)

where

OH 8H 8HlT OH = (OH'..., 8H T

a Hamiltonian system with n degrees of freedom on E.
For example, the Hamiltonian function

H(x,y) = (x? + xz + yi + y22)/2

is the energy function for the spherical pendulum

ii = y1
X2 = y2

/1 = -xi
U2 = -X2

which is discussed in Section 3.6 of Chapter 3. This system is equivalent to
the pair of uncoupled harmonic oscillators

x1+x1=0
12 + x2 = 0.
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All Hamiltonian systems are conservative in the sense that the Hamiltonian
function or the total energy H(x, y) remains constant along trajectories of
the system.

Theorem 1 (Conservation of Energy). The total energy H(x, y) of
the Hamiltonian system (1) remains constant along trajectories of (1).

Proof. The total derivative of the Hamiltonian function H(x, y) along a
trajectory x(t),y(t) of (1)

dH _ 8H OH 8H 8H 8H 8H
dt - ax'ic+ ay Y= 5y - 8y 0.

Thus, H(x, y) is constant along any solution curve of (1) and the trajecto-
ries of (1) lie on the surfaces H(x, y) = constant.

We next establish some very specific results about the nature of the
critical points of Hamiltonian systems with one degree of freedom. Note
that the equilibrium points or critical points of the system (1) correspond
to the critical points of the Hamiltonian function H(x, y) where O _
OH = 0. We may, without loss of generality, assume that the critical point
in question has been translated to the origin.

Lemma. If the origin is a focus of the Hamiltonian system

:=Hy(x,y)

-H.(x, y),

then the origin is not a strict local maximum or minimum of the Hamilto-
nian function H(x, y).

Proof. Suppose that the origin is a stable focus for (1'). Then according
to Definition 3 in Section 2.10, there is an e > 0 such that for 0 < ro < s
and 9o E R, the polar coordinates of the solution of (1') with r(0) = ro
and 9(0) = 00 satisfy r(t, ro, 90) -+ 0 and 19(t, ro, Bo)I --+ oo as t -+ oo;
i.e., for (xo, yo) E NE(0) N {0}, the solution (x(t, xo, yo), y(t, xo, yo)) - 0
as t --+ oo. Thus, by Theorem 1 and the continuity of H(x, y) and the
solution, it follows that

H(xo, yo) = =lim H(x(t, xo, yo), y(t, xo, yo)) = H(0, 0)
00

for all (xo, yo) E N6(0). Thus, the origin is not a strict local maximum or
minimum of the function H(x, y); i.e., it is not true that H(x, y) > H(0, 0)
or H(x, y) < H(0, 0) for all points (x, y) in a deleted neighborhood of the
origin. A similar argument applies when the origin is an unstable focus
of (1').
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Definition 2. A critical point of the system

x = f(x)

173

at which Df(xo) has no zero eigenvalues is called a nondegenemte critical
point of the system, otherwise, it is called a degenerate critical point of the
system.

Note that any nondegenerate critical point of a planar system is either a
hyperbolic critical point of the system or a center of the linearized system.

Theorem 2. Any nondegenerate critical point of an analytic Hamiltonian
system (1') is either a (topological) saddle or a center; furthermore, (xo, yo)
is a (topological) saddle for (1') if it is a saddle of the Hamiltonian function
H(x, y) and a strict local maximum or minimum of the function H(x, y) is
a center for (1').

Proof. We assume that the critical point is at the origin. Thus, H., (0, 0) _
Hy(0, 0) = 0 and the linearization of (1') at the origin is

is = Ax (2)

where
_

A
Hyx(0,0) Hyy(0,0)

-Hxx(0, 0) -H1 (0, 0)

We see that tr A = 0 and that detA = H=x(0)Hyy(0) - H2 (0). Thus, the
critical point at the origin is a saddle of the function H(x, y) if det A < 0
if it is a saddle for the linear system (2) if it is a (topological) saddle
for the Hamiltonian system (1') according to Theorem 3 in Section 2.10.
Also, according to Theorem 1 in Section 1.5 of Chapter 1, if tr A = 0
and det A > 0, the origin is a center for the linear system (2). And then
according to the Corollary in Section 2.10, the origin is either a center or
a focus for (1'). Thus, if the nondegenerate critical point (0,0) is a strict
local maximum or minimum of the function H(x, y), then det A > 0 and,
according to the above lemma, the origin is not a focus for (1'); i.e., the
origin is a center for the Hamiltonian system (1').

One particular type of Hamiltonian system with one degree of freedom
is the Newtonian system with one degree of freedom,

x = f(x)

where f E C' (a, b). This differential equation can be written as a system
in R2:

y

f(x)
(3)
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The total energy for this system H(x, y) = T(y)+U(x) where T(y) = y2/2
is the kinetic energy and

U(x) _ -
J

x f (s)ds
xo

is the potential energy. With this definition of H(x, y) we see that the
Newtonian system (3) can be written as a Hamiltonian system. It is not
difficult to establish the following facts for the Newtonian system (2); cf.
Problem 9 at the end of this section.

Theorem 3. The critical points of the Newtonian system (3) all lie on the
x-axis. The point (xo, 0) is a critical point of the Newtonian system (3) iff
it is a critical point of the function U(x), i.e., a zero of the function f (x).
If (xo, 0) is a strict local maximum of the analytic function U(x), it is a
saddle for (3). If (xo, 0) is a strict local minimum of the analytic function
U(x), it is a center for (3). If (xo, 0) is a horizontal inflection point of
the function U(x), it is a cusp for the system (3). And finally, the phase
portrait of (3) is symmetric with respect to the x-axis.

Example 1. Let us construct the phase portrait for the undamped pen-
dulum

I+sill x=0.

This differential equation can be written as a Newtonian system

=y
-sin x

where the potential energy

U(x) =
J

x sin t dt = 1 - cos x.
0

The graph of the function U(x) and the phase portrait for the undamped
pendulum, which follows from Theorem 3, are shown in Figure 1 below.

Note that the origin in the phase portrait for the undamped pendulum
shown in Figure 1 corresponds to the stable equilibrium position of the
pendulum hanging straight down. The critical points at (±ir, 0) correspond
to the unstable equilibrium position where the pendulum is straight up.
Trajectories near the origin are nearly circles and are approximated by the
solution curves of the linear pendulum

I+x=0.



2.14. Gradient and Hamiltonian Systems

Figure 1. The phase portrait for the undamped pendulum.
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x

The closed trajectories encircling the origin describe the usual periodic
motions associated with a pendulum where the pendulum swings back and
forth. The separatrices connecting the saddles at (±ir, 0) correspond to
motions with total energy H = 2 in which case the pendulum approaches
the unstable vertical position as t ±oo. And the trajectories outside the
separatrix loops, where H > 2, correspond to motions where the pendulum
goes over the top.



176 2. Nonlinear Systems: Local Theory

Definition 3. Let E be an open subset of R" and let V E C2(E). A
system of the form

x = -grad V(x), (4)

where

(gradV =
aV OV)'J
8x '8x1 n

is called a gradient system on E.
Note that the equilibrium points or critical points of the gradient system

(4) correspond to the critical points of the function V (x) where grad V (x) =
0. Points where grad V(x) 34 0 are called regular points of the function
V (x). At regular points of V (x), the gradient vector grad V (x) is perpen-
dicular to the level surface V(x) = constant through the point. And it is
easy to show that at a critical point xo of V(x), which is a strict local
minimum of V(x), the function V(x) - V(xo) is a strict Liapunov function
for the system (4) in some neighborhood of x0; cf. Problem 7 at the end of
this section. We therefore have the following theorem:

Theorem 4. At regular points of the function V(x), trajectories of the
gradient system (4) cross the level surfaces V (x) = constant orthogonally.
And strict local minima of the function V (x) are asymptotically stable equi-
librium points of (4).

Since the linearization of (4) at any critical point x0 of (4) has a matrix

A = [02V(xo)I
L t9x{Oxj J

which is symmetric, the eigenvalues of A are all real and A is diagonalizable
with respect to an orthonormal basis; cf. [H/S].

Once again, for planar gradient systems, we can be very specific about
the nature of the critical points of the system:

Theorem 5. Any nondegenerate critical point of an analytic gradient sys-
tem (4) on R2 is either a saddle or a node; furthermore, if (xo, yo) is a
saddle of the function V (x, y), it is a saddle of (4) and if (xo, yo) is a strict
local maximum or minimum of the function V (x, y), it is respectively an
unstable or a stable node for (4).

Example 2. Let V (x, y) = x2 (x - 1)2 + y2. The gradient system (4) then
has the form

_ -4x(x - 1)(x - 1/2)
-2y.

There are critical points at (0, 0), (1/2, 0) and (1, 0). It follows from The-
orem 5 that (0, 0) and (1, 0) are stable nodes and that (1/2, 0) is a saddle
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for this system; cf. Problem 8 at the end of this section. The level curves
V(x, y) = constant and the trajectories of this system are shown in Fig-
ure 2.

Figure 2. The level curves V (x, y) = constant (closed curves) and the
trajectories of the gradient system in Example 2.

One last topic, which shows that there is an interesting relationship be-
tween gradient and Hamiltonian systems, is considered in this section. We
only give the details for planar systems.

Definition 4. Consider the planar system

x = P(x, y)
y = Q(x, y)

The system orthogonal to (5) is defined as the system

= Q(x, y)
y = -P(x,y)

(5)

(6)
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Clearly, (5) and (6) have the same critical points and at regular points,
trajectories of (5) are orthogonal to the trajectories of (6). Furthermore,
centers of (5) correspond to nodes of (6), saddles of (5) correspond to
saddles of (6), and foci of (5) correspond to foci of (6). Also, if (5) is a
Hamiltonian system with P = H. and Q = -Hi, then (6) is a gradient
system and conversely.

Theorem 6. The system (5) is a Hamiltonian system if the system (6)
orthogonal to (5) is a gradient system.

In higher dimensions, we have that if (1) is a Hamiltonian system with
n degrees of freedom then the system

(7)

orthogonal to (1) is a gradient system in R2n and the trajectories of the
gradient system (7) cross the surfaces H(x, y) = constant orthogonally.
In Example 2 if we take H(x,y) = V (x, y), then Figure 2 illustrates the
orthogonality of the trajectories of the Hamiltonian and gradient flows, the
Hamiltonian flow swirling clockwise.

PROBLEM SET 14

1. (a) Show that the system

2 = allx + a12y + Ax2 - 2Bxy + Cy2

a2lx-ally +Dx2-2Axy+By2

is a Hamiltonian system with one degree of freedom; i.e., find
the Hamiltonian function H(x, y) for this system.

(b) Given f E Cl (E), where E is an open, simply connected subset
of R2, show that the system

x = f(x)

is a Hamiltonian system on E if V f(x) = 0 for all x E E.

2. Find the Hamiltonian function for the system

and, using Theorem 3, sketch the phase portrait for this system.
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3. Same as Problem 2 for the system

x=y
-x+x3.

4. Given the function U(x) pictured below:

X

sketch the phase portrait for the Hamiltonian system with Hamilto-
nian H(x, y) = y2/2 + U(x).

5. For each of the following Hamiltonian functions, sketch the phase
portraits for the Hamiltonian system (1) and the gradient system
(7) orthogonal to (1). Draw both phase portraits on the same phase
plane.

(a) H(x, y) = x2 + 2y2

(b) H(x,y) = x2 _ y2

(c) H(x, y) = y sin x

(d) H(x,y) =x2-y2-2x+4y+5
(e) H(x, y) = 2x2 - 2xy + 5y2 + 4x + 4y + 4

(f) H(x,y)=x2-2xy-y2+2x-2y+2.
6. For the gradient system (4), with V (x, y, z) given below, sketch some

of the surfaces V (x, y, z) = constant and some of the trajectories of
the system.

(a) V (x, y, z) = x2 + y2 - z

(b) V(x,y,z) = x2 + 2y2 + z2

(c) V(x,y,z) = x2(x - 1) + y2(y - 2) + z2.

7. Show that if xo is a strict local minimum of V (x) then the function
V(x) - V(xo) is a strict Liapunov function for the gradient system
(4).
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8. Show that the function V(x,y) = x2(x - 1)2 + y2 has strict local
minima at (0, 0) and (1, 0) and a saddle at (1 /2, 0), and therefore that
the gradient system (4) with V (x, y) given above has stable nodes at
(0, 0) and (1, 0) and a saddle at (1/2, 0).

9. Prove that the critical point (xo, 0) of the Newtonian system (3) is a
saddle if it is a strict local maximum of the function U(x) and that it
is a center if it is a strict local minimum of the function U(x). Also,
show that if (xO, 0) is a horizontal inflection point of U(x) then it is
a cusp of the system (3); cf. Figure 4 in Section 2.11.

10. Prove that if the system (5) has a nondegenerate critical point at the
origin which is a stable focus with the flow swirling counterclockwise
around the origin, then the system (6) orthogonal to (5) has an unsta-
ble focus at the origin with the flow swirling counterclockwise around
the origin. Hint: In this case, the system (5) is linearly equivalent to

± = ax - by + higher degree terms
y = bx + ay + higher degree terms

with a < 0 and b > 0. What does this tell you about the system (6)
orthogonal to (5)? Consider other variations on this theme; e.g., what
if the origin has an unstable clockwise focus?

11. Show that the planar two-body problem
_ x

x (x2 + y2)3/2

Y
y = - (x2 + y2)3/2

can be written as a Hamiltonian system with two degrees of freedom
on E = R4 - {0}. What is the gradient system orthogonal to this
system?

12. Show that the flow defined by a Hamiltonian system with one-degree
of freedom is area preserving. Hint: Cf. Problem 6 in Section 2.3.
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Nonlinear Systems: Global
Theory

In Chapter 2 we saw that any nonlinear system

is = f(x), (1)

with If E C'(E) and E an open subset of R^, has a unique solution 0t(xo),
passing through a point xo E E at time t = 0 which is defined for all t E
I(xo), the maximal interval of existence of the solution. Furthermore, the
flow 0t of the system satisfies (i) ¢0(x) = x and (ii) ¢t+,(x) = ¢t(O,(x))
for all x E E and the function cb(t, x) = ¢t(x) defines a C'-map 0: Il E
where 0 ={(t,x)ERxEItEI(x)}.

In this chapter we define a dynamical system as a Cl-map 0: R x E -+ E
which satisfies (i) and (ii) above. We first show that we can rescale the
time in any Cl-system (1) so that for all x E E, the maximal interval of
existence 1(x) = (-oo,oo). Thus any Cl-system (1), after an appropriate
rescaling of the time, defines a dynamical system 0: R x E --+ E where
0(t, x) = 0t(x) is the solution of (1) with 00(x) = x. We next consider limit
sets and attractors of dynamical systems. Besides equilibrium points and
periodic orbits, a dynamical system can have homoclinic loops or separatrix
cycles as well as strange attractors as limit sets. We study periodic orbits
in some detail and give the Stable Manifold Theorem for periodic orbits as
well as several examples which illustrate the general theory in this chapter.
Determining the nature of limit sets of nonlinear systems (1) with n > 3 is
a challenging problem which is the subject of much mathematical research
at this time.

The last part of this chapter is restricted to planar systems where the
theory is more complete. The Poincar6-Bendixson Theorem, established in
Section 3.7, implies that for planar systems any w-limit set is either a critical
point, a limit cycle or a union of separatrix cycles. Determining the number
of limit cycles of polynomial systems in R2 is another difficult problem in
the theory. This problem was posed in 1900 by David Hilbert as one of
the problems in his famous list of outstanding mathematical problems at
the turn of the century. This problem remains unsolved today even for
quadratic systems in R2. Some results on the number of limit cycles of
planar systems are established in Section 3.8 of this chapter. We conclude
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this chapter with a technique, based on the Poincare-Bendixson Theorem
and some projective geometry, for constructing the global phase portrait
for a planar dynamical system. The global phase portrait determines the
qualitative behavior of every solution 4t(x) of the system (1) for all t E
(-oo, oo) as well as for all x E R2. This qualitative information combined
with the quantitative information about individual trajectories that can be
obtained on a computer is generally as close as we can come to solving a
nonlinear system of differential equations; but, in a sense, this information
is better than obtaining a formula for the solution since it geometrically
describes the behavior of every solution for all time.

3.1 Dynamical Systems and Global Existence
Theorems

A dynamical system gives a functional description of the solution of a
physical problem or of the mathematical model describing the physical
problem. For example, the motion of the undamped pendulum discussed in
Section 2.14 of Chapter 2 is a dynamical system in the sense that the motion
of the pendulum is described by its position and velocity as functions of
time and the initial conditions.

Mathematically speaking, a dynamical system is a function 0(t, x), de-
fined for all t E R and x E E C R", which describes how points x E E move
with respect to time. We require that the family of maps 0t(x) _ 0(t, x)
have the properties of a flow defined in Section 2.5 of Chapter 2.

Definition 1. A dynamical system on E is a Cl-map

0: RxE E
where E is an open subset of R" and if Ot(x) = ¢(t, x), then Ot satisfies

(i) to(x) = x for all x E E and

(ii) 46t o 0, (x) = Ot+, (x) for all s,t ER and XE E.

Remark 1. It follows from Definition 1 that for each t E R, ¢tt is a Cl-
map of E into E which has a Cl-inverse, ¢_t; i.e., 0, with t E R is a
one-parameter family of diffeomorphisms on E that forms a commutative
group under composition.

It is easy to see that if A is an n x n matrix then the function d,(t, x) _
eAtx defines a dynamical system on R" and also, for each Xo E R", 0(t, xo)
is the solution of the initial value problem

*=Ax
X(O) = Xo.
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In general, if d,(t, x) is a dynamical system on E C R, then the function

f(x) = dt0(t,X)1'=o

defines a C'-vector field on E and for each xo E E, 0(t, xo) is the solution
of the initial value problem

X=f(x)
X(O) = Xo.

Furthermore, for each xo E E, the maximal interval of existence of O(t, xo),
I(xo) = (-oo, oo). Thus, each dynamical system gives rise to a Cl-vector
field f and the dynamical system describes the solution set of the differ-
ential equation defined by this vector field. Conversely, given a differential
equation (1) with f E C'(E) and E an open subset of R", the solution
O(t, xo) of the initial value problem (1) with xo E E will be a dynamical
system on E if and only if for all xo E E, O(t, xo) is defined for all t E R;
i.e., if and only if for all xo E E, the maximal interval of existence I(xo)
of O(t, xo) is (-oo, oo). In this case we say that O(t, xo) is the dynamical
system on E defined by (1).

The next theorem shows that any Cl-vector field f defined on all of
R" leads to a dynamical system on R. While the solutions O(t, xo) of
the original system (1) may not be defined for all t E R, the time t can
be rescaled along trajectories of (1) to obtain a topologically equivalent
system for which the solutions are defined for all t E R.

Before stating this theorem, we generalize the notion of topological equiv-
alent systems defined in Section 2.8 of Chapter 2 for a neighborhood of the
origin.

Definition 2. Suppose that f E C'(E,) and g E C'(E2) where E, and E2
are open subsets of R". Then the two autonomous systems of differential
equations

(1)

and

x = g(x) (2)

are said to be topologically equivalent if there is a homeomorphism H: E, 4),
E2 which maps trajectories of (1) onto trajectories of (2) and preserves their
orientation by time. In this case, the vector fields f and g are also said to
be topologically equivalent. If E = El = E2 then the systems (1) and (2)
are said to be topologically equivalent on E and the vector fields f and g
are said to be topologically equivalent on E.

Remark 2. Note that while the homeomorphism H in this definition pre-
serves the orientation of trajectory by time and gives us a continuous de-
formation of the phase portrait of (1) in the phase space E, onto the phase
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portrait of (2) in the phase space E2, it need not preserve the parameteri-
zation by time along the trajectories. In fact, if 4t is the flow on El defined
by (1) and we assume that (2) defines a dynamical system 'bt on E2, then
the systems (1) and (2) are topologically equivalent if and only if there is a
homeomorphism H: E19+ E2 and for each x E El there is a continuously
differentiable function t(x, r) defined for all r E R such that 8t/8r > 0
and

H o `rt(x.T) (x) = 'T o H(x)

for all x E El and r E R. In general, two autonomous systems are topolog-
ically equivalent on E if and only if they are both topologically equivalent
to some autonomous system of differential equations defining a dynamical
system on E (cf. Theorem 2 below). As was noted in the above definitions,
if the two systems (1) and (2) are topologically equivalent, then the vector
fields f and g are said to be topologically equivalent; on the other hand, if
the homeomorphism H does preserve the parameterization by time, then
the vector fields f and g are said to be topologically conjugate. Clearly, if
two vector fields f and g are topologically conjugate, then they are topo-
logically equivalent.

Theorem 1 (Global Existence Theorem). For f E C' (R") and for
each xo E R' , the initial value problem

f(x)
x

__

1+If(x)I

x(0) = xo (3)

has a unique solution x(t) defined for all t E R, i. e., (3) defines a dynamical
system on R' ; furthermore, (3) is topologically equivalent to (1) on R^.

Remark 3. The systems (1) and (3) are topologically equivalent on R"
since the time t along the solutions x(t) of (1) has simply been rescaled
according to the formula

r = f [1 + If (x(s))I1 ds; (4)

i.e., the homeomorphism H in Definition 2 is simply the identity on R".
The solution x(t) of (1), with respect to the new time r, then satisfies

dx dx dr f(x)
dr

_
dtldt

_
1+If(x)I'

i.e., x(t(r)) is the solution of (3) where t(r) is the inverse of the strictly
increasing function r(t) defined by (4). The function r(t) maps the maximal
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interval of existence (a, /3) of the solution x(t) of (1) one-to-one and onto
(-oo, oo), the maximal interval of existence of (3).

Proof (of Theorem 1). It is not difficult to show that if f E C'(R") then
the function

f E C'(R°);l + IfI

cf. Problem 3 at the end of this section. For xo E R°, let x(t) be the solution
of the initial value problem (3) on its maximal interval of existence (a, /3).
Then by Problem 6 in Section 2.2, x(t) satisfies the integral equation

x(t) = xo + t f(x(s))

Jo 1 + Ifx(s))I
ds

for all t E (a,#) and since If(x)I/(1 + If(x)I) < 1, it follows that

Iti
Ix(t)I < Ixol + f ds = Ixol + ItI

0

for all t E (a, /3). Suppose that 8 < oo. Then

Ix(t)I <- Ixol + Q

for all t E [0,,0); i.e., for all t E (0, 0), the solution of (3) through the point
xo at time t = 0 is contained in the compact set

K

But then, by Corollary 2 in Section 2.4 of Chapter 2, /3 = co, a contradic-
tion. Therefore, /3 = oo. A similar proof shows that a = -oo. Thus, for
all xo E R", the maximal interval of existence of the solution x(t) of the
initial value problem (3), (a, /3) = (-oo, oo).

Example 1. As in Problem 1(a) in Problem Set 4 of Chapter 2, the max-
imal interval of existence of the solution

x(t) =
XO

1- xot

of the initial value problem

2=x2
X(O) = xo

is (-oo, l/xo) for xo > 0, (1/xo,oo) for xo < 0 and (-oo,oo) for xo = 0.
The phase portrait in R' is simply

+--- - x
0



186

The related initial value problem
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x2
X

1+x2
x(0) = xo

has a unique solution x(t) defined on (-oo, oo) which is given by

1 xo /2 r 11 (2x(t) = t + x -
t

+ Z
+ t

1
2

o +xo -
Xoxo I xo l xo + xo )

for xo 0 0 and x(t) _- 0 for xo = 0. It follows that for xo > 0, x(t) oo as
t-+ooandx(t)-40ast -oo;andforxo<0,x(t)--+ 0as t-iooand
x(t) -+ -oo as t - -oo. The phase portrait for the second system above is
exactly the same as the phase portrait for the first system. In this example,
the function r(t) defined by (4) is given by

(t) x°t=t+1-xot.

For xo = 0, r(t) = t; for xo > 0, r(t) maps the maximal interval (-oo,1/xo)
one-to-one and onto (-oo, oo); and for xo < 0, r(t) maps the maximal
interval (1/xo, oo) one-to-one and onto (-oo, oo).

If f E C' (E) with E a proper subset of R", the above normalization will
not, in general, lead to a dynamical system as the next example shows.

Example 2. For xo > 0 the initial value problem

1_
x

2x
x(0) = xo

has the unique solution x(t) = t + xo defined on its maximal interval of
existence I(xo) = (-xo,oo). The function f(x) = 1/(2x) E C'(E) where
E = (0, oo). We have x(t) 0 E E as t -. -X20. The related initial value
problem

1/2x 1
X

1+(1/2x) 2x+1
x(0) = xo

has the unique solution

x(t) = -j + t (xo + 1/2)2

defined on its maximal interval of existence I(xo) = (-(xo + 1/2)2,00). We
see that in this case I(xo) 54 R.
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However, a slightly more subtle rescaling of the time along trajectories
of (1) does lead to a dynamical system equivalent to (1) even when E is a
proper subset of R". This idea is due to Vinograd; cf. [N/S].

Theorem 2. Suppose that E is an open subset of R' and that f E C' (E).
Then there is a function F E Cl (E) such that

is = F(x) (5)

defines a dynamical system on E and such that (5) is topologically equiva-
lent to (1) on E.

Proof. First of all, as in Theorem 1, the function

g(x) = 1 + If( )I E
C'(E),

Ig(x)I < 1 and the systems (1) and (3) are topologically equivalent on E.
Furthermore, solutions x(t) of (3) satisfy

f0t IX(t')I dt' = f t Ig(x(t'))I dt' <_ Iti;
0 0

i.e., for finite t, the trajectory defined by x(t) has finite arc length. Let (a,()
be the maximal interval of existence of x(t) and suppose that (3 < oo. Then
since the arc length of the half-trajectory defined by x(t) for t E (0,/3) is
finite, the half-trajectory defined by x(t) for t E [0,,6) must have a limit
point

xl = lim x(t) E Etp-
(unlike Example 3 in Section 2.4 of Chapter 2). Cf. Corollary 1 and Prob-
lem 3 in Section 2.4 of Chapter 2. Now define the closed set K = R" N E
and let

d(x, K)
G(x) =

1 + d(x, K)

where d(x, y) denotes the distance between x and y in R" and

d(x, K) = inf d(x, y);
EK

i.e., for x E E, d(x, K) is the distance of x from the boundary k of E.
Then the function G E C' (R"), 0 < G(x) < 1 and for x E K, G(x) = 0.
Let F(x) = g(x)G(x). Then F E C'(E) and the system (5), is = F(x),
is topologically equivalent to (3) on E since we have simply rescaled the
time along trajectories of (3); i.e., the homeomorphism H in Definition 2
is simply the identity on E. Furthermore, the system (5) has a bounded
right-hand side and therefore its trajectories have finite arc-length for finite
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t. To prove that (5) defines a dynamical system on E, it suffices to show
that all half-trajectories of (5) which (a) start in E, (b) have finite arc
length so, and (c) terminate at a limit point x1 E E are defined for all
t E [0,oo). Along any solution x(t) of (5), dt = Ii(t)I and hence

ds't
= Jo IF(x(t(s')))I

where t(s) is the inverse of the strictly increasing function s(t) defined by

s = I IF(x(t'))Idt'

for s > 0. But for each point x = x(t(s)) on the half-trajectory we have

G(x) = d(x, K)
< d(x, K) = inf d(x, y) < d(x, x1) < so - s.1+d(x,K) yex

And therefore since 0 < Ig(x)I < 1, we have

t>
a ds' =log so - s

o so - s' so

and hence t -+ oo as s - so; i.e., the half-trajectory defined by x(t) is
defined for all t E [0, oo); i.e., (3 = oo. Similarly, it can be shown that
a = -oo and hence, the system (5) defines a dynamical system on E which
is topologically equivalent to (1) on E.

For f E C' (E), E an open subset of R", Theorem 2 implies that there is
no loss in generality in assuming that the system (1) defines a dynamical
system ¢(t, xo) on E. Throughout the remainder of this book we therefore
make this assumption; i.e., we assume that for all xo E E, the maximal
interval of existence I(xo) = (-oo, oo). In the next section, we then go on
to discuss the limit sets of trajectories x(t) of (1) as t ±oo. However, we
first present two more global existence theorems which are of some interest.

Theorem 3. Suppose that f E C'(R") and that f(x) satisfies the global
Lipschitz condition

If(x)I - f(Y)I 5 MIX - YI
for all x,y E R". Then for xo E R", the initial value problem (1) has a
unique solution x(t) defined for all t E R.

Proof. Let x(t) be the solution of the initial value problem (1) on its
maximal interval of existence Then using the fact that dlx(t)I/dt <
I*(t)I and the triangle inequality,

dt I x(t) - xol <- IX(t)I = If (x(t))I

5 If NO) - f(xo)I + If(xo)I
< MIx(t) - xol + If(xo)I.
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Thus, if we assume that /3 < oo, then the function g(t) = Ix(t) -xoI satisfies

g(t) = t d d(() ds < If (xo)I,Q + M J t g(s) dsj 0

for all t E (0, /3). It then follows from Gronwall's Lemma in Section 2.3 of
Chapter 2 that

Ix(t) - xoI <- QIf(xo)IeM0
for all t E [0, /3); i.e., the trajectory of (1) through the point xo at time
t = 0 is contained in the compact set

K = {x E R' I Ix - xoI 5 QIf(xo)IeM#} C R".

But then by Corollary 2 in Section 2.4 of Chapter 2, it follows that ,e = oo,
a contradiction. Therefore, 6 = oo and it can similarly be shown that
a = -oo. Thus, for all x0 E R", the maximal interval of existence of the
solution x(t) of the initial value problem (1), I(xo) = (-oo, oo).

If f E C'(M) where M is a compact subset of R", then f satisfies a
global Lipschitz condition on M and we have a result similar to the above
theorem for xo E M. This result has been extended to compact manifolds
by Chillingworth; cf. [G/H), p. 7. A Cl-vector field on a manifold M is
defined at the end of Section 3.10.

Theorem 4 (Chillingworth). Let M be a compact manifold and let
f E Cl (M). Then for xo E M, the initial value problem (1) has a unique
solution x(t) defined for all t E R.

PROBLEM SET 1

1. If f(x) = Ax with

A=I 0 21

find the dynamical system defined by the initial value problem (1).

2. If f (x) = x2, find the dynamical system defined by the initial value
problem (3), and show that it agrees with the result in Example 1.

3. (a) Show that if E is an open subset of R and f E C'(E) then the
function

F(x) f(x)
1 + If (x)I

satisfies F E C' (E).
Hint: Show that if f (x) # 0 at x E E then

fi(x)F'(x) -
(1 + If(x)I)2
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and that if for xo E E, f (xo) = 0 then F'(xo) = f'(xo) and that
limx-=o F'(x) = F'(xo).

(b) Extend the results of part (a) to f E C' (E) for E an open subset
of R".

4. Show that the function

1

1+x2
satisfies a global Lipschitz condition on R and find the dynamical
system defined by the initial value problem (1) for this function.

5. Another way to rescale the time along trajectories of (1) is to define

jii + If (x(s))12] ds

This leads to the initial value problem

_ f(x)
1 + l f(x) I2

for the function x(t(r)). Prove a result analogous to Theorem 1 for
this system.

6. Two vector fields f, g E Ch (R11) are said to be Ck-equivalent on R"
if there is a homeomorphism H of R" with H, H-' E Ck(R") which
maps trajectories of (1) onto trajectories of (2) and preserves their
orientation by time; H is called a Ck-diffeomorphism on R". If 0t and
'Ot are dynamical systems on R" defined by (1) and (2) respectively,
then f and g are Ck-equivalent on R" if and only if there exists a
Ck-diffeomorphism on R" and for each x E R" there exists a strictly
increasing Ck-function r(x, t) such that 8r/8t > 0 and

H o 4t(x) = 0T(x,t) o H(x) (*)

for all x E R" and t E R. If f and g are Cl-equivalent on R",

(a) prove that equilibrium points of (1) are mapped to equilibrium
points of (2) under H and

(b) prove that periodic orbits of (1) are mapped onto periodic orbits
of (2) and that if to is the period of a periodic orbit 0t(xo) of (1)
then ro = r(xo, to) is the period of the periodic orbit 0T(H(xo))
of (2).

Hint: In order to prove (a), differentiate (*) with respect to t, using
the chain rule, and show that if f(xo) = 0 then g(tf,(H(xo))) = 0
for all r E R; i.e., r/i,(H(xo)) = H(xo) for all r E It.
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7. If f and g are C2 equivalent on Rn, prove that at an equilibrium point
xo of (1), the eigenvalues of Df(xo) and the eigenvalues of Dg(H(xo))
differ by the positive multiplicative constant ko = (xo, 0).

Hint: Differentiate (*) twice, first with respect to t and then, after
setting t = 0, with respect to x and then show that Df(xo) and
koDg(H(xo)) are similar.

8. Two vector fields, f, g E Ck(Rn) are said to be Ck_conjugate on Rn
if there is a Ck-diffeomorphism of R' which maps trajectories of (1)
onto trajectories of (2) and preserves the parameterization by time.
If 0t and 1,b are the dynamical systems on R" defined by (1) and
(2) respectively, then f and g are Ck-conjugate on Rn if and only if
there exists a Ck-diffeomorphism H such that

Hoot='+ptoH
on Rn. Prove that if f and g are C2-conjugate on Rn then at an
equilibrium point xo of (1), the eigenvalues of Df(xo) and Dg(H(xo))
are equal.

9. (Discrete Dynamical Systems). If 4t is a dynamical system on an open
set E C Rn, then the mapping F: E - E defined by F(x) = 0T(x),
where r is any fixed time in R, is a diffeomorphism on E which
defines a discrete dynamical system. The discrete dynamical system
consists of the iterates of F; i.e., for each x E E we get a sequence
of points F(x), F2(x), F3(x),... , in E. Iterates of the Poincare map
P, discussed in Section 3.4, also define a discrete dynamical system.
In fact, any map F: E -+ E which is a diffeomorphism on E defines
a discrete dynamical system {Fn }, n = 0, ±1, ±2,..., on E. In this
context, show that for p 0 0 the mapping F(x,y) = (y,µx+y-y3) is
a diffeomorphism and find its inverse. For µ > 0 show that (f, '111)
is a fixed point of F; i.e., show that F(f, = (ii, VI-A).

3.2 Limit Sets and Attractors

Consider the autonomous system

is = f(X) (1)

with f E C1(E) where E is an open subset of Rn. In Section 3.1 we saw
that there is no loss in generality in assuming that the system (1) defines
a dynamical system 4(t, x) on E. For X E E, the function x): R ---' E
defines a solution curve, trajectory, or orbit of (1) through the point xo
in E. If we identify the function x) with its graph, we can think of a
trajectory through the point xo E E as a motion along the curve

IXO={xEEIx=¢(t,xo),tER}
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defined by (1). We shall also refer to F.,, as the trajectory of (1) through
the point xo at time t = 0. If the point xo plays no role in the discussion,
we simply denote the trajectory by r and draw the curve r in the subset E
of the phase space Rn with an arrow indicating the direction of the motion
along r with increasing time. Cf. Figure 1. By the positive half-trajectory
through the point xo E E, we mean the motion along the curve

r o={xEEJx=O(t,xo),t>0}

Figure 1. A trajectory r of (1) which approaches the w-limit point p E E

r-, is similarly defined. Any trajectory r = r+ U r-.

Definition 1. A point p E E is an w-limit point of the trajectory x)
of the system (1) if there is a sequence to oo such that

lun (p(tn, x) = Pn-.oo

Similarly, if there is a sequence to - -oo such that

lim On, x) = q,n-.oo

and the point q E E, then the point q is called an a-limit point of the
trajectory 4(.,x) of (1). The set of all w-limit points of a trajectory r is
called the w-limit set of r and it is denoted by w(r). The set of all a-limit
points of a trajectory r is called the a-limit set of r and it is denoted by
a(r). The set of all limit points of r, a(r) U w(r) is called the limit set
of r.
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Theorem 1. The a and w-limit sets of a trajectory r of (1), a(r) and
w(r ), are closed subsets of E and if 1 is contained in a compact subset of
R', then a(r) and w(F), are non-empty, connected, compact subsets of E.

Proof. It follows from Definition 1 that w(t) C E. In order to show that
w(r) is a closed subset of E, we let p" be a sequence of points in w(r) with
p p E R" and show that p E w(r). Let xo E F. Then since pn E w(t),
it follows that for each n = 1.2.... , there is a sequence tk") , oo as k - oc
such that

lim xo) = P.-k- x

Furthermore, we may assume that t(n+') > tk"i since otherwise we can
choose a subsequence of tA."i with this property. The above equation implies
that for all n > 2, there is a sequence of integers K(n) > K(n - 1) such
that for k > K(n),

PnI < -.

Let t" = tK(n). Then to - oc and by the triangle inequality,

I0(tn xo) - PI <_ I((tn, xo) - Pnl + IN - PI < n + IPn -PI -0

as n oc. Thus p E w(F).
If r C K, a compact subset of R". and 0(tn,xo) p E w(t), then

p E K since 0(tn, xo) E r C K and K is compact. Thus, w(I') C K
and therefore w(t) is compact since a closed subset of a compact set is
compact. Furthermore, w(1') # 0 since the sequence of points 4(n, xo) E K
contains a convergent subsequence which converges to a point in w(I') C K.
Finally, suppose that w(F) is not connected. Then there exist two nonempty,
disjoint, closed sets A and B such that w(r) = A U B. Since A and B are
both bounded, they are a finite distance b apart where the distance from
A to B

d(A,B) = inf Ix-yl.
xEA.yEB

Since the points of A and B are w-limit points of r, there exists arbitrarily
large t such that 0(t, xo) are within 6/2 of A and there exists arbitrarily
large t such that the distance of ai(t, xo) from A is greater than 6/2. Since
the distance d(O(t, xo), A) of xo) from A is a continuous function oft, it
follows that there must exist a sequence t oo such that d(d,(tn, xo), A) =
6/2. Since {4(t",xo)} C K there is a subsequence converging to a point
p E w(r) with d(p, A) = 6/2. But, then d(p, B) > d(A, B) - d(p, A) = 6/2
which implies that p A and p ¢ B; i.e., p V w(I'), a contradiction. Thus,
w(I') is connected. A similar proof serves to establish these same results
for a(r).
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Theorem 2. If p is an w-limit point of a trajectory r of (1), then all other
points of the trajectory p) of (1) through the point p are also w-limit
points of I'; i.e., if p E w(r) then I'p C w(I') and similarly if p E a(r)
then rp c a(t).

Proof. Let p E w(r) where r is the trajectory 0(-, xo) of (1) through the
point xo E E. Let q be a point on the trajectory p) of (1) through the
point p; i.e., q = ¢'(t-, p) for some t E R. Since p is an w-limit point of the
trajectory xo), there is a sequence t -+ oo such that ¢(tn, xo) -+ p.
Thus by Theorem 1 in Section 2.3 of Chapter 2 (on continuity with respect
to initial conditions) and property (ii) of dynamical systems,

O(tn + 1, xO) = 0(t, 0(tn, XO)) -+ 0(1, p) = q.

And since to+t --+ oo, the point q is an w-limit point of A similar
proof holds when p is an a-limit point of r and this completes the proof
of the theorem.

It follows from this theorem that for all points p E w(r), ¢t(p) E w(I')
for all t E R; i.e., ¢t(w(I')) C w(I'). Thus, according to Definition 2 in
Section 2.5 of Chapter 2, we have the following result.

Corollary. a(r) and w(r) are invariant with respect to the flow 0t of (1).

The a- and w-limit sets of a trajectory r of (1) are thus closed invariant
subsets of E. In the next definition, a neighborhood of a set A is any open
set U containing A and we say that x(t) -, A as t -+ oo if the distance
d(x(t), A) -+ 0 as t -+ oo.

Definition 2. A closed invariant set A C E is called an attracting set of
(1) if there is some neighborhood U of A such that for all x E U, ¢t(x) E U
for all t > 0 and ¢t(x) -+ A as t - oo. An attractor of (1) is an attracting
set which contains a dense orbit.

Note that any equilibrium point xo of (1) is its own a and w-limit set
since 0(t, xo) = xo for all t E R. And if a trajectory r of (1) has a unique
w-limit point xo, then by the above Corollary, xo is an equilibrium point
of (1). A stable node or focus, defined in Section 2.10 of Chapter 2, is the
w-limit set of every trajectory in some neighborhood of the point; and a
stable node or focus of (1) is an attractor of (1). However, not every w-
limit set of a trajectory of (1) is an attracting set of (1); for example, a
saddle xo of a planar system (1) is the w-limit set of three trajectories in
a neighborhood N(xo), but no other trajectories through points in N(xo)
approach xo as t -+ oo.

If q is any regular point in a(r) or w(r) then the trajectory through q
is called a limit orbit of r. Thus, by Theorem 2, we see that a(r) and w(I')
consist of equilibrium points and limit orbits of (1). We now consider some
specific examples of limit sets and attractors.
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Example 1. Consider the system
i=-y+x(1-x2-y2)

y=x+y(1-x2-y2).

In polar coordinates, we have

r = r(1 - r2)

6= 1.

We see that the origin is an equilibrium point of this system; the flow spirals
around the origin in the counter-clockwise direction; it spirals outward for
0 < r < 1 since r > 0 for 0 < r < 1; and it spirals inward for r > 1 since
r < 0 for r > 1. The counter-clockwise flow on the unit circle describes
a trajectory r o of (1) since r = 0 on r = 1. The trajectory through the
point (cos Bo, sin Bo) on the unit circle at t = 0 is given by x(t) = (cos (t +
Oo), sin(t + 90))T. The phase portrait for this system is shown in Figure 2.
The trajectory 1'o is called a stable limit cycle. A precise definition of a
limit cycle is given in the next section.

The stable limit cycle ro of the system in Example 1, shown in Figure 2,
is the w-limit set of every trajectory of this system except the equilibrium
point at the origin. ro is composed of one limit orbit and 170 is its own
a and w-limit set. It is made clear by this example that what we really
mean by a trajectory or orbit r of the system (1) is the equivalence class
of solution curves x) with x E I ; cf. Problem 3. We typically pick one
representative 4(., xo) with xo E r, to describe the trajectory and refer to
it as the trajectory r,o through the point xo at time t = 0. In the next
section we show that any stable limit cycle of (1) is an attractor of (1).

Y

Figure 2. A stable limit cycle r o which is an attractor of (1).
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We next present some examples of limit sets and attractors in R3.

Example 2. The system

i=-y+x(1-z2-x2-y2)
y=x+y(1-z2-x2-y2)
z=0

has the unit two-dimensional sphere S2 together with that portion of the
z-axis outside S2 as an attracting set. Each plane z = zo is an invariant
set and for Izol < 1 the w-limit set of any trajectory not on the z-axis is a
stable cycle (defined in the next section) on S2. Cf. Figure 3.

Example 3. The system

i=-y+x(1-x2-y2)

y=x+y(1-x2-y2)

z=a

has the z-axis and the cylinder x2 + y2 = 1 as invariant sets. The cylinder
is an attracting set; cf. Figure 4 where a > 0.

Figure S. A dynamical system with S2 as part of its attracting set.
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Figure 4. A dynamical system with a cylinder as its attracting set.

If in Example 3 we identify the points (x, y, 0) and (x. y, 27r) in the planes
z = 0 and z = 27r. we get a flow in R3 with a two-dimensional invariant
torus T2 as an attracting set. The z-axis gets mapped onto an unstable
cycle r (defined in the next section). And if a is an irrational multiple of it
then the torus T2 is an attractor (cf. problem 2) and it is the 4-limit set of
every trajectory except the cycle I. Cf. Figure 5. Several other examples
of flows with invariant tori are given in Section 3.6.

In Section 3.7 we establish the Poincare-Bendixson Theorem which shows
that the a and w-limit sets of any two-dimensional system are fairly simple
objects. In fact. it is shown in Section 3.7 that they are either equilibrium
points, limit cycles or a union of separatrix cycles (defined in the next
section). However, for higher dimensional systems, the a and w-limit sets
may be quite complicated as the next example indicates. A study of the
strange types of limit sets that can occur in higher dimensional systems is
one of the primary objectives of the book by Guckenheimer and Holmes
[G/H]. An in-depth (numerical) study of the "strange attractor" for the
Lorenz system in the next example has been carried out by Sparrow [S].
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Figure 5. A dynamical system with an invariant torus as an attracting set.

Example 4. (The Lorenz System). The original work of Lorenz in 1963
as well as the more recent work of Sparrow [S] indicates that for certain
values of the parameters a, p and Q, the system

x = o(y - x)

Px - y - xz

-/3z+xy

has a strange attracting set. For example for a = 10, p = 28 and ,l3 = 8/3, a
single trajectory of this system is shown in Figure 6 along with a "branched
surface" S. The attractor A of this system is made up of an infinite number
of branched surfaces S which are interleaved and which intersect; however,
the trajectories of this system in A do not intersect but move from one
branched surface to another as they circulate through the apparent branch.
The numerical results in [S] and the related theoretical work in [G/H] indi-
cate that the closed invariant set A contains (i) a countable set of periodic
orbits of arbitrarily large period, (ii) an uncountable set of nonperiodic
motions and (iii) a dense orbit; cf. (G/H], p. 95. The attracting set A hav-
ing these properties is referred to as a strange attractor. This example is
discussed more fully in Section 4.5 of Chapter 4 in this book.
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Figure 6. A trajectory 1 of the Lorenz system and the corresponding
branched surface S. Reprinted with permission from Guckenheimer and
Holmes [G/H].

PROBLEM SET 2

1. Sketch the phase portrait and show that the interval (-1, 1] on the
x-axis is an attracting set for the system
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x-x3
-y-

Is the interval [-1, 1] an attractor? Are either of the intervals (0, 1]
or [1, oo) attractors? Are any of the infinite intervals (0, oo), [0, oo),
(-1,oo), [-1, oo) or (-oo,oo) on the x-axis attracting sets for this
system?

2. (Flow on a torus; cf. [H/S], p. 241). Identify R4 with C2 having two
complex coordinates (w, z) and consider the linear system

ib = 2iriw

I = 27raiz

where a is an irrational real number.

(a) Set a = e2*ai and show that the set {an E C I n = 1, 2, ...} is
dense in the unit circle C = {z E C I Izl = 1}.

(b) Let 0t be the flow of this system. Show that for any integer n,

On(w, z) = (w, anz).

(c) Let xo = (wo, zo) belong to the torus T2 = C X C C C2. Use
(a) and (b) to show that w(I'xo) = T2.

(d) Find w(r) and a(F) for any trajectory r of this system.

Hint: In part (a), use the following theorem to show that for c > 0
there are positive integers m and n such that

Ian - 11 = le2aani - e2lrmil < E.

Theorem (Hurwitz). Given any irrational number a and any N >
0, there exist positive integers m and n such that n > N and

l

a - ml 1-
n

<n2-.

It then follows that for 8 = 21rna - 2irm and the integer K chosen
such that KI8I < 27r < (K + 1)101, any point on the circle C is within
an e distance of one of the points in {(an)k E C I k = 1,...,K}.

3. Let 0t be the flow of the system (1). Define two solution curves

r; = {(t,x) ERxEItERandx=0(t,xj)}
j = 1, 2 of (1) to be equivalent, r1 - r2, if there is a to E R such
that for all t E R

Ot(x2) = -Ot+to(xl)-
Show that - is an equivalence relation; i.e., show that - is reflexive,
symmetric and transitive.
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4. Sketch the phase portrait of a planar system having

(a) a trajectory r with a(t) = w(1') = {xo}, but r :h {xo}.

(b) a trajectory 1' such that w(I') consists of one limit orbit (cf.
Example 1).

(c) a trajectory I' such that w(r) consists of one limit orbit and one
equilibrium point.

(d) a trajectory r' such that w(t) consists of two limit orbits and one
equilibrium point (cf. Example 2 in Section 2.14 of Chapter 2).

(e) a trajectory r such that w(r) consists of two limit orbits and two
equilibrium points (cf. Example 1 in Section 2.14 of Chapter 2).

(f) a trajectory r such that w(r) consists of five limit orbits and
three equilibrium points.

Can w(F) consist of one limit orbit and two equilibrium points? How
many different topological types, in R2, are there in case (d) above?

5. (a) According to the corollary of Theorem 2, every w-limit set is an
invariant set of the flow ¢t of (1). Give an example to show that
not every set invariant with respect to the flow 46e of (1) is the
a or w-limit set of a trajectory of (1).

(b) As we mentioned above, any stable limit cycle I is an attracting
set; furthermore, IF is the w-limit set of every trajectory in a
neighborhood of IF. Give an example to show that not every at-
tracting set A is the w-limit set of a trajectory in a neighborhood
of A.

(c) Is the cylinder in Example 3 an attractor of the system in that
example?

6. Consider the Lorenz system

o(y-x)
Px - y - xz

z=xy-/3z

with a > 0, p > 0 and 0 > 0.

(a) Show that this system is invariant under the transformation
(x, y. z, t) (-x, -y, z, t).

(b) Show that the z-axis is invariant under the flow of this system
and that it consists of three trajectories.
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(c) Show that this system has equilibrium points at the origin and
at (± ,0(p - 1), f Q(p - 1), p - 1) for p > 1. For p > 1 show
that there is a one-dimensional unstable manifold W' (0) at the
origin.

(d) For p E (0,1) use the Liapunov function V(x, y, z) = px2+oy2+
oz2 to show that the origin is globally stable; i.e., for p E (0, 1),
the origin is the w-limit set of every trajectory of this system.

3.3 Periodic Orbits, Limit Cycles and Separatrix
Cycles

In this section we discuss periodic orbits or cycles, limit cycles and separa-
trix cycles of a dynamical system d,(t, x) defined by

x = f(x) (1)

Definition 1. A cycle or periodic orbit of (1) is any closed solution curve
of (1) which is not an equilibrium point of (1). A periodic orbit r is called
stable if for each e > 0 there is a neighborhood U of r such that for all x E
U, d(I', r) < e; i.e., if for all x E U and t > 0, d(o(t, x), r) < e. A periodic
orbit r is called unstable if it is not stable; and r is called asymptotically
stable if it is stable and if for all points x in some neighborhood u of r

slim d(o(t, x), r) = o.
00

Cycles of the system (1) correspond to periodic solutions of (1) since
0(-, x0) defines a closed solution curve of (1) if and only if for all t E R
0(t + T, xo) = 0(t, xo) for some T > 0. The minimal T for which this
equality holds is called the period of the periodic orbit xo). Note that
a center, defined in Section 2.10 of Chapter 2, is an equilibrium point
surrounded by a continuous band of cycles. In general, the period T will
vary continuously as we move along a continuous curve intersecting this
family of cycles; however, in the case of a center for a linear system, the
period is the same for each periodic orbit in the family. Each periodic orbit
in the family of cycles encircling a center is stable but not asymptotically
stable. We shall see in Section 3.5 that a periodic orbit

r: x=y(t) 0 < t < T

of (1) if asymptotically stable only if

0
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For planar systems we shall see in Section 3.4 that this condition with strict
inequality is both necessary and sufficient for the asymptotic stability of
a simple limit cycle r. An asymptotically stable cycle is referred to as an
w-limit cycle and any w-limit cycle is an attractor of (1).

Periodic orbits have stable and unstable manifolds just as equilibrium
points do; cf. Section 2.7 in Chapter 2. Let r be a (hyperbolic) periodic
orbit and let N be a neighborhood of r. As in Section 2.7, the local stable
and unstable manifolds of r are given by

S(r)={xENId(4t(x),r)--+0as t-+ ooand¢2(x)ENfort>0}

and

U(r)={xENId(4t(x),r)-.0 as t-.-ooand Ot(x)ENfor t<0}.

The global stable and unstable manifolds of r are then defined by

W3(r) = U ot(S(r))
t<0

and

W"(r) = U ot(U(r))
t>0

These manifolds are invariant under the flow 4t of (1). The stability of
periodic orbits as well as the existence and dimension of the manifolds
S(r) and U(r') will be discussed more fully in the next two section.

Example 1. The system

th=-y+x(1-x2-y2)

X+Y(l -X' -Y')
z=z

has an isolated periodic orbit in the x, y plane given by x(t) = (cost,
sin t, 0)T. There is an equilibrium point at the origin. The z-axis, the cylin-
der x2 + y2 = 1 and the x, y plane are invariant manifolds of this system.
The phase portrait for this system is shown in Figure 1 together with a
cross-section in the x, z plane; the dashed curves in that cross-section are
projections onto the x, z plane of orbits starting in the x, z plane. In this
example, the stable manifold of r, w, (r), is the x, y plane excluding the
origin and the unstable manifold of r, W"(r), is the unit cylinder. The
unit cylinder is an attracting set for this system.
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Z

/
1

0
x

Figure 1. Some invariant manifolds for the system of Example 1 and a
cross-section in the x, z plane.

A periodic orbit r of the type shown in Figure 1 where W'(1') 96 F and
Wu(r) # r is called a periodic orbit of saddle type. Any periodic orbit of
saddle type is unstable.

We next consider periodic orbits of a planar system, (1) with x E R2.

Definition 2. A limit cycle r of a planar system is a cycle of (1) which
is the a or w-limit set of some trajectory of (1) other than F. If a cycle r
is the w-limit set of every trajectory in some neighborhood of t, then r is
called an w-limit cycle or stable limit cycle; if r is the a-limit set of every
trajectory in some neighborhood of t, then r is called an a-limit cycle or
an unstable limit cycle; and if r is the w-limit set of one trajectory other
than I' and the a-limit set of another trajectory other than r, then t is
called a semi-stable limit cycle.

Note that a stable limit cycle is actually an asymptotically stable cycle
in the sense of Definition 1 and any stable limit cycle is an attractor.
Example 1 in Section 3.2 exhibits a stable limit cycle and if we replace t by
-t in that example (thereby reversing the direction of the flow), we would
obtain an unstable limit cycle. In Problem 2 below we see an example of a
semi-stable limit cycle.

The following theorem is proved in [C/L], p. 396. In stating this theorem,
we are using the Jordan curve theorem which states that any simple closed
curve r separates the plane R2 into two disjoint open connected sets having
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IF as their boundary. One of these sets, called the interior of r, is bounded
and simply connected. The other, called the exterior of r, is unbounded
and is not simply connected.

Theorem 1. If one trajectory in the exterior of a limit cycle r of a pla-
nar C'-system (1) has 1' as its w-limit set, then every trajectory in some
exterior neighborhood U of 1' has r as its w-limit set. Moreover, any tra-
jectory in U spirals around r as t -+ oo in the sense that it intersects any
straight line perpendicular to r an infinite number of times at t = to where
to -+ 00.

The same sort of result holds for interior neighborhoods of r and also
when 1' is the a-limit set of some trajectory.

The next example shows that limit cycles can accumulate at an equi-
librium point and Problem 1 below shows that they can accumulate on a
cycle; cf. Example 6 in Section 2.10 of Chapter 2.

Example 2. The system

± = -y + x(x2 + y2) sin
x2

1

+ y2

1
2 2) siny = x + y(x +y x2 +y2

for x2 + y2 34 0 with x = y = 0 at (0, 0) defines a C'-system on R2 which
can be written in polar coordinates as

1
9 = r3 sin -r
9=1.

The origin is an equilibrium point and there are limit cycles rn lying on
the circles r = 1/(nir). These limit cycles accumulate at the origin; i.e.,

lim d(I'n, 0) = 0.
n-»oo

Each of the limit cycles r2n is stable while r2n+1 is unstable.

The next theorem, stated by Dulac [D] in 1923, shows that a planar
analytic system, (1) with f(x) analytic in E C R2, cannot have an infinite
number of limit cycles accumulating at a critical point as in the above
example. Errors were recently found in Dulac's original proof; however,
these errors were corrected in 1988 by a group of French mathematicians,
Ecalle, Martinet, Moussu and Ramis, and independently by the Russian
mathematician Y. Ilyashenko, who modified and extended Dulac's use of
mixed Laurent-logarithmic type series. C£ [8].
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Theorem (Dulac). In any bounded region of the plane, a planar analytic
system (1) with f(x) analytic in R2 has at most a finite number of limit
cycles. Any polynomial system has at most a finite number of limit cycles
in R2.

The next examples describe two important types of orbits that can occur
in a dynamical system: homoclinic orbits and heteroclinic orbits. They also
furnish examples of separatrix cycles and compound separatrix cycles for
planar dynamical systems.

Figure 2. A homoclinic orbit r which defines a separatrix cycle.

Example 3. The Hamiltonian system

y

x+x2
with Hamiltonian H(x, y) = y2/2-x2/2-x3/3 has solution curves defined
by

y2-x2-3x3=C.
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The phase portrait for this system is shown in Figure 2. The curve y2 =
x2 + 2x3/3, corresponding to C = 0, goes through the point (-3/2, 0) and
has the saddle at the origin (which also corresponds to C = 0) as its a and
w-limit sets. The solution curve r C W'(0) fl WI(0) is called a homoclinic
orbit and the flow on the simple closed curve determined by the union of
this homoclinic orbit and the equilibrium point at the origin is called a
separatrix cycle.

112

Figure 3. Heteroclinic orbits r, and r2 defining a separatrix cycle.

Example 1 in Section 2.14 of Chapter 2, the undamped pendulum, fur-
nishes an example of heteroclinic orbits; the trajectory F1 in Figure 1 of
that section, having the saddle (-1r, 0) as its a-limit set and the saddle at
(jr, 0) as its w-limit set is called a heteroclinic orbit. The trajectory r2 in
that figure is also a heteroclinic orbit; cf. Figure 3 above. The flow on the
simple closed curve S = I'1 U I72 U {(ir, 0)} U {(-7r, 0)} defines a separatrix
cycle.

A finite union of compatibly oriented separatrix cycles is called a com-
pound separatrix cycle or graphic. An example of a compound separatrix
cycle is given by the Hamiltonian system in Example 2 in Section 2.14 of
Chapter 2.
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Consider the following system.

i=-2y
y = 4x(x - 1)(x - 1/2).

The phase portrait for this system is given in Figure 2 in Section 2.14 of
Chapter 2. The two trajectories IF, and r2 having the saddle at (1/2,0) as
their a and w-limit sets are homoclinic orbits and the flow on the (nonsim-
ple) closed curve s = r1 u r2 U {(1/2, 0)} is a compound separatrix cycle.
S is the union of two positively oriented separatrix cycles. Other examples
of compound separatrix cycles can be found in [A-Ifl. Several examples of
compound separatrix cycles are shown in Figure 4 below.

Figure 4. Examples of compound separatrix cycles.

PROBLEM SET 3

1. (a) Given
i=-y+x(1-x2-y2)sin11-x2-y21-1/2

y = x + y(1 - x2 _Y2) sin 11 - x2 - y21-1/2

forx2+y254 1with i=-yandy=xforx2+y2=1. Show
that there is a sequence of limit cycles

Jif 2 2rn: r
1r

for n = 1, 2,3.... which accumulates on the cycle

r: x = 7(t) = (cost, sin t)T.

What can you say about the stability of r.±?
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(b) Given

i = -y + x(1 -X2 - y2) sin(1 - x2 - y2)-1

y = x + y(1 -X 2 - y2)sin(1 - x2 - y2)-I

for x2 + y2 36 1 with i= -y and y = x for x2 + y2 = 1. Show
that there is a sequence of limit cycles

1IF,,: r= 1-
n

for n = ±1, ±2,±3.... which accumulates on the cycle 1' given
in part (a). What can you say about the stability of

2. Show that the system

i=-y+x(1-x2-y2)2

y=x+y(1-x2_y2)2

has a semi-stable limit cycle r. Sketch the phase portrait for this
system.

3. (a) Show that the linear system is = Ax with

A = [1 -0]
1 0

has a continuous band of cycles

1'a: -y,,, (t) = (acos2t,a/2sin2t)T

for a E (0, oo); cf. the example in Section 1.5 of Chapter 1. What
is the period of each of these cycles?

(b) Show that the nonlinear system

_y VI'X-2 -+y 2

= x x2+y2

has a continuous band of cycles

I,,: -y. (t) = (acosat,asinat)T

for a E (0, oo). Note that the period T. = 2a/a of the cycle r
is a continuous function of a for a E (0, oo) and that T. -+ 0 as
a-+0while Ta-'ooas a-.0.
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4. Show that

=y
y=x+x2

is a Hamiltonian system with

H(x, y) = y2/2 - x2/2 - x3/3

and that this system is symmetric with respect to the x-axis. Show
that the origin is a saddle for this system and that (-1, 0) is a center.
Sketch the homoclinic orbit given by

y2 = x2 + 3x3

Also, sketch all four trajectories given by this equation and sketch
the phase portrait for this system.

5. Show that

i=y+y(x2+y2)
x - x(x2 + y2)

is a Hamiltonian system with 4H(x,y) = (x2 + y2)2 - 2(x2 - y2).
Show that di = 0 along solution curves of this system and therefore
that solution curves of this system are given by

(x2 + y2)2 - 2(x2 - y2) = C.

Show that the origin is a saddle for this system and that (±1, 0) are
centers for this system. (Note the symmetry with respect to the x-
axis.) Sketch the two homoclinic orbits corresponding to C = 0 and
sketch the phase portrait for this system noting the occurrence of a
compound separatrix cycle for this system.

6. As in problem 5, sketch the compound separatrix cycle and the phase
portrait for the Hamiltonian system

x=y
y=x-x3

with H(x,y) = y2/2 - x2/2 + x4/4.

7. (a) Write the system

i = -y + x(1 - r2)(4 - r2)

= x
+V(1

- r2)(4 - r2)



3.4. The Poincare Map 211

with r2 = x2+y2 in polar coordinates and show that this system
has two limit cycles r1 and r2. Give solutions representing r1
and r2 and determine their stability. Sketch the phase portrait
for this system and determine all limit sets of trajectories of this
system.

(b) Consider the system

i=-y+x(1-x2-y2-z2)(4-x2-y2-z2)
x+y(1-x2-y2-z2)(4-x2-y2-z2)

z=0.
For z = zo, a constant, write the resulting system in polar coor-
dinates and deduce that this system has two invariant spheres.
Sketch the phase portrait for this system and describe all limit
sets of trajectories of this system. Does this system have an at-
tracting set?

8. Consider the system

i=-y+x(1-x2-y2)(4-x2-y2)
y=x+y(1-x2-y2)(4-x2-y2)
z=z.

Show that there are two periodic orbits r1 and r2 in the x, y plane
represented by -y1(t) = (cos t, sin t)T and 72(t) = (2 c:os t, 2 sin t)T ,
and determine their stability. Show that there are two invariant cylin-
ders for this system given by x2+y2 = 1 and x2+y2 = 4; and describe
the invariant manifolds W' (r3) and W" (r,,) for j = 1,2.

9. Reverse the direction of the flow in problem 8 (i.e., let t -, -t) and
show that the resulting system has the origin and the periodic orbit
r2: x = (2 cos t, 2 sin t)T as attractors.

3.4 The Poincare Map

Probably the most basic tool for studying the stability and bifurcations of
periodic orbits is the Poincare map or first return map, defined by Henri
Poincare in 1881; cf. [P]. The idea of the Poincare map is quite simple: If
r is a periodic orbit of the system

(1)

through the point xo and E is a hyperplane perpendicular to r at xo, then
for any point x E E sufficiently near xo, the solution of (1) through x at
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t = 0, 0,(x), will cross E again at a point P(x) near xo; cf. Figure 1. The
mapping x P(x) is called the Poincare map.

The Poincare map can also be defined when E is a smooth surface,
through a point xo E r, which is not tangent to r at xo. In this case,
the surface E is said to intersect the curve r transversally at xo. The next
theorem establishes the existence and continuity of the Poincare map P(x)
and of its first derivative DP(x).

Figure 1. The Poincare map.

Theorem 1. Let E be an open subset of R" and let f E C'(E). Suppose
that ¢,(xo) is a periodic solution of (1) of peraod T and that the cycle

r={xER"Ix=Ot(xo), 0<t<T}
is contained in E. Let E be the hyperplane orthogonal to I' at xo; i.e., let

E={xER" I

Then there is a b > 0 and a unique function r(x), defined and continuously
differentiable for x E N6(xo), such that r(xo) = T and

TT(X) (x) E E

for all x E N5(xo).

Proof. The proof of this theorem is an immediate application of the im-
plicit function theorem. For a given point xo E I C E, define the function

F(t,x) = [4' (x) - xo] . f(xo)

It then follows from Theorem 1 in Section 2.5 of Chapter 2 that F E
C'(Rx E) and it follows from the periodicity of 0,(xo) that F(T,xo) = 0.
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Furthermore, since 0(t, x0) = 4t(xo) is a solution of (1) which satisfies
4(T, xo) = xo, it follows that

.F(T, xo) = acb(T. xo)
f (xo)at at

= f(xo). f(xo) = If(xo)12 0

since xo E 1' is not an equilibrium point of (1). Thus, it follows from the
implicit function theorem, cf., e.g., Theorem 9.28 in [R], that there exists
a b > 0 and a unique function r(x) defined and continuously differentiable
for all x E N6(xo) such that r(xo) = T and such that

F(T(x), x) = 0

for all x E N6(xo). Thus, for all x E N6(xo), [gb(r(x),x) - xo] f(xo) = 0,
i.e.,

0T(x)(x) E E.

Definition 1. Let I', E. b and r(x) be defined as in Theorem 1. Then for
x E N6(xo) n E, the function

P(x) = 0T(x)(x)

is called the Poincare map for r at xo.

Remark. It follows from Theorem 1 that P E C'(U) where U = N6(xo) fl
E. And the same proof as in the proof of Theorem 1, using the implicit
function theorem for analytic functions, implies that if f is analytic in E
then P is analytic in U. Fixed points of the Poincare map, i.e., points x E E
satisfying P(x) = x, correspond to periodic orbits x) of (1). And there
is no loss in generality in assuming that the origin has been translated to the
point xo E E in which case xo = 0, E ^-- R"-1, P: Rn-1 fl N6(0) R"-1

and DP(0) is represented by an (n - 1) x (n-1) matrix. By considering the
system (1) with t -t, we can show that the Poincare map P has a C'
inverse, P-1(x) = ¢_T(x)(x). Thus, P is a diffeomorphism; i.e., a smooth
function with a smooth inverse.

Example 1. In example 1 of Section 3.2 it was shown that the system

i=-y+x(1-x2-y2)

x+y(l-x2-y2)

had a limit cycle IF represented by -y(t) = (cost, sin t)'. The Poincar6 map
for r can be found by solving this system written in polar coordinates

r = r(1 - r2)

B=1
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with r(O) = ro and 0(0) = Bo. The first equation can be solved either as a
separable differential equation or as a Bernoulli equation. The solution is
given by

r ( 1/2

r(t, ro) = I 1 +
1

( To - 1) a-2tl -

and

0(t,00) = t + 80.

If E is the ray 0 = 80 through the origin, then E is perpendicular to I' and
the trajectory through the point (ro, 8o) E E f1 I' at t = 0 intersects the ray
8 = 00 again at t = 2ir; cf. Figure 2. It follows that the Poincare map is
given by

1/2/1
P(ro) = 1+ I To - 1 I e-4nl

Clearly P(1) = 1 corresponding to the cycle r and we see that

r \
P'(ro) = e-4aro 3

I
1+(_! -1

1

e-47r]
-3/2

L J

and that P'(1) = e-4,r < 1.

Figure 2. The Poincare map for the system in Example 1.

We next cite some specific results for the Poincare map of planar systems.
We return to a more complete discussion of the Poincare map of higher
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dimensional systems in the next section. For planar systems, if we translate
the origin to the point xo E l fl E, the normal line E will be a line through
the origin; cf. Figure 3 below. The point 0 E F fl E divides the line E into
two open segments E+ and E- where E+ lies entirely in the exterior of r.
Let s be the signed distance along E with s > 0 for points in E+ and s < 0
for points in E-.

Figure 3. The straight line E normal to r at 0.

According to Theorem 1, the Poincare map P(s) is then defined for
Isl < 6 and we have P(O) = 0. In order to see how the stability of the cycle
F is determined by P'(0), let us introduce the displacement function

d(s) = P(s) - s.

Then d(O) = 0 and d(s) = P(s) - 1; and it follows from the mean value
theorem that for jsi < 5

d(s) = d'(o)s

for some o between 0 and a. Since d(s) is continuous, the sign of d(s)
will be the same as the sign of d'(0) for isi sufficiently small as long as
d'(0) 96 0. Thus, if d'(0) < 0 it follows that d(s) < 0 for a > 0 and that
d(s) > 0 for a < 0; i.e., the cycle r is a stable limit cycle or an w-limit
cycle. Cf. Figure 3. Similarly, if d'(0) > 0 then r is an unstable limit cycle
or an a-limit cycle. We have the corresponding results that if P(0) = 0 and
P'(0) < 1, then r is a stable limit cycle and if P(0) = 0 and P'(0) > 1,
then r is an unstable limit cycle. Thus, the stability of r is determined by
the derivative of the Poincare map.
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In this regard, the following theorem which gives a formula for P'(0) in
terms of the right-hand side f(x) of (1), is very useful; cf. [A-II), p. 118.

Theorem 2. Let E be an open subset of R2 and suppose that f E C'(E).
Let -y(t) be a periodic solution of (1) of period T. Then the derivative of
the Poincard map P(s) along a straight line E normal to r = {x E R2
x = y(t) - -f(0), 0 < t < T) at x = 0 is given by

T
P'(0) = expJO V f(ry(t)) dt.

Corollary. Under the hypotheses of Theorem 2, the periodic solution -Y(t)
is a stable limit cycle if

J
T V f(ry(t)) dt < 0

0

and it is an unstable limit cycle if

jo
It may be a stable, unstable or semi-stable limit cycle or it may belong to
a continuous band of cycles if this quantity is zero.

For Example 1 above, we have -y(t) = (cost, sin t)T, V . f (x, y) = 2 -
4x2 - 4y2 and

I 2V.f(ry(t))dt=J*(2-4cos2t-4sin2t)dt=-41r.
0 0

Thus, with s = r - 1, it follows from Theorem 2 that
p'(0) = e-4,r

which agrees with the result found in Example 1 by direct computation.
Since P'(0) < 1, the cycle -y(t) is a stable limit cycle in this example.

Definition 2. Let P(s) be the Poincare map for a cycle r of a planar
analytic system (1) and let

d(s) = P(s) - s

be the displacement function. Then if

d(0) = d'(0) = ... = d(k-1)(0) = 0 and d(k)(0) 0 0,

r is called a multiple limit cycle of multiplicity k. If k = 1 then r is called
a simple limit cycle.
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We note that I' = {x E R2 I x = ry(t), 0 < t <_ T} is a simple limit cycle
of (1) if

fT
V . f (ry(t)) dt 34 0.

0

It can be shown that if k is even then 1:' is a semi-stable limit cycle and if k
is odd then r is a stable limit cycle if d(k) (0) < 0 and r is an unstable limit
cycle if d(k)(0) > 0. Furthermore, we shall see in Section 4.5 of Chapter 4
that if r is a multiple limit cycle of multiplicity k, then k limit cycles can be
made to bifurcate from r under a suitable small perturbation of (1). Finally,
it can be shown that in the analytic case, d(k) (0) = 0 for k = 0, 1, 2.... if
IF belongs to a continuous band of cycles.

Part of Dulac's Theorem for planar analytic systems, given in Section 3.3,
follows immediately from the analyticity of the Poincare map for analytic
systems: Suppose that there are an infinite number of cycles r,, which
accumulate on a cycle r. Then the Poincare map P(s) for r is an analytic
function with an infinite number of zeros in a neighborhood of s = 0. It
follows that P(s) - 0 in a neighborhood of s = 0; i.e., the cycles 1' belong
to a continuous band of cycles and are therefore not limit cycles. This result
was established by Poincare [P] in 1881:

Theorem (Poincare). A planar analytic system (1) cannot have an infi-
nite number of limit cycles which accumulate on a cycle of (1).

For planar analytic systems, it is convenient at this point to discuss the
Poincare map in the neighborhood of a focus and to define what we mean
by a multiple focus. These results will prove useful in Chapter 4 where we
discuss the bifurcation of limit cycles from a multiple focus.

Suppose that the planar analytic system (1) has a focus at the origin
and that det Df(O) 54 0. Then (1) is linearly equivalent to the system

i = ax - by + p(x,y)

y = bx + ay + q(x,y) (2)

with b 0 0 where the power series expansions of p and q begin with second
or higher degree terms. In polar coordinates, this system has the form

r = ar + 0(r2)

9 = b + 0(r).

Let r(t, ro, 00), 0(t, ro, 00) be the solution of this system satisfying
r(0, ro, 00) = ro and 0(0, ro, Bo) = 0o. Then for ro > 0 sufficiently small
and b > 0, 0(t, ro, 9o) is a strictly increasing function of t. Let t(0, ro, 0o)
be the inverse of this strictly increasing function and for a fixed 00, define
the function

P(ro) = r(t(0o + 21r, ro, 0o), ro, 0o)
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Then for all sufficiently small ro > 0, P(ro) is an analytic function of ro
which is called the Poincar6 map for the focus at the origin of (2). Similarly,
for b < 0, 8(t, ro, Bo) is a strictly decreasing function of t and the formula

P(ro) = r(t(Oo - 2ir,ro,00),ro,8o)

is used to define the Poincare map for the focus at the origin in this case.
Cf. Figure 4.

b>O b<0

Figure 4. The Poincare map for a focus at the origin.

The following theorem is proved in [A-II], p. 241.

Theorem 3. Let P(s) be the Poincare map for a focus at the origin of
the planar analytic system (2) with b 0 0 and suppose that P(s) is defined
for 0 < s < 60. Then there is a b > 0 such that P(s) can be extended to
an analytic function defined for Isl < b. Furthermore, P(0) = 0, P'(0) _
exp(2ira/lbl), and if d(s) = P(s) - s then d(s)d(-s) < 0 for 0 < jsI < 6.

The fact that d(s)d(-s) < 0 for 0 < Isl < 6 can be used to show that if

d(0) = d'(0) = ... = d(k-' (0) = 0 and d(k)(0)
O 0

then k is odd; i.e., k = 2m + 1. The integer m = (k - 1)/2 is called the
multiplicity of the focus. If m = 0 the focus is called a simple focus and
it follows from the above theorem that the system (2), with b # 0, has a
simple focus at the origin if a 36 0. The sign of d'(0), i.e., the sign of a
determines the stability of the origin in this case. If a < 0, the origin is a
stable focus and if a > 0, the origin is an unstable focus. If d'(0) = 0, i.e.,
if a = 0, then (2) has a multiple focus or center at the origin. If d'(0) = 0
then the first nonzero derivative v =- dlki (0) 0 0 is called the Liapunov
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number for the focus. If a < 0 then the focus is stable and if a > 0 it is
unstable. If d'(0) = d"(0) = 0 and d'(0) 0 0 then the Liapunov number
for the focus at the origin of (2) is given by the formula

a-d" (0)=
26

{[3(a3o+bo3)+(a12+621)]

- [2(a20b2o-a02bo2)-all (ao2+a2o)+b11(bo2+b2o)]I (3)

where

p(x, y) = a:1x`y'' and 9(x, y) = > bsixiy
i+i?2 i+ji2

in (2); cf. [A-III, p. 252.
This information will be useful in Section 4.4 of Chapter 4 where we shall

see that m limit cycles can be made to bifurcate from a multiple focus of
multiplicity m under a suitable small perturbation of the system (2).

PROBLEM SET 4

1. Show that -y(t) = (2 cos 2t, sin 2t)T is a periodic solution of the system

i=-4y+x- 4 -y2)(1

2

r x2 1
x+y(1-

4
_ 21

that lies on the ellipse (x/2)2 + y2 = 1; i.e., -y(t) represents a cycle r
of this system. Then use the corollary to Theorem 2 to show that r
is a stable limit cycle.

2. Show that y(t) = (cost, sin t, 0)T represents a cycle I' of the system

i=-y+x(1-x2-y2)

=x+y(1-x2-y2)

= z.

Rewrite this system in cylindrical coordinates (r, 9, z); solve the re-
sulting system and determine the flow ¢+i(ro, 00, zo); for a fixed Oo E
[0, 27r), let the plane

E = {xER310=Bo,r>0,zER}

and determine the Poincar6 map P(ro, zo) where P: E -' E. Compute
DP(ro, zo) and show that DP(1, 0) = e2wB where the eigenvalues of
Bare.\1=-2and '2=1.
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3. (a) Solve the linear system is = Ax with

A=ra -bl
b a]

and show that at any point (x0,0), on the x-axis, the Poincare
map for the focus at the origin is given by P(xo) = xo exp(27ra/
obi). For d(x) = P(x) -x, compute d'(0) and show that d(-x) _
-d(x).

(b) Write the system

i=-y+x(1-x2-y2)

x+y(1-x2-y2)

in polar coordinates and use the Poincare map P(ro) determined
in Example 1 for ro > 0 to find the function P(s) of Theorem 3
which is analytic for Isl < b. (Why is P(s) analytic? What is the
domain of analyticity of P(s)?) Show that d'(0) = e2a - 1 > 0
and hence that the origin is a simple focus which is unstable.

4. Show that the system

i=-y+x(1-x2_p2)2

y=x+y(1-x2_y2)2

has a limit cycle 1' represented by -y(t) = (cost, sin t)T. Use Theorem 2
to show that r is a multiple limit cycle. Since r is a semi-stable limit
cycle, cf. Problem 2 in Section 3.3, we know that the multiplicity k
of r is even. Can you show that k = 2?

5. Show that a quadratic system, (2) with a = 0, b 0 0,

P(x, Y) = E aijx=y' and 4(x, y) = E bijxiy,
i+j=2 i+j=2

either has a center or a focus of multiplicity m > 2 at the origin if
ago + apt = b20 + b02 = 0-

3.5 The Stable Manifold Theorem for Periodic
Orbits

In Section 3.4 we saw that the stability of a limit cycle r of a planar system
is determined by the derivative of the Poincare map, P'(xo), at a point xo E
I ; in fact, if P'(xo) < 1 then the limit cycle r is (asymptotically) stable.
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In this section we shall see that similar results, concerning the stability of
periodic orbits, hold for higher dimensional systems

* = f (X) (1)

with f E CI(E) where E is an open subset of R". Assume that (1) has a
periodic orbit of period T

I: x=ry(t), 0<t<T,
contained in E. In this case, according to the remark in Section 3.4, the
derivative of the Poincare map, DP(xo), at a point xo E I' is an (n - 1) x
(n - 1) matrix and we shall see that if IIDP(xo)II < 1 then the periodic
orbit I' is asymptotically stable.

We first of all show that the (n-1) x (n- 1) matrix DP(xo) is determined
by a fundamental matrix for the linearization of (1) about the periodic orbit
r. The linearization of (1) about r is defined as the nonautonomous linear
system

x = A(t)x (2)

with
A(t) = Df(ry(t)).

The n x n matrix A(t) is a continuous, T-periodic function of t for all
t E R. A fundamental matrix for (2) is a nonsingular n x n matrix 4i(t)
which satisfies the matrix differential equation

$ = A(t)4i

for all t E R. Cf. Problem 4 in Section 2.2 of Chapter 2. The columns of
fi(t) consist of n linearly independent solutions of (2) and the solution of
(2) satisfying the initial condition x(O) = xo is given by

x(t) =

Cf. [W], p. 77. For a periodic matrix A(t), we have the following result
known as Floquet's Theorem which is proved for example in [H] on pp. 60-
61 or in [C/L] on p. 79.

Theorem 1. If A(t) is a continuous, T-periodic matrix, then for all t E R
any fundamental matrix solution for (2) can be written in the form

fi(t) = Q(t)eBt (3)

where Q(t) is a nonsingular, differentiable, T-periodic matrix and B is a
constant matrix. Furthermore, if I then Q(0) = I.

Thus, at least in principle, a study of the nonautonomous linear sys-
tem (2) can be reduced to a study of an autonomous linear system (with
constant coefficients) studied in Chapter 1.
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Corollary. Under the hypotheses of Theorem 1, the nonautonomous linear
system (2), under the linear change of coordinates

y = Q-1(t)x,

reduces to the autonomous linear system

y = By. (4)

Proof. According to Theorem 1, Q(t) = 4b(t)e-Bt. It follows that

Q'(t) = c'(t)e-Bt -,D(t)e-BtB

= A(t),b(t)e-Bt - 4i(t)e-BtB

= A(t)Q(t) = Q(t)B,

since a-Bt and B commute. And if

Y(t) = Q-1(t)x(t)

or equivalently, if
x(t) = Q(t)y(t),

then

x'(t) = Q'(t)y(t) + Q(t)y1(t)

= A(t)Q(t)y(t) - Q(t)By(t) + Q(t)y'(t)
= A(t)x(t) + Q(t)[y'(t) - By(t)].

Thus, since Q(t) is nonsingular, x(t) is a solution of (2) if and only if y(t)
is a solution of (4).

However, determining the matrix Q(t) which reduces (2) to (4) or deter-
mining a fundamental matrix for (2) is in general a difficult problem which
requires series methods and the theory of special functions.

As we shall see, if 4i(t) is a fundamental matrix for (2) which satisfies
4;(O) = I, then IIDP(xo)II = IIc(T)II for any point xo E r. It then follows
from Theorem 1 that IIDP(xo)II = II eBT II. The eigenvalues of eBT are given
by eaiT where \j, j = 1,... , n, are the eigenvalues of the matrix B. The
eigenvalues of B, .A , are called characteristic exponents of -y(t) and the
eigenvalues of eBT,ea'T, are called the characteristic multipliers of y(t).
Even though the characteristic exponents, A3, are only determined modulo
2ai, they suffice to uniquely determine the magnitudes of the characteristic
multipliers eaiT which determine the stability of the periodic orbit F. This
is made precise in what follows.

For x E E, let Ot(x) = 0(t, x) be the flow of the system (1) and let
ry(t) = Ot(xo) be a periodic orbit of (1) through the point xo E E. Then
since ¢(t, x) satisfies the differential equation (1) for all t E R, the matrix

H(t, x) = DO, (x)
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satisfies
8H(t, x)

= Df(¢t(x))H(t, x)
at

for all t E R. Thus, for x = x0 and t E R, the function 44(t) = H(t,xo)
satisfies

( = Df(y(t))4;
and

4i(O) = I.

(Cf. the corollary in Section 2.3 of Chapter 2.) That is, H(t,xo) is the
fundamental matrix for (2) which satisfies 4i(0) = H(O,xo) = I. Thus, by
Theorem 1,

H(t, xo) = Q(t)eBt

where Q(t) is T-periodic and satisfies Q(O) = I. It follows that

H(T, xo) = eBT

The next theorem shows that one of the characteristic exponents of 1(t)
is always zero, i.e., one of the characteristic multipliers is always 1, and
if we suppose that A. = 0 and choose the basis for R" so that the last
column of eBT is (0, ... , 0,1)T, then DP(xo) is the (n -1) x (n -1) matrix
obtained by deleting the nth row and column in eBT . As in the remark in
Section 3.4, there is no loss in generality in assuming that the origin has
been translated to the point xo E I'.

Theorem 2. Suppose that f E C'(E) where E is an open subset of R"
and that -y(t) = 0t(0) is a periodic orbit of (1) contained in E. For b > 0
sufficiently small and x E E n N6 (0), let P(x) be the Poincare map for
y(t) at 0 where E is the (n - 1)-dimensional hyperplane orthogonal to IF at
0. If A,_., An are the characteristic exponents of y(t), then one of them,
say A", is zero and the characteristic multipliers e*`jT, j = 1, ... , n - 1,
are the eigenvalues of DP(0). In fact, if the basis for R" is chosen so
that f(0) = (0.....0, 1)T then the last column of H(TO) = DOT(O) is
(0, ... , 0, 1)T and DP(0) is obtained by deleting the last row and column
in H(T, 0).

Proof. Since the periodic orbit 1(t) = 0,(0) satisfies

-y'(t) = f('y(t)),

it follows that
y"(t) = Df(y(t))y'(t)

Thus, y'(t) is a solution of the nonautonomous linear system (2) and the
initial condition y'(0) = f(0). Then since the matrix

4?(t) = H(t, 0),
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defined above, is the fundamental matrix for (2) satisfying 4i(0) = I, it
follows that

1'(t) = 4?(t)f(0).

For t = T, -y'(T) = f(0) and we see that

H(T,0)f(0) = f(0);

i.e., 1 is an eigenvalue of H(T, 0) with eigenvector f (0). Since H(T, 0) =
eBT, this implies that one of the eigenvalues of B is zero. Suppose that an =
0 and that the basis for R" has been chosen so that f(0) = (0, . . . , 0,1)T.
Then (0, ... , 0, 1)T is an eigenvector of H(T, 0) corresponding to the eigen-
value eA°T = 1. It follows that the last column of H(T, 0) is (0, ... , 0,1)T.

For b > 0 sufficiently small and x E N6(0), define the function

h(x) = 4(T(x), x)

where r(x) is the function defined by Theorem 1 in Section 3.4. Then the
Poincare map P is the restriction of h to the subspace E. Since

Dh(x) = DO(T(x), x)

(T (x), x) DT (x) + D4,r(x) (x)

_ 5 (T(x), x)DT(x) + H(T(x), x),

for x = 0 we obtain

Dh(0) = f(O)Dr(O) + H(T, 0)

r o ... 0 0

0 0 0

(0) ...
ax. (0)

0

+ H(T, 0)
0

1

And since with respect to the above basis DP(0) consists of the first (n-1)
rows and columns of Dh(0), it follows that

DP(0) = k(TO)

where hl(T, 0) consists of the first (n - 1) rows and columns of H(T, 0).

Remark. Even though it is generally very difficult to determine a funda-
mental matrix 4i(t) for (2), this theorem gives us a means of computing
DP(xo) numerically; i.e., DP(xo) can be found by determining the effect
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on the periodic orbit y(t) = 4, (xo) of small variations in the initial con-
ditions xo E R" defining the periodic orbit y(t). In fact, in a coordinate
system with its origin at a point on the periodic orbit t and the xn-axis
tangent to r at that point and pointing in the same direction as the motion
along r,

DP(O) = d (T,0)
LLL i

where i. j = 1..... (n - 1) and 0(t, x) =0,(x) is the flow defined by (1).
As was noted earlier, the stability of the periodic orbit y(t) is determined

by the characteristic exponents A1, . . . , An_1 or by the characteristic multi-
pliers ea'T .... , eX"-'T . This is made precise in the next theorem. The proof
of this theorem is similar to the proof of the Stable Manifold Theorem in
Section 2.7 in Chapter 2; cf. [H], p. 255.

Theorem (The Stable Manifold Theorem for Periodic Orbits). Let
f E C' (E) where E is an open subset of R" containing a periodic orbit

r: x = y(t)

of (1) of period T. Let 4, be the flow of (1) and y(t) = 4t(xo). If k of the
characteristic exponents of y(t) have negative real part where 0 < k < n-1
and n - k - 1 of them have positive real part then there is a b > 0 such that
the stable manifold of F,

S(F) _ (x E N6 (r) I d(4i(x), I') 0 as t oo

and ¢1(x) E N6(I') fort > 0}

is a (k+1)-dimensional, differentiable manifold which is positively invariant
under the flow d,, and the unstable manifold of r,

U(r)={xEN6(r) I d(0jx),I') 0ast--oo
and 41(x) E N6(I') for t < 0}

is an (n - k)-dimensional, differentiable manifold which is negatively in-
variant under the flow 4i. Furthermore, the stable and unstable manifolds
of r intersect transversally in r.

Remark 1. The local stable and unstable manifolds of t, S(t) and U(I'),
in the Stable Manifold Theorem can be used to define the global stable and
unstable manifolds of r, 178(I) and W°(I'), as in Section 3.3. It can be
shown that W8(r) and W' (r) are unique, invariant, differentiable mani-
folds which have the same dimensions as s(r) and u(r) respectively. Also,
if f E C'(E), then it can be shown that W8(I') and W"(I') are manifolds
of class Cr.

Remark 2. Suppose that the origin has been translated to the point x0
so that -y(t) = 4i(0). Let A3 = a. + ibj be the characteristic exponents
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of the periodic orbit -y(t) and let e*k,T be the characteristic multipliers of
-y(t), i.e., eajT are the eigenvalues of the real n x n matrix

4i(T) = H(T, 0).

Furthermore, suppose that ul = f(0) and that we have a basis of gener-
alized eigenvectors of 7(T) for R" given by {u1, ... , uk, uk+1, Vk+1, ,

u,,,, v,°} as in Section 1.9 of Chapter 1. We then define the stable, unstable
and center subspaces of the periodic orbit r at the point 0 E r as

E'(I') = Span{ui, vi I a2 < 0}
E` (r) = Span{u,, vj I aj = 0}

E° (r) = Span{uj, vj I aj > 0}.

It can then be shown that the stable and unstable manifolds W'(r) and
W°(r) of r are tangent to the stable and unstable subspaces E'(r) and
E°(r) of r at the point 0 E r respectively.

If Re(Aj) 0 0 for j = 1, .... n - 1, this theorem determines the be-
havior of trajectories near r. If Re(Aj) 0 for j = 1, ... , n - 1 then r
is called a hyperbolic periodic orbit. The periodic orbit in Example 1 of
Section 3.3 is a hyperbolic periodic orbit with a two-dimensional stable
manifold and two-dimensional unstable manifold. The characteristic expo-
nents for that example are determined later in this section. If two or more
of the characteristic exponents have zero real part then the periodic orbit
r has a nontrivial center manifold, denoted by Wa(r). In Example 2 in
Section 3.2, the unit sphere S2 is the center manifold for the periodic orbit
-y(t) = (cos t, sin t, 0)T.

The next theorem shows that not only do trajectories in the stable man-
ifold s(r) approach r as t oo, but that the motion along trajectories in
s(r) is synchronized with the motion along r. We assume that the char-
acteristic exponents have been ordered so that Re(A,) < 0 for j = 1, . . . , k
and Re(A,) > 0 for j = k+ 1, ... , n -1. This theorem is proved for example,
in Hartman [H], p. 254.

Theorem 3. Under the hypotheses of the above theorem, there is an a > 0
and a K > 0 such that Re(A,) < -a for j = 1, ... , k and Re(Aj) > a for
j = k+ 1, ... , n -1 and for each x E S(r) there exists an asymptotic phase
to such that for all t > 0

I4t(x) - -f(t - to)I < Ke-at/T

and similarly for each x E U(r) there exists an asymptotic phase to such
that for all t < 0

I4t(x) -'r(t - to)I < Keat/T;

Example 1. Consider the system

i=x-y-x3-xy2
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y=x+y-x2y-y3
Az.

Cf. Example 1 in Section 3.3. There is a periodic orbit

r: y(t) = (cost,sint,0)T

of period T = 2ir. We compute

1-3x2-y2 -1-2xy 0

Df(x) = 1 - 2xy 1 - x2 - 3y2 0

0 0 A

where x = (x, y, z)T . The linearization of the above system about the
periodic orbit y(t) is then given by

:k = A(t)x

where the periodic matrix

-2 cost t -1-sin 2t 0

A(t) = 1 - sin 2t -2 sin 2 t 0
0 0 A

This nonautonomous linear system has the fundamental matrix

e-2t cos t - sin t 0

4'(t) = e-2t sin t cost 0

0 0 eat

which satisfies 4'(0) = I. The serious student should verify that 4'(t) satis-
fies $ = A(t)4'; cf. Problem 3 in Section 1.10 of Chapter 1. Once we have
found the fundamental matrix for the linearized system, it is easy to see
that

4'(t) = Q(t)est
where the periodic matrix

and

cost - sin t 0
Q(t) = sint cost 0

0 0 1

-2 0 0
B= 0 0 0

0 0 J
As in Theorem 2, deleting the row and column containing the zero eigen-
value determines

DP(xo) =
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where xo = (1, 0, 0)T, T = 21r, and the characteristic exponents A = -2
and A2 = A. For A > 0, as in Example 1 in Section 3.3, there is a two-
dimensional stable manifold W'(r) and a two-dimensional unstable man-
ifold W°(r) which intersect orthogonally in -y; cf. Figure 1 in Section 3.3.
For A < 0, there is a three-dimensional stable manifold R3 - {0}, and a
one-dimensional unstable manifold, r. If A = 0, there is a two-dimensional
stable manifold and a two-dimensional center manifold; the center manifold
W°(I') is the unit cylinder.

This example is more easily treated by writing the above system in cylin-
drical coordinates as

r = r(1 -r 2)

B=1
z=Az.

The Poincare map can then be computed directly by solving the above
system as in Example 1 of Section 3.4:

I

/ 1/2

P(r, z) - 1 + I r2 - 1 a-4
-

\ ze27ra

It then follows that

11
3/2

DP(r, z) = [r3e_4n L1 +
CT

- 1J a-4a] 0

L 0 e2,ra

and that

r
47r 0 l

DP(1,0) =
0 e21rA]

as above. However, converting to polar coordinates does not always simplify
the problem and allow us to compute the Poincare map; of. Problems 2 and
8 below. Just as there is a center manifold tangent to the center subspace
E` at a nonhyperbolic equilibrium point of (1), there is a center manifold
tangent to the center subspace Ec(I) of a nonhyperbolic periodic orbit r.
We cite this result for future reference; cf., e.g., [Ru], p. 32.

Theorem 4 (The Center Manifold Theorem for Periodic Orbits).
Let f E r(E) with r > 1 where E is an open subset of R' containing a
periodic orbit

r: x=ry(t)
of (1) of period T. Let Ot be the flow of (1) and let y(t) = tt(xo). If k of
the characteristic exponents have negative real part, j have positive real part
and m = n - k -j have zero real part, then there is an m-dimensional center
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manifold of r, W`(F), of class C' which is invariant under the flow
Furthermore, W'(I'), W4(I) and W°(F) intersect transversally in 1 and if
the origin has been translated to the point x0 so that -j(t) = d' (0), then
W°(F) is tangent to the center subspace of IF, E`(r), at the point 0 E F.

We next give some geometrical examples of stable manifolds, unstable
manifolds and center manifolds of periodic orbits that can occur in R3
(Figures 1-4):

Figure 1. Periodic orbits with a three-dimensional stable manifold. These
periodic orbits are asymptotically stable.

Figure 2. A periodic orbit with two-dimensional stable and unstable man-
ifolds. This periodic orbit is unstable.

We conclude this section with one last result concerning the stability
of periodic orbits for systems in R" which is similar to the corollary in
Section 3.4 for limit cycles of planar systems. This theorem is proved in [H]
on p. 256.
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Figure 3. A periodic orbit with two-dimensional stable and center mani-
folds. This periodic orbit is stable, but not asymptotically stable.

Figure 4. A periodic orbit with a three-dimensional center manifold. This
periodic orbit is stable, but not asymptotically stable.

Theorem 5. Let f E C'(E) where E is an open subset of R" containing
a periodic orbit -y(t) of (1) of period T. Then -y(t) is not asymptotically
stable unless

T V f(ry(t)) dt < 0.
0

Note that in Example 1, V f (x) = 2 - 4r2 + A and

1J0

if A > 2. And A > 2 certainly implies that the periodic orbit -f(t) in that
example is not asymptotically stable. In fact, we saw that A > 0 implies
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that -y(t) is a periodic orbit of saddle type which is unstable. This example
shows that for dimension n l> 3, the condition

Joo

does not imply that -y(t) is an asymptotically stable periodic orbit as it
does for n = 2; cf. the corollary in Section 3.4.

PROBLEM SET 5

1. Show that the nonlinear system

x=-y+xz2
x+yz2
-z(x2 + y2)

has a periodic orbit 7(t) _ (cost, sin t, 0)T. Find the linearization of
this system about y(t), the fundamental matrix fi(t) for this (au-
tonomous) linear system which satisfies 4i(0) = I, and the character-
istic exponents and multipliers of ry(t). What are the dimensions of
the stable, unstable and center manifolds of -y(t)?

2. Consider the nonlinear system
3

:i=x-4y- 4 -xy2
y=x+y-x4y-y3

z=z.
Show that -y(t) = (2 cos 2t, sin 2t, 0)T is a periodic solution of this
system of period T = 7r; cf. Problem 1 in Section 3.4. Determine the
linearization of this system about the periodic orbit y(t),

is = A(t)x,

and show that
e-2t cos 2t -2 sin 2t 0

fi(t) = 2 e-2t sin 2t cos 2t 0

0 0 et J

is the fundamental matrix for this nonautonomous linear system
which satisfies 4i(0) = I. Write fi(t) in the form of equation (3),
determine the characteristic exponents and the characteristic multi-
pliers of -y(t), and determine the dimensions of the stable and unstable
manifolds of -y(t). Sketch the periodic orbit -Y(t) and a few trajectories
in the stable and unstable manifolds of -f (t).
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3. If 4'(t) is the fundamental matrix for (2) which satisfies 4)(0) = I,
show that for all xo E R' and t E R, x(t) = 4i(t)xo is the solution
of (2) which satisfies the initial condition x(O) = xo.

4. (a) Solve the linear system

with the initial condition x(O) = xo = (xo, yo, Z0)'-

(b) Let u(t, xo) = Ot(xo) be the solution of this system and compute

4i(t) = D4tit(xo) =
au

(t, x0).

(c) Show that 1(t) = (cost, sin t, 1 - cos t)T is a periodic solution
of this system and that 4i(t) is the fundamental matrix for (2)
which satisfies 4?(0) = I.

5. (a) Let 1'(t) be the fundamental matrix for (2) which satisfies 4'(O) _
I. Use Liouville's Theorem, (cf. [H], p. 46) which states that

tdet 4;(t) = exp J trA(s)ds,
0

to show that if mj = eajT , j = 1,.. . , n are the characteristic
multipliers of y(t) then

n
E mj = tr(D(T)
j=1

and
n rT

11 mj = exp J trA(t)dt.
j=1 0

(b) For a two-dimensional system, (2) with x E R2, use the above
result and the fact that one of the multipliers is equal to one,
say m2 = 1, to showfT that the characteristic exponent

al = 1 trA(t)dt
fT

o f(-y(t))dt

(cf. [A-III, p. 118) and that

T
tr4i(T) = 1 + expJ V f(1(t))dt.

0
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6. Use Liouville's Theorem (given in Problem 5) and the fact that
H(t, xo) = c(t) is the fundamental matrix for (2) which satisfies
(D(0) = I to show that for all t E R

tdet H(t, xo) = exp J V f(1(s)) ds
a

where -y(t) = 4t(xo) is a periodic solution of (1); cf. Problem 5 in
Section 2.3 of Chapter 2.

7. (a) Suppose that the linearization of (1) about a periodic orbit 1 of
(1) has a fundamental matrix solution given by

rcos t- sin t 0 0 0
I sin t cost 0 0 0

4(t) = 0 0
4et - e -2t 2(e 2t _ et) 0

3 3

0 0
2(et - e-2t) 4e-2t - et

0
3 3

0 0 0 0 1

Find the characteristic exponents of the periodic orbit r and the
dimensions of W'(1'), W°(F) and W°(1').

(b) Same thing for

e-3t cos 2t -e-st sin 2t 0 0 0

e-3t sin 2t a-3t cos 2t 0 0 0

fi(t) = 0 0 e3t 0 0

0 0 te3t e3t 0

0 0 0 0 1

8. Consider the nonlinear system

s=-2y+ax(4-4x2-y2+z)
y=8x+ay(4-4x2-y2+z)

= z(x - a2)

where a is a parameter. Show that -y(t) = (cos 4t, 2 sin 4t, 0)T is a
periodic solution of this system of period T = it/2. Determine the
linearization of this system about the periodic orbit 7(t),

is = A(t)x,

and show that

e-bat cos 4t - 2 sin 4t

4'(t) = 2e-sat sin 4t cos4t

0 0

a(t)e_*2t+ sin U

Q(t)e a't+} sin 4t

e-alt+} sin 4t
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is the fundamental matrix for this nonautonomous linear system
which satisfies 44(0) = I, where a(t) and /3(t) are 7r/2-periodic func-
tions which satisfy the nonhomogeneous linear system

a _ a(a - 4) - cos 4t - 4a cos 8t -2 - 2a sin 8t

CQ) - [ 8 - 8a sin 8t a(a - 4) - cos 4t + 4a cos 8t]

(6) + (2asin4t)

and the initial conditions a(0) = /3(0) = 0. (This latter system can be
solved using Theorem 1 and Remark 1 in Section 1.10 of Chapter 1
and the result of Problem 4 in Section 2.2 of Chapter 2; however,
this is not necessary for our purposes.) Write 4;(t) in the form of
equation (3), show that the characteristic exponents ) = -8a and
.12 = -a2, determine the characteristic multipliers of 1(t), and de-
termine the dimensions of the stable and unstable manifolds of -y(t)
for a > 0 and for a < 0.

3.6 Hamiltonian Systems with Two-Degrees of
Freedom

Just as the Hamiltonian systems with one-degree of freedom offered some
interesting examples which illustrated the general theory developed in
Chapter 2, Hamiltonian systems with two-degrees of freedom give us some
interesting examples which further illustrate the nature of the invariant
manifolds W"(I'), Wu(r) and W°(F), of a periodic orbit r, discussed in
this chapter. Before presenting these examples, we first show how projective
geometry can be used to project the flow on an n-dimensional manifold in
R"+1 onto a flow in R". We begin with a simple example where we project
the unit sphere S'a = {x E R3 I IxI = 1} in R3 onto the (X, Y)-plane as
indicated in Figure 1.

It follows from the similar triangles shown in Figure 2 that the equations
defining (X, Y) in terms of (x, y, z) are given by

x yX _
1-z'

Y _
1-z*

These equations set up a one-to-one correspondence between points (x, y, z)
on the unit sphere S2 with the north pole deleted and points (X, Y) E
R2. Points inside the circle X2 + Y2 = 1 correspond to points on the
lower hemisphere, the origin in the (X, Y)-plane corresponds to the point
(0, 0, -1), and points outside the circle X2 + Y2 = 1 correspond to points
on the upper hemisphere; the point (0, 0, 1) E S2 corresponds to the "point
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at infinity." We can use this type of projective geometry to visualize flows
on n-dimensional manifolds. The sphere in Figure 1 is referred to as the
Bendixson sphere.

Figure 1. Stereographic projection of S2 onto the (X, Y)-plane.

Figure 2. A cross-section of the sphere in Figure 1.

Example 1. Consider the system

i = -y + xz2
=x+yz2
=-z(x2+y2).

It is easy to see that for V (x, y, z) = x2 + y2 + z2 we have V = 0 along
trajectories of this system. Thus, trajectories lie on the spheres x2 + y2 +
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z2 = P. The flow on any one of these spheres is topologically equivalent
to the flow on the unit two-dimensional sphere S2 shown in Figure 3. The

Figure S. A flow on the unit sphere S2.

Y

Figure 4. Various planar representations of the flow on S2 shown in Fig-
ure 3.

flow on the equator of S2 represents a periodic orbit

r: '1(t) = (cost, sin t, O)T.

The periodic orbit r has a two dimensional stable manifold w,, (I') = S2
{(O,0,±1)}. If we project from the north pole of S2 onto the (X, Y)-plane
as in Figure 1, we obtain the flow in the (X, Y)-plane shown in Figure 4(a).
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The periodic orbit r gets mapped onto the unit circle. We cannot picture
the flow in a neighborhood of the north pole (0, 0,1) in the planar phase
portrait in Figure 4(a); however, if we wish to picture the flow near (0, 0, 1),
we could project from the point (1, 0, 0) onto the (Y, Z)-plane and obtain
the planar phase portrait shown in Figure 4(b). Note that the periodic
orbit r gets mapped onto the Y-axis which is "connected at the point at
infinity" in Figure 4(b).

It can be shown that the periodic orbit r has characteristic exponents
1\1 = 1\2 = 0 and A3 = -1; cf. Problem 1 in Section 3.5. Thus, r has
a two-dimensional stable manifold W'(r) = S2 N {0,0,1)} and a two-
dimensional center manifold W° (r) = {x E R3 I z = 0}. Of course, we do
not see the center manifold W°(r) in either of the projections in Figure 4
since we are only projecting the sphere S2 onto R2 in Figure 4.

Example 2. We now consider the Hamiltonian system with two-degrees
of freedom

=y
-x

z=w
?b -Z

with Hamiltonian H(x, y, z, w) = (x2+y2+z2+ w2)/2. Trajectories of this
system lie on the hyperspheres x2 + y2 + z2 + w2 = k2 and the flow on each
hypersphere is topologically equivalent to the flow on the unit three-sphere
S3 = {x E R4 I JxJ = 1}. On S3, the total energy H = 1/2 is divided
between the two harmonic oscillators i+x = 0 and z+z = 0; i.e., it follows
from the above equations that

x2 + y2 = h2 and z2 + w2 = 1 - h2 (1)

for some constant h E [0,1]. There are two periodic orbits on S3,

r1: -y1(t) = (cost, -sin t, 0, 0)T

and

r0: 10 (t) = (0, 0, cost, -sin t)T,

corresponding to h = 1 and h = 0 respectively. If we project S3 onto
R3 from the point (0, 0, 0, 1) E S3, we obtain a one-to-one correspondence
between points (x, y, z, w) E S3 -' {(O, 0, 0,1) } and points (X, Y, Z) E R3
given by

xX =
'

_ y _ z (2)
1- w Y 1- w' Z1- W'

If h = 1, then from (1), z = w = 0 and x2 + y2 = X2 + Y2 = 1; i.e.,
the periodic orbit r1 gets mapped onto the unit circle X2 +Y2 = 1 in the
(X, Y)-plane in R. And if h = 0, then from (1), x = y = 0 and

z
1+ V1_-_Z_1'
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i.e., the periodic orbit I'o gets mapped onto the Z-axis "connected at in-
finity." These two periodic orbits in (X, Y, Z)-space are shown in Figure 5.
The remaining trajectories of this system lie on two-dimensional tori, Th,
obtained as the cross product of two circles:

Th={xER4 I xz+yz=hz, z2 +w2 =1-h2}.

Figure 5. A flow on S3 consisting of two periodic orbits and flows on
invariant tori.

The equations for the projections of these two-dimensional tori onto R3
can be found by substituting (2) into (1). This yields

z
Xz + Yz = (1

h w)z
and Z2(1 - w)z + wz = 1 - hz.

Solving the second equation for w and substituting into the first equation
yields

Xz+Yz= h(Z2 +1)
if 1-h -h Z

In cylindrical coordinates (R, 0, Z), this simplifies to the equations of the
two-dimensional tori

Th: Z2 + (R -
h)z

= 1

_ h2z

; (3)

i.e., the tori Th are obtained by rotating the circles in the (X, Z)-plane,
centered at (1/h, 0, 0) with radius v117---h-71h, about the Z-axis. These in-
variant tori are shown in Figure 5. In this example, the periodic orbit r1
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has a four-dimensional center manifold

W`(r1) = U sr
r>O

where on each three-sphere ST of radius r, r1 has a three-dimensional center
manifold as pictured in Figure 5. It can be shown that r1 has four zero
characteristic exponents; cf. Problem 1.

Example 3. Consider the Hamiltonian system

w=w

with Hamiltonian H(x, y, z, w) = (x2 + y2)/2 - zw. Trajectories of this
system lie on the three-dimensional hypersurfaces

S: x2 +Y 2 - 2wz = k.

The flow on each of these hypersurfaces is topologically equivalent to the
flow on the hypersurface x2 + y2 - 2wz = 1. On this hypersurface there is
a periodic orbit

r: -y(t) = (cost, - sin t, 0, 0)T.

The linearization of this system about -y(t) is given by

0 1 0
-1 0 0 0

X =
0 0 -1 0
0 0 0 1

X.

The fundamental matrix for this linear system satisfying 1'(O) = I is given
by

fi(t) = [
eee

0 I]

where Rt is a rotation matrix and B = diag[0, 0, -1,11. The characteristic
exponents Al = A2 = 0, A3 = -1 and A4 = 1, and the periodic orbit I' has
a two-dimensional stable manifold W'(F) and a two-dimensional unstable
manifold W"(1') on S, as well as a two-dimensional center manifold W°(r)
(which does not lie on S). If we project the hypersurface S from the point
(1, 0, 0, 0) E S onto R3, the periodic orbit r gets mapped onto the Y-axis;
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W3(r) is mapped onto the (Y, Z)-plane and W'(r) is mapped onto the
(Y, W)-plane; cf. Figure 6.

Figure 6. The two-dimensional stable and unstable manifolds of the peri-
odic orbit r.

Example 4. Consider the pendulum oscillator

with Hamiltonian H(x, y, z, w) = (x2 + y2)/2 + (1 - cos z) + w2/2. Trajec-
tories of this system lie on the three-dimensional hypersurfaces

S: x2+y2+w2+2(1 -cosz) = k2.

For k > 2 there are three periodic orbits on the hypersurface S:

ro: -yo (t) = (k cos t, -k sin t, 0, 0)

F : -Y± (t) = ( k2 - 4 cos t, - k2 - 4 sin t, ±ir, 0) .

If we project from the point (k, 0, 0, 0) E S onto R3, the periodic orbit
ro gets mapped onto the Y-axis and the periodic orbits rt get mapped
onto the ellipses
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cf. Problem 3. Since

0 1 0 0-

-1 0 0 0
Df(x) = ,

0 0 0 1

0 0 -cost 0
we find that I'o has all zero characteristic exponents. Thus ro has a three-
dimensional center manifold on S. Similarly, r± have characteristic expo-
nents Al = 1\2 = 0, A3 = 1 and A4 = -1. Thus, r± have two-dimensional
stable and unstable manifolds on S and two-dimensional center manifolds
(which do not lie on S); cf. Figure 7.

Figure 7. The flow of the pendulum-oscillator in projective space.

We see that for Hamiltonian systems with two-degrees of freedom, the
trajectories of the system lie on three-dimensional hypersurfaces S given
by H(x) = constant. At any point xo E S there is a two-dimensional
hypersurface E normal to the flow. If xo is a point on a periodic orbit then
according to Theorem 1 in Section 3.4, there is an e > 0 and a Poincar6
map

P: NE(xo) n E -+ E.

Furthermore, we see that (i) a fixed point of P corresponds to a periodic
orbit r of the system, (ii) if the iterates of P lie on a smooth curve, then
this smooth curve is the cross-section of an invariant differentiable manifold
of the system such as W8(r) or W°(I'), and (iii) if the iterates of P lie on
a closed curve, then this closed curve is the cross-section of an invariant
torus of the system belonging to W`(1'); cf. [G/H], pp. 212-216.
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PROBLEM SET 6

1. Show that the fundamental matrix for the linearization of the system
in Example 2 about the periodic orbit r1 which satisfies 4i(0) = I is
equal to

fi(t) =
Rt

0
0 Rt

where Rt is the rotation matrix

_P t
cost sin t

sin t cos t I

Thus 1(t) can be written in the form of equation (3) in Section 3.5
with B = 0. What does this tell you about the dimension of the center
manifold Wc(r)? Carry out the details in obtaining equation (3) for
the invariant tori Th.

2. Consider the Hamiltonian system with two-degrees of freedom

i=ly
y = -/3x
z=w
th= -z

with i3 > 0.

(a) Show that for H = 1/2, the trajectories of this system lie on the
three-dimensional ellipsoid

S: ,0(x2 + y2) + z2 + w2

and furthermore that for each h E (0, 1) the trajectories lie on
two-dimensional invariant tori

Th=Ix ER4Ix2+y2=h2/0,z2+w2=1-h2}C S.

(b) Use the projection of S onto R3 given by equation (2) to show
that these invariant tori are given by rotating the ellipsoids

Z
/ ll2

1

_ h2
+0 I X +

ham/ h2

about the Z-axis.

(c) Show that the flow is dense in each invariant tori, Th, if ,0 is
irrational and that it consists of a one-parameter family of pe-
riodic orbits which lie on Th if 3 is rational; cf. Problem 2 in
Section 3.2.
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3. In Example 4, use the projective transformation

_ y _ z _
k

w
Y k -x' Zk -x' W-x

and show that the periodic orbit

r+: -y(t) = (cost, - sin t, ir, 0)

gets mapped onto the ellipse

/ 2 2

7rY2+4IZ- 4) =\2/

4. Show that the Hamiltonian system

with Hamiltonian H(x, y, z, w) = (x2 + y2 + z2 + w2)/2 - z3/3 has
two periodic orbits

ro: -yo (t) = (k cos t, -k sin t, 0, 0)

r1: -t1(t) = ( k2 - 1/3 cost, --k2 -- 1/3sint,1,0)

which lie on the surface x2 + y2 + w2 + z2 - 3z3 = k2 for k2 > 1/3.
Show that under the projective transformation defined in Problem 3,
ro gets mapped onto the Y-axis and r1 gets mapped onto an ellipse.
Show that ro has four zero characteristic exponents and that r1 has
characteristic exponents Al = A2 = 0, A3 = 1 and A4 = -1. Sketch a
local phrase portrait for this system in the projective space including
ro and r1 and parts of the invariant manifolds Wc(ro), W3(r1) and
Wu(r1).

5. Carry out the same sort of analysis as in Problem 4 for the Duffing-
oscillator with Hamiltonian

H(x, y, z, w) = (x2 + y2 - z2 - w2)/2 + z4/4,

and periodic orbits

ro: -yo (t) = (k cos t, -k sin t, 0, 0)

rf: -t.(t) = ( k2 --1/4 cos t, k2 --1/4 sin t, ±1, 0)
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6. Define an atlas for S2 by using the stereographic projections onto
R2 from the north pole (0, 0, 1) of S2, as in Figure 1, and from the
south pole (0, 0, -1) of S2; i.e., let U1 = R2 and for (x, y, z) E S2
{(0,0,1)} define

x yhi (x,y,z) = 1'1).
Similarly let U2 = R2 and for (x, y, z) E S2 _ {(0, 0, -1)} define

x yh2(x,y,z = +z' +
Find h2ohi 1 (using Figures 1 and 2), find Dh2ohi 1(X,Y) and show
that detDh2 o h1 1(X,Y) : 0 for all (X,Y) E h1(U1 fl U2). (Note
that at least two charts are needed in any atlas for S2.)

3.7 The Poincare-Bendixson Theory in R2

In section 3.2, we defined the a and w-limit sets of a trajectory r and saw
that they were closed invariant sets of the system

is = f(x) (1)

We also saw in the examples of Sections 3.2 and 3.3 that the a or w-limit
set of a trajectory could be a critical point, a limit cycle, a surface in R3 or
a strange attractor consisting of an infinite number of interleaved branched
surfaces in R3. For two-dimensional analytic systems, (1) with x E R2,
the a and w-limit sets of a trajectory are relatively simple objects: The
a or w-limit set of any trajectory of a two-dimensional, relatively-prime,
analytic system is either a critical point, a cycle, or a compound separatrix
cycle. A compound separatrix cycle or graphic of (1) is a finite union of
compatibly oriented separatrix cycles of (1). Several examples of graphics
were given in Section 3.3.

Let us first give a precise definition of separatrix cycles and graphics of
(1) and then state and prove the main theorems in the Poincare--Bendixson
theory for planar dynamical systems. This theory originated with Henri
Poincare [P] and Ivar Bendixson [B] at the turn of the century. Recall that
in Section 2.11 of Chapter 2 we defined a separatrix as a trajectory of (1)
which lies on the boundary of a hyperbolic sector of (1). A more precise
definition of a separatrix is given in Section 3.11.

Definition 1. A separatrix cycle of (1), S, is a continuous image of a
circle which consists of the union of a finite number of critical points and
compatibly oriented separatrices of (1), p,, r',,, j = 1, ... , m, such that
for j = 1,...,m, a(rj) = pj and w(r3) = p,+1 where p,,,+1 = P1 A
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compound separatrix cycle or graphic of (1), S, is the union of a finite
number of compatibly oriented separatrix cycles of (1).

In the proof of the generalized Poincare-Bendixson theorem for analytic
systems given below, it is shown that if a graphic S is the limit set of a
trajectory of (1) then the Poincare map is defined on at least one side of S.
The fact that the Poincare map is defined on one side of a graphic S of (1)
implies that for each separatrix F3 E S, at least one of the sectors adjacent
to I'; is a hyperbolic sector; it also implies that all of the separatrix cycles
contained in S are compatibly oriented.

Theorem 1 (The Poincare-Bendixson Theorem). Suppose that f E
C' (E) where E is an open subset of R2 and that (1) has a trajectory r
with r+ contained in a compact subset F of E. Then if w(F) contains no
critical point of (1), w(r) is a periodic orbit of (1).

Theorem 2 (The Generalized Poincare-Bendixson Theorem).
Under the hypotheses of Theorem 1 and the assumption that (1) has only a
finite number of critical points in F, it follows that w(I') is either a critical
point of (1), a periodic orbit of (1), or that w(F) consists of a finite number
o f critical points, pi, . . . , p,,,, of (1) and a countable number of limit orbits
o f (1) whose a and w limit sets belong to-(P1, .. , Pm}.

This theorem is proved on pp. 15-18 in [P/d] and, except for the finiteness
of the number of limit orbits, it also follows as in the proof of the generalized
Poincare-Bendixson theorem for analytic systems given below. On p. 19 in
[P/d] it is noted that the w-limit set, w(F), may consist of a "rose"; i.e.,
a single critical point pl, with a countable number of petals, consisting of
elliptic sectors, whose boundaries are homoclinic loops at pl. In general,
this theorem shows that w(r) is either a single critical point of (1), a limit
cycle of (1), or that w(t) consists of a finite number of critical points
Pi, , Pm, of (1) connected by a finite number of compatibly oriented
limit orbits of (1) together with a finite number of "roses" at some of the
critical points p,,. .. , p,n. Note that it follows from Lemma 1.7 in Chapter 1
of [P/d] that if pi and P2 are distinct critical points of (1) which belong to
the w-limit set w(I'), then there exists at most one limit orbit I'1 c w(F)
such that an) = pi and w(Fi) = P2. For analytic or polynomial systems,
w(F) is somewhat simpler. In particular, it follows from Theorem VIII on
p. 31 of [B] that any rose of an analytic system has only a finite number of
petals.

Theorem 3 (The Generalized Poincare--Bendixson Theorem for
Analytic Systems). Suppose that (1) is a relatively prime analytic system
in an open set E of R2 and that (1) has a trajectory r with r+ contained
in a compact subset F of E. Then it follows that w(t) is either a critical
point of (1), a periodic orbit of (1), or a graphic of (1).
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Remark 1. It is well known that any relatively-prime analytic system (1)
has at most a finite number of critical points in any bounded region of
the plane; cf. [B], p. 30. The author has recently published a proof of this
statement since it is difficult to find in the literature; cf. [24]. Also, it is
important to note that under the hypotheses of the above theorems with
F- in place of 1'+, the same conclusions hold for the a-limit set of r, a(F),
as for the w-limit set of F.

Furthermore, the above theorem, describing the a and w-limit sets of
trajectories of relatively-prime, analytic systems on compact subsets of R2,
can be extended to all of R2 if we include graphics which contain the point
at infinity on the Bendixson sphere (described in Figure 1 of Section 3.6); cf.
Remark 3 and Theorem 4 below. In this regard, we note that any trajectory,
x(t), of a planar analytic system either (i) is bounded (if Ix(t)I < M for
some constant M and for all t E R) or (ii) escapes to infinity (if Ix(t)I -+ oo
as t -, too) or (iii) is an unbounded oscillation (if neither (i) nor (ii) hold).
And it is exactly when x(t) is an unbounded oscillation that either the a
or the w-limit set of x(t) is a graphic containing the point at infinity on
the Bendixon sphere. Cf. Problem 8.

The proofs of the above theorems follow from the lemmas established
below. We first define what is meant by a transversal for (1).

Definition 2. A finite closed segment of a straight line, 1, contained in E,
is called a transversal for (1) if there are no critical points of (1) on f and
if the vector field defined by (1) is not tangent to a at any point of t. A
point xo in E is a regular point of (1) if it is not a critical point of (1).

Lemma 1. Every regular point xo in E is an interior point of some trans-
versal t. Every trajectory which intersects a transversal 2 at a point xo
must cross it. Let xo be an interior point of a transversal t; then for all
e > 0 there is a b > 0 such that every trajectory passing through a point in
Nb(xo) at t = 0 crosses t at some time t with Itl < e.

Proof. The first statement follows from the definition of a regular point xo
by taking e to be the straight line perpendicular to the vector defined by
f(xo) at xo. The second statement follows from the fundamental existence-
uniqueness theorem in Section 2.2 of Chapter 2 by taking x(0) = xo; i.e., the
solution x(t), with x(0) = xo defined for -a < t < a, defines a curve which
crosses a at xo. In order to establish the last statement, let x = (x, y)T,
let xo = (xo,yo)T, and let t be the straight line given by the equation
ax + by + c = 0 with axo + byo + c = 0. Then since xo is a regular point
of (1), there exists a neighborhood of xo, N(xo), containing only regular
points of (1). This follows from the continuity of f. The solution
passing through a point (l;,17) E N(xo) at t = 0 is continuous in (t, l;, r/);
cf. Section 2.3 in Chapter 2. Let

L(t, t,rl) = ax(t, g, n) + by(t, t:, q) + c.
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Then L(0, xo, yo) = 0 and at any point (xo, yo) on e

aLat =ai+byj60
since a is a transversal. Thus it follows from the implicit function theorem
that there is a continuous function t(l;, ti) defined in some neighborhood of
xo such that t(xo, yo) = 0 and L(t(l:, 71), l;, n) = 0 in that neighborhood. By
continuity, for e > 0 there exists a 6 > 0 such that for all (t;, rl) E N6(xo) we
have It(C,q)1 < e. Thus the trajectory through any point (t;,rl) E N6(xo)
at t = 0 will cross the transversal a at time t = t(t, r/) where It(1;, rl)I < e.

Lemma 2. If a finite closed arc of any trajectory r intersects a transversal
e, it does so in a finite number of points. If r is a periodic orbit, it intersects
e in only one point.

Proof. Let the trajectory r = {x E E I x = x(t),t E R} where x(t) is
a solution of (1), and let A be the finite closed arc A = {x E E I x =
x(t), a < t < b}. If A meets a in infinitely many distinct points x = x(tn),
then the sequence to will have a limit point t' E [a, b]. Thus, there is a
subsequence, call it tn, such that to t'. Then x(tn) --+ y = x(t') E e as
n -+ oo. But

x(tn) - x(t*) x(t') = f(x(t'))to - t'
as n -+ oo. And since tn, t' E [a.b] and x(tn), x(t') E e, it follows that

x(tn) - x(t') - V
to - t'

I

(a) (b)

I

Figure 1. A Jordan curve defined by r and e.

a vector tangent to a at y, as n -+ oo. This is a contradiction since a is a
transversal of (1). Thus, A meets a in at most a finite number of points.
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Now let x1 = x(tl) and x2 = x(t2) be two successive points of intersec-
tion of A with a and assume that t1 < t2. Suppose that x1 is distinct from
x2. Then the arc A12 = {x E R2 I x = x(t),tl < t < t2} together with
the closed segment xlx2 of t comprises a Jordan curve J which separates
the plane into two regions: cf. Figure 1. Then points q = x(t) on r with
t < t1 (and near ti) will be on the opposite side of J from points p = x(t)
with t > t2 (and near t2). Suppose that p is inside J as in Figure 1(a).
Then to have r outside J for t > t2, I' must cross J. But r cannot cross
A12 by the uniqueness theorem and I' cannot cross Y1-x2 C t since the flow
is inward on xix2; otherwise, there would be a point on the segment xjx2
tangent to the vector field (1). Hence, r remains inside J for all t > t2.
Therefore, r cannot be periodic. A similar argument for p outside J as in
Figure 1(b) also shows that r cannot be periodic. Thus, if r is a periodic
orbit, it cannot meet t in two or more points.

Remark 2. This same argument can be used to show that w(r) intersects
e in only one point.

Lemma 3. If r and w(r) have a point in common, then r is either a
critical point or a periodic orbit.

Proof. Let x1 = x(t1) E r n w(r). If x1 is a critical point of (1) then
x(t) = xi for all t E R. If x1 is a regular point of (1), then, by Lemma 1,
it is an interior point of a transversal t of (1). Since xi E w(r), it follows
from the definition of the w-limit set of r that any circle C with xi as
center must contain in its interior a point x = x(t') with t" > t1 + 2. If C
is the circle with e = 1 in Lemma 1, then there is an x2 = x(t2) E r where
1t2 - t'1 < 1 and x2 E t. Assume that x2 is distinct from x1. Then the arc
x1x2 of r intersects 2 in a finite number of points by Lemma 2. Also, the
successive intersections of r with a form a monotone sequence which tends
away from x1. Hence, x1 cannot be an w-limit point of r, a contradiction.
Thus, xl = x2 and r is a periodic orbit of (1).

Lemma 4. If w(r) contains no critical points and w(I') contains a periodic
orbit ro, then w(r) = ro.
Proof. Let ro c w(r) be a periodic orbit with ro o w(r). Then, by the
connectedness of w(r) in Theorem 1 of Section 3.2, ro contains a limit
point yo of the set w(I') , ro; otherwise, we could separate the sets ro
and w(r) N ro by open sets and this would contradict the connectedness
of w(r). Let a be a transversal through yo. Then it follows from the fact
that yo is a limit point of w(r) - ro that every circle with yo as center
contains a point y of w(r) ' ro; and, by Lemma 1, for y sufficiently close
to yo, the trajectory ry through the point y will cross a at a point yi. Since
y E w(r) N ro is a regular point of (1), the trajectory r is a limit orbit of
(1) which is distinct from ro since r c w(r) - ro. Hence, t contains two
distinct points yo E ro c w(r) and yl E r c w(r). But this contradicts
Remark 2. Thus ro = w(r).
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Proof (of the Poincard-Bendixson Theorem). If r is a periodic orbit,
then r C w(r) and by Lemma 4, r = w(r). If r is not a periodic orbit,
then since w(r) is nonempty and consists of regular points only, there is a
limit orbit ro of r such that ro c w(r). Since r+ is contained in a compact
set F C E, the limit orbit ro C F. Thus ro has an w-limit point yo and
yo E w(r) since w(r) is closed. If a is a transversal through yo, then, since
ro and yo are both in w(r), f can intersect w(r) only at yo according to
Remark 2. Since yo is a limit point of ro, it follows from Lemma 1 that e
must intersect ro in some point which, according to Lemma 2, must be yo.
Hence ro and w(ro) have the point yo in common. Thus, by Lemma 3, ro
is a periodic orbit; and, by Lemma 4, ro = w(r).

Proof (of the Generalized Poincare-Bendixson Theorem for An-
alytic Systems). By hypothesis, w(r) contains at most a finite number
of critical points of (1) and they are isolated. (i) If w(r) contains no reg-
ular points of (1) then w(r) = xo, a critical point of (1), since w(r) is
connected. (ii) If w(r) consists entirely of regular points, then either r is a
periodic orbit, in which case r = w(r), or w(r) is a periodic orbit by the
Poincar6-Bendixson Theorem. (iii) If w(r) consists of both regular points
and a finite number of critical points, then w(r) consists of limit orbits and
critical points. Let ro C w(r) be a limit orbit. Then, as in the proof of the
Poincare-Bendixson Theorem, ro cannot have a regular w-limit point; if it
did, we would have w(r) = ro, a periodic orbit, and w(r) would contain no
critical points. Thus, each limit orbit in w(r) has one of the critical points
in w(r) at its w-limit set since w(r) is connected. Similarly, each limit orbit
in w(r) has one of the critical points in w(r) as its a-limit set. Thus, with
an appropriate ordering of the critical points P2, j = 1, ... , m (which may
not be distinct) and the limit orbits r; C w(r), j = 1, ... , m, we have

a(rk) = pj and w(r,) = pi+i
for j = 1, ... , m, where p,,,+i = pl. The finiteness of the number of limit
orbits, r follows from Theorems VIII and IX in [B] and Lemma 1.7 in
[P/d]. And since w(r) consists of limit orbits, r;, and their a and w-limit
sets, pj, it follows that the trajectory r either spirals down to or out toward
w(r) as t -+ oo; cf. Theorem 3.2 on p. 396 in [C/L]. Therefore, as in
Theorem 1 in Section 3.4, we can construct the Poincare map at any point
p sufficiently close to w(r) which is either in the exterior of w(r) or in
the interior of one of the components of w(r) respectively; i.e., w(r) is a
graphic of (1) and we say that the Poincar6 map is defined on one side
of w(r). This completes the proof of the generalized Poincare-Bendixson
Theorem.

We next present a version of the generalized Poincar6-Bendixson theorem
for flows on compact, two-dimensional manifolds (defined in Section 3.10);
cf. Proposition 2.3 in Chapter 4 of [P/d]. In order to present this result, it
is first necessary to define what we mean by a recurrent motion or recurrent
trajectory.
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Definition 3. Let r be a trajectory of (1). Then r is recurrent if r c a(r)
or r c w(r). A recurrent trajectory or orbit is called trivial if it is either a
critical point or a periodic orbit of (1).

We note that critical points and periodic orbits of (1) are always trivial
recurrent orbits of (1) and that for planar flows (or flows on S2) these are
the only recurrent orbits; however, flows on other two-dimensional surfaces
can have more complicated recurrent motions. For example, every trajec-
tory r of the irrational flow on the torus, T2, described in Problem 2 of
Section 3.2, is recurrent and nontrivial and its w-limit limit set w(r) = T2.
The Cherry flow, described in Example 13 on p. 137 in [P/d1, gives us an
example of an analytic flow on T2 which has one source and one saddle,
the unstable separatrices of the saddle being nontrivial recurrent trajec-
tories which intersect a transversal to the flow in a Cantor set. Also, we
can construct vector fields with nontrivial recurrent motions on any two-
dimensional, compact manifold except for the sphere, the projective plane
and the Klein bottle. The fact that all recurrent motions are trivial on the
sphere and on the projective plane follows from the Poincare-Bendixson
theorem and it was proved in 1969 by Markley [541 for the Klein bottle.

Theorem 4 (The Poincare-Bendixson Theorem for Two-Dimen-
sional Manifolds). Let M be a compact two-dimensional manifold of
class C2 and let 0t be the flow defined by a C' vector field on M which
has only a finite number of critical points. If all recurrent orbits are trivial,
then the w-limit set of any trajectory,

ry={xEMIx=Ot(xo),xoEM,tER}

is either (i) an equilibrium point of Ot, i.e., a point xo E M such that
4t(xo) = xo for all t E R; (ii) a periodic orbit, i.e., a trajectory

ro={xEM[x=Ot(xo),xoEM,0<t<T,4T(xo)=xo};

or (iii) w(r) consists of a finite number of equilibrium points pl,... , pm, of
4t and a countable number of limit orbits whose a and w limit sets belong
to {pi,...,Pm}.

Remark 3. Suppose that Ot is the flow defined by a relatively-prime,
analytic vector field on an analytic compact, two-dimensional manifold M;
then if ¢t has only a finite number of equilibrium points on M and if all
recurrent motions are trivial, it follows that w(r) is either (i) an equilibrium
point of Ot, (ii) a periodic orbit, or (iii) a graphic on M.

We note that the w-limit set w(r) of a trajectory r of a flow on the
sphere, the projective plane, or the Klein bottle is always one of the types
listed in Theorem 4 (or in Remark 3 for analytic flows), but that w(r) is
generally more complicated for flows on other two-dimensional manifolds
unless the recurrent motions are all trivial.
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We cite one final theorem for periodic orbits of planar systems in this
section. This theorem is proved for example on p. 252 in [H/S). It can also
be proved using index theory as is done in Section 3.12; cf. Corollary 2 in
Section 3.12.

Theorem 5. Suppose that f E C' (E) where E is an open subset of R2
which contains a periodic orbit r' of (1) as well as its interior U. Then U
contains at least one critical point of (1).

Remark 4. For quadratic systems (1) where the components of f(x) con-
sist of quadratic polynomials, it can be shown that U is a convex region
which contains exactly one critical point of (1).

PROBLEM SET 7

1. Consider the system

i=-y+x(r4-3r2+1)
y= x + y(r 4 - 3r2 + 1)

where r2 = x2 + y2.

(a) Show that r < 0 on the circle r = 1 and that r > 0 on the circle
r = 2. Use the Poincare-Bendixson Theorem and the fact that
the only critical point of this system is at the origin to show that
there is a periodic orbit in the annular region Al = {x E R2
1 < lxi < 2}.

(b) Show that the origin is an unstable focus for this system and
use the Poincare-Bendixson Theorem to show that there is a
periodic orbit in the annular region A2 = {x E R2 10 < lxi <
1).

(c) Find the unstable and stable limit cycles of this system.

2. (a) Use the Poincare-Bendixson Theorem and the fact that the pla-
nar system

i=x-y-x3 3 =x+y-y3
has only the one critical point at the origin to show that this
system has a periodic orbit in the annular region A = {x E R2 I
1 < lxi < f }. Hint: Convert to polar coordinates and show
that for all e > 0, r < 0 on the circle r = f + e and r > 0
on r = 1 - c; then use the Poincare-Bendixson theorem to show
that this implies that there is a limit cycle in

A={xER211<IxI <f};
and then show that no limit cycle can have a point in common
with either one of the circles r = 1 or r = v f2-.
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(b) Show that there is at least one stable limit cycle in A. (In fact,
this system has exactly one limit cycle in A and it is stable.
Cf. Problem 3 in Section 3.9.) This limit cycle and the annular
region A are shown in Figure 2.

Figure 2. The limit cycle for Problem 2.

3. Let f be a C1 vector field in an open set E C R2 containing an
annular region A with a smooth boundary. Suppose that f has no
zeros in A, the closure of A, and that f is transverse to the boundary
of A, pointing inward.

(a) Prove that A contains a periodic orbit.

(b) Prove that if A contains a finite number of cycles, then A con-
tains at least one stable limit cycle of (1).

4. Let f be a C1 vector field in an open set E C R2 containing the
closure of the annular region A = {x E R2 11 < fix) < 2}. Suppose
that f has no zeros on the boundary of A and that at each boundary
point x E A, f (x) is tangent to the boundary of A.

(a) Under the further assumption that A contains no critical points
or periodic orbits of (1), sketch the possible phase portraits in
A. (There are two topologically distinct phase portraits in A.)

(b) Suppose that the boundary trajectories are oppositely oriented
and that the flow defined by (1) preserves area. Show that A
contains at least two critical points of the system (1). (This is
reminiscent of Poincare's Theorem for area preserving mappings
of an annulus; cf. p. 220 in (G/H). Recall that the flow defined
by a Hamiltonian system with one-degree of freedom preserves
area; cf. Problem 12 in Section 2.14 of Chapter 2.)
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5. Show that
i=y y=-x+(1-x2-y2)y

has a unique stable limit cycle which is the w-limit set of every tra-
jectory except the critical point at the origin. Hint: Compute r.

6. (a) Let 1'o be a periodic orbit of a C' dynamical system on an open
set E C R2 with ro c E. Let To be the period of I'o and suppose
that there is a sequence of periodic orbits r,, C E of periods T
containing points x,, which approach Xo E ro as n -+ oo. Prove
that Tn - To. Hint: Use Lemma 2 to show that the function
r(x) of Theorem 1 in Section 3.4 satisfies r(xn) = Tn for n
sufficiently large.

(b) This result does not hold for higher dimensional systems. It is
true, however, that if Tn -+ T, then T is a multiple of To. Sketch
a periodic orbit ro in R3 and one neighboring orbit F, of period
Tn where for xn E rn we have r(xn) = Tn/2.

7. Show that the C'-system i = x - rx - ry + xy, y = y - ry + rx - x2
can be written in polar coordinates as r = r(1- r), 8 = r(1- cos0).
Show that it has an unstable node at the origin and a saddle node at
(1,0). Use this information and the Poincare-Bendixson Theorem to
sketch the phase portrait for this system and then deduce that for all
x 96 0, 0, (x) (1,0) as t -+ oo, but that (1,0) is not stable.

8. Show that the analytic system

i=y
L(1+y2)

-xJ (I+y)

has an unbounded oscillation and that the w-limit set of any tra-
jectory starting on the positive y-axis is the invariant line y = -1.
Sketch the phase portrait for this system on R2 and on the Bendix-
son sphere. Hint: Show that the line y = -1 is a trajectory of this
system, that the only critical point is an unstable focus at the origin
and that trajectories in the half plane y < -1 escape to infinity along
parabolas y = yo - x2/2 as t -+ ±oo, i.e., show that 4 =

z
--+ -x

as y - -oo.

3.8 Lienaxd Systems

In the previous section we saw that the Poincar6-Bendixson Theorem could
be used to establish the existence of limit cycles for certain planar systems.
It is a far more delicate question to determine the exact number of limit
cycles of a certain system or class of systems depending on parameters. In
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this section we present a proof of a classical result on the uniqueness of the
limit cycle for systems of the form

i = y - F(x)
y = -g(x) (1)

under certain conditions on the functions F and g. This result was first
established by the French physicist A. Lienard in 1928 and the system (1) is
referred to as a Lienard system. Lienard studied this system in the different,
but equivalent form

i+ f(x)i + g(x) = 0

where f (x) = F'(x) in a paper on sustained oscillations. This second-order
differential equation includes the famous van der Pol equation

i+µ(x2 - 1)i+x = 0 (2)

of vacuum-tube circuit theory as a special case.
We present several other interesting results on the number of limit cy-

cles of Lienard systems and polynomial systems in this section which we
conclude with a brief discussion of Hilbert's 16th Problem for planar poly-
nomial systems. In the proof of Lienard's Theorem and in the statements
of some of the other theorems in this section it will be useful to define the
functions

F(x) = l x f (s) ds and G(x) = fox g(s) ds
0

and the energy function

u(x,y) = 2 + G(x).

Theorem 1 (Lienard's Theorem). Under the assumptions that F, g E
C'(R), F and g are odd functions of x, xg(x) > 0 for x 9& 0, F(0) = 0,
F'(0) < 0, F has single positive zero at x = a, and F increases monotoni-
cally to infinity for x > a as x -+ oo, it follows that the Lienard system (1)
has exactly one limit cycle and it is stable.

The proof of this theorem makes use of the diagram below where the
points P, have coordinates (x,,, y3) for j = 0,1,. .. , 4 and r is a trajectory
of the Lienard system (1). The function F(x) shown in Figure 1 is typical
of functions which satisfy the hypotheses of Theorem 1. Before presenting
the proof of this theorem, we first of all make some simple observations:
Under the assumptions of the above theorem, the origin is the only critical
point of (1); the flow on the positive y-axis is horizontal and to the right,
and the flow on the negative y-axis is horizontal and to the left; the flow
on the curve y = F(x) is vertical, downward for x > 0 and upward for
x < 0; the system (1) is invariant under (x, y) - (-x, -y) and therefore
if (x(t),y(t)) describes a trajectory of (1) so does (-x(t), -y(t)); it follows
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P3

Figure 1. The function F(x) and a trajectory r of Lienard's system.

that that if r is a closed trajectory of (1), i.e., a periodic orbit of (1), then
r is symmetric with respect to the origin.

Proof. Due to the nature of the flow on the y-axis and on the curve y =
F(x), any trajectory r starting at a point Po on the positive y-axis crosses
the curve y = F(x) vertically at a point P2 and then it crosses the negative
y-axis horizontally at a point P4; cf. Theorem 1.1, p. 202 in [H].

Due to the symmetry of the equation (1), it follows that r is a closed
trajectory of (1) if and only if y4 = -yo; and for u(x, y) = y2/2 + G(x),
this is equivalent to u(0, y4) = u(0, yo). Now let A be the arc POP4 of the
trajectory r and consider then function 4(a) defined by the line integral

O(a) =
J

du = u(O,y4) - u(0, yo)
a

where a = x2i the abscissa of the point P2. It follows that r is a closed
trajectory of (1) if and only if g(a) = 0. We shall show that the function
¢(a) has exactly one zero a = ao and that ao > a. First of all, note that
along the trajectory r

du = g(x) dx + y dy = F(x) dy.

And if a < a then both F(x) < 0 and dy = -g(x) dt < 0. Therefore,
4(a) > 0; i.e., u(0, y4) > u(0, yo). Hence, any trajectory r which crosses
the curve y = F(x) at a point P2 with 0 < x2 = a < a is not closed.

Lemma. For a > a, ¢(a) is a monotone decreasing function which de-
creases from the positive value 4(a) to -oo as a increases in the interval
[a, oo)



256 3. Nonlinear Systems: Global Theory

For a > a, as in Figure 1, we split the arc A into three parts Al = PoP1,
A2 = P1 P3 and Air = P3P4 and define the functions

r
Q51(a) = J du, c,2(a) = J du and c53(a) = J du.

Al A2 A3

It follows that ¢(a) = 01(a) + ¢2(a) + '3(a). Along r we have

du = [(x)+] dx

= [(x)_
J

dx
y - F(x) J

_ -F(x)g(x)
dx.y - F(x)

Along the arcs Al and A3 we have F(x) < 0, g(x) > 0 and dx/[y - F(x)] _
dt > 0. Therefore, 01(a) > 0 and ¢3(a) > 0. Similarly, along the arc
A2, we have F(x) > 0, g(x) > 0 and dx/[y - F(x)] = dt > 0 and therefore
¢2(a) < 0. Since trajectories of (1) do not cross, it follows that increasing a
raises the arc Al and lowers the arc A3. Along A1, the x-limits of integration
remain fixed at x = x0 = 0, and x = x1 = a; and for each fixed x in
[0, a], increasing a raises Al which increases y which in turn decreases
the above integrand and therefore decreases 01(a). Along A3, the x-limits
of integration remain fixed at x3 = a and xq = 0; and for each fixed
x E [0, a], increasing a lowers A3 which decreases y which in turn decreases
the magnitude of the above integrand and therefore decreases t3(a) since

03(a) = fa
0 -F(x)g(x) d. _ I F(x)g(x) I dx.

y - F(x) J00 y - F(x)

Along the arc A2 of r we can write du = F(x) dy. And since trajectories
of (1) do not cross, it follows that increasing a causes the arc A2 to move
to the right. Along A2 the y-limits of integration remain fixed at y = y1
and y = y3; and for each fixed y E [y3, y1], increasing x increases F(x) and
since

02(x)
y F(x) dy,

y3

this in turn decreases 02(a). Hence for a > a, 0 is a monotone decreasing
function of a. It remains to show that O(a) --+ -oo as a --+ oo. It suffices
to show that 02(a) -oo as a -i. oo. But along A2, du = F(x) dy =
-F(x)g(x) dt < 0, and therefore for any sufficiently small e > 0

I¢2 (a)I
fy3

F(x) dy =
v

F(x) dy >
fY3

yi-E
F(x) dy

J J111 y3 +E

fyl -E
> F(e) J dy

Y3 +C

= F(e)[yl - y3 - 2e]
> F(e)[y1 - 2e].
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But yl > Y2 and y2 00 as x2 = a -' oo. Therefore, Ic2(a)t -+ oo as
a -' oo; i.e., 02(a) - -oo as a , oo.

Finally, since the continuous function O(a) decreases monotonically from
the positive value O(a) to -oo as a increases in [a, oo), it follows that
O(a) = 0 at exactly one value of a, say a = ao, in (a, oo). Thus, (1) has
exactly one closed trajectory r o which goes through the point (ao, F(ao)).
Furthermore, since m(a) < 0 for a > ao, it follows from the symmetry of the
system (1) that for a j4 ao, successive points of intersection of trajectory r
through the point (a, F(a)) with the y-axis approach Fo; i.e., Fo is a stable
limit cycle of (1). This completes the proof of Lienard's Theorem.

Corollary. For p > 0, van der Pol's equation (2) has a unique limit cycle
and it is stable.

Figure 2. The limit cycle for the van der Pol equation for µ = 1 and Is = .1.

Figure 2 shows the limit cycle for the van der Pol equation (2) with p = 1
and µ = A. It can be shown that the limit cycle of (2) is asymptotic to the
circle of radius 2 centered at the origin as it -+ 0.

Example 1. It is not difficult to show that the functions F(x) = (x3 -
x)/(x2 + 1) and g(x) = x satisfy the hypotheses of Lienard's Theorem; cf.
Problem 1. It therefore follows that the system (1) with these functions has
exactly one limit cycle which is stable. This limit cycle is shown in Figure 3.

In 1958 the Chinese mathematician Zhang Zhifen proved the following
useful result which complements Lienard's Theorem. Cf. [35].

Theorem 2 (Zhang). Under the assumptions that a < 0 < b, F,g E
C' (a, b), xg(x) > 0 for x 34 0, G(x) --+ oo as x -. a if a = -oo and
G(x) - oo as x - b if b = oo, f(x)/g(x) is monotone increasing on
(a, 0) n (0, b) and is not constant in any neighborhood of x = 0, it follows
that the system (1) has at most one limit cycle in the region a < x < b and
if it exists it is stable.
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Figure 3. The limit cycle for the Lienard system in Example 1.

Figure 4. The limit cycle for the Lienard system in Example 2 with a = .02.
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Example 2. The author recently used this theorem to show that for a E
(0, 1), the quadratic system

a = -y(l + x) + ax + (a + 1)x2
y = x(1 + x)

has exactly one limit cycle and it is stable. It is easy to see that the flow
is horizontal and to the right on the line x = -1. Therefore, any closed
trajectory lies in the region x > -1. If we define anew independent variable
-r by dT = -(1 + x)dt along trajectories x = x(t) of this system, it then
takes the form of a Lienard system

dx _ _ ax + (a + 1)x2-y
dr (1+x)
dy
dT

= -x.

Even though the hypotheses of Lienard's Theorem are not satisfied, it can
be shown that the hypotheses of Zhang's theorem are satisfied. Therefore,
this system has exactly one limit cycle and it is stable. The limit cycle for
this system with a = .02 is shown in Figure 4.

In 1981, Zhang proved another interesting theorem concerning the num-
ber of limit cycles of the Lienard system (1). Cf. [36]. Also, cf. Theorem 7.1
in [Y].

Theorem 3 (Zhang). Under the assumptions that g(x) = x, F E C' (R),
f (x) is an even function with exactly two positive zeros al < a2 with
F(al) > 0 and F(a2) < 0, and f (x) is monotone increasing for x > a2, it
follows that the system (1) has at most two limit cycles.

Example 3. Consider the Lienard system (1) with g(x) = x and f (x) _
1.6x4 - 4x2 +.8. It is not difficult to show that the hypotheses of Theorem 3
are satisfied; cf. Problem 2. It therefore follows that the system (1) with
g(x) = x and F(x) = .32x5 - 4x3/3 + .8x has at most two limit cycles. In
fact, this system has exactly two limit cycles (cf. Theorem 6 below) and
they are shown in Figure 5.

Of course, the more specific we are about the functions F(x) and g(x)
in (1), the more specific we can be about the number of limit cycles that
(1) has. For example, if g(x) = x and F(x) is a polynomial, we have the
following results; cf. [18].

Theorem 4 (Lins, de Melo and Pugh). The system (1) with g(x) = x,
F(x) = alx + a2x2 + a3x3, and alai < 0 has exactly one limit cycle. It is
stable if al < 0 and unstable if al > 0.

Remark. The Russian mathematician Rychkov showed that the system (1)
with g(x) = x and F(x) = alx + a3x3 + a3x5 has at most two limit cycles.
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Figure 5. The two limit cycle of the Lienard system in Example 3.

In Section 3.4, we mentioned that m limit cycles can be made to bifurcate
from a multiple focus of multiplicity m. This concept is discussed in some
detail in Sections 4.4 and 4.5 of Chapter 4. Limit cycles which bifurcate
from a multiple focus are called local limit cycles. The next theorem is
proved in [3].

Theorem 5 (Blows and Lloyd). The system (1) with g(x) = x and
F(x) = alx + a2x2 + + a2m+1x2'"+1 has at most m local limit cycles
and there are coefficientsicients with al, a3i a5, ... , a2m+1 alternating in sign such
that (1) has m local limit cycles.

Theorem 6 (Perko). For e # 0 sufficiently small, the system (1) with
g(x) = x and F(x) = e[alx+a2x2+ +a2m+1x2,+1] has at most m limit
cycles; furthermore, for e # 0 sufficiently small, this system has exactly
m limit cycles which are asymptotic to circles of radius r j = 1, ... 2 my
centered at the origin as e -4 0 if and only if the mth degree equation

al 3a3 5a5 2 35a, 3 2m + 2 a2m+1
2 + 8 P + 16 P + 128 P

+ + m + 1 22m+2 P =
0 (3)

has m positive mots p = rj?, j = 1, ... , m.

This last theorem is proved using Melnikov's Method in Section 4.10. It
is similar to Theorem 76 on p. 414 in [A-II]-

Example 4. Theorem 6 allows us to construct polynomial systems with
as many limit cycles as we like. For example, suppose that we wish to find a
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Figure 6. The limit cycles of the Lienard system in Example 4 with e = .01.

polynomial system of the form in Theorem 6 with exactly two limit cycles
asymptotic to circles of radius r = 1 and r = 2. To do this, we simply set
the polynomial (p - 1)(p - 4) equal to the polynomial in equation (3) with
m = 2 in order to determine the coefficients al, a3 and a5; i.e., we set

2 5 2 3 1
p -5p+4= 16a5P +8a3P+2ai-

This implies that a5 = 16/5, a3 = -40/3 and al = 8. For e 0 0 sufficiently
small, Theorem 6 then implies that the system

s = y-e(8x-40x3/3+16x5/5)
y=-x

has exactly two limit cycles. For e = .01 these limit cycles are shown in
Figure 6. They are very near the circles r = 1 and r = 2. For e = .1 these
two limit cycles are shown in Figure 5. They are no longer near the two
circles 'r = 1 and r = 2 for this larger value of e. Arbitrary even-degree
terms such as a2x2 and a4x4 may be added in the a-term in this system
without affecting the results concerning the number and geometry of the
limit cycles of this example.

Example 5. As in Example 4, it can be shown that for e # 0 sufficiently
small, the Lienard system

i = y + e(72x - 392x3/3 + 224x5/5 - 128x7/35)

y=-x
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has exactly three limit cycles which are asymptotic to the circles r = 1,
r = 2 and r = 3 as e - 0; cf. Problem 3. The limit cycles for this system
with e = .01 and e = .001 are shown in Figure 7.

At the turn of the century, the world-famous mathematician David
Hilbert presented a list of 23 outstanding mathematical problems to the
Second International Congress of Mathematicians. The 16th Hilbert Prob-
lem asks for a determination of the maximum number of limit cycles, Hn,
of an nth degree polynomial system

n

E aijx'y
i+j=O

n

6ijxjy (4)
i+j=0

For given (a, b) E R(n+l)(n+2), let Hn(a, b) denote the number of limit
cycles of the nth degree polynomial system (4) with coefficients (a, b). Note
that Dulac's Theorem asserts that Hn(a, b) < oo. The Hilbert number Hn
is then equal to the sup Hn(a, b) over all (a, b) E R(n+l)(n+2).

Since linear systems in R2 do not have any limit cycles, cf. Section 1.5
in Chapter 1, it follows that H1 = 0. However, even for the simplest class
of nonlinear systems, (4) with n = 2, the Hilbert number H2 has not been
determined. In 1962, the Russian mathematician N. V. Bautin [21 proved
that any quadratic system, (4) with n = 2, has at most three local limit
cycles. And for some time it was believed that H2 = 3. However, in 1979,
the Chinese mathematicians S. L. Shi, L. S. Chen and M. S. Wang produced
examples of quadratic systems with four limit cycles; cf. [29]. Hence H2 > 4.
Based on all of the current evidence it is believed that H2 = 4 and in 1984,
Y. X. Chin claimed to have proved this result; however, errors were pointed
out in his work by Y. L. Can.

Figure 7. The limit cycles of the Lienard system in Example 5 with e = .01
ande=.001.
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Regarding H3, it is known that a cubic system can have at least eleven
local limit cycles; cf. [42]. Also, in 1983, J. B. Li et al. produced an example
of a cubic system with eleven limit cycles. Thus, all that can be said at this
time is that H3 > 11. Hilbert's 16th Problem for planar polynomial systems
has generated much interesting mathematical research in recent years and
will probably continue to do so for some time.

PROBLEM SET 8

1. Show that the functions F(x) = (x3-x)/(x2+1) and g(x) = x satisfy
the hypotheses of Lienard's Theorem.

2. Show that the functions f (x) =1.6x4-4x2+.8 and F(x) = fa f (s) ds =
.32x5-4x3/3+.8x satisfy the hypotheses of Theorem 3.

3. Set the polynomial (p - 1)(p - 4)(p - 9) equal to the polynomial in
equation (3) with m = 3 and determine the coefficients al, a3, a5 and
a7 in the system of Example 5.

4. Construct a Lienard system with four limit cycles.

5. (a) Determine the phase portrait for the system

=y-x2
y = -x.

(b) Determine the phase portrait for the Lienard system (1) with
F, g E C' (R), F(x) an even function of x and g an odd function
of x of the form g(x) = x + 0(x3). Hint: Cf. Theorem 6 in
Section 2.10 of Chapter 2.

6. Consider the van der Pol system

x = y + µ(x - x3/3)
y = -x.

(a) As µ - 0+ show that the limit cycle Lµ of this system ap-
proaches the circle of radius two centered at the origin.

(b) As µ -p oc show that the limit cycle Lµ is asymptotic to the
closed curve consisting of two horizontal line segments on y =
f2µ/3 and two arcs of y = µ(x3/3 - x). To do this, let u = y/µ
and r = t/µ and show that as µ -+ oo the limit cycle of the
resulting system approaches the closed curve consisting of the
two horizontal line segments on u = ±2/3 and the two arcs of
the cubic u = x3/3 - x shown in Figure 8.
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2/3

Figure 8. The limit of Lµ as µ - oo.

7. Let F satisfy the hypotheses of Lienard's Theorem. Show that

1+F(z)+z=0
has a unique, asymptotically stable, periodic solution.

Hint: Letx=.zandy=-z.

3.9 Bendixson's Criteria

Lienard's Theorem and the other theorems in the previous section establish
the existence of exactly one or exactly m limit cycles for certain planar
systems. Bendixson's Criteria and other theorems in this section establish
conditions under which the planar system

x = f(x) (1)

with f = (P, Q)T and x = (x, y)T E R2 has no limit cycles. In order
to determine the global phase portrait of a planar dynamical system, it is
necessary to determine the number of limit cycles around each critical point
of the system. The theorems in this section and in the previous section make
this possible for some planar systems. Unfortunately, it is generally not
possible to determine the exact number of limit cycles of a planar system
and this remains the single most difficult problem for planar systems.

Theorem 1 (Bendixson's Criteria). Let f E C' (E) where E is a sim-
ply connected region in R2. If the divergence of the vector field f, V f, is
not identically zero and does not change sign in E, then (1) has no closed
orbit lying entirely in E.
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Proof. Suppose that r: x = x(t). 0 < t < T, is a closed orbit of (1)
lying entirely in E. If S denotes the interior of r, it follows from Green's
Theorem that

J fV.fdxdY=j(Pd_Qdx)

y - Qi) dt
fo

= (P

T
=1 (PQ-QP)dt=0.

0

And if V V. f is not identically zero and does not change sign in S, then
it follows from the continuity of V f in S that the above double integral
is either positive or negative. In either case this leads to a contradiction.
Therefore, there is no closed orbit of (1) lying entirely in E.

Remark 1. The same type of proof can be used to show that, under the
hypotheses of Theorem 1, there is no separatrix cycle or graphic of (1) lying
entirely in E; cf. Problem 1. And if V f - 0 in E, it can be shown that,
while there may be a center in E, i.e., a one-parameter family of cycles of
(1), there is no limit cycle in E.

A more general result of this type, which is also proved using Green's
Theorem, cf. Problem 2, is given by the following theorem:

Theorem 2 (Dulac's Criteria). Let f E C' (E) where E is a simply
connected region in R2. If there exists a function B E C1(E) such that
V (Bf) is not identically zero and does not change sign in E, then (1) has
no closed orbit lying entirely in E. If A is an annular region contained in
E on which V V. (Bf) does not change sign, then there is at most one limit
cycle of (1) in A.

As in the above remark, if V V. (Bf) does not change sign in E, then it can
be shown that there are no sep'aratrix cycles or graphics of (1) in E and if
V (Bf) - 0 in E, then (1) may have a center in E. Cf. [A-I], pp. 205-210.
The next theorem, proved by the Russian mathematician L. Cherkas [5]
in 1977, gives a set of conditions sufficient to guarantee that the Lienard
system of Section 3.8 has no limit cycle.

Theorem 3 (Cherkas). Assume that a < 0 < b, F, g E C1(a, b), and
xg(x) > 0 for x E (a, 0) U (0, b). Then if the equations

F(u) = F(v)
G(u) = G(v)

have no solutions with u E (a, 0) and v E (0, b), the Lienard system (1) in
Section 3.8 has no limit cycle in the region a < x < b.
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Corollary 1. If F, g E C' (R), g is an odd function of x and F is an odd
function of x with its only zero at x = 0, then the Lienard system (1) in
Section 3.8 has no limit cycles.

Finally, we cite one other result, due to Cherkas [4], which is useful in
showing the nonexistence of limit cycles for certain quadratic systems.

Theorem 4. If b < 0, ac > 0 and as < 0, then the quadratic system

i=ax-y+ax2+bxy+cy2
x+x2

has no limit cycle around the origin.

Example 1. Using this theorem, it is easy to show that for a E [-1, 0],
the quadratic system

i=ax-y+(a+1)x2-xy
x+x2

of Example 2 in Section 3.8 has no limit cycles. This follows since the
origin is the only critical point of this system and therefore by Theorem 5
in Section 3.7 any limit cycle of this system must enclose the origin. But
according to the above theorem with b = -1 < 0, ac = 0 and as =
a(a + 1) < 0 for a E [-1, 01, there is no limit cycle around the origin.

PROBLEM SET 9

1. Show that, under the hypotheses of Theorem 1, there is no separatrix
cycle S lying entirely in E. Hint: If such a separatrix cycle exists,
then S = U', rwhere for j = 1, ... , m

I'j: x=ryj (t), -oo<t<oo
is a trajectory of (1). Apply Green's Theorem.

2. Use Green's Theorem to prove Theorem 2. Hint: In proving the sec-
ond part of that theorem, assume that there are two limit cycles Pl
and I72 in A, connect them with a smooth arc ro (traversed in both
directions), and then apply Green's Theorem to the resulting simply
connected region whose boundary is I'1 + ro - r2 - 170-

3. (a) Show that for the system

x=x-y-x3
y=x+y- ys
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the divergence V f < 0 in the annular region A = {x E R 11 <
lxJ < / } and yet there is a limit cycle in this region; cf. Prob-
lem 2 in Section 3.7. Why doesn't this contradict Bendixson's
Theorem?

(b) Use the second part of Theorem 2 and the result of Problem 2
in Section 3.7 to show that there is exactly one limit cycle in A.

4. (a) Show that the limit cycle of the van der Pol equation

i=y+x-x3/3
y= -X

must cross the vertical lines x = ±1; c£ Figure 2 in Section 3.8.

(b) Show that any limit cycle of the Lienard equation (1) in Sec-
tion 3.8 with f and g odd Cl-functions must cross the vertical
line x = xl where xl is the smallest zero of f (x). If equation (1)
in Section 3.8 has a limit cycle, use the Corollary to Theorem 3
to show that the function f (x) has at least one positive zero.

5. (a) Use the Dulac function B(x, y) = be 20x to show that the
system

=y
y = -ax - by + axe + Qy2

has no limit cycle in R2.

(b) Show that the system

yx 1+x2
_ -x+y(1+x2+x4)

Y
1+x2

has no limit cycle in R2.

3.10 The Poincare Sphere and the Behavior at
Infinity

In order to study the behavior of the trajectories of a planar system for
large r, we could use the stereographic projection defined in Section 3.6;
cf. Figure 1 in Section 3.6. In that case, the behavior of trajectories far
from the origin could be studied by considering the behavior of trajectories
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near the "point at infinity," i.e., near the north pole of the unit sphere in
Figure 1 of Section 3.6. However, if this type of projection is used, the point
at infinity is typically a very complicated critical point of the flow induced
on the sphere and it is often difficult to analyze the flow in a neighborhood
of this critical point. The idea of analyzing the global behavior of a planar
dynamical system by using a stereographic projection of the sphere onto
the plane is due to Bendixson [B]. The sphere, including the critical point
at infinity, is referred to as the Bendixson sphere.

A better approach to studying the behavior of trajectories "at infinity" is
to use the so-called Poincare sphere where we project from the center of the
unit sphere S2 = {(X,Y, Z) E R3 I X2+Y2+Z2 = 1} onto the (x,y)-plane
tangent to S2 at either the north or south pole; cf. Figure 1. This type of
central projection was introduced by Poincar6 [P] and it has the advantage
that the critical points at infinity are spread out along the equator of the
Poincar6 sphere and are therefore of a simpler nature than the critical point
at infinity on the Bendixson sphere. However, some of the critical points at
infinity on the Poincar6 sphere may still be very complicated in nature.

Z

Figure 1. Central projection of the upper hemisphere of S2 onto the
(x, y)-plane.

Remark. The method of "blowing-up" a neighborhood of a complicated
critical point uses a combination of central and stereographic projections
onto the Poincar6 and Bendixson spheres respectively. It allows one to
reduce the study of a complicated critical point at the origin to the study of
a finite number of hyperbolic critical points on the equator of the Poincare
sphere. Cf. Problem 13.
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z

Figure 2. A cross-section of the central projection of the upper hemisphere.

If we project the upper hemisphere of S2 onto the (x, y)-plane, then it
follows from the similar triangles shown in Figure 2 that the equations
defining (x, y) in terms of (X, Y, Z) are given by

X Yx_Z, y_
(1)

Similarly, it follows that the equations defining (X, Y, Z) in terms of (x, y)
are given by

_ x

Y

_ y X _ 1
X

1+x2+y2' 1+x2+ y2' l + x2+ y2

These equations define a one-to-one correspondence between points
(X, Y, Z) on the upper hemisphere of S2 with Z > 0 and points (x, y) in the
plane. The origin 0 E R2 corresponds to the north pole (0, 0, 1) E S2; points
on the circle x2 +Y2 = 1 correspond to points on the circle X2+Y2 = 1/2,
Z = 1/v/-2 on S2; and points on the equator of S2 correspond to the "cir-
cle at infinity" or "points at infinity" of R2. Any two antipodal points
(X. Y, Z) with (X'. Y', Z') on S2, but not on the equator of S2, correspond
to the same point (x, y) E R2; cf. Figure 1. It is therefore only natural to
regard any two antipodal points on the equator of S2 as belonging to the
same point at infinity. The hemisphere with the antipodal points on the
equator identified is a model for the projective plane. However, rather than
trying to visualize the flow on the projective plane induced by a dynamical
system on R2, we shall visualize the flow on the Poincare sphere induced
by a dynamical system on R2 where the flow in neighborhoods of antipodal
points is topologically equivalent, except that the direction of the flow may
be reversed.
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Consider a flow defined by a dynamical system on R2

i = P(x,y) (2)

3s = Q(x, y)

where P and Q are polynomial functions of x and y. Let m denote the
maximum degree of the terms in P and Q. This system can be written in
the form of a single differential equation

dy _ Q(x, y)
dx P(x,y)

or in differential form as

Q(x, y) dx - P(x, y) dy = 0. (3)

Note that in either of these two latter forms we lose the direction of the
flow along the solution curves of (2). It follows from (1) that

dx=ZdX - XdZ
dy =

ZdY - YdZ
Z2 , Z2

Thus, the differential equation (3) can be written as

Q(ZdX-XdZ)-P(ZdY-YdZ)=0

where

and

P = P(x, Y) = P(X/Z, Y/Z)

(4)

Q = Q(x,y) = Q(X/Z,Y/Z)
In order to eliminate Z in the denominators, multiply the above equation
through by Z' to obtain

ZQ*dX - ZP* dY + (YP* - XQ*) dZ = 0 (5)

where

and

P. (X, Y, Z) = Z-P(X/Z, Y/Z)

Q* (X,1,, Z) = Z nQ(X/Z, Y/Z)

are polynomials in (X, Y, Z). This equation can be written in the form of
the determinant equation

dX dY dZ
X Y Z = 0. (5')
P. Q. 0
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Cf. [L], p. 202. The differential equation (5) then defines a family of solu-
tion curves or a flow on S2. Each solution curve on the upper (or lower)
hemisphere of S2 defined by (5) corresponds to exactly one solution curve
of the system (2) on R2. Furthermore, the flow on the Poincare sphere S2
defined by (5) allows us to study the behavior of the flow defined by (2) at
infinity; i.e., we can study the flow defined by (5) in a neighborhood of the
equator of S2. The equator of S2 consists of trajectories and critical points
of (5). This follows since for Z = 0 in (5) we have (YP* - XQ')dZ = 0.
Thus, for YP' - XQ` 0 we have dZ = 0; i.e., we have a trajectory
through a regular point on the equator of S2. And the critical points of (5)
on the equator of S2 where Z = 0 are given by the equation

YP" - XQ` = 0. (6)

If

P(x, Y) = Pi (x, y) + ... + Pm(x, Y)

and

Q(x, Y) = Q1 (X, y) + . + Qm(x, y)

where Pj and Qj are homogeneous jth degree polynomials in x and y, then

YP' - XQ' = Z"`YP1(X/Z, Y/Z) + + Z"`YPm(X/Z, Y/Z)
- ZmXQ1(X/Z,Y/Z) - ... -ZmXQm(X/Z,Y/Z)

= Zm-1Yp1(X, Y) + ... + YP,"(X, Y)

- Z"`-IXQI (X,1') - ... - XQm(X,Y)
= YPm(X,Y) - XQm(X,Y)

for Z = 0. And for Z = 0, X2 + Y2 = 1. Thus, for Z = 0, (6) is equivalent
to

sin BP,,, (cos 0, sin 0) - cos BQ,,,, (cos 0, sin 0) = 0.

That is, the critical points at infinity are determined by setting the highest
degree terms in 6, as determined by (2), with r = 1, equal to zero. We
summarize these results in the following theorem.

Theorem 1. The critical points at infinity for the mth degree polynomial
system (2) occur at the points (X, Y, 0) on the equator of the Poincare
sphere where X2 + Y2 = 1 and

XQm(X,Y) - YPm(X,Y) = 0 (6)

or equivalently at the polar angles 0i and 0, + it satisfying

G,,,+1(6) -cosOQm(cos0,sin0) -sin0P,,,(cos0,sin0) = 0. (6')

This equation has at most m+ 1 pairs of roots Oj and Bj +ir unless Gm+1 (0)
is identically zero. If Gm+1 (0) is not identically zero, then the flow on the
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equator of the Poincare sphere is counter-clockwise at points corresponding
to polar angles 8 where G,,,+1(8) > 0 and it is clockwise at points corre-
sponding to polar angles 8 where 0.

The behavior of the solution curves defined by (5) in a neighborhood of
any critical point at infinity, i.e. any critical point of (5) on the equator of
the Poincare sphere S2, can be determined by projecting that neighborhood
onto a plane tangent to S2 at that point; cf. [L], p. 205. Actually, it is only
necessary to project the hemisphere with X > 0 onto the plane X = 1
and to project the hemisphere with Y > 0 onto the plane Y = 1 in order
to determine the behavior of the flow in a neighborhood of any critical
point on the equator of S2. This follows because the flow on S2 defined by
(5) is topologically equivalent at antipodal points of S2 if m is odd and it
is topologically equivalent, with the direction of the flow reversed, if m is
even; cf. Figure 1. We can project the flow on S2 defined by (5) onto the
plane X = 1 by setting X = 1 and dX = 0 in (5). Similarly we can project
the flow defined by (5) onto the plane Y = 1 by setting Y = 1 and dY = 0
in (5). Cf. Figure 3. This leads to the results summarized in Theorem 2.

Figure 3. The projection of S2 onto the planes X = 1 and Y = 1.

Theorem 2. The flow defined by (5) in a neighborhood of any critical point
of (5) on the equator of the Poincare sphere S2, except the points (0, ±1, 0),
is topologically equivalent to the flow defined by the system
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fy = yzmP(z,z)
-zmQC'1,z/

1 y
(7)

fz = z'n+1 p _

the signs being determined by the flow on the equator of S2 as determined
in Theorem 1. Similarly, the flow defined by (5) in a neighborhood of any
critical point of (5) on the equator of S2, except the points (±1, 0, 0), is
topologically equivalent to the flow defined by the system

f2 = xzmQ (z, z ) - zmP (z, 1)

fz = zm+1Q (z'
z)

(7')

the signs being determined by the flow on the equator of S2 as determined
in Theorem 1.

Remark 2. A critical point of (7) at (yo, 0) corresponds to a critical point
of (5) at the point

1 yo 0
l+yo, vi-Tip,

on S2; and a critical point of (7') at (xo, 0) corresponds to a critical point
of (5) at the point

xo 1

( 1 + xo1 1 +xo'
0

on S2.

Example 1. Let us determine the flow on the Poincare sphere S2 defined
by the planar system

This system has a saddle at the origin and this is the only (finite) critical
point of this system. The saddle at the origin of this system projects, under
the central projection shown in Figure 1, onto saddles at the north and
south poles of S2 as shown in Figure 4. According to Theorem 1, the
critical points at infinity for this system are determined by the solutions of

XQ1 (X, Y) - YP1(X,Y) = -2XY = 0;
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Figure 4. The flow on the Poincare sphere S2 defined by the system of
Example 1.

i.e., there are critical points on the equator of S2 at ±(1,0,0) and at
±(0, 1, 0). Also, we see from this expression that the flow on the equator of
S2 is clockwise for XY > 0 and counter-clockwise for XY < 0. According
to Theorem 2, the behavior in a neighborhood of the critical point (1, 0, 0)
is determined by the behavior of the system

or equivalently

-y-yx GO -i-x(yx)

-z-z2C11
z

near the origin. This system has a stable (improper) node at the origin
of the type shown in Figure 2 in Section 1.5 of Chapter 1. The y-axis
consists of trajectories of this system and all other trajectories come into
the origin tangent to the z-axis. This completely determines the behavior
at the critical point (1,0,0); cf. Figure 4. The behavior at the antipodal
point (-1,0,0) is exactly the same as the behavior at (1,0,0), i.e., there
is also a stable (improper) node at (-1, 0, 0), since m = 1 is odd in this
example. Similarly, the behavior in a neighborhood of the critical point



3.10. The Poincare Sphere and the Behavior at Infinity 275

Figure 5. The global phase portrait for the system in Example 1.

(0, 1, 0) is determined by the behavior of the system

th=2x
z=z

near the origin. We see that there are unstable (improper) nodes at (0,±1, 0)
as shown in Figure 4. The fact that the x and y axes of the original sys-
tem consist of trajectories implies that the great circles through the points
(±1, 0, 0) and (0, ±1, 0) consist of trajectories. Putting all of this informa-
tion together and using the Poincare-Bendixson Theorem yields the flow
on S2 shown in Figure 4.

If we project the upper hemisphere of the Poincare sphere shown in Fig-
ure 4 orthogonally onto the unit disk in the (x, y)-plane, we capture all of
the information about the behavior at infinity contained in Figure 4 in a
planar figure that is much easier to draw; cf. Figure 5. The flow on the unit
disk shown in Figure 5 is referred to as the global phase portrait for the
system in Example 1 since Figure 5 describes the behavior of every tra-
jectory of the system including the behavior of the trajectories at infinity.
Note that the local behavior near the stable node at (1,0,0) in Figure 4
is determined by the local behavior near the antipodal points (±1, 0) in
Figure 5.

Notice that the separatrices partition the unit sphere in Figure 4 or the
unit disk in Figure 5 into connected open sets, called components, and
that the flow in each of these components is determined by the behavior of
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one typical trajectory (shown as a dashed curve in Figure 5). The separa-
trix configuration shown in Figure 5, and discussed more fully in the next
section, completely determines the global phase portrait of the system of
Example 1.

Example 2. Let us determine the global phase portrait of the quadratic
system

x2+y2-1
5(xy-1)

considered by Lefschetz [L) on p. 204 and originally considered by Poincare
[P] on p. 66. Since the circle x2 + y2 = 1 and the hyperbola xy = 1 do
not intersect, there are no finite critical points of this system. The critical
points at infinity are determined by

XQ2(X, Y) - YP2(X, Y) = Y(4X2 - Y2) = 0

together with X2 + Y2 = 1. That is, the critical points at infinity are at
±(1, 0, 0), ±(1, 2, 0)/ f and ±(1, -2, 0)/v'5-. Also, for X = 0 the above
quantity is negative if Y > 0 and positive if Y < 0. (In fact, on the entire
y-axis, 0 < 0 if y > 0 and 0 > 0 if y < 0.) This determines the direction of
the flow on the equator of S2. According to Theorem 2, the behavior near
each of the critical points (1,0,0), (1,2,0)/V' and (1,-2,0)// on S2 is
determined by the behavior of the system

y = 4y - 5z2 - y3 + yz2
8-z-zy2+z3

near the critical points (0, 0), (2, 0) and (-2, 0) respectively. Note that the
critical points at infinity correspond to the critical points on the y-axis of
(8) which are easily determined by setting z = 0 in (8). For the system (8)
we have

Df(0,0) = 14
-o]

and Df(±2,0) = I
0 -51

Figure 6. The behavior near the critical points of (8).
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Thus, according to Theorems 3 and 4 in Section 2.10 of Chapter 2, (0,0)
is a saddle and (±2, 0) are stable (improper) nodes for the system (8); cf.
Figure 6. Since m = 2 is even in this example, the behavior near the an-
tipodal points -(1, 0, 0), -(1, 2, 0)/ / and -(1, -2, 0)/f is topologically
equivalent to the behavior near (1, 0, 0), (1, 2, 0)/ f and (1, -2, 0)/f re-
spectively with the directions of the flow reversed; i.e., -(1, 0, 0) is a saddle
and -(1,±2,0)// are unstable (improper) nodes. Finally, we note that
along the entire x-axis y < 0. Putting all of this information together and
using the Poincare-Bendixson Theorem leads to the global phase portrait
shown in Figure 7; cf. Problem 1.

Figure 7. The global phase portrait for the system in Example 2.

The next example illustrates that the behavior at the critical points at
infinity is typically more complicated than that encountered in the previous
two examples where there were only hyperbolic critical points at infinity.
In the next example, it is necessary to use the results in Section 2.11 of
Chapter 2 for nonhyperbolic critical points in order to determine the be-
havior near the critical points at infinity. Note that if the right-hand sides
of (7) or (7') begin with quadratic or higher degree terms, then even the
results in Section 2.11 of Chapter 2 will not suffice to determine the behav-
ior at infinity and a more detailed analysis in the neighborhood of these
degenerate critical points will be necessary; cf. [N/S]. The next theorem
which follows from Theorem 1.1 and its corollaries on pp. 205 and 208 in
[H] is often useful in determining the behavior of a planar system near a
degenerate critical point.
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Theorem 3. Suppose that f E C'(E) where E is an open subset of R2
containing the origin and the origin is an isolated critical point of the sys-
tem

is = f(x). (9)

For6>0, let Q={(r,0)ER210<r<6,0, <0<02}CE be a sector
at the origin containing no critical points of (9) and suppose that 0 > 0 for
0<r<6and0=02 andthat 0<Ofor0<r<band9=01.Then for
sufficiently small 6 > 0

(i) if f < 0 for r = 6 and 01 < 0 < 02, there exists at least one half-
trajectory with its endpoint on R = ((r, 8) E R2 I r = 6, 01 < 0 < 02 }
which approaches the origin as t oo; and

(ii) if r > 0 for r = 6 and 01 < 0 < 02i then every half-trajectory with its
endpoint on R approaches the origin as t --+ -oo.

Example 3. Let us determine the global phase portrait of the system

i=-y(l+x)+ax+(a+1)x2
y=x(l+x)

depending on a parameter a E (0, 1). This system was considered in Exam-
ple 2 in Section 3.8 where we showed that for a E (0,1) there is exactly one
stable limit cycle around the critical point at the origin. Also, the origin is
the only (finite) critical point for this system. The critical points at infinity
are determined by

XQ2(X, Y) - YP2(X, Y) = X[X2 - (a + 1)XY + Y2] = 0.

For 0 < a < 1, this equation has X = 0 as its only solution. Thus, the only
critical points at infinity are at ±(0,1, 0). And from (7'), the behavior at
(0, 1, 0) is determined by the behavior of the system

-i = x+z - axz - (a+1)x2+x2z+x3
-z = x2z + xz2

at the origin. In this case the matrix A = Df(O) for this system has one
zero eigenvalue and Theorem 1 of Section 2.11 of Chapter 2 applies. In
order to use that theorem, we must put the above equation in the form
of equation (2) in Section 2.11 of Chapter 2. This can be done by letting
y = x + z and determining i + z from the above equations. We find
that

y=y+g2(y,z)=-y+z2-(a+2)yz+(a+1)y2+y2z-y3
p2(y,z) = yz2 - y2z.

Solving y + q2(y, z) = 0 in a neighborhood of the origin yields

y = O(z) = z2[1 - (a + 2)z] + 0(z4)
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and then
p2(z,O(z)) = z4 - (a + 3)z5 + 0(z6).

Thus, in Theorem 1 of Section 2.11 of Chapter 2 we have m = 4 (and
am = 1). It follows that the origin of (10) is a saddle-node. Since z = 0 on
the x-axis (where z = 0) in equation (10), the x-axis is a trajectory. And for
z=0wehave i=x-(a+1)x2+x4 in (10).Therefore,i>0for x>0and
i < 0 for x < 0 on the x-axis. Next, on z = -x we have i = x2 +0(x3) > 0
for small x 36 0. And for sufficiently small r > 0, we have r > 0 for
- z < x < 0 in (10). On the z-axis we have i=-x<0for x>0.Thus,
by Theorem 3, there is a trajectory of (10) in the sector 7r/2 < 0 < 3ir/4
which approaches the origin as t -+ -oo; cf. Figure 8(a). It follows that
the saddle-node at the origin of (10) has the local phase portrait shown in
Figure 8(b). It then follows, using the Poincar6-Bendixson Theorem, that
the global phase portrait for the system in this example is given in Figure 9;
cf. Problem 2.

Z

0

(a) (b)

Figure 8. The saddle-node at the origin of (10).

The projective geometry and geometrical ideas presented in this section
are by no means limited to flows in R2 which can be projected onto the up-
per hemisphere of S2 by a central projection in order to study the behavior
of the flow on the circle at infinity, i.e., on the equator of S2. We illustrate
how these ideas can be carried over to higher dimensions by presenting the
theory and an example for flows in R3. The upper hemisphere of S3 can
be projected onto R3 using the transformation of coordinates given by

X Y Zx=W, y=W' z=W
and

x y z 1X _ i+1x12'Y =
1+Ix12'Z_

1+IxF
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for X = (X, Y, Z, W) E S3 with JXI = 1 and for x = (x, y, z) E R3. If we
consider a flow in R3 defined by

x = P(x, y, z)
y = Q(x, y, z) (11)
z = R(x, y, z)

where P, Q, and R are polynomial functions of x, y, z of maximum degree
m, then this system can be equivalently written as

dy = Q(x, y, z) dz R(x, y, z)
dx P(x,y,z)

and d
= P(x, y, z)

or as

Q(x, y, z)dx - P(x, y, z)dy = 0 and R(x, y, z)dx - P(x, y, z)dz = 0

in which cases the direction of the flow along trajectories is no longer

Figure 9. The global phase portrait for the system in Example 3.

determined. And then since
WdX - XdW WdY - YdW

and dz
WdZ - ZdW

dx = W2 , dy = WZ , = W2

we can write the system as

Q'(WdX - WdW) - P'(WdY - YdW) = 0

and
R' (WdX - XdW) - P' (WdZ - ZdW) = 0,



3.10. The Poincare Sphere and the Behavior at Infinity 281

if we define the functions

P`(X) = Z-P(X/W)
Q*(X) = ZmQ(X/W)

and

R'(X) = Z-R(X/W).

Then corresponding to Theorems 1 and 2 above we have the following
theorems.

Theorem 4. The critical points at infinity for the mth degree polynomial
system (11) occur at the points (X, Y, Z, 0) on the equator of the Poincari
sphere S3 where X2 + Y2 + Z2 = 1 and

XQm(X,Y, Z) - YPm(X1 Y, Z) = 0
X Rm(X, Y, Z) - ZPm(X, Y, Z) = 0

and

YRm(X,Y, Z) - ZQm(X,Y, Z) = 0

where Pm, Qm and Rm denote the mth degree terms in P, Q, and R re-
spectively.

Theorem 5. The flow defined by the system (11) in a neighborhood
(a) of (±1, 0, 0, 0) E S3 is topologically equivalent to the flow defined by

the system

1 zl
((1

z
fy = ywmP w,

Y,
w) - wmQ

W w, w)
//1w z 1 z\/l±i = zwmP 1 -, y , -

w
- w"`R (w-, y , w-/w w

fw = ,wm+1P y
ww'

z

w

(b) of (0, ±1, 0, 0) E S3 is topologically equivalent to the flow defined by
the system

x z\ /x 1 z\ti=xw"`Q -,-,- I -w'"P1-,-,-)w w w) \W ww/
x z /x 1 z\ti=zw'"Q -,-,- -w"'RI -,-,-/
www W W w

fw wm+1Q
x 1 z= - - -
w'w'w
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and
(c) of (0,0,±1,0) E S3 is topologically equivalent to the flow defined by

the system

x 1l x 1±i=xw'R -
w

, wy, w-/ -wmP(-w
, y, w-)w

X y

-Q (X,
1

www w w w
X 1fw=w'+1R - y _
w'w'w

The direction of the flow, i.e., the arrows on the trajectories representing
the flow, is not determined by Theorem 5. It follows from the original
system (11). Let us apply this theory for flows in R3 to a specific example.

Example 4. Determine the flow on the Poincare sphere S3 defined by the
system

in R3. From Theorem 4, we see that the critical points at infinity are
determined by

XQ1- YP1 = XY - YX = 0
XP1-XR1=ZX+XZ=2XZ=0

and

YR1-ZQ1=Y(-Z)-ZY=2YZ=0.
These equations are satisfied iff X = Y = 0 or Z = 0 and X2+Y2+Z2 = 1;
i.e., the critical points on S3 are at (0, 0, ±1, 0) and at points (X, Y, 0, 0)
with X2 + Y2 = 1. According to Theorem 5(c), the flow in a neighborhood
of (0, 0, ±1, 0) is determined by the system

i= -xwl-w1 I +w(-) =2x

l_

:==:::
+w

1 =w
W

where we have used the original system to select the minus sign in Theo-
rem 5(c). We see that (0, 0, ±1, 0) is an unstable node. The flow at any point
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(X, Y, 0, 0) with X' + Y2 = 1 such as the point (1, 0, 0, 0) is determined by
the system in Theorem 5(a):

y=-yw (1) +w- =0

ti=

-zm ( I ) -m -2z
w \w/

-w2 (W1

/
where we have used the original system to select the minus sign in The-
orem 5(a). We see that (1,0.0,0) is a nonisolated, stable critical point.
We can summarize these results by projecting the upper hemisphere of the
Poincare sphere S'3 onto the unit ball in R3; this captures all of the infor-
mation about the flow of the original system in R3 and it also includes the
behavior on the sphere at infinity which is represented by the surface of
the unit ball in R3. Cf. Figure 10.

Figure 10. The "global phase portrait" for the system in Example 4.

Before ending this section, we shall define what we mean by a vector
field on an n-dimensional manifold. In Example 1, we saw that a flow on
R2 defined a flow on the Poincare sphere S2; cf. Figure 4. This flow on S2
defines a corresponding vector field on S2, namely, the set of all velocity
vectors v tangent to the trajectories of the flow on S2. Each of the velocity
vectors v lies in the tangent plane TPS2 to S2 at a point p E S2. We
now give a more precise definition of a vector field on an n-dimensional
differentiable manifold Al. We shall use this definition for two-dimensional
manifolds in Section 3.12 on index theory. Since any n-dimensional manifold
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M can be embedded in RN for some N with n < N < 2n+ 1 by Whitney's
Theorem, we assume that M C RN in the following definition.

Let M be an n-dimensional differentiable manifold with M C RN. A
smooth curve through a point p E M is a C1-map -y: (-a, a) -, M with
^y(0) = p. The velocity vector v tangent to y at the point p = y(0) E M,

v = D-y(0).

The tangent space to M at a point p E Iv!, TpM, is the set of all velocity
vectors tangent to smooth curves passing through the point p E M. The
tangent space TPM is an n-dimensional linear space and we shall view it
as a subspace of R". A vector field f on M is a function f: M - RN such
that f(p) E TPM for all p E M. If we define the tangent bundle of M, TM,
as the disjoint union of the tangent spaces TPM to M for P E M, then a
vector field on M, f: M TM.

Let {(U,,, h,,) J,, be an atlas for the n-dimensional manifold M and let
V. = ha (Ua ). Recall that if the maps h o hp 1 are all C'-functions, then
M is called a differentiable manifold of class Ck. For a vector field f on M
there are functions fQ: V R" such that

f (ha,' (x)) = Dho 1(x)f,, (x)

for all x E Va. Note that under the change of coordinates x --+ ha o hp o
h;'(x) we have

fp(hp o ha-'(x)) = Dhp o ha' (x)fa (x)

for all x with ha' (x) E U,,, f1 Up. If the functions f,,: V,, --+ R" are all
in C'(Va) and the manifold M is at least of class C2, then f is called a
C'-vector field on M.

A general theory, analogous to the local theory in Chapter 2, can be
developed for the system

:k = f(x)

where x E M, an n-dimensional differentiable manifold of class C2, and f is
a C1-vector field on M. In particular, we have local existence and unique-
ness of solutions through any point xo E M. A solution or integral curve
on M, ¢,(xo) is tangent to the vector field f at xo. If M is compact and
If is a C'-vector field on M then, by Chillingworth's Theorem, Theorem 4
in Section 3.1, 0(t,xo) = 0,(xo) is defined for all t E R and xo E M and
it can be shown that 0 E C' (R x M); 0, o 0, = 0,+e; and ¢,, is called a
flow on the manifold M. We have already seen several examples of flows on
the two-dimensional manifolds S2 and T2 (and of course R2). In order to
make these ideas more concrete, consider the following simple example of
a vector field on the one-dimensional, compact manifold

C=S'={xER2IIxI=1}.
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Example 5. Let C be the unit circle in R2. Then C can be represented
by points of the form x(O) = (cos e, sin B)T . C is a one-dimensional dif-
ferentiable manifold of class COO. An atlas for C is given in Problem 7 in
Section 2.7 of Chapter 2. For each 0 E [0.27r), the tangent space to the
manifold Al = C at the point p(9) = (cos 0. sin B)T E M

T (o)M = {x E R2 1 xcosO + ysinO = 1}

and the function

f(P(B)) = (:)9

nes a C'-vector field on M; cf. Figure 11. Note that we are viewingdefi
TPM as a subspace of R2 and the vector f(p) as a free vector which can
either be based at the origin 0 E R2 or at the point p E M.

Figure 11. A vector field on the unit circle.

The solution to the system

through a point p(0) = (cos 0, sin O)T E Iv! is given by

of (P(O)) =
Ccos(t + 9)1

sin(t + 0)

The flow 0t represents the motion of a point moving counterclockwise
around the unit circle with unit velocity v.= t(p) tangent to C at the
point 4t(P).
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If the charts (Ul, hl) and (U2i h2) are given by

U1={(x,y)ER2I y= 1-x2,-1 <x<1}
lT

hi(x,y) = x,hi'(x) = (x, 1 - x2/

U2={(x,y)ER2I x= 1--y2,-1 <y<1}

h2(x,y) = y and hz1(y) _ ( 1 - y2,y)

T,

then
1 -y

Dhi 1(x) _ -x Dh21(y) = (vh1_Y2
1-x 1

and for the functions

f, (x) 1 - x2 and f2 (y) = 1 - y2

where-1 <x< 1 and -1 <y< 1,wehave
z

f(x, 1 - x2) =(_JT) x = Dhi 1(x)fi (x)
x

and

(_'i.f( 1 - y2,y) = y2J = Dh21(y)f2(y)

It is also easily shown that

h2 o hi 1(x) = 1- x2, Dh2 o hi 1(x) _ -x
1-x

and that for x > 0

f2( 1 - x2) = x = Dh2 o hi 1(x)f1(x)

PROBLEM SET 10

1. Complete the details in obtaining the global phase portrait for Ex-
ample 2 shown in Figure 7. In particular, show that

(a) The separatrices approaching the saddle at the origin of sys-

tem (8) do so in the first and fourth quadrants as shown in
Figure 6.

(b) In the global phase portrait shown in Figure 7, the separatrix
having the critical point (1, 0, 0) as its w-limit set must have the
unstable node at (-1, 2, 0)/vf5- as its a-limit set. Hint: Use the
Poincare-Bendixson Theorem and the fact that y < 0 on the
x-axis for the system in Example 2.
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2. Complete the details in obtaining the global phase portrait for Ex-
ample 3 shown in Figure 9. In particular, show that the flow swirls
counter-clockwise around the origin for the system in Example 3 and
that the limit cycle of the system in Example 3 is the w-limit set of
the separatrix which has the saddle at (0, 1, 0) as its a-limit set.

3. Draw the global phase portraits for the systems

(a) i=2x
y=y

ci=x-y

y=x+y

4. Draw the global phase portrait for the system

i=-4y+2xy-8
y=4y2-x2.

Note that the nature of the finite critical points for this system was
determined in Problem 4 in Section 2.10 of Chapter 2. Also, note that
on the x-axis y< 0 for x 96 0.

5. Draw the global phase portrait for the system

i = 2x - 2xy
y=2y-x2+y2

Note that the nature of the finite critical points for this system was
determined in Problem 4 in Section 2.10 of Chapter 2. Also, note the
symmetry with respect to the y-axis for this system.

6. Draw the global phase portrait for the system

i=-x2-y2+1
2x.

The same comments made in Problem 5 apply here.

7. Draw the global phase portrait for the system

i=-x2-y2+1

2xy.

The same comments made in Problem 5 apply here and also, note
that this system is symmetric with respect to both the x and y axes.
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8. Draw the global phase portrait for this system

i=x2-y2-1
y= 2y.

Note that the nature of the finite critical points for this system was
determined in Problem 4 in Section 2.10 of Chapter 2. Also, note the
symmetry with respect to the x-axis for this system. Hint: You will
have to use Theorem 1 in Section 2.11 of Chapter 2 as in Example 3.

9. Let M be the two-dimensional manifold

S2={xER3Ix2+y2+z2=1).

(a) Show that any point po = (xo, yo, zo) E S2, the tangent space
to S2 at the point po

Tp0M={xER3Ixxo+yyo+zzo=1).

(b) What condition must the components of f satisfy in order that
the function f defines a vector field on M = S2?

(c) Show that the vector field on S2 defined by the differentiable
equation (5) is given by

f (x) = (xyQ* - (y2+z2)P', xyP" - (x2+z2)Q*, xzP* +yzQ*)T

where P' (x, y, z) and Q* (x, y, z) are defined as in equation (5);
and show that this function satisfies the condition in part (b).
Hint: Take the cross product of the vector of coefficients in
equation (5) with the vector (x, y, z)T E S2 to obtain f.

10. Determine which of the global phase portraits shown in Figure 12 be-
low correspond to the following quadratic systems. Hint: Two of the
global phase portraits shown in Figure 12 correspond to the quadratic
systems in Problems 2 and 3 in Section 3.11.

i = -4y + 2xy - 8
(a) y = 4y2 - x2

i=2x-2xy
(b) y=2y-x2+y2

(c)
i=-x2-y2+1

2x

(d) i=-x2-y2+1
2xy

(e)
i=x2-y2-1
y=2y
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11. Set up a one-to-one correspondence between the global phase por-
traits (or separatrix configurations), shown in Figure 12 and the
computer-drawn global phase portraits in Figure 13.

(i)

(v)

NO (Vii)

Figure 12. Global phase portrait of various quadratic systems.
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(4

(b)

(e)

(r)

Figure 13. Computer-drawn global phase portraits.
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12. The system of differential equations in Problem 10(c) above can be
written as a first-order differential equation,

2xdx-(1-x2-y2)dy=0.
Show that ev is an integrating factor for this differential equation;
i.e., show that when this differential equation is multiplied by e5,
it becomes an exact differential equation. Solve the resulting exact
differential equation and use the solution to obtain a formula for the
homoclinic loop at the saddle point (0, -1) of the system 10(c).

13. Analyze the critical point at the origin of the system

x=x3-3xy2
y = 3x2y - y3

by the method of "blowing-up" outlined below:

(a) Write this system in polar coordinates to obtain

dr r(x2 - y2)

dO 2xy

(b) Project the x, y-plane onto the Bendixson sphere. This is most
easily done by letting p = 1/r, = pcosO and q = pain 0. You
should obtain

or equivalently

dp 1 dr p(£2 - q2)

d9 r2 d9

(c) Now project the C, 77-plane onto the Poincare sphere as in Ex-
ample 1. In this case, there are four hyperbolic critical points at
infinity and they are all nodes. If we now project from the north
pole of the Poincare sphere (shown in Figure 4) onto the 6,7/-
plane, we obtain the flow shown in Figure 14(a). This is called
the "blow-up" of the degenerate critical point of the original
system. By shrinking the circle in Figure 14(a) to a point, we
obtain the flow shown in 14(b) which describes the flow of the
original system in a neighborhood of the origin.

In general, by a finite number of "blow-ups," we can reduce the study
of a complicated critical point at the origin to the study of a finite
number of hyperbolic critical points on the equator of the Poincare
sphere. It is interesting to note that the flow on the Bendixson sphere
for this problem is given in Figure 15.
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r

11

(a) (b)

Figure 14. The blow-up of a degenerate critical point with four elliptic
sectors.

Figure 15. The flow on the Bendixson sphere defined by the system in
Problem 13.
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3.11 Global Phase Portraits and Separatrix
Configurations

In this section, we present some ideas developed by Lawrence Markus [20]
concerning the topological equivalence of two Cl-systems

is = f (X)

and

(1)

x = g(x) (2)

on R2. Recall that (1) and (2) are said to be topologically equivalent on
R2 if there exists a homeomorphism H: R2 -* R2 which maps trajectories
of (1) onto trajectories of (2) and preserves their orientation by time; cf.
Definition 2 in Section 3.1. The homeomorphism H need not preserve the
parametrization by time.

Following Markus [20], we first of all extend our concept of what types of
trajectories of (1) constitute a separatrix of (1) and then we give necessary
and sufficient conditions for two relatively prime, planar, analytic systems
to be topologically equivalent on R2. Markus established this result for Cl-
systems having no "limit separatrices"; cf. Theorem 7.1 in [20]. His results
apply directly to relatively prime, planar, analytic systems since they have
no limit separatrices. In fact, the author [24] proved that if the components
P and Q of f = (P, Q)T are relatively prime, analytic functions, i.e., if (1)
is a relatively prime, analytic system, then the critical points of (1) are
isolated. And Bendixson [B] proved that at each isolated critical point xo
of a relatively prime, analytic system (1) there are at most a finite number of
separatrices or trajectories of (1) which lie on the boundaries of hyperbolic
sectors at xo; cf. Theorem IX, p. 32 in [B).

In order to make the concept of a separatrix as clear as possible, we first
give a simplified definition of a separatrix for polynomial systems and then
give Markus's more general definition for C'-systems on R2. While the first
definition below applies to any polynomial system, it does not in general
apply to analytic systems on R2; cf. Problem 6.

Definition 1. A separatnx of a relatively prime, polynomial system (1) is
a trajectory of (1) which is either

(i) a critical point of (1)

(ii) a limit cycle of (1)

(iii) a trajectory of (1) which lies on the boundary of a hyperbolic sector
at a critical point of (1) on the Poincare sphere.

In order to present Markus's definition of a separatrix of a Cl-system,
it is first necessary to define what is meant by a parallel region. In [20] a
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parallel region is defined as a collection of curves filling a plane region R
which is topologically equivalent to either the plane filled with parallel lines,
the punctured plane filled with concentric circles, or the punctured plane
filled with rays from the deleted point; these three types of parallel regions
are referred to as strip, annular, and spiral or radial regions respectively by
Markus. These three basic types of parallel regions are shown in Figure 1
and several types of strip regions are shown in Figure 2.

Figure 1. Various types of parallel or canonical regions of (1); strip, annular
and spiral regions.

Figure 2. Various types of strip regions of (1); elliptic, parabolic and hy-
perbolic regions.

Definition 1'. A solution curve I' of a C1-system (1) with f E C'(R2) is
a separatrix of (1) if r is not embedded in a parallel region N such that

(i) every solution of (1) in N has the same limit sets, a(F) and w(1'), as
r and

(ii) N is bounded by a(r) uw(r) and exactly two solution curves r, and
I'2 of (1) for which a(r1) = a(r2) = a(t) and w(r1) = w(r2) = w(r).
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Theorem 1. If (1) is a Cl-system on R2, then the union of the set of
separatrices of (1) is closed.

This is Theorem 3.1 in [20]. Since the union of the set of separatrices of
a relatively prime, analytic system (1), S, is closed, R2 - S is open. The
components of R2 - S, i.e., the open connected subsets of R2 - S, are
called the canonical regions of (1). In Theorem 5.2 in [20], Markus shows
that all of the canonical regions are parallel regions.

Definition 2. The separatrix configuration for a Cl-system (1) on R2 is
the union S of the set of all separatrices of (1) together with one trajectory
from each component of R2 - S. Two separatrix configurations S1 and S2
of a C'-system (1) on R2 are said to be topologically equivalent if there
is a homeomorphism H: R2 R2 which maps the trajectories in S, onto
the trajectories in S2 and preserves their orientation by time.

Theorem 2 (Markus). Two relatively prime, planar, analytic systems
are topologically equivalent on R2 if and only if their separatrix configura-
tions are topologically equivalent.

This theorem follows from Theorem 7.1 proved in [20] for Cl-systems
having no limit separatrices. In regard to the global phase portraits of
polynomial systems discussed in the previous section, this implies that on
the Poincare sphere S2, it suffices to describe the set of separatrices S of
(1), the flow on the equator E of 52 and the behavior of one trajectory
in each component of S2 - (S U E) in order to uniquely determine the
global behavior of all trajectories of a polynomial system (1) for all time.
However, in order for this statement to hold on the Poincare sphere S2, it is
necessary that the critical points and separatrices of (1) do not accumulate
at infinity, i.e., on the equator of S2. This is certainly the case for relatively
prime, polynomial systems as long as the equator of S2 does not contain
an infinite number of critical points as in Problem 3(b) in Section 3.10.

Several examples of separatrix configurations which determine the global
behavior of all trajectories of certain polynomial systems on R2 for all time
were given in the previous section; cf. Figures 5, 7, 9 and 12 in Section 3.10.
We include one more example in this section in order to illustrate the idea
of a Hopf bifurcation which we discuss in detail in Section 4.4.

Example 1. For a E (-1, 1), the quadratic system

x=ax-y+(a+1)x2-xy
x+x2

was considered in Example 2 of Section 3.8, in Example 1 in Section 3.9,
and in Example 3 of Section 3.10. The origin is the only finite critical
point of this system; for a E (-1, 1), there is a saddle-node at the critical
point (0, ±1, 0) at infinity as shown in Figure 9 of Section 3.10; for a E
(-1, 0] this system has no limit cycles; and for a E (0, 1) there is a unique
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limit cycle around the origin. The global phase portrait for this system is
determined by the separatrix configurations on (the upper hemisphere of)
S2 shown in Figure 3.

aE(-I,0]

Figure 3. The separatrix configurations for the system of Example 1.

There is a significant difference between the two separatrix configura-
tions shown in Figure 3. One of them contains a limit cycle while the other
does not. Also, the stability of the focus at the origin is different. It will be
shown in Chapter 4, using the theory of rotated vector fields, that a unique
limit cycle is generated when the critical point at the origin changes its
stability at that value of a = 0. This is referred to as a Hopf bifurcation
at the origin. The value a = 0 at which the global phase portrait of this
system changes its qualitative structure is called a bifurcation value. Var-
ious types of bifurcations are discussed in the next chapter. We note that
for a E (-1, 0) U (0,1), the system of Example 1 is structurally stable on
R2 (under strong C'-perturbations, as defined in Section 4.1); however, it
is not structurally stable on S2 since it has a nonhyperbolic critical point
at (0, ±1, 0) E S2. Cf. Section 4.1 where we discuss structural stability.

PROBLEM SET 11

1. For the separatrix configurations shown in Figures 5, 7 and 9 in Sec-
tion 3.10:

(a) Determine the number of strip, annular and spiral canonical
regions in each global phase portrait.

(b) Classify each strip region as a hyperbolic, parabolic or elliptic
region.
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2. Determine the separatrix configuration on the Poincare sphere for the
quadratic system

i=-4x-2y+4
y=xy

Hint: Show that the x-axis consists of separatrices. And use Theo-
rems 1 and 2 in Section 2.11 of Chapter 2 to determine the nature of
the critical points at infinity.

3. Determine the separatrix configuration on the Poincare sphere for the
quadratic system

y-x2+2
2x2 - 2xy.

Hint: Use Theorem 2 in Section 2.11 of Chapter 2 in order to deter-
mine the nature of the critical points at infinity. Also, note that the
straight line through the critical points (2,2) and (0, -2) consists of
separatrices.

4. Determine the separatrix configuration on the Poincare sphere for the
quadratic system

s=ax+x2
Y.

Treat the cases a > 0, a = 0 and a < 0 separately. Note that a = 0
is a bifurcation value for this system.

5. Determine the separatrix configuration on the Poincare sphere for the
cubic system

=y
-x3 + 4xy

and show that the four trajectories determined by the invariant curves
y = x2/(2± f), discussed in Problem 1 of Section 2.11, are separatri-
ces according to Definition 1. Hint: Use equation (7') in Theorem 2
of Section 3.10 to study the critical points at (0, ±1, 0) E S2. In
particular, show that z = x2/(2 ± f) are invariant curves of (7')
for this problem; that there are parabolic sectors between these two
parabolas; that there is an elliptic sector above z = x2/(2 - vf2-), a
hyperbolic sector for z < 0 and two hyperbolic sectors between the
x-axis and z = x2/(2 + f). You should find the following separatrix
configuration on S2.
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6. Determine the global phase portrait for Gauss' model of two compet-
ing species

.i =ax-bx2-rxy
y=ay - bye - sxy

where a > 0, s > r > b > 0. Using the global phase portrait show that
it is mathematically possible, but highly unlikely, for both species to
survive, i.e., for limt,. x(t) and limt.oo y(t) to both be non-zero.

7. (a) (Cf. Markus [201, p. 132.) Describe the flow on R2 determined
by the analytic system

x=sinx
y = cos x

and show that, according to Definition 1', the separatrices of
this system consist of those trajectories which lie on the straight
lines x = na, n = 0, ±1, ±2, .... Note that we can map any strip
IxI < n7r onto a portion of the Poincare sphere using the central
projection described in the previous section and that the sepa-
ratrices of this system which lie in the strip IxI < nir are exactly
those trajectories which lie on boundaries of hyperbolic sectors
at the point (0, 1, 0) on this portion of the Poincare sphere as in
Definition 1.

(b) Same thing for the analytic system

x = sin 2 x

y = cos x.
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As Markus points out, these two systems have the same separa-
trices, but they are not topologically equivalent. Of course, their
separatrix configurations are not topologically equivalent.

3.12 Index Theory

In this section we define the index of a critical point of a C'-vector field
f on R2 or of a Cl-vector field f on a two-dimensional surface. By a two-
dimensional surface, we shall mean a compact, two-dimensional differen-
tiable manifold of class C2. For a given vector field f on a two-dimensional
surface S, if f has a finite number of critical points, pl,... , p,,,, the index
of the surface S relative to the vector field f, If(S), is defined as the sum
of the indices at each of the critical points, P1, ... , p,,, in S. It is one of the
most interesting facts of the index theory that the index of the surface S,
If(S), is independent of the vector field f and, as we shall see, only depends
on the topology of the surface S; in particular, If(S) is equal to the Euler-
Poincare characteristic of the surface S. This result is the famous Poincare
Index Theorem.

We begin this section with Poincare's definition of the index of a Jordan
curve C (i.e., a piecewise-smooth simple, closed curve C) relative to a Cl-
vector field f on R2.

Definition 1. The index If(C) of a Jordan curve C relative to a vector
field f E C1 (R2), where f has no critical point on C, is defined as the
integer

If(C) = 06

where AE) is the total change in the angle O that the vector f = (P, Q)T
makes with respect to the x-axis, i.e., 0e is the change in

19(x, y) = tan-i Q(x, y)
P(x, y)

as the point (x, y) traverses C exactly once in the positive direction.
The index If(C) can be computer using the formula

2 d tan-' d = 2 d tan-1
Q(x, Y)

If(C)
c Jc (, y)

1 J PdQ - QdP
2ir C P2 + Q2

Cf. [A-I], p. 197.

Example 1. Let C be the circle of radius one, centered at the origin, and
let us compute the index of C relative to the vector fields

f (x) = (),
g(x) = (), h(x) = (_Yx) , and k(x) =

(2).
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These vector fields define flows having unstable and stable nodes, a center
and a saddle at the origin respectively; cf. Section 1.5 in Chapter 1. The
phase portraits for the flows generated by these four vector fields are shown
in Figure 1. According to the above definition, we have

If(C) = 1, Ig(C) = 1, 1h(C) = 1, and 1k(C) = -1.

These indices can also be computed using the above formula; cf. Problem 1.

Figure 1. The flows defined by the vector fields in Example 1.

We now outline some of the basic ideas of index theory. We first need to
prove a fundamental lemma.

Lemma 1. If the Jordan curve C is decomposed into two Jordan curves,
C = C1 + C2, as in Figure 2, then

If(C) = 4(C1) + 4(C2)

with respect to any C'-vector field f E C1(R2).

Proof. Let pl and P2 be two distinct points on C which partition C into
two arc Al and A2 as shown in Figure 2. Let Ao denote an arc in the interior
of C from pl to P2 and let -AO denote the arc from P2 to P1 traversed in
the opposite direction. Let C1 = Al + AO and let C2 = A2 - Ao.

It then follows that if oe1A denotes the change in the angle e(x,y)
defined by the vector f(x) as the point x = (x, y)T moves along the arc A
in a well-defined direction, then A91-A = -AeIA and

4(C) 27r[DeIA1 +oeIA21
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Figure 2. A decomposition of the Jordan curve C into C1 + C2.

= -[oeIA, + oeIA0 + oeI_A, + DeIA21

=
21

[AeIA,+Ao + oeIA2-A.]

301

IDeIC, + oeIC21=
27r

= If(C1) + If(C2)

Theorem 1. Suppose that f E C' (E) where E is an open subset of R2
which contains a Jordan curve C and that there are no critical points of f
on C or in its interior. It then follows that If(C) = 0.

Proof. Since f = (P,Q)T is continuous on E it is uniformly continuous on
any compact subset of E. Thus, given e = 1, there is a b > 0 such that
on any Jordan curve C,, which is contained inside a square of side b in E,
we have 0 < If(C0) < e; cf. Problem 2. Then, since If(CQ) is a positive
integer, it follows that If(C0) = 0 for any Jordan curve CQ contained inside
a square of side b. We can cover the interior of C, Int C, as well as C with
a square grid where the squares S,, in the grid have sides of length b/2.
Choose b > 0 sufficiently small that any square S,, with Sa fl Int C 0 lies
entirely in E and that If(C0) = 0 where C0 is the boundary of S,, fl Int C.
Since the closure of Int C is a compact set, a finite number of the squares
S. cover Int C, say S2, j = 1, ... , N. And by Lemma 1, we have

N

If(C) = > If(C.i) = 0.
3=1

Corollary 1. Under the hypotheses of Theorem 1, if C, and C2 are Jordan
curves contained in E with Cl C Int C2, and if there are no critical points
off in Int C2 fl Ext C1, then If(C,) = If(C2).

Definition 2. Let f E C1(E) where E is an open subset of R2 and let
x0 E E be an isolated critical point off. Let C be a Jordan curve contained
in E and containing xp and no other critical point off on its interior. Then
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the index of the critical point xo with respect to f

If(xo) = If(C)
Theorem 2. Suppose that f E C1(E) where E is an open subset of R2
containing a Jordan curve C. Then if there are only a finite number of
critical points, x1, ... , x off in the interior of C, it follows that

N

If(C)
=

> If(x.i)
.7=1

This theorem is proved by enclosing each of the critical points xj by
a small circle CC lying in the interior of C as in Figure 3. Let a and b

Figure S. The decomposition of the Jordan curves C, C1,..., CN.

be two distinct points on C. Since the interior of C, Int C, is arc-wise
connected, we can construct arcs WE , 3E-,x-2,. . ., xNb on the interior of C.
Let AO, A1,. .. , AN denote the part of these arcs on the exteriors of the
circles C1,..., CN as in Figure 3. The curves C, C1, ... , CN are then split
into two parts, C+, C-, Cl , Ci , ... , CN, CN by the arcs AO,..., AN as in
Figure 3.

Define the Jordan curves Jl = C+ + AO - Cl - - CN + AN and J2 =
C- - AN - CN - - CT - Ao. Then, by Theorem 1, If(JI) = If(J2) = 0.
But

I01) + If(J2) = 2 [AOI+C + AeIA0 - oelCI - ... - oeIC+ + AeIAN

+ oeIC- - AelAO - AOIC- - ... - oeIC; - oeIANI

N
= 2 kec- - oeIC, .

Thus,
N N

If(C) _ > If(C.i) _ E If(xi)
j=1 j=1
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Theorem 3. Suppose that f E C'(E) where E is an open subset of R2
and that E contains a cycle r of the system

is = f(x). (1)

It follows that if (r) = 1.

Proof. At any point x E I, define the unit vector u(x) = f(x)/If(x)I.
Then Iu(I') = If(F) and we shall show that 1. We can rotate and
translate the axes so that r is in the first quadrant and is tangent to the
x-axis at some point xo as in Figure 4. Let x(t) = (x(t), y(t))T be the
solution of (1) through the point xo = (xo, yo)T at time t = 0. Then by
normalizing the time as in Section 3.1, we may assume that the period of
r is equal to 1; i.e.,

I'= {xER2 Ix=x(t),0<t<1}.
Now for points (s, t) in the triangular region

T={(s,t)ER210<s<t<1},
we define the vector field g by

g(s,s) = u(x(s)), 0 < s < 1

g(0,1) = -u(xo)

and
x(t) - x(s)

' Ix(t) - x(s)1
for 0 < s < t < 1 and (s, t) 54 (0, 1); cf. Figure 4. It then follows that
g is continuous on T and that g # 0 on T. Let 6(s, t) be the angle that
the vector g(s, t) makes with the x-axis. Then, assuming that the cycle
I' is positively oriented, 6(0, 0) = 0 and since r is in the first quadrant,
6(0, t) E 10, 7r] for 0 < t < 1, and therefore 6(0, t) varies from 0 to Tr
as t varies from 0 to 1. Similarly, it follows from the definition of g(s, t)
that 6(s,1) varies from it to 27r as s varies from 0 to 1. Let B denote the
boundary of the region T. It then follows from Theorem 1 that Ig(B) = 0.
Thus the variation of 6(s, s) as s varies from 0 to 1 to 1 is 27r. But this is
exactly the variation of the angle that the vector u(x(s)) makes with the
x-axis as s varies from 0 to 1. Thus If(I') = 1. A similar argument
yields the same result when r is negatively oriented. This completes the
proof of Theorem 3.

Remark 1. For a separatrix cycle S of (1) such that the Poincare map
is defined on the interior or on the exterior of S, we can take a sequence
of Jordan curves C. approaching S and, using the fact that we only have
hyperbolic sectors on either the interior or the exterior of S, we can show
that If (C,) = 1. But for n sufficiently large, If(S) = If(C,z). Thus, If(S) =
1. It should be noted that if the Poincare map is not defined on either side
of S, then If(S) may not be equal to one.
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x

Figure 4. The vector field g on the triangular region T.

Corollary 2. Under the hypotheses of Theorem 3, r contains at least one
critical point of (1) on its interior. And, assuming that there are only a
finite number of critical points of (1) on the interior of r, the sum of the
indices at these critical points is equal to one.

We next consider the relationship between the index of a critical point xe
of (1) with respect to the vector field f and with respect to its linearization
Df(xo)x at X. The following lemma is useful in this regard. Its proof is
left as an exercise; cf. Problem 3.

Lemma 2. If v and w are two continuous vector fields defined on a Jor-
dan curve C which never have opposite directions or are zero on C, then
IB(C) = II(C).

In proving the next theorem we write x = (x, y)T and

f (x) = Df(0)x + g(x) = (Z) +
dy 92(x, y))

We say that 0 is a nondegenerate critical point of (1) if det Df(0) # 0, i.e.,
if ad - be # 0; and we say that lg(x)l = o(r) as r -. 0 if lg(x)l/r -. 0 as
r-+0.
Theorem 5. Suppose that f E C'(E) where E is an open subset of R2
containing the origin. If 0 is a nondegenerate critical point of (1) and
Ig(x)l = o(r) as r -. 0, then If(0) = where v(x) = Df(0)x, the
linearization off at 0.

This theorem is proved by showing that on a sufficiently small circle C
centered at the origin the vector fields v and f are never in opposition and
then applying Lemma 2. Suppose that v(x) and f(x) are in opposition at
some point x E C. Then at the point x E C, f + sv = 0 for some s > 0.
But f = v + g where g = f - v and therefore (1 + s)v = -g at the point
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x E C; i.e., (1 + s)2Jv12 = ig21 at the point x E C. Now

Iv21 =r2[(acos0+bsin9)2+(ccos0+dsin0)2J.

And since ad - be 76 0, v = 0 only at x = 0. Thus, v is continuous and
non-zero on the circle r = 1. Let

m = min lvi.
r=1

Then m > 0 and since lvi is homogeneous in r we have lvj > mr for r > 0.
It then follows that at the point x E C

(1 + s)2m2r2 < IgI2.

But if the circle C is chosen sufficiently small, this leads to a contradiction
since we then have

0 < m2 < (1 + s)2m2 < Ig12/r2

and jgj2/r2 -+ 0 as r - 0. Thus, the vector fields v and f are never in
opposition on a sufficiently small circle C centered at the origin. It then
follows from Lemma 2 that If(0) =

Since the index of a linear vector field is invariant under a nonsingular
linear transformation, the following theorem is an immediate consequence
of Theorem 5 and computation of the indices of generic linear vector fields
such as those in Example 1; cf. [C/LJ, p. 401.

Theorem 6. Under the hypotheses of Theorem 5, If(0) is -1 or +1 ac-
cording to whether the origin is or is not a topological saddle for (1) or
equivalently according to whether the origin is or is not a saddle for the
linearization of (1) at the origin.

According to Theorem 6, the index of any nondegenerate critical point
of (1) is either ±1. What can we say about the index of a critical point xo
of (1) when det Df(xo) = 0? The following theorem, due to Bendixson [B],
answers this question for analytic systems. In Theorem 7, e denotes the
number of elliptic sectors and h denotes the number of hyperbolic sectors
of (1) at the origin. A proof of this theorem can be found on p. 511 in [A-I).

Theorem 7 (Bendixson). Let the origin be an isolated critical point of
the planar, analytic system (1). It follows that

-
If(0) = 1 +

e
2

h

We see that for planar, analytic systems, this theorem implies the results
of Theorem 6. It also implies that the number of elliptic sectors, e, and the
number of hyperbolic sectors, h, have the same parity; i.e., e = h(mod 2).
Note that the index of a saddle-node is zero according to this theorem; cf.
Figure 3 in Section 2.11 of Chapter 2.
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We next outline the index theory for two-dimensional surfaces. By a two-
dimensional surface S we mean a compact, two-dimensional, differentiable
manifold of class C'2. First of all, let us define the index of S with respect to
a vector field f on S; cf. Section 3.10. Suppose that the vector field f has only
a finite number of critical points pi, ... , p,,, on S. Then f o r j = 1, ... , m,
each critical point Pj E UJ for some chart (UJ. hj). The corresponding
function fj: VJ - R2 then defines a C'-vector field on VJ = h3(Uj) C R2;
cf. Section 3.10. The point qJ = hj(p3) is then a critical point of the C'-
vector field fJ on the open set Vi C R2. The index of the critical point
pj E S with respect to the vector field f on S, If(p3), is then defined to be
equal to the index Ifs (q,) of the critical point q, E Vj with respect to the
vector field fj on VJ C R2. The index of the surface S with respect to the
vector field f on S is then defined to be equal to the suns of the indices at
each of the critical points on S:

IIIf(s) _ If(pJ)-
J=

We next show that the index of a surface S with respect to a vector
field f on the surface is actually independent of the vector field f and only
depends on the topology of the surface. In fact, If(S) = X(S), the Euler-
Poincare characteristic of the surface. In order to define the Euler Poincare
characteristic ,X(S), we use the fact that any two-dimensional surface S can
be decomposed into a finite number of curvilinear triangles. This is referred
to as a triangulation of S. For a given triangulation of S, let v be the number
of vertices, e the number of edges, and T the number of triangles in the
triangulation. The Euler Poincare' characteristic of S is then defined to be
the integer

X(S)=T+7,-P.

It can be shown that x(S) is a topological invariant which is independent
of the triangulation and is related to the genus p of the surface S by the
formula

X(S) = 2(1 - p). (2)

For orientable surfaces, the genus p is equal to the number of "holes" in
the surface. For example p = 0 for the two-dimensional sphere S2, p = 1
for the two-dimensional torus V. and p = 2 for the two-dimensional an-
chor ring. Is is easy to see that the tetrahedron triangulation of the sphere
(where we project the surface of a tetrahedron onto S2) has v = 4 vertices,
I' = 6 edges, and T = 4 triangles. Thus. X(S2) = 2. Any other triangula-
tion of S2 will yield the same result for the Euler - Poincare characteristic
of S2. The torus T2 can be triangulated to show that X(T2) = 0: cf. Prob-
lem 5. Equation (2) for the characteristic also holds for non-orientable sur-
faces such as the projective plane P and the Klein bottle K. In this case.



3.12. Index Theory 307

the genus p = q/2 where the non-orientable surface S is topologically a
two-dimensional sphere with q holes along whose boundaries the antipodal
points are identified. Cf. the proof of Theorem 8 below. Thus, the charac-
teristic of the projective plane X(P) = 1 and the characteristic of the Klein
bottle X(K) = 0: cf. Problem 5.

Theorem 8 (The Poincare Index Theorem). The index If(S) of a
two-dimensional surface S relative to any 0-vector field f on S with at
most a finite number of critical points is independent of the vector field f
and is equal to the Euler- Poineare characteristic of S; i.e.

If(S) = X(S).

We outline the proof of this interesting theorem which was first proved
by Poincare [P], p. 125, for orientable surfaces. The proof can be extended
to non-orientable surfaces without difficulty. Following Gomory's proof in
Lefsclietz [L], p. 367, we first prove that for any C1-vector field f on the
sphere S2 we have If(S2) = 2 and that for any vector field f on the projec-
tive plane P we have If(P) = 1. We then use this information together with
"surgery" on any other two-dimensional, topological surface S in order to
complete the proof of the theorem.

Let f be any vector field on the two-dimensional sphere S2 with a finite
number of critical points. At any regular point on S2 we can construct a
sufficiently small circle C such that the flow is essentially parallel inside and
on C. There will then be two points p and q on C where the vector field f is
tangent to C. These two points divide C into two circular arcs Cl and C2;
i.e.. C = Cl +C2. The index of S2 with respect to the vector field f, If(S2),
is equal to the index of C in the negative direction with respect to the
vector field f: cf. Theorem 2. We now compute If(C) where C is traversed
in the negative direction. Let -y be a smooth are on S2 joining p and q and
containing no critical points of f. We can open out the punctured sphere,
S2 with the interior of C removed, and lay it out flat to obtain a disk
with the How on the boundary shown in Figure 5. The details of opening
out a neighborhood of the point q and viewing it from the exterior of the
punctured sphere are shown in Figure 6. Note that the arc -y and the circle
C divide the punctured sphere into two regions R, and R2 and that on C
and on -y near C, the flow is out of Ri and into R2. For points p' and q'
on y sufficiently near p and q, the vector field will be essentially parallel
to the vector field at p and q respectively. On the arc p'q' of y define v to
be the vector field perpendicular to the arc at each point of y and pointing
into W. Also on the circle C and oil the small arcs pp' and qq' define the
vector field v = f/If I. Then from Figure 5 we see that

1,(C1 + pq) = 1 and qp) = 1.
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Figure 5. The flow in a neighborhood of the circle C on the sphere S2.

R, R2 R2 R

b. V
a

R R2

Figure 6. (a) A neighborhood of the point q E S. (b) Stretching the neigh-
borhood. (c) The neighborhood as viewed from the interior of S2 after
opening out the punctured sphere. (d) The neighborhood as viewed from
the exterior of S2 after opening out the punctured sphere.

But, for C traversed in the negative sense, we also have

If(S2) = If(C) = Ir(Ci + Pq) + If(C2 + 9P)

= 2 -[oeIC, + oeIPQ + o0IC, + oelgp] f

= 2-[oeIC,]f+ 2-[oeIPq]

+ 2, [Aelc,]f + 2n [oelp]r - 27r [o9IPq]

= a[AeIC, +AejPq +oeIC2 +oeIgp]v

=I, (Ci+Pq)+Iv(C2+9P)=2
since [DeIpq]r + [1IeIgp]f = 0 where [DeIA]f denotes the change in the
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angle O that the vector f makes with the x-axis as the arc A is traversed
in the indicated direction. Thus, we have that If(S2) = X(S2) = 2.

Next, let f be any vector field on the projective plane P with a finite
number of critical points. We take the unit disk 52 = {x E R2 I lxJ < 1}
with antipodal points identified as a model for P. Let A be the smooth
surface which consists of two copies of 52, say 521 and Sl2i joined at their
boundaries, and let g be the vector field on A obtained by the continuous
extension of the vector fields f on S21 and 522 across the boundaries of S21
and 522. The vector field g on A will then have twice as many critical points
as the vector field f on 52 and diametrically opposite critical points on A
will have the same index. Thus, since A is topologically a two-dimensional
sphere, we have

If(P) = Ig(A) = Ig(S2) = 1.

It follows that If(P) = X(P) = 1.
Having shown that If(S2) = 2, we can determine the index of any ori-

entable surface S, with respect to a vector field f on S, using surgery.
Suppose that S is an orientable surface of genus p, i.e., topologically S is
a donut with p holes or a sphere with p handles; cf. Figure 7. And suppose
that f is a vector field on S with a finite number of critical points.

Figure 7. A surface of genus p.

At each hole in S we cut out a section Sj, j = 1,.. . , p, containing no
critical points of f and shrink the boundaries of each of the sections Sj to
critical points Pj and P,. Also, shrink the boundary of the surface

P

S^'USj
j=1

to critical points, Qj and Q,, j = 1,...,p; cf. Figure 8. Let S' and SS denote
the resulting surfaces. We then have If(Q3) = If(Pj) and If(Q'j) = If (PP)
for j = 1,. .. , p. Thus since the surfaces SS, j = 1, ... , p, are topologically
two-dimensional spheres, we have

If(Q) + If(Q;) = If(Pj) + If(Pj) = 2

for j = 1,. .. , p. But S' is also topologically a two-dimensional sphere and
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therefore

P

If(S) = If(S') - Doi) + If(Q, )]
j=1

=2-2p=X(S)
This completes the proof of Theorem 8 for orientable surfaces.

Figure 8. The surfaces S', Si, ... , S,.

Finally, suppose that S is a non-orientable surface of genus p and that f is
a vector field with a finite number of critical points on S. Then topologically
S is a two-dimensional sphere with q = 2p holes along whose boundaries
the antipodal points have been identified; cf. [L], p. 370. We cut out the
q cross-caps which are topologically equivalent to the projective plane P;
and then shrink the boundaries of the q resulting holes to q critical points
Qj, j = 1, ... , q on S2. But

If(Q,) = If(P) = 1.

Thus,

v

If(S) = If(S2) - E If(Qj)
j=1

=2-q=2-2p=X(S)
This completes the proof of the Poincare Index Theorem.

The next corollary is an immediate consequence of the Poincar6 Index
Theorem and Theorem 6; cf. [P], p. 121.

Corollary 3. Suppose that f is an analytic vector field on an analytic,
two-dimensional surface S of genus p and that f has only hyperbolic critical
points; i.e., isolated saddles, nodes and foci, on S. Then

n + f -s=2(1-p)
where n, f and s are the number of nodes, foci and saddles on S respectively.
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Example 2. In Example 1 in Section 3.10 we described the flow on the
Poincare sphere determined by the planar system

x=x
y = -Y.

Cf. Figure 4 in Section 3.10. This simple planar system has a saddle at the
origin. There are saddles at ±(0, 0,1) and nodes at ±(1, 0, 0) and ±(0,1, 0)
on the Poincare sphere. It follows from the above corollary that

X(52) = n + f - s = 4 - 2 = 2

as was to be expected. This same example also defines a vector field on the
projective plane P, i.e., the vector field determined by the flow on P shown
in Figure 5 in Section 3.10. We see that if the antipodal points of the disk
shown in Figure 5 of Section 3.10 are identified, then we have a vector field
on P with one saddle and two nodes and from the above corollary it follows
that

X(P) = n + f - s = 2 - 1 = 1
as was to be expected.

R.emark 2. As in the above example, the global phase portrait of any
planar polynomial system of odd degree describes a flow or a vector field
f on the projective plane. Therefore, the sum of the indices of all of the
finite critical points and infinite critical points (where we have identified
the antipodal points on the boundary of the unit disk) with respect to the
vector field f must be equal to one.

Example 3. A model for the torus T2 is the rectangle R with the opposite
sides identified as in Figure 9. A flow on T2 with two saddles and two nodes
is defined by the flow on the rectangle R shown in Figure 9. The sum of the
indices at the critical points of this flow is equal to zero, the Euler-Poincare
characteristic of T2.

R A

Figure 9. A flow on the torus T2.

PROBLEM SET 12

1. Use the index formula
PdQIf(C) = 1 - QdP

2ir Jc P2 + Q2
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given at the beginning of this section to compute the indices If(C),
Ig(C), Ih(C) and 1k(C) for the vector fields f, g. h and k of Exam-
ple 1.

2. Let CQ be a Jordan curve as described in the proof of Theorem 1,
and let xo = (xo, yo)T be a point on Ca.. Choose a coordinate system
with the x-axis parallel to the vector f(xo) and in the direction of
f(xo). Then for f = (P, Q)' we have

Q(xo,yo) = 0 and P(xo,yo) = ko

a positive constant. By the uniform continuity of P and Q in any
compact subset of E, the 6 > 0 in the proof of Theorem 1 can be
chosen sufficiently small that

2

ko
< Q(x, y) <

2
and 2 < P(:c, y) - ko < 20

for all points (x, y) E Ca. Prove that this implies that

AE)/21r < 1/4

as the point (.r., y) moves around C,, in the positive direction.

3. Prove Lemma 2. First of all, define the family of vector fields

vg=(I-s)v+sw
and show that v9 0 0 and that vg is continuous for 0 < s < 1. Then
use the continuity of I,, (C) with respect to s and the fact that I.,, (C)
is an integer to show that

L, (C) = 40(C) = IW(C).

4. Use Bendixson's Index Theorem, i.e., Theorem 7, to determine the
indices of the degenerate critical points shown in Figures 2-5 in Sec-
tion 2.11 of Chapter 2.

5. (a) Use the triangulation shown on the top half of the torus T2 in
Figure 10 below, with an identical type of triangulation on the
bottom half of T2, in order to show that X(T2) = 0. Describe a
flow on T2 with no critical points.

(b) The Klein bottle K is a non-orientable surface of genus p =
q/2 = 1. The usual model for the Klein bottle is the two-
dimensional sphere S2 with two holes along whose boundaries
the antipodal points are identified; cf. Figure 11. If we make a
cut C between the two holes and lay the surface out flat, we
have a rectangle R with the opposite sides identified as shown
in Figure 11. For the vector field f defined by the uniform par-
allel flow on R, shown in Figure 11. compute the index If(K)
and show that it is equal to X(K).
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Figure 10. A triangulation of the torus T2.

B

A

R

E
E

E-E
Figure 11. A flow on the Klein bottle K.

E

A'

a

4

Remark 3. It follows from the index theory that the torus and the
Klein bottle are the only two-dimensional surfaces on which there
exist flows with no critical points. Furthermore, it can be shown that
any flow on the Klein bottle with no critical points has a cycle.

6. Show that the sum of the indices at all of the finite and infinite critical
points of the vector fields on the Poincare sphere S2 determined by
the global phase portraits in Figures 4, 7, 9 and 12 in Section 3.10
are equal to two. Hint: Use Theorem 7 to determine the indices at
the infinite critical points. Also, show that the sum of the indices at
all of the critical points of the vector fields on the projective plane
P determined by the global phase portraits in Figure 5 and those in
Problem 3 in Section 3.10 are equal to one; cf. Remark 2.

7. Find the index of the degenerate critical points shown in Figure 12
below.

8. In sketching the following vector fields or flows, be sure that they
are continuous; i.e., no opposing vectors can appear in any small
neighborhood on the surface. Use Theorem 7 to compute the indices.
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Figure 12. Degenerate critical points.

(a) Sketch a vector field or flow on the sphere S2

(i) with one critical point and compute the index at this critical
point;

(ii) with two critical points and compute the indices at these
critical points;

(iii) with three critical points and compute the indices at these
critical points.

(b) Sketch a vector field or flow on the torus T2

(i) with no critical points;
(ii) with at least one critical point and compute the index at

each critical point.

(c) Sketch a vector field or flow on the anchor ring, i.e., an orientable
surface of genus p = 2, and compute the sum of the indices at
the critical points of this vector field.

(d) Sketch a vector field or flow on an orientable surface of genus
p = 3 and compute the sum of the indices at the critical points
of this vector field.

(e) Sketch a flow on the projective plane P

(i) with one critical point
(ii) with two critical points

(f) Sketch a flow on the Klein bottle K with one critical point.

9. Let z = x + iy, z = x - iy and show that the vector fields in the
complex plane defined by

z=zk and z=Zk
have unique critical points at z = 0 with indices k and -k respec-
tively. Hint: Write x = Re(zk); = Im(zk) and let z = neie. Sketch
the phase portrait near the origin in those cases with indices ±2 and
±3.



4

Nonlinear Systems:
Bifurcation Theory

In Chapters 2 and 3 we studied the local and global theory of nonlinear
systems of differential equations

7C = f(x) (1)

with f E C' (E) where E is an open subset of R. In this chapter we address
the question of how the qualitative behavior of (1) changes as we change the
function or vector field fin (1). If the qualitative behavior remains the same
for all nearby vector fields, then the system (1) or the vector field f is said to
be structurally stable. The idea of structural stability originated with An-
dronov and Pontryagin in 1937. Their work on planar systems culminated
in Peixoto's Theorem which completely characterizes the structurally sta-
ble vector fields on a compact, two-dimensional manifold and establishes
that they are generic. Unfortunately, no such complete results are available
in higher dimensions (n > 3). If a vector field f E Cl (E) is not structurally
stable, it belongs to the bifurcation set in Cl(E). The qualitative structure
of the solution set or of the global phase portrait of (1) changes as the
vector field f passes through a point in the bifurcation set. In this chapter,
we study various types of bifurcations that occur in Cl-systems

z = f(x,14) (2)

depending on a parameter µ E R (or on several parameters µ E Rm). In
particular, we study bifurcations at nonhyperbolic equilibrium points and
periodic orbits including bifurcations of periodic orbits from nonhyperbolic
equilibrium points. These types of bifurcations are called local bifurcations
since we focus on changes that take place near the equilibrium point or
periodic orbit. We also consider global bifurcations in this chapter such as
homoclinic loop bifurcations and bifurcations of limit cycles from a one-
parameter family of periodic orbits such as those surrounding a center.
This chapter is intended as an introduction to bifurcation theory and some
of the simpler types of bifurcations that can occur in systems of the form
(2). For the more general theory of bifurcations, the reader should consult
Guckenheimer and Holmes [G/H), Wiggins [Wi], Chow and Hale [C/H],
Golubitsky and Guillemin [G/G] and Ruelle [Ru].
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Besides providing an introduction to the concept of structural stability
and to bifurcation theory, this chapter also contains some interesting re-
sults on the global behavior of one-parameter families of periodic orbits
defined by C' or analytic systems depending on a parameter. In particu-
lar, Duff's theory for limit cycles of planar families of rotated vector fields
is presented in Section 4.6 and Wintner's Principle of Natural Terminar
tion for one-parameter families of periodic orbits of analytic systems in
RI is presented in Section 4.7. In Section 4.8, we see that for planar sys-
tems a limit cycle typically bifurcates from a homoclinic loop or separatrix
cycle of (2) as the parameter µ is varied; however, in higher dimensions
(n > 3), homoclinic loop bifurcations (or, more generally, bifurcations at
a tangential homoclinic orbit) typically result in very wild or chaotic be-
havior. Establishing the existence of homoclinic tangencies or transverse
homoclinic orbits and the resulting chaotic behavior is a very difficult task.
However, Melnikov's Method which is presented in Sections 4.9-4.12 is one
of the few analytic methods for studying homoclinic loop bifurcations and
establishing the existence of transverse homoclinic orbits for perturbed dy-
namical systems. We conclude this chapter with a discussion of the various
types of bifurcations that occur in planar systems and apply this theory in
order to determine all of the possible bifurcations and the corresponding
phase portraits that occur in the class of bounded quadratic systems in R2.

4.1 Structural Stability and Peixoto's Theorem

In this section, we present the concept of a structurally stable vector field
or dynamical system and give necessary and sufficient conditions for a CI-
vector field f on a compact two-dimensional manifold to be structurally
stable. The idea of structural stability originated with Andronov and Pon-
tryagin in 1937; cf. [A-IIJ, p. 56. We say that f is a structurally stable
vector field if for any vector field g near f, the vector fields f and g are
topologically equivalent. Cf. Definition 2 in Section 3.1 of Chapter 3. The
only concept that we need to make precise in this definition of structural
stability is what it means for two C'-vector fields f and g to be close.

If f E C' (E) where E is an open subset of R", then the C'-norm of f

Ilf III = sup if (x)I + sup IIDf (x) II (1)
xEE xEE

where I I denotes the Euclidean norm on R" and II - II denotes the usual
norm of the matrix Df(x) as defined in Section 1.3 of Chapter 1. The
function II . II i from C' (E) to R has all of the usual properties of a norm
listed in Section 1.3 of Chapter 1. The set of functions in C' (E), bounded
in the C'-norm, is a Banach space, i.e., a complete normed linear space. We
shall use the C'-norm to measure the distance between any two functions
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in C'(E). If K is a compact subset of E, then the C'-norm of f on K is
defined by

Ilflli=mKIf(x)I+ max (1')

Definition 1. Let E be an open subset of R. A vector field f E C' (E) is
said to be structurally stable if there is an e > 0 such that for all g E C' (E)
with

Ilf - glli<e
f and g are topologically equivalent on E; i.e., there is a homeomorphism
H: E8+ E which maps trajectories of

x = f(x) (2)

onto trajectories of

x = g(x) (2')

and preserves their orientation by time. In this case, we also say that the
dynamical system (2) is structurally stable. If a vector field f E CI(E) is
not structurally stable, then f is said to be structurally unstable. If K is a
compact subset of E and f E C' (E), then if we use the Cl-norm (1') in
Definition 1, we say that the vector field f is structurally stable on K.

Remark 1. If E = R', then the e-perturbations of f in the above defini-
tion, i.e., the functions g E CI (E) satisfying Ilf - gull < e, include the C',
c-perturbations of Guckenheimer and Holmes in Definition 1.7.1. on p. 38
in [G/HJ. Also if K is a compact subset of E and if g E C'(K) satisfies

max
K If (x) - g(x) I + maxK IIDf (x) - Dg(x)II < e,

then there exists a compact subset k of E containing K and a function
g E C'(E) such that g(x) = g(x) for all x E K, g(x) = f(x) for all
x E E - K and IIf - ill, < e. Thus, in order to show that f E Cl(R') is
not structurally stable on R, it suffices to show that f is not structurally
stable on some compact K C R" with nonempty interior.

It was originally thought that structural stability was typical of any
dynamical system modeling a physical problem. Consider, for example,
a damped pendulum. If the mass, length or friction in the pendulum is
changed by a sufficiently small amount, e, the qualitative behavior of the
solution will remain the same; i.e., the global phase portraits of the two
systems (2) and (2') modeling the two pendula will be topologically equiv-
alent. Thus, the dynamical system (2) modeling the physical system con-
sisting of a damped pendulum is structurally stable. On the other hand,
the dynamical system modeling an undamped pendulum in Example 1 in
Section 2.14 of Chapter 2 is structurally unstable since the addition of any



318 4. Nonlinear Systems: Bifurcation Theory

small amount of friction, i.e., damping, will change the undamped, periodic
motion seen in Figure 1 of Section 2.14 in Chapter 2 to a damped motion;
i.e., the centers in Figure 1 will become stable foci. Of course, a frictionless
pendulum is not physically realizable. If we were to only consider physi-
cal problems which lead to systems of differential equations in R2, then
we would not have to worry about arbitrarily small changes in the model
leading to qualitatively different behavior of the system. However, there
are higher dimensional systems (with n > 3) which are realistic models for
certain physical problems (such as the three-body problem) and which are
structurally unstable. Recently, many dynamical systems have been found
which model physical problems and which have a strange attractor as part
of their dynamics. These systems are not structurally stable and yet they
are realistic models for certain physical systems; cf., e.g., [G/N, p. 259.

We next define what is meant by a structurally stable vector field on
an n-dimensional compact manifold M: If f is a CI-vector field on an n-
dimensional, compact, differentiable manifold M, then for any (finite) atlas

I for M we define the CI-norm of f on M as

Of III = Max llf,lll
J

wheref,: Vj -*R"andforj=1,...,m,Vj = h,(U3) C R" as in Sec-
tion 3.10 of Chapter 3. Note that for different atlases for M we will get
different norms on CI (M); however, all of these norms will be equivalent.
Recall that two norms II Ila and II - Ilb on a linear space L are said to be
equivalent if there are positive constants A and B such that

AIIXIIa <_ IIXIIb <_ BIIxII.

for all x E L. Hence the resulting topologies on CI (M) will be equivalent.
We say that two CI-vector fields f, g E CI (M) are topologically equivalent
on M if there is a homeomorphism H: M - M which maps trajectories
of (2) on M onto trajectories of (2') on M and preserves their orientation
by time.

Definition 2. Let f be a CI-vector field on a compact, n-dimensional,
differentiable manifold M. Then f E CI(M) is structurally stable on M if
there is an e > 0 such that for all g E CI(M) with

Ilf - gIII<e,

g is topologically equivalent to f.

Remark 2. In 1962, Peixoto [22] gave a complete characterization of the
structurally stable, CI vector fields on any compact, two-dimensional, dif-
ferentiable manifold M (such as S2) and he showed that they form a dense,
open subset of C'(M); cf. Theorem 3 below. However, it was later shown
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that on any open, two-dimensional, differentiable manifold E (such as R2),
there is a subset of Cl (E) which is open in the C'-topology (defined by the
CI-norm) and which consists of structurally unstable vector fields. Never-
theless, in 1982, Kotus, Krych and Nitecki [16] showed how to control the
behavior "at infinity" so as to guarantee the structural stability of a vec-
tor field on any two-dimensional, differentiable manifold under "strong Cl-
perturbation" and they gave a complete characterization of the structurally
stable vector fields on R2. Cf. Theorem 4 below.

Example 1. The vector field

f(x) = (-)

on R2 is not structurally stable on any compact set K C R2 containing
the origin on its interior. To see this we let K be any compact subset of R2
which contains the origin on its interior and show that f is not structurally
stable on K. Let ll ll1 denote the C'-norm on K and define the vector field

g(x) _
-y

+ .1
.x+µy

Then
llf - gill = l,tl(ma. lxl + 1)

XEK
and if d is the diameter of K, i.e. if

d= max Ix-yl,
x,yeK

it follows for all e > 0 that if we choose l'l = e/(d+2) then llf-gill < e. The
phase portraits for the system x = g(x) are shown in Figure 1. Clearly f is
not topologically equivalent to g; cf. Problem 1. Thus f is not structurally
stable on R2. The number u = 0 is called a bifurcation value for the system
* = g(x)-

Example 2. The system
th=-y+x(x2+y2-1)2

P/=x+y(x2+y2-1)2
is structurally unstable on any compact subset K C R2 which contains the
unit disk on its interior. This can be seen by considering the system

-y+x[(x2+y2-1)2....
y=x+y[(x2+y2-1)2-µ]

which is a-close to the above system if Iµl = -/(d + 2) where d is the
diameter of K. But writing this latter system in polar coordinates yields

T = r[(r2 - 1)2 - µl
9=1.
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I7

µ <0

µ =0

µ>0

Figure 1. The phase portraits for the system x = g(x) in Example 1.
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Hence, we have the phase portraits shown in Figure 2 below; and the
above system with µ = 0 is structurally unstable; cf. Problem 2. The
number µ = 0 is called a bifurcation value for the above system and for
,u = 0 this system has a limit cycle of multiplicity two represented by
y(t) = (cost,sint)T.

Note that for it = 0, the origin is a nonhyperbolic critical point for the
system in Example 1 and -y(t) is a nonhyperbolic limit cycle of the system in
Example 2. In general, dynamical systems with nonhyperbolic equilibrium
points and/or nonhyperbolic periodic orbits are not structurally stable.
This does not mean that dynamical systems with only hyperbolic equilib-
rium points and periodic orbits are structurally stable; cf., e.g., Theorem 3
below.

Before characterizing structurally stable planar systems, we cite some
results on the persistance of hyperbolic equilibrium points and periodic
orbits; cf., e.g., [H/S], pp. 305-312.

Theorem 1. Let f E C'(E) where E is an open subset of R" containing
a hyperbolic critical point xo of (2). Then for any E > 0 there is a 6 > 0
such that for all g E C' (E) with

11f-gh <b

there exists a yo E NE(xo) such that yo is a hyperbolic critical point of (2');
furthermore, Df(xo) and Dg(yo) have the same number of eigenvalues with
negative (and positive) real parts.

Theorem 2. Let f E C' (E) where E is an open subset of R" containing
a hyperbolic periodic orbit r of (2). Then for any e > 0 there is a 6 > 0
such that for all g E C1(E) with

1if-g1l1 <b

there exists a hyperbolic periodic orbit 1" of (2') contained in an e-neigh-
borhood of r; furthermore, the stable manifolds W'(I') and W8(r'), and
the unstable manifolds Wu(r) and Wu(r'), have the same dimensions.

One other important result for n-dimensional systems is that any linear
system

x=Ax

where the matrix A has no eigenvalue with zero real part is structurally
stable in R^. Besides nonhyperbolic equilibrium points and periodic orbits,
there are two other types of behavior that can result in structurally unstable
systems on two-dimensional manifolds. We illustrate these two types of
behavior with some examples.
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µ <o

LO

µ>o

Figure 2. The phase portraits for the system in Example 2.
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µ -CO

µ>0

Figure 3. The phase portraits for the system in Example 3.
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Example 3. Consider the system

=y
y=py+x-x3.

For p = 0 this is a Hamiltonian system with Hamiltonian H(x, y) = (y2 -
x2)/2+x4/4. The level curves for this function are shown in Figure 3. We
see that for p = 0 there are two centers at (±1, 0) and two separatrix cycles
enclosing these centers. For p = 0 this system is structurally unstable on
any compact subset K C R2 containing the disk of radius 2 because the
above system is c-close to the system with p = 0 if Ipl = c/(d+2) where d is
the diameter of K. Also, the phase portraits for the above system are shown
in Figure 3 and clearly the above system with p 54 0 is not topologically
equivalent to that system with p = 0; cf. Problem 3.

In Example 3, not only does the qualitative behavior near the nonhyper-
bolic critical points (±1, 0) change asp varies through it = 0, but also there
are no separatrix cycles for p 74 0; i.e., separatrix cycles and more generally
saddle-saddle connections do not persist under small perturbations of the
vector field. Cf. Problem 4 for another example of a planar system with a
saddle-saddle connection.

Definition 3. A point x E E (or x E M) is a nonwandering point of the
flow 4t defined by (2) if for any neighborhood U of x and for any T > 0
there is a t > T such that

¢t(U)nUo0.
The nonwandering set Sl of the flow ¢t is the set of all nonwandering points
of g't in E (or in M). Any point x E E . Sl (or in M - fl) is called a
wandering point of 0t.

Equilibrium points and points on periodic orbits are examples of non-
wandering points of a flow and for a relatively-prime, planar, analytic flow,
the only nonwandering points are critical points, points on cycles and points
on graphics that belong to the w-limit set of a trajectory or the limit set
of a sequence of periodic orbits of the flow (on R2 or on the Bendixson
sphere; cf. Problem 8 in Section 3.7). This is not true in general as the next
example shows; cf. Theorem 3 in Section 3.7 of Chapter 3.

Example 4. Let the unit square S with its opposite sides identified be a
model for the torus and let (x, y) be coordinates on S which are identified
(mod 1). Then the system

2=w1
y=w2

defines a flow on the torus; cf. Figure 4. The flow defined by this system is
given by

Ot (xo, yo) = (w1 t + xo, w2t + yo)T.
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If wl/w2 is irrational, then all points lie on orbits that never close, but
densely cover S or the torus. If w1/w2 is rational then all points lie on
periodic orbits. Cf. Problem 2 in Section 3.2 of Chapter 3. In either case all
points of T2 are nonwandering points, i.e., l = T2. And in either case, the
system is structurally unstable since in either case, there is an arbitrarily
small constant which, when added to wl, changes one case to the other.

Y

Figure 4. A flow on the unit square with its opposite sides identified and
the corresponding flow on the torus.

We now state Peixoto's Theorem [22], proved in 1962, which completely
characterizes the structurally stable Cl-vector fields on a compact, two-
dimensional, differentiable manifold M.

Theorem 3 (Peixoto). Let f be a C'-vector field on a compact, two-
dimensional, differentiable manifold M. Then f is structurally stable on M
if and only if

(i) the number of critical points and cycles is finite and each is hyperbolic;

(ii) there are no trajectories connecting saddle points; and

(iii) the nonwandering set fl consists of critical points and limit cycles
only.

Furthermore, if M is orientable, the set of structurally stable vector fields
in C'(M) is an open, dense subset of C'(M).

If the set of all vector fields f E CT(M), with r > 1, having a certain
property P contains an open, dense subset of Ct(M), then the property P
is called generic. Thus, according to Peixoto's Theorem, structural stability
is a generic property of the C' vector fields on a compact, two-dimensional,
differentiable manifold M. More generally, if V is a subset of CI(M) and
the set of all vector fields f E V having a certain property P contains an
open, dense subset of V, then the property P is called generic in V.

If the phase space is planar, then by the Poincare-Bendixson Theorem
for analytic systems, the only possible limit sets are critical points, limit
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cycles and graphics and if there are no saddle-saddle connections, graphics
are ruled out. The nonwandering set S2 will then consist of critical points
and limit cycles only. Hence, if f is a vector field on the Poincare sphere
defined by a planar polynomial vector field as in Section 3.10 of Chapter 3,
we have the following corollary of Peixoto's Theorem and Theorem 3 in
Section 3.7 of Chapter 3.

Corollary 1. Let f be a vector field on the Poincare sphere defined by the
differential equation

dX dY dZ
X Y Z
P. Q. 0

=0

where

P.(X,Y,Z) = ZmP(X/Z,Y/Z),
Q` (X1 Y, Z) = Z"'Q(X/Z,1'/Z),

and P and Q are polynomials of degree m. Then f is structurally stable on
S2 if and only if

(i) the number of critical points and cycles is finite and each is hyperbolic,
and

(ii) there are no trajectories connecting saddle points on S2.

This corollary gives us an easy test for the structural stability of the
global phase portrait of a planar polynomial system. In particular, the
global phase portrait will be structurally unstable if there arc nonhyperbolic
critical points at infinity or if there is a trajectory connecting a saddle on
the equator of the Poincare sphere to another saddle on S2. It can be shown
that if the polynomial vector field f in Corollary 1 is structurally stable on
S2, then the corresponding polynomial vector field (P, Q)T is structurally
stable on R2 under "strong C'-perturbations". We say that a C'-vector
field f is structurally stable on R2 under strong C'-perturbations (or that
it is structurally stable with respect to the Whitney C'-topology on R2) if
it is topologically equivalent to all C'-vector fields g satisfying

If(x) - g(x)I + IIDf(x) - Dg(x)II < e(x)

for some continuous, strictly positive function e(x) on R2. The fact that
structural stability of the polynomial vector field f on S2 in Corollary 1 im-
plies that the corresponding polynomial vector field (p,Q)T is structurally
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stable on R2 under strong C1-perturbations follows from Corollary 1 and
the next theorem proved in [16]; cf. Theorem 3.1 in [56]. Also, it follows
from Theorem 23 in (A-II] and Theorem 4 below that structural stability
of a polynomial vector field f on R2 under strong C1-perturbations implies
that f is structurally stable on any bounded region of R2; cf. Definition 10
in [A-III. (The converses of the previous two statements are false as shown
by the examples below.) In order to state the next theorem, we first define
the concept of a saddle at infinity as defined in [56].

Definition 4. A saddle at infinity (SAI) of a vector field f defined on
R2 is a pair (I'p, I -) of half-trajectories of f, each escaping to infinity,
such that there exist sequences p --+ p and t -+ oo with 0(t,,, p,) -- q
in R2. I'p is called the stable separatrix of the SAI and rq the unstable
separatrix of the SAI. A saddle connection is a trajectory r of f with
r = I'+ U r- where r+ is a stable separatrix of a saddle or of a SAI while
r- is a separatrix of a saddle or of a SAI.

If we let Wf (f) denote the union of all trajectories containing a stable or
unstable separatrix of a saddle or SAI of f, then there is a saddle connection
only if W+(f) n W-(f) # 0.

Theorem 4 (Kotus, Krych and Nitecki). A polynomial vector field is
structurally stable on R2 under strong C'-perturbations if

(i) all of its critical points and cycles are hyperbolic and

(ii) there are no saddle connections (where separatrices of saddles at in-
finity are taken into account).

Furthermore, there is a dense open subset of the set of all mth-degree poly-
nomials, every element of which is structurally stable on R2 under strong
C1 -perturbations.

It is also shown in Proposition 2.3 in [56] that (i) and (ii) in Theorem 4
imply that the nonwandering set consists of equilibrium points and periodic
orbits only. As in [56], we have stated Theorem 4 for polynomial vector
fields on R2; however, it is important to note that Theorems A and B in
[16] give necessary and sufficient conditions for any C' vector field on R2 to
be structurally stable on R2 under strong Cl-perturbations and sufficient
conditions for the structural stability of any C1 vector field on a smooth
two-dimensional open surface (i.e., a smooth two-dimensional differentiable
manifold without boundary which is metrizable but not compact) under
strong Cl-perturbations.
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The following example has a saddle connection between two saddles at
infinity on S2 and also a saddle connection according to Definition 4. It
is therefore not structurally stable on S2, according to Corollary 1, or on
R2 under strong C'-perturbations, according to Theorem 4; however, it is
structurally stable on any bounded region of R2, according to Theorem 23
in [A-Ill.

Example 5. The cubic system

1-y2
xy+y3

has the global phase portrait shown below:

Clearly the trajectory r connects the two saddles at (±1,0,0) on the
Poincare sphere. And if we let p and q be any two points on I', then (r p+, Fq )
is a saddle at infinity and (for p to the left of q on r) r = r'+ur- is a saddle
connection according to Definition 4. We also note that W (f)f1W-(f) = I'
for the vector field given in this example.

The next example due to Chicone and Shafer, cf. (2.4) in [16], has a sad-
dle connection according to Definition 4 and it is therefore not structurally
stable on R2 under strong C'-perturbations according to Theorem 4; al-
though, it is structurally stable on any bounded region of R2 according
to Theorem 23 in (A-II]. And since the corresponding vector field f in
Corollary 1 has a nonhyperbolic critical point at (0, ±1, 0) on S2, f is not
structurally stable on S2.
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Example 6. The quadratic system

2xy

2xy-x2+y2+1

has the global phase portrait shown below:

329

Let pi E 1'i. Then (r ,,rp-,) and (r+ ,l'pg) are two saddles at infinity
and I'2 = rp2 U 1'p, is a saddle connection according to Definition 4. We
also note that W+ (f) f1 W-(f) = (1'1 u 1'2) n (r2 u r3) = r2 for the vector
field f given in this example.

The next example, which is (2.6) in [16], gives us a polynomial vector field
which is structurally stable on R2 under strong C1-perturbations according
to Theorem 4, but whose projection onto S2 is not structurally stable on
S2 according to Corollary 1 since there is a nonhyperbolic critical point at
(0, f 1, 0) on S2.

Example 7. The cubic system

th=x3-x
y=4x2-1
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has the global phase portrait shown below:

This system has no critical points or cycles in R2. Let p; E F;. Then
(r+pl , FP-2) and (F+p3, r-,) are saddles at infinity, but there is no saddle
connection since W+(f) f1 W- (f) = (I'1 U F3) fl F2 = 0 for the vector field
f in this example.

Shafer [56] has also given sufficient conditions for a polynomial vector
field f E Pm to be structurally stable with respect to the coefficient topol-
ogy on P,,, (where Pm denotes the set of all polynomial vector fields of
degree less than or equal to m on R2). It follows from Corollary 1 and the
results in [56] that structural stability of the projection of the polynomial
vector field on the Poincar sphere implies structural stability of the poly-
nomial vector field with respect to the coefficient topology on Pm which, in
turn, implies structural stability of the polynomial vector field with respect
to the Whitney Cl-topology.

In 1937 Andronov and Pontryagin showed that the conditions (i) and (ii)
in Corollary 1 are necessary and sufficient for structural stability of a Cl-
vector field on any bounded region of R2; cf. Definition 10 and Theorem 23
in [A-III. And in higher dimensions, (i) together with the condition that the
stable and unstable manifolds of any critical points and/or periodic orbits
intersect transversally (cf. Definition 5 below) is necessary and sufficient
for structural stability of a Cl-vector field on any bounded region of R"
whose boundary is transverse to the flow. However, there is no counterpart
to Peixoto's Theorem for higher dimensional compact manifolds.

For a while, it was thought that conditions analogous to those in Peixoto's
Theorem would completely characterize the structurally stable vector fields
on a compact, n-dimensional, differentiable manifold; however, this proved
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not to be the case. In order to formulate the analogous conditions for higher
dimensional systems, we need to define what it means for two differentiable
manifolds M and N to intersect transversally, i.e., nontangentially.

Definition 5. Let p be a point in R". Then two differentiable manifolds
M and N in R" are said to intersect transversally at p E M r1 N if TpM
TPN = R" where TpM and TPN denote the tangent spaces of M and
N respectively at p. M and N are said to intersect transversally if they
intersect transversally at every point p E M fl N.

Definition 6. A Morse-Smale system is one for which

(i) the number of equilibrium points and periodic orbits is finite and
each is hyperbolic;

(ii) all stable and unstable manifolds which intersect do so transversally;
and

(iii) the nonwandering set consists of equilibrium points and periodic or-
bits only.

It is true that Morse-Smale systems on compact n-dimensional differ-
entiable manifolds are structurally stable, but the converse is false in di-
mensions n > 3. As we shall see, there are structurally stable systems with
strange attractors which are part of the nonwandering set. In dimensions
n > 3, the structurally stable vector fields are not generic in C1 (M). In fact,
there are nonempty open subsets in C' (M) which consist of structurally
unstable vector fields. Smale's work on differentiable dynamical systems
and his construction of the horseshoe map were instrumental in proving
that the structurally stable systems are not generic and that not all struc-
turally stable systems are Morse-Smale; cf. [G/H], Chapter 5.

In the remainder of this chapter we consider the various types of bifur-
cations that can occur at nonhyperbolic equilibrium points and periodic
orbits as well as the bifurcation of periodic orbits from equilibrium points
and homoclinic loops. We also give a brief glimpse into what can happen
at homoclinic loop bifurcations in higher dimensions (n > 3).

PROBLEM SET 1

1. (a) In Example 1 show that 11f - 6111 = 1111(maXXEK 1X1 + 1).

(b) Show that for u 34 0 the systems

x -y and
x -y + µx

y=x ] =x+µy
are not topologically equivalent. Hint: Let 0, and e/ii be the
flows defined by these two systems and assume that there is a
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homeomorphism H: R2 -4 R2 and a strictly increasing, con-
tinuous function t(r) mapping R onto R such that 0t(T) =
H-1 o 0, o H. Use the fact that limt-ao 4t(1,0) 54 0 and that
for p < 0, limt. t/, (x) = 0 for all x E R2 to arrive at a con-
tradiction.

2. (a) In Example 2 show that Iif - gill = Ipi(maxXEK Ixi + 0-
(b) Show that the systems in Example 2 with p = 0 and p 34 0

are not topologically equivalent. Hint: As in Problem 1, use the
fact that for IxJ < 1

and

leilm 4t(x)I = 1 if p = 0
00

I lim '0t(x)I = oo if p < 0t00
to arrive at a contradiction.

3. (a) In order to justify the phase portraits in Figure 3, show that the
origin in Example 3 is a saddle and for p < 0 (or p > 0) the
critical points (±1, 0) are stable (or unstable) foci; for p # 0,
use Bendixson's Criteria to show that there are no cycles; and
then use the Poincare-Bendixson Theorem.

(b) Show that the system in Example 3 with p = 0 is not structurally
stable on the compact set K = {x E R2 I IxI < 2}. Hint: As in
Problems 1 and 2 use the fact that

lim 0t(f,0) = (0,0) for p = 0too
and

lim 0t(V,0) = (1,0) for p < 0tco
to arrive at a contradiction.

4. (a) Draw the (local) phase portrait for the system

i = x(1 - x)
y = -y(1 - 2x).

(b) Show that this system (which has a saddle-saddle connection) is
not structurally stable. Hint: For p = e/(d + 2), show that the
system

± = x(1 - x)
y=-y(1-2x)+px

is c-close to the system in part (a) on any compact set K C R2
of diameter d. Sketch the (local) phase portrait for this system
with p > 0 and assuming that the systems in (a) and (b) are
topologically equivalent for p 54 0, arrive at a contradiction as
in Problems 1-3.
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5. Determine which of the global phase portraits in Figure 12 of Sec-
tion 3.10 are structurally stable on S2 and which are structurally
stable on R2 under strong C'-perturbations.

6. ([G/H], p. 42). Which of the following differential equations (consid-
ered as systems in R2) are structurally stable? Why or why not?

(a) x+2x+x=0
(b) x+x+x3=0
(c) I+sinx=0
(d) x+i2+x=0.

7. Construct the (local) phase portrait for the system

x=-y+xy
x + (x2 - y2)/2

and show that it is structurally unstable.

8. Determine the nonwandering set S2 for the systems in Example 2 and
Example 3 (for µ < 0, µ = 0, and µ > 0).

9. Describe the nonwandering set on the Poincare sphere for the global
phase portraits in Problem 10 of Section 3.10 of Chapter 3.

10. Describe the nonwandering set for the phase portraits shown in Fig-
ure 5 below:

Figure 5. Some planar phase portraits with graphics.
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4.2 Bifurcations at Nonhyperbolic Equilibrium
Points

At the beginning of this chapter we mentioned that the qualitative behavior
of the solution set of a system

x = f(x,µ), (1)

depending on a parameter it E R, changes as the vector field f passes
through a point in the bifurcation set or as the parameter p varies through a
bifurcation value µo. A value po of the parameter y in equation (1) for which
the Cl-vector field f(x,po) is not structurally stable is called a bifurcation
value. We shall assume throughout this section that If E C1 (E x J) where
E is an open set in R" and J C R is an interval.

We begin our study of bifurcations of vector fields with the simplest
kinds of bifurcations that occur in dynamical systems; namely, bifurcations
at nonhyperbolic equilibrium points. In fact, we begin with a discussion of
various types of critical points of one-dimensional systems

i = f(x,A) (1')

with x E R and M E R. The three simplest types of bifurcations that occur
at a nonhyperbolic critical point of (1') are illustrated in the following
examples.

Example 1. Consider the one-dimensional system

x=µ-x2.
For p > 0 there are two critical points at x = ± f; D f (x, p) = -2x,
D f (± f, p) = :F2 f; and we see that the critical point at x = f is stable
while the critical point at x = - f is unstable. (We continue to use D for
the derivative with respect to x and the symbol D f (x, p) will stand for the
partial derivative of the function f (x, p) with respect to x.) For p = 0, there
is only one critical point at x = 0 and it is a nonhyperbolic critical point
since D f (0, 0) = 0; the vector field f (x) = -x2 is structurally unstable;
and p = 0 is a bifurcation value. For µ < 0 there are no critical points.
The phase portraits for this differential equation are shown in Figure 1. For
µ > 0 the one-dimensional stable and unstable manifolds for the differential
equation in Example 1 are given by W"(f) = (- f, oo) and W' (- f) =
(-oo, f ). And for p = 0 the one-dimensional center manifold is given
by W°(0) = (-oo, oo). All of the pertinent information concerning the
bifurcation that takes place in this system at p = 0 is captured in the
bifurcation diagram shown in Figure 2. The curve µ - x2 = 0 determines
the position of the critical points of the system, a solid curve is used to
indicate a family of stable critical points while a dashed curve is used to
indicate a family of unstable critical points. This type of bifurcation is
called a saddle-node bifurcation.
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x c X -e --a--.-E- x
µ<0 N=0 µ>0

Figure 1. The phase portraits for the differential equation in Example 1.

X

0

Figure 2. The bifurcation diagram for the saddle-node bifurcation in Ex-
ample 1.

Example 2. Consider the one-dimensional system

2=µx-x2.

The critical points are at x = 0 and x = uc. For u = 0 there is only one
critical point at x = 0 and it is nonhyperbolic since D f (0, 0) = 0; the vector
field f (x) = -x2 is structurally unstable; and µ = 0 is a bifurcation value.
The phase portraits for this differential equation are shown in Figure 3.
For u = 0 we have Wc(0) = (-oo, oc); the bifurcation diagram is shown in
Figure 4. We see that there is an exchange of stability that takes place at
the critical points of this system at the bifurcation value µ = 0. This type
of bifurcation is called a transcritical bifurcation.
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p<0 P.O p>O

Figure 3. The phase portraits for the differential equation in Example 2.

Figure 4. The bifurcation diagram for the transcritical bifurcation in Ex-
ample 2.

Example 3. Consider the one-dimensional system

i=/Lx-x3.
For p > 0 there are critical points at x = 0 and at x = fem. For p
0, x = 0 is the only critical point. For µ = 0 there is a nonhyperbolic
critical point at x = 0 since D f (0, 0) = 0; the vector field f (x) = -x3 is
structurally unstable; and p = 0 is a bifurcation value. The phase portraits
are shown in Figure 5. For p < 0 we have W'(0) = (-oo, oo); however, for
p = 0 we have W'(0) = 0 and W`(0) = (-oo, oo). The bifurcation diagram
is shown in Figure 6 and this type of bifurcation is aptly called a pitchfork
bifurcation.

X - x

Figure 5. The phase portraits for the differential equation in Example 3.
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X

Figure 6. The bifurcation diagram for the pitchfork bifurcation in Exam-
ple 3.

While the saddle-node, transcritical and pitchfork bifurcations in Exam-
ples 1-3 illustrate the most important types of bifurcations that occur in
one-dimensional systems, there are certainly many other types of bifurca-
tions that are possible in one-dimensional systems; cf., e.g., Problems 1 and
2. If D f (0, 0) = = D(m_ l) f (0, 0) = 0 and D' f (0, 0) # 0, then the one-
dimensional system (1') is said to have a critical point of multiplicity m at
x = 0. In this case, at most m critical points can be made to bifurcate from
the origin and there is a bifurcation which causes exactly m critical points
to bifurcate from the origin. At the bifurcation value µ = 0, the origin is a
critical point of multiplicity two in Examples 1 and 2; it is a critical point
of multiplicity three in Example 3; and it is a critical point of multiplicity
four in Problem 1.

If f (xo, µo) = D f (xo, µo) = 0, then xo is a nonhyperbolic critical point
of the system (1') with µ = uo and ppo is a bifurcation value of the system
(1'). In this case, the type of bifurcation that occurs at the critical point
x = xo at the bifurcation value u = µo in the one-dimensional system (1')
is determined by which of the higher order derivatives

8mf (xo, µ0)
8xi 8/sk

with m > 2, vanishes. This is also true in a sense for higher dimensional
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systems (1) and we have the following theorem proved by Sotomayor in
1976; cf. [G/H], p. 148. It is assumed that the function f (x, p) is sufficiently
differentiable so that all of the derivatives appearing in that theorem are
continuous on R" x R. We use Df to denote the matrix of partial derivatives
of the components of f with respect to the components of x and f, to denote
the vector of partial derivatives of the components of f with respect to the
scalar A.

Theorem 1 (Sotomayor). Suppose that f (xo, po) = 0 and that then x n
matrix A =_ Df(xo, po) has a simple eigenvalue A = 0 with eigenvector v
and that AT has an eigenvector w corresponding to the eigenvalue A =
0. Furthermore, suppose that A has k eigenvalues with negative real part
and (n - k - 1) eigenvalues with positive real part and that the following
conditions are satisfied

wTf,.(xo,µo) 540, wT[D2f(xo,po)(v,v)] & 0. (2)

Then there is a smooth curve of equilibrium points of (1) in R" x R passing
through (xo,po) and tangent to the hyperplane R" x {po}. Depending on
the signs of the expressions in (2), there are no equilibrium points of (1)
near xo when p < po (or when p > po) and there are two equilibrium points
of (1) near xo when p > po (or when p < po). The two equilibrium points
of (1) near xo are hyperbolic and have stable manifolds of dimensions k and
k + 1 respectively; i.e., the system (1) experiences a saddle-node bifurcation
at the equilibrium point xo as the parameter u passes through the bifurcation
value p = M. The set of C" -vector fields satisfying the above condition is
an open, dense subset in the Banach space of all CO', one-parameter, vector
fields with an equilibrium point at xo having a simple zero eigenvalue.

The bifurcation diagram for the saddle-node bifurcation in Theorem 1 is
given by the one shown in Figure 2 with the x-axis in the direction of the
eigenvector v. (Actually, the diagram in Figure 2 might have to be rotated
about the x or p axes or both in order to obtain the correct bifurcation
diagram for Theorem 1.)

If the conditions (2) are changed to

wTf,.(xo,po) = 0,

wT[Dfµ(xo, po)v] & 0 and

wT[D2f(xo, AO) (V, v)] # 0,

(3)

then the system (1) experiences a transcritical bifurcation at the equilib-
rium point xo as the parameter p varies through the bifurcation value
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µ = po and the bifurcation diagram is given by Figure 4 with the x-axis in
the direction of the eigenvector v. And if the conditions (2) are changed to

wTfr,(XO,po) = 0, wT[Dfu(xo,Ao)v] 0 0,

wT[D2f(xo,po)(v,v)] = 0 and wT[D3f(xo,po)(v,v,v)] 0 0,
(4)

then the system (1) experiences a pitchfork bifurcation at the equilibrium
point xo as the parameter p varies through the bifurcation value p = po
and the bifurcation diagram is given by Figure 6 with the x-axis in the
direction of the eigenvector v.

Sotomayor's theorem also establishes that in the class of CO°, one-para-
meter, vector fields with an equilibrium point having one zero eigenvalue,
the saddle-node bifurcations are generic in the sense that any such vec-
tor field can be perturbed to a saddle-node bifurcation. Transcritical and
pitchfork bifurcations are not generic in this sense and further conditions
on the one-parameter family of vector fields f(x, p) are required before (1)
can experience these types of bifurcations.

We next present some examples of saddle-node, transcritical and pitch-
fork bifurcations at nonhyperbolic critical points of planar systems which,
once again, illustrate that the qualitative behavior near a nonhyperbolic
critical point is determined by the behavior of the system on the center
manifold; cf. Examples 4-6 and Examples 1-3 above.

Example 4. Consider the planar system

µ-x2

-y.

In the notation of Theorem 1, we have

A = Df (0, 0) = r0 -0J

f, (0,0)
1

_ (0)

v = w = (1, 0)T, wTf,(0, 0) = 1 and WT[D2f(0, 0)(v, v)] = -2. There
is a saddle-node bifurcation at the nonhyperbolic critical point (0, 0) at
the bifurcation value p = 0. For p < 0 there are no critical points. For
p = 0 there is a critical point at the origin and, according to Theorem 1
in Section 2.11 of Chapter 2, it is a saddle-node. For p > 0 there are
two critical points at (±/,0); (f, 0) is a stable node and (-%i,0) is
a saddle. The phase portraits for this system are shown in Figure 7 and
the bifurcation diagram is the same as the one in Figure 2. Note that the
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x-axis is in the v direction and that it is an analytic center manifold of the
nonhyperbolic critical point 0 for p = 0.

Y

µ6o µ 0

I

µ>o

Figure 7. The phase portraits for the system in Example 4.

It

Remark. It follows from Lemma 2 in Section 3.12 that the index of a closed
curve C relative to a vector field f (where f has no critical points on C)
is preserved under small perturbations of the vector field. For example, we
see that for sufficiently small µ, the index of a closed curve containing the
origin on its interior is zero for any of the vector fields shown in Figure 7.

Example 5. Consider the planar system

2=µx-x2
y=-y

which satisfies the conditions (3). There is a transcritical bifurcation at the
origin at the bifurcation value p = 0. There are critical points at the origin
and at (µ, 0). The phase portraits for this system are shown in Figure 8.
The bifurcation diagram for this example is the same as the one in Figure 4.

Y
Y

x

rol

0j
i

'U-CO /480

I

µ>o

Y

Figure S. The phase portraits for the system in Example 5.
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Example 6. The system

y=-y
satisfies the conditions (4) and there is a pitchfork bifurcation at xa = 0
and µo = 0. For µ < 0 the only critical point is at the origin and for
µ > 0 there are critical points at the origin and at (f f , 0). For µ = 0, the
nonhyperbolic critical point at the origin is a node according to Theorem 1
in Section 2.11 of Chapter 2. The phase portraits for this system are shown
in Figure 9 and the bifurcation diagram for this example is the same as the
one shown in Figure 6.

Y

0

µs0 µ>0

Y

Figure 9. The phase portraits for the systems in Example 6.

Just as in the case of one-dimensional systems, we can have equilibrium
points of multiplicity m for higher dimensional systems. An equilibrium
point is of multiplicity m if any perturbation produces at most m nearby
equilibrium points and if there is a perturbation which produces exactly m
nearby equilibrium points. This is discussed in detail for planar systems in
Chapter VIII of [A-III. The origin in Examples 4 and 5 is a critical point
of multiplicity two; it is of multiplicity three in Example 6; and it is of
multiplicity four in Problem 7.

PROBLEM SET 2

1. Consider the one-dimensional system

i = -x4 + 5µi2 -4 µ2.
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Determine the critical points and the bifurcation value for this dif-
ferential equation. Draw the phase portraits for various values of the
parameter µ and draw the bifurcation diagram.

2. Carry out the same analysis as in Problem 1 for the one-dimensional
system

x = x2 - x142.

3. Define the function

f (x) =
1x3 sin - for x 0

ll 0 forx=0
Show that f E C'(R). Consider the one-dimensional system

x=f(x)-,u
with f defined above.

(a) Show that for p = 0 there are an infinite number of critical
points in any neighborhood of the origin, that the nonzero criti-
cal points are hyperbolic and alternate in stability, and that the
origin is a nonhyperbolic critical point.

(b) Show that µ = 0 is a bifurcation value.
(c) Draw a bifurcation diagram and show that there arc an infinite

number of bifurcation values which accumulate at µ = 0. What
type of bifurcations occur at the nonzero bifurcation values?

4. Verify that the conditions (3) are satisfied by the system in Exam-
ple 5. What are the dimensions of the various stable, unstable and
center manifolds that occur in this system?

5. Verify that the conditions (4) are satisfied by the system in Exam-
ple 6. What are the dimensions of the various stable, unstable and
center manifolds that occur in this system?

6. If f satisfies the conditions of Theorem 1, what are the dimensions of
the stable and unstable manifolds at the two hyperbolic critical points
that occur near xo for µ > µo (or µ < µo)? What are the dimensions
if the conditions (2) are changed to (3) or (4)? Cf. Problems 4 and 5.

7. Consider the two-dimensional system

2 = -x4 + 5µi2 -4 µ2

-Y.

Determine the critical points and the bifurcation diagram for this
system. Draw the phase portraits for various values of µ and draw
the bifurcation diagram. Cf. Problem 1.
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4.3 Higher Codimension Bifurcations at
Nonhyperbolic Equilibrium Points

Let us continue our discussion of bifurcations at nonhyperbolic critical
points and consider systems

* = f (x, fc), (1)

which depend on one or more parameters p E R. The system (1) has a
nonhyperbolic critical point xo E R' for p = µo E RI if f(xo, µo) = 0
and the n x n matrix A - Df(xo,lao) has at least one eigenvalue with
zero real part. We continue our discussion of the simplest case when the
matrix A has exactly one zero eigenvalue and relegate a discussion of the
cases when A has a pair of pure imaginary eigenvalues or a pair of zero
eigenvalues to the next section and to Section 4.13, respectively. The case
when A has exactly one zero eigenvalue (and no other eigenvalues with zero
real parts) is the simplest case to study since the behavior of the system
(1) for µ near the bifurcation value Po is completely determined by the
behavior of the associated one-dimensional system

i = F(x, µ) (2)

on the center manifold for p near µo. Cf. Examples 1-6 in the previous
section. On the other hand, a more in-depth study of this case will allow us
to illustrate some ideas and terminology that are basic to an understanding
of bifurcation theory. In particular, we shall use examples of single zero
eigenvalue bifurcations to gain an understanding of the concepts of the
codimension and the universal unfolding of a bifurcation.

If a structurally unstable vector field fo(x) is embedded in an m-parameter
family of vector fields (1) with f(x, µo) = fo(x), then the m-parameter fam-
ily of vector fields is called an unfolding of the vector field fo(x) and (1) is
called a universal unfolding of fo(x) at a nonhyperbolic critical point x0 if it
is an unfolding of fo(x) and if every other unfolding of fo(x) is topologically
equivalent to a family of vector fields induced from (1), in a neighborhood
of xo. The minimum number of parameters necessary for (1) to be a uni-
versal unfolding of the vector field fo(x) at a nonhyperbolic critical point
x0 is called the codimension of the bifurcation at x0. Cf. p. 123 in [G/H]
and pp. 284-286 in [Wi-II], where we see that if M is a manifold in some
infinite-dimensional vector space or Banach space B, then the codimension
of M is the smallest dimension of a submanifold N C B that intersects
M transversally. Thus, if S is the set of all structurally stable vector fields
in B - C'(E) and fo E Sc (the complement of S), then fo belongs to the
bifurcation set in C' (E) that is locally isomorphic to a manifold M in B
and the codimension of the bifurcation that occurs at fo is equal to the
codimension of the manifold M. We illustrate these ideas by returning to
the saddle-node and pitch-fork bifurcations studied in the previous section.
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There is no loss of generality in assuming that xo = 0 and that µo = 0, and
this assumption will be made throughout the remainder of this section.

For the saddle-node bifurcation, the one-dimensional system (2) has the
normal form F(x, 0) = Fo(x) = ax 2, and the constant a can be made equal
to -1 by rescaling the time; i.e., we shall consider unfoldings of the normal
form

:t = -x2. (3)

First of all, note that adding higher degree x-terms to (3) does not affect the
behavior of the critical point at the origin; e.g., the system i = -x2 +µ3x3
has critical points at x = 0 and at x = 1//c3; x = 0 is a nonhyperbolic
critical point, and the hyperbolic critical point x = 1/1A3 -+ oo as µ3 -+ 0.
Thus it suffices to consider unfoldings of (3) of the form

i=III +µ2x-x2
Cf. [Wi-II], pp. 263 and 280. Furthermore, by translating the origin of this
system to the point x = /12/2, we obtain the system

i=11-x2 (4)

with a = µl + 4/4. Thus, all possible types of qualitative dynamical
behavior that can occur in an unfolding of (3) are captured in (4), and
the one-parameter family of vector fields (4) is a universal unfolding of the
vector field (3) at the nonhyperbolic critical point at the origin. Cf. [Wi-II],
pp. 280 and 300. Thus, all possible types of dynamical behavior for systems
near (3) are exhibited in Figure 1 of the previous section, and the saddle-
node bifurcation described in Figure 1 of Section 4.1 is a codimension-one
bifurcation.

For the pitch-fork bifurcation, the one-dimensional system (2) has the
normal form (after rescaling time) F(x, 0) = Fo(x) = -x3, and we consider
unfoldings of

i = -x3 (5)

As we shall see, the one-parameter family of vector fields considered in
Example 3 of the previous section is not a universal unfolding of the vector
field (5) at the nonhyperbolic critical point at the origin. As in the case
of the saddle-node bifurcation, we need not consider higher degree terms
(of degree greater than three) in (5), and, by translating the origin, we
can eliminate any second-degree terms. Therefore, a likely candidate for
a universal unfolding of the vector field (5) at the nonhyperbolic critical
point at the origin is the two-parameter family of vector fields

i=µ1+µ2x-x3. (6)

And this is indeed the case; cf. [Wi-II], p. 301 or [G/H], p. 356; i.e., the
pitch-fork bifurcation is a codimension-two bifurcation. In order to investi-
gate the various types of dynamical behavior that occur in the system (6),
we note that for µ2 > 0 the cubic equation

x3-112x-111 =0
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has three roots iff µi < 4µZ/27, two roots (at x = f µ2/3) iff µi = 4µZ/27
and one root if µi > 4,2/27; it also has one root for all µ2 < 0 and µl E R.
It then is easy to deduce the various types of dynamical behavior of (6)
shown in Figure 1 below for µ2 > 0.

µ
_ _ 4- _ 4µi µ µ V

3 L,3

= 27 V 2727 ` 27 27 .c Vv/ 27
µ

Figure 1. The phase portraits for the differential equation (6) with µ2 > 0.

The first three phase portraits in Figure 1 include all of the possible
types of qualitative behavior for the differential equation (6) as well as
the qualitative behavior for µ2 < 0 and µl E R, which is described by
the first phase portrait in Figure 1. Notice that the second phase portrait
in Figure 1 does not appear in the list of phase portraits in Figure 5 of
the previous section for the unfolding of the normal form (5) given by the
one-parameter family of differential equations in Example 3 of the previous
section. Clearly, that unfolding of (5) is not a universal unfolding; i.e.,
the pitch-fork bifurcation is a codimension-two and not a codimension-one
bifurcation. The bifurcation diagram for the vector field (6), i.e., the locus
of points satisfying µl + µ2x - x3 = 0, which determines the location of
the critical points of (6) for various values of the parameter µ E R2, is
shown in Figure 2; cf. Figure 12.1, p. 169 in [G/S]. The bifurcation set or
the set of bifurcation points in the µ-plane, i.e., the set of p-points where
(6) is structurally unstable, is also shown in Figure 2; it is the projection
of the bifurcation points in the bifurcation diagram onto the µ-plane. The
bifurcation set (in the p-plane) consists of the two curves,

4µZ
µi

27

for µ2 > 0, at which points (6) undergoes a saddle-node bifurcation, and
the origin. The two curves of saddle-node bifurcation points intersect in a
cusp at the origin in the ,-plan, and the differential equation (6) is said
to have a cusp bifurcation at µ = 0. Notice that for parameter values µ in
the shaded region in Figure 2, the system (6) has three hyperbolic critical
points, and for point u outside the closure of this region the system (6) has
one hyperbolic critical point.

We conclude this section by describing the bifurcation set for universal
unfolding of the normal form

$ = -x4, (7)

which has a multiplicity-four critical point at the origin. As in the previous
two examples, it seems that a likely candidate for the universal unfolding of
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Figure 2. The bifurcation diagram and bifurcation set (in the µ-plane) for
the differential equation (6).

(7) at the nonhyperbolic critical point at the origin is the three-parameter
family of vector fields

i = E+1 + 142x + µ3i2 - x4.

(8)

And this is indeed the case; cf. [C/S), pp. 206-208. The bifurcation diagram
for (8) is difficult to draw as it lies in R4; however, the bifurcation set
for (8) in the three-dimensional parameter space is shown in Figure 3; cf.
Figure 4.3, p. 208 in [G/S). The shape of the bifurcation surface shown in
Figure 3 gives this codimension-three bifurcation its name, the swallow-tail
bifurcation.

The bifurcation set in R3 consists of two saddle-node bifurcation surfaces,
SNl and SN2, which intersect in two cusp bifurcation curves, Cl and C2,
which intersect in a cusp at the origin. [The intersection of the surface
SNl with itself describes the locus of µ-points where (8) has two distinct
nonhyperbolic critical points at which saddle-node bifurcations occur.] For
parameter values in the shaded region in Figure 3 between the saddle-node
bifurcation surfaces, the differential equation (6) has four hyperbolic critical
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Figure S. The bifurcation set (in three-dimensional parameter space) for
the differential equation (8).

points: On SN2 and on the part of SNl adjacent to the shaded region
in Figure 3, it has two hyperbolic critical points and one nonhyperbolic
critical point; on the remaining part of SNl and at the origin, it has one
nonhyperbolic critical point; on the Cl and C2 curves, it has one hyperbolic
and one nonhyperbolic critical point; for points above the surface shown
in Figure 3, (8) has two hyperbolic critical points, and for points below
this surface (8) has no critical points. The various phase portraits for the
differential equation (8) are determined in Problem 1.

The examples discussed in this section were meant to illustrate the con-
cepts of the codimension and universal unfolding of a structurally unstable
vector field at a nonhyperbolic critical point. They also serve to illustrate
the fact that for a single zero eigenvalue, a multiplicity m critical point
results in a codimension-(m - 1) bifurcation. We close this section with
an example that illustrates once again the power of the center manifold
theory, not only in determining the qualitative behavior of a system at a
nonhyperbolic critical point, but also in determining the possible types of
qualitative dynamical behavior for nearby systems.

Example 1 (The Cusp Bifurcation for Planar Vector Fields). In
light of the comments made earlier in this section, it is not surprising that
the universal unfolding of the normal form

0 =-y
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is given by the two-parameter family of vector fields

2=/1 +/1.2X-S3

y = -y.

Figure 4. The phase portraits for the system (9) with JU2 > 0.

(9)

This system has a codimension-two, cusp bifurcation at µ = 0 E R2. The
bifurcation diagram and the bifurcation set (in the IA-plane) are shown
in Figure 2. The possible types of phase portraits for this system are
shown in Figure 4, where we see that there is a saddle-node at the points
x = (± ,2/3, 0) for points on the saddle-node bifurcation curves ,1 =

4,2/27 for µ2 > 0; there is a saddle at the origin for µ in the shaded
region in Figure 2, and the system (9) has exactly one critical point, a
stable node, at any µ-point outside the closure of that region and also at
µ = 0 (in which case the origin of this system is a nonhyperbolic critical
point). Notice that the middle phase portrait in Figure 4 does not appear
in Figure 9 of the previous section.

PROBLEM SET 3

1. (a) Draw the phase portraits for the differential equation (8) with
the parameter µ = (01,,2,,3) in the different regions of param-
eter space described in Figure 3.

(b) Draw the phase portraits for the system

iµl+,2x+µs52-x4
-y

with the parameter µ = (111, A2443) in the different regions of
parameter space described in Figure 3.

2. Determine a universal unfolding for the following system, and draw
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the various types of phase portraits possible for systems near this
system:

=xy
= -y-x2

Hint: Determine the flow on the center manifold as in Problem 3 in
Section 2.12.

3. Same thing as in Problem 2 for the system

x2-xy

-y+x2.
Hint: See Problem 4 in Section 2.12.

4. Same thing as in Problem 2 for the system

= x2y

y=-y-x2.
5. Same thing as in Problem 2 for the system

=-x4
-y.

6. Show that the universal unfolding of

ax2+bxy+cy2
y= -y+dx2+exy+ fy2

(a) has a codimension-one saddle-node bifurcation at µ = 0 if a 0 0,

(b) has a codimension-two cusp bifurcation at µ = 0 if a = 0 and
bd54 0,

(c) has a codimension-three '.wallow-tail bifurcation at µ = 0 if
a= b=0 andcd#0.

Hint: See Problem 6 in Section 2.12.

4.4 Hopf Bifurcations and Bifurcations of Limit
Cycles from a Multiple Focus

In the previous sections, we considered various types of bifurcations that
can occur at a nonhyperbolic equilibrium point xa of a system

is = f(x,µ) (1)
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depending on a parameter p E R when the matrix Df (xo, µo) had a simple
zero eigenvalue. In particular, we saw that the saddle-node bifurcation was
generic. In this section we consider various types of bifurcations that can
occur when the matrix Df(xo, po) has a simple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real part. In this case, the
implicit function theorem guarantees that for each p near po there will
be a unique equilibrium point xµ near xo; however, if the eigenvalues of
Df(x,,, p) cross the imaginary axis at p = µo, then the dimensions of
the stable and unstable manifolds of x,, will change and the local phase
portrait of (1) will change as p passes through the bifurcation value µo.
In the generic case, a Hopf bifurcation occurs where a periodic orbit is
created as the stability of the equilibrium point x,, changes. We illustrate
this idea with a simple example and then present a general theory for planar
systems. The reader should refer to [G/H], p. 150 or [Ru], p. 82 for the more
general theory of Hopf bifurcations in higher dimensional systems which is
summarized in Theorem 2 below. We also discuss other types of bifurcations
for planar systems in this section where several limit cycles bifurcate from a
critical point xo when Df(xo, po) has a pair of pure imaginary eigenvalues.

Example 1 (A Hopf Bifurcation). Consider the planar system
x=-y+x(µ-x2-y2)

x+y(p-x2-y2).
The only critical point is at the origin and

Df (O, µ) = 1 k
1.

By Theorem 4 in Section 2.10 of Chapter 2, the origin is a stable or an
unstable focus of this nonlinear system if p < 0 or if p > 0 respectively. For
it = 0, Df(0, 0) has a pair of pure imaginary eigenvalues and by Theorem 5
in Section 2.10 of Chapter 2 and Dulac's Theorem, the origin is either
a center or a focus for this nonlinear system with p = 0. Actually, the
structure of the phase portrait becomes apparent if we write this system
in polar coordinates; cf. Example 2 in Section 2.2 of Chapter 2:

t'=r(p-r2)
8=1.

We see that at p = 0 the origin is a stable focus and for p > 0 there is a
stable limit cycle

r,,: 'y. (t) = V ,"(cos t, sin t)T.

The curves r,, represent a one-parameter family of limit cycles of this
system. The phase portraits for this system are shown in Figure 1 and the
bifurcation diagram is shown in Figure 2. The upper curve in the bifurcation



4.4. Hopf Bifurcations and Bifurcations of Limit Cycles 351

µ 40 µ>o

Figure 1. The phase portraits for the system in Example 1.

Figure 2. The bifurcation diagram and the one-parameter family of limit
cycles r,, resulting from the Hopf bifurcation in Example 1.

diagram shown in Figure 2 represents the one-parameter family of limit
cycles r µ which defines a surface in R2 x R; cf. Figure 2. The bifurcation
of the limit cycle from the origin that occurs at the bifurcation value p = 0
as the origin changes its stability is referred to as a Hopf bifurcation.

Next, consider the planar analytic system

x = ax - y + P(x, y)
y = x + lay + 9(x, y) (2)

where the analytic functions

p(x,y) _ E aijxy' = (a20x2 + a11xy + a02y2)
i+.i>2

+ (a30x3 + a21x2y + a12xy2 + a03y3) + ...
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and

q(x, y) _ E bijx'V = (b20x2 + b11xy + b02y2)
i+j>>2

+ (b30x3 + b21x2y + b12xy2 + boay3) + .. .

In this case, for a = 0, Df (0, 0) has a pair of pure imaginary eigenvalues
and the origin is called a weak focus or a multiple focus. The multiplicity m
of a multiple focus was defined in Section 3.4 of Chapter 3 in terms of the
Poincare map P(s) for the focus. In particular, by Theorem 3 in Section 3.4
of Chapter 3, we have

P'(0) = e2ni.
for the system (2) and for µ = 0 we have P'(0) = 1 or equivalently d'(0) = 0
where d(s) = P(s) - s is the displacement function. For a = 0 in (2), the
Liapunov number a is given by equation (3) in Section 3.4 of Chapter 3 as

or =
32

[3(a3() + b03) + (a12 + b21) - 2(a2ob2o - ao2b02)

+ all(a02 + ago) - b,1(b02 + b2o)]. (3)

In particular, if a 0 then the origin is a weak focus of multiplicity one, it
is stable if a < 0 and unstable if or > 0, and a Hopf bifurcation occurs at
the origin at the bifurcation value u = 0. The following theorem is proved
in [A-III on pp. 261-264.

Theorem 1 (The Hopf Bifurcation). If or # 0, then a Hopf bifurcation
occurs at the origin of the planar analytic system (2) at the bifurcation value
p = 0; in particular, if a < 0, then a unique stable limit cycle bifurcates
from the origin of (2) as µ increases from zero and if a > 0, then a unique
unstable limit cycle bifurcates from the origin of (2) as µ decreases from
zero. If a < 0, the local phase portraits for (2) are topologically equivalent
to those shown in Figure 1 and there is a surface of periodic orbits which
has a quadratic tangency with the (x, y)-plane at the origin in R2 x R; cf.
Figure 2.

In the first case (a < 0) in Theorem 1 where the critical point generates
a stable limit cycle as µ passes through the bifurcation value µ = 0, we
have what is called a supercritical Hopf bifurcation and in the second case
(a > 0) in Theorem 1 where the critical point generates an unstable limit
cycle as p passes through the bifurcation value µ = 0, we have what is
called a subcritical Hopf bifurcation.

Remark 1. For a general planar analytic system
= ax + by + p(x,y)

(2')y = cx+dy+q(x,y)
with 0 = ad - be > 0, a + d = 0 and p(x,y),q(x,y) given by the above

series, the matrix

Df(O) = [c
a

d,
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will have a pair of imaginary eigenvalues and the origin will be a weak
focus; the Liapunov number a is then given by the formula

-31ro=
2bO312

{[ac(al l + al lb02 + ao2b11) + ab(b11 + a2obl l + a11b02)

+ c2(allao2 + 2a02b02) - 2ac(bo2 - a2oao2) - 2ab(a20 - b2obo2)

- b2(2a2ob2o + b11b2o) + (bc - 2a2)(blibo2 - aiiaio)]

- (a2 + bc)[3(cbo3 - ba3o) + 2a(a21 + b12) + (ca12 - bb2l)]}. (3')

Cf. [A-Il], p. 253. For a 96 0 in equation (3'), Theorem 1 with p = a + d
also holds for the system (2').

The addition of any higher degree terms to the linear system

i=1S-y
y=x+µy

will result in a Hopf bifurcation at the origin at the bifurcation value is = 0
provided the Liapunov number a 54 0. The hypothesis that f is analytic in
Theorem 1 can be weakened to f E C3(E x J) where E is an open subset
of R2 containing the origin and J C R is an interval. For f E Cl(E x J),
a one-parameter family of limit cycles is still generated at the origin at
the bifurcation value it = 0, but the surface of periodic orbits will not
necessarily be tangent to the (x, y)-plane at the origin; cf. Problem 2.

The following theorem, proved by E. Hopf in 1942, establishes the exis-
tence of the Hopf bifurcation for higher dimensional systems when Df (xo,
µ0) has a pair of pure imaginary eigenvalues, Ao and A0, and no other
eigenvalues with zero real part; cf. [G/fl, p. 151.

Theorem 2 (Hopi). Suppose that the C4-system (1) with x E R" and
is E R has a critical point xo for p = po and that Df(xo,po) has a sim-
ple pair of pure imaginary eigenvalues and no other eigenvalues with zero
real part. Then there is a smooth curve of equilibrium points x(p) with
x(µ0) = x0 and the eigenvalues, A(µ) and A(µ) of Df(x(p), p), which are
pure imaginary at p = µ0i vary smoothly with p. Furthermore, if

µ [ReA(µ)]a=µo 54 0,

then there is a unique two-dimensional center manifold passing through the
point (xo, µ0) and a smooth transformation of coordinates such that the
system (1) on the center manifold is transformed into the normal form

i = -y + ax(x2 + y2) - by(x2 + y2) + O(Ix14)
x + bx(x2 + y2) + ay(x2 + y2) + O(Ix14)

in a neighborhood of the origin which, for a 0 0, has a weak focus of
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multiplicity one at the origin and

i = µx - y + ax(x2 + y2) - by(x2 + y2)

y = x + µy + bx(x2 + y2) + ay(x2 + y2)

is a universal unfolding of this normal form in a neighborhood of the origin
on the center manifold.

In the higher dimensional case, if a # 0 there is a two-dimensional surface
S of stable periodic orbits for a < 0 [or unstable periodic orbits for a > 0;
cf. Problem 1(b)] which has a quadratic tangency with the eigenspace of
AO and ao at the point (xo,µo) E R" x R; i.e., the surface S is tangent to
the center manifold W°(xo) of (1) at the nonhyperbolic equilibrium point
xo for a = µo. Cf. Figure 3.

Figure 3. A one-parameter family of periodic orbits S resulting from a
Hopf bifurcation at a nonhyperbolic equilibrium point xo and a bifurcation
value µo.

We next illustrate the use of formula (3) for the Liapunov number a in
determining whether a Hopf bifurcation is supercritical or subcritical.

Example 2. The quadratic system

/.tx-y+x2
x+/2I+x2

has a weak focus of multiplicity one at the origin for p = 0 since by equa-
tion (3) the Liapunov number a = -3x 34 0. Furthermore, since a < 0, it
follows from Theorem 1 that a unique stable limit cycle bifurcates from the
origin as the parameter p increases through the bifurcation value p = 0;
i.e. the Hopf bifurcation is supercritical. The limit cycle for this system at
the parameter value p = .1 is shown in Figure 4. The bifurcation diagram
is the same as the one shown in Figure 2.
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Figure 4. The limit cycle for the system in Example 2 with it = .1.

If p = a = 0 in equation (2) where a is given by equation (3), then the
origin will be a weak focus of multiplicity m > 1 of the planar analytic
system (2). The next theorem, proved in Chapter IX of [A-II] shows that
at most m limit cycles can bifurcate from the origin as p varies through
the bifurcation value p = 0 and that there is an analytic perturbation of
the vector field in

i = -y + P(x,y) (4)

y = x + 4(x, y)
which causes exactly m limit cycles to bifurcate from the origin at U = 0. In
order to state this theorem, we need to extend the notion of the Cl-norm
defined on the class of functions C' (E) to the Ck-norm defined on the class
Ck(E); i.e., for f E Ck(E) where E is an open subset of R1, we define

Ilf Ilk = sup lf(x)l + sup IIDf(x)II + ... + sup IIDkf(x)II
E E E

where for the norms II
- II on the right-hand side of this equation we use

IIDkf(x)Il=maxi
akf(x)

axj, ... axjk

the maximum being taken over j,. .. , jk = 1, ... , n. Each of the spaces of
functions in Ck(E), bounded in the Ck-norm, is then a Banach space and
Ck+'(E) C Ck(E) for k = 0,1,2,....
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Theorem 3 (The Bifurcation of Limit Cycles from a Multiple
Focus). If the origin is a multiple focus of multiplicity m of the analytic
system (4) then for k > 2m + 1

(i) there is a 6 > 0 and an E > 0 such that any system a-close to (4) in
the C" -norm has at most m limit cycles in N6 (0) and

(ii) for any 6 > 0 and E > 0 there is an analytic system which is a-close
to (4) in the Ck-norm and has exactly m simple limit cycles in N6(0).

In Theorem 5 in Section 3.8 of Chapter 3, we saw that the Lienard system

x = y - (alx + a2x2 + + a2m+ix2m+11

y= -x
has at most m local limit cycles and that there are coefficients with a1, a3,
... , a2m+1 alternating in sign such that this system has m local limit cycles.
This type of system with al = - - = a2m = 0 and a2m+1 # 0 has a weak
focus of multiplicity m at the origin. We consider one such system with
m = 2 in the next example.

Example 3. Consider the system

x = y - E(px + a3x3 + a5x5]

-x
with a3 < 0, as > 0 and small E # 0. By (3'), if p = 0 and a3 = 0 then
a = 0. Therefore, the origin is a weak focus of multiplicity m > 2. And by
Theorem 5 in Section 3.8 of Chapter 3, it is a weak focus of multiplicity m <
2. Thus, the origin is a weak focus of multiplicity m = 2. By Theorem 2,
at most two limit cycles bifurcate from the origin as p varies through the
bifurcation value p = 0. To find coefficients a3 and as for which exactly
two limit cycles bifurcate from the origin at p = 0, we use Theorem 6 in
Section 3.8 of Chapter 3; cf. Example 4 in that section. We find that for
p> 0 and for sufficiently small e 0 0 the system

11

x=y-E [px-4µ1/2x3+ 16x5

y= -x
has exactly two limit cycles around the origin that are asymptotic to circles
of radius r = < p and r = ` p/4 as a -, 0. For e = .01, the limit cycles of
this system are shown in Figure 5 for p = .5 and p = 1. The bifurcation
diagram for this last system with small e 0 is shown in Figure 6.

A rich source of examples for planar systems having limit cycles are
systems of the form

x = -y+xo(r,p) (5)
y = x+yi,b(r,p)
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where r = x2 + y2. Many of Poincare's examples in [P] are of this form.
The bifurcation diagram, of curves representing one-parameter families of
limit cycles, is given by the graph of the relation -?J'(r, p) = 0 in the upper
half of the (µ, r)-plane where r > 0. The system in Example 1 is of this
form and we consider one other example of this type having a weak focus
of multiplicity two at the origin.

Y

Figure 5. The limit cycles for the system in Example 3 with µ = .5 and
µ=1.

Figure 6. The bifurcation diagram for the limit cycles which bifurcate from
the weak focus of multiplicity two of the system in Example 3 (with e < 0,
the stabilities being reversed for e > 0).
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Example 4. Consider the planar analytic system

-y + x(µ - r2)(µ - 2r2)

y = x + y(µ - r2)(µ - 2r2)

where r2 = x2 + y2. According to the above comment, the bifurcation dia-
gram is given by the curves r = f and r = µ/2 in the upper half of the
(µ, r)-plane; cf. Figure 7. In fact, writing this system in polar coordinates
shows explicitly that for µ > 0 there are two limit cycles represented by
y1(t) = ,fu-(cos t, sin t)T and 72(t) = µ/2(cos t, sin t)T . The inner limit
cycle 12(t) is stable and the outer limit cycle ryl(t) is unstable. The multi-
plicity of the weak focus at the origin of this system is two.

r

Figure 7. The bifurcation diagram for the system in Example 4.

As in the last two examples (and as in Theorem 5 in Section 3.8), we
can obtain polynomial systems with a weak focus of arbitrarily large mul-
tiplicity; however, it is a much more delicate question to determine the
maximum number of local limit cycles that are possible for a polynomial
system of fixed degree. The answer to this question is currently known only
for quadratic systems. Bautin [2) showed that a quadratic system can have
at most three local limit cycles and that there exists a quadratic system
with a weak focus of multiplicity three. The next theorem, established in
[62), gives us a complete set of results for determining the Liapunov num-
ber, Wk = d(2k+1)(0), or the multiplicity of the weak focus at the origin for
the quadratic system (6) below. We note that it follows from equation (3)
that o = 3aW1/2 for the quadratic system (6); cf. Problem 7.

Theorem 4 (Li). Consider the quadratic system

i = -y+ax2+bxy (6)

y = x + ex2 +mxy + ny2
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and define

W1 = a(b - 2P) - m(f + n)

W2 = a(2a + m)(3a - m)[a2(b - 21- n) + (t + n)2(n - b)]
W3 = a2e(2a + m)(2f + n)[a2(b - 21 - n) + (f + n)2(n - b)].

Then the origin is

(i) a weak focus of multiplicity 1 iff W1 # 0,

(ii) a weak focus of multiplicity 2 iff W1 = 0 and W2 # 0,

(iii) a weak focus of multiplicity 3 if W1 = W2 = 0 and W3 3& 0, and

(iv) a center iff W1 = W2 = W3 = 0.

Furthermore, if for k = 1, 2 or 3 the origin is a weak focus of multiplicity
k and the Liapunov number Wk < 0 (or Wk > 0), then the origin of (6) is
stable (or unstable).

Remark 2. It follows from Theorem 2 that the one-parameter family of
vector fields in Example 1 is a universal unfolding of the normal form

-y-x(x2+y2)
x-y(x2+y2)

(cf. the normal form in Problem 1(b) with a = -1 and b = 0) whose linear
part has a pair of pure imaginary eigenvalues ±i and which has o = -9a
according to (3). Thus, the Hopf bifurcation described in Example 1 or
in Theorem 2 is a codimension-one bifurcation. More generally, a bifurca-
tion at a weak focus of multiplicity m is a codimension-m bifurcation. See
Remark 4 at the end of Section 4.15.

Remark 3. The system in Example 1 defines a one-parameter family of
(negatively) rotated vector fields with parameter it E R (according to Def-
inition 1 in Section 4.6). And according to Theorem 5 in Section 4.6, any
one-parameter family of rotated vector fields can be used to obtain a uni-
versal unfolding of the normal form for a C' or polynomial system with a
weak focus of multiplicity one.

PROBLEM SET 4

1. (a) Show that for a + b # 0 the system

px - y + a(x2 + y2)x - b(x2 + y2)y + 0(Ix14)

3/ = x + py + a(x2 + y2)x + b(x2 + y2)y + 0(Ix14)

has a Hopf bifurcation at the origin at the bifurcation value
µ = 0. Determine whether it is supercritical or subcritical.
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(b) Show that for a $ 0 the system in the last paragraph in Sec-
tion 2.13 (or in Theorem 2 above),

i = µx - y + a(x2 + y2)x - b(x2 + y2)y + 0(Ix14)

x +,uy + b(x2 + y2)x + a(x2 + y2)y + 0(Ix14),

has a Hopf bifurcation at the origin at the bifurcation value
p = 0. Determine whether it is supercritical or subcritical. Note
that for 0 < r << 1 either one of the above systems defines a
one-parameter family of (negatively) rotated vector fields with
parameter p (according to Definition 1 in Section 4.6). Cf. Prob-
lem 2(b) in Section 4.6.

2. Consider the C1-system

=px - y - xx2+y2
x+µy-y x2+y2.

(a) Show that the vector field f defined by this system belongs to
C' (R2 x R); i.e., show that all of the first partial derivatives
with respect to x, y and p are continuous for all x, y and p.

(b) Write this system in polar coordinates and show that for p > 0
there is a unique stable limit cycle around the origin and that
for p < 0 there is no limit cycle around the origin. Sketch the
phase portraits for these two cases.

(c) Draw the bifurcation diagram and sketch the conical surface
generated by the one-parameter family of limit cycles of this
system.

3. Write the differential equation

x+µi+(x- x3)=0

as a planar system and use equation (3') to show that at the bifur-
cation value p = 0 the quantity a = 0. Draw the phase portrait for
the Hamiltonian system obtained by setting p = 0.

4. Write the system

i = -y + x(p - r2)(p - 2r2)
y = x + y(µ - r2)(u - 2r2)

in polar coordinates and show that for p > 0 there are two limit cycles
represented by y1(t) = f (cos t, sin t)T and 72(t) = µ/2(cos t,
sin t)T. Draw the phase portraits for this system for p < 0 and p > 0.
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5. Draw the bifurcation diagram in the (p, r)-plane for the system

2 = -y + x(r2 - p)(2r2 -,u)(3r2 - p)
x + y(r2 - p)(2r2 - p)(3r2 - p)

What can you say about the multiplicity m of the weak focus at the
origin of this system?

6. Use Theorem 6 in Section 3.8 of Chapter 3 to find coefficients a3(p),
a5(p) and a7 for which three limit cycles, asymptotic to circles of
radii r1 = pt/6/2, r2 = p1/6 and r3 = VA2-pl/6 as e - 0, bifurcate
from the origin of the Lienard system

x = y - e [px + a3x3 + a5x5 + a7x7]

-x
at the bifurcation value p = 0.

7. Use equation (3) to show that or = 37rW1/2 for the system (6) in
Theorem 4 with W1 given by the formula in that theorem.

8. Consider the quadratic system

=px-y+x2+xy
x+py+x2+mxy+ny2.

(a) For p = 0, derive a set of necessary and sufficient conditions
for this system to have a weak focus of multiplicity one at the
origin. If m = 0 or if n = -1, is the Hopf bifurcation at the
origin supercritical or subcritical?

(b) For p = 0, derive a set of necessary and sufficient conditions for
this system to have a weak focus of multiplicity two at the origin.
In this case, what happens as p varies through the bifurcation
value po = 0? Hint: See Theorem 5 in Section 4.6. Also, see
Problem 4(a) in Section 4.15.

(c) For it = 0, show that there is exactly one point in the (m, n)
plane for which this system has a weak focus of multiplicity three
at the origin. In this case, what happens asp varies through the
bifurcation value po = 0? (See the hint in part b.)

(d) For p = 0, show that there are exactly three points in the (m, n)
plane for which this system has a center. At which one of these
points do we have a Hamiltonian system?

9. Use equation (3') to show that a = kF[cF2 + (cF + 1)(F - E +
2c)], with the positive constant k = 3a/ [2IEFJ I1 + EFI3], for the
quadratic system

x = -x + Ey + y2
Fx+y-xy+cy2

with 1 + EF < 0. (This result will be useful in doing some of the
problems in Section 4.14).
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4.5 Bifurcations at Nonhyperbolic Periodic Orbits

Several interesting types of bifurcations can take place at a nonhyperbolic
periodic orbit; i.e., at a periodic orbit having two or more characteristic ex-
ponents with zero real part. As in Theorem 2 in Section 3.5 of Chapter 3,
one of the characteristic exponents is always zero. In the simplest case of a
nonhyperbolic periodic orbit when there is one other zero characteristic ex-
ponent, the periodic orbit r has a two-dimensional center manifold Wc(I')
and the simplest types of bifurcations that occur on this manifold are the
saddle-node, transcritical and pitchfork bifurcations, the saddle-node bifur-
cation being generic. This is the case when the derivative of the Poincare
map, DP(xo), at a point xo E t, has one eigenvalue equal to one. If DP(xo)
has one eigenvalue equal to -1, then generically a period-doubling bifur-
cation occurs which corresponds to a flip bifurcation for the Poincare map.
And if DP(xo) has a pair of complex conjugate eigenvalues on the unit cir-
cle, then generically r bifurcates into an invariant two-dimensional torus;
this corresponds to a Hopf bifurcation for the Poincare map. Cf. Chapter 2
in [Ruj.

We shall consider Cl-systems

is = f(x,µ) (1)

depending on a parameter µ E R where f E C' (E x J), E is an open subset
in R" and J C R is an interval. Let 0t(x,,u) be the flow of the system (1)
and assume that for .t = µo, the system (1) has a periodic orbit 1'o C E
given by x = Ot(xo,µo). Let E be the hyperplane perpendicular to 1'o at
point xo E ro. Then, using the implicit function theorem as in Theorem 1
in Section 3.4 of Chapter 3, it can be shown that there is a C1 function
r(x,,u) defined in a neighborhood N6(xo,,uo) of the point (xo,Fto) E E x J
such that

(x, fit) E E
for all (x, p) E N6(xo, so). As in Section 3.4 of Chapter 3, it can be shown
that for each µ E N6(µo),P(x,,u) is a Cl-diffeomorphism on N6 (x:0). Also,
if we assume that (1) has a one-parameter family of periodic orbits 1',,,
i.e., if P(x,,u) has a one-parameter family of fixed points xµ, then as in
Theorem 2 in Section 3.4 of Chapter 3, we have the following convenient
formula for computing the derivative of the Poincare map of a planar Cl-
system (1):

T,r
expJ V V. f(ym(t),,u)dt (2)

0
at a point xµ E 1', where the one-parameter family of periodic orbits

I,: x=yµ(t), 0<t<TK
and T. is the period of -y,, (t). Before beginning our study of bifurcations at
nonhyperbolic periodic orbits, we illustrate the dependence of the Poincare
map P(x,,u) on the parameter y with an example.
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Example 1. Consider the planar system

i = -y + x(lp - r2)
x+y(µ-r2)

of Example 1 in Section 4.4. As we saw in the previous section, a one-
parameter family of limit cycles

rµ: 7µ(t) = V 7`(cos t, sin t)T,

with p > 0, is generated in a supercritical Hopf bifurcation at the origin at
the bifurcation value p = 0. The bifurcation diagram is shown in Figure 2
in Section 4.4. In polar coordinates, we have

r = r(µ - r2)

B=1.

The first equation can be solved as a Bernoulli equation and for r(O) = ro
we obtain the solution

1/2

r(t, ro, p) = - + (2 - _2µtl -

[/A

1 ')erd /A J

for p > 0. On any ray from the origin, the Poincare map P(ro, p) _
r(2n, ro, µ); i.e.,

rl r 1 1)
P(ro, µ) =

p + `ro - µ
e-4µA

l

1/2

It is not difficult to compute the derivative of this function with respect to
ro and obtain

3/2
_ 111L (1 -1)eDP(ro,.u) =

3 + \r0 -4µA]

Solving P(r,,u) = r, we obtain a one-parameter family of fixed points of
P(r, µ), rµ = for p > 0 and this leads to

DP(rµ, p) = e 4pA.

This formula can also be obtained using equation (2); cf. Problem 1. Since
for p > 0, DP(rµ, p) < 1, the periodic orbits r,, are all stable and hyper-
bolic.

The system (1) is said to have a nonhyperbolic periodic orbit ro through
the point x0 at a bifurcation value po if DP(xo, lto) has an eigenvalue of
unit modulus. We begin our study of bifurcations at nonhyperbolic peri-
odic orbits with some simple examples of the saddle-node, transcritical and
pitchfork bifurcations that occur when DP(xo, µo) has an eigenvalue equal
to one.
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Example 2 (A Saddle-Node Bifurcation at a Nonhyperbolic Pe-
riodic Orbit). Consider the planar system

i=-y-x[µ-(r2-1)2]
y = x - y[p - (r2 - 1)2]

which is of the form of equation (5) in Section 4.4. Writing this system in
polar coordinates yields

Y'=-r[µ-(r2-1)2]
e=1.

For u > 0 there are two one-parameter families of periodic orbits

rµ : y (t) = 1 ± µ1/2 (cost, sin t)T

with parameter µ. Since the origin is unstable for 0 < p < 1, the smaller
limit cycle r is stable and the larger limit cycle r+ is unstable. For µ = 0
there is a semistable limit cycle 1'o represented by -yo(t) = (cost, sin t)T.
The phase portraits for this system are shown in Figure 1 and the bifurca-
tion diagram is shown in Figure 2. Note that there is a supercritical Hopf
bifurcation at the origin at the bifurcation value p = 1.

In Example 2 the points rµ = 1 f µl12 are fixed points of the Poincar
map P(r, p) of the periodic orbit -to(t) along any ray from the origin

E = {xER2Ir>0,0=6o};

i.e., we have d( 1 -±A112, p) = 0 where d(r, µ) = P(r, p) - r is the dis-
placement function. The bifurcation diagram is given by the graph of the
relation d(r, p) = 0 in the (p, r)-plane. Using equation (2), we can compute
the derivative of the Poincare map at rµ = 1 -±A I / 2:

DP( 1fµ1/2, u) =

cf. Problem 2. We see that for 0 < µ < 1, DP( 1 - µ1/2, u) < 1 and
DP(/1 + p1/2, p) > 1; the smaller limit cycle is stable and the larger
limit cycle is unstable as illustrated in Figures 1 and 2. Furthermore, for
µ = 0 we have DP(1,0) = 1, i.e., -yo (t) is a nonhyperbolic periodic orbit
with both of its characteristic exponents equal to zero.

Remark 1. In general, for planar systems, the bifurcation diagram is given
by the graph of the relation d(s, p) = 0 in the (p, s)-plane where

d(s, p) = P(s, p) - s

is the displacement function along a straight line E normal to the nonhyper-
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Y

µ<o

0<µ<1 µai

Figure 1. The phase portraits for the system in Example 2.

fl

Figure 2. The bifurcation diagram for the saddle-node bifurcation at the
nonhyperbolic periodic orbit -yo(t) of the system in Example 2.

bolic periodic orbit ro at xo. We take s to be the signed distance along the
straight line E, with s positive at points on the exterior of r o and negative
at points on the interior of r o, as in Figure 3 in Section 3.4 of Chapter 3.
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Figure 3. The one-parameter family of periodic orbits S of the system in
Example 2.

In this context, it follows that for each fixed value of u, the values of s for
which d(s, µ) = 0 define points xj on E near the point xo E 1'o fl E through
which the system (1) has periodic orbits ryj(t) = 4(x3). For example, in
Figure 2, each vertical line µ = constant with 0 < µ < 1, intersects the
curve d(r, p) = 0 in two points (p, 1 and the system in Example 2
has periodic orbits ryµ (t) through the points (V/'l -±A'12, 0) on the x-axis in
the phase plane. As in Figure 2 in Section 4.4, each one-parameter family of
periodic orbits generates a surface S in R2 x R. For example, the periodic
orbits of the system in Example 2 generate the surface S shown in Figure 3.
Since in general there is only one surface generated at a saddle-node bifur-
cation at a nonhyperbolic periodic orbit, we regard the two one-parameter
families of periodic orbits (with parameter IA) as belonging to one and the
same family of periodic orbits. In this case, we can always define a new
parameter /3 (such as the arc length along a path on the surface S) so that
rv(P) defines a one-parameter family of periodic orbits with parameter /3.

Example 3 (A Transcritical Bifurcation at a Nonhyperbolic Pe-
riodic Orbit). Consider the planar system

i=-y-x(1-r2)(1+IA -r2)
y = x - y(1 - r2)(1 + µ - r2).

In polar coordinates we have

r = -r(1 -r2)(1+IA -r2)
9=1.

For all µ E R, this system has a one-parameter family of periodic orbits
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represented by

-yo(t) = (cost,sint)T

and for µ > -1, there is another one-parameter family of periodic orbits
represented by

ry,,(t) = l +,u(cost,sint)T.

The bifurcation diagram, showing the transcritical bifurcation that occurs
at the nonhyperbolic periodic orbit yo(t) at the bifurcation value p = 0, is
shown in Figure 4. Note that a subcritical Hopf bifurcation occurs at the
nonhyperbolic critical point at the origin at the bifurcation value p = -1.

raJ1+/.1.

ral

IL

Figure 4. The bifurcation diagram for the transcritical bifurcation at the
nonhyperbolic periodic orbit -yo(t) of the system in Example 3.

In Example 3 the points rµ = l p and rµ = 1 are fixed points of the
Poincare map P(r, p) of the nonhyperbolic periodic orbit r o; i.e., we have

d( 1+µ,µ)=0

for all p > -1 and
d(1,µ) = 0

for all p E R where d(r, µ) = P(r, µ) - r. Furthermore, using equation (2),
we can compute

DP( 1 -+ IA, µ) = e'aµ(l+0)"

and

DP(1, p) = e4µ*,

cf. Problem 2. This determines the stability of the two families of periodic
orbits as indicated in Figure 4. We see that DP(1,0) = 1; i.e., there is a
nonhyperbolic periodic orbit ro with both of its characteristic exponents
equal to zero at the bifurcation value p = 0. In this example, there are two
distinct surfaces of periodic orbits, a cylindrical surface and a parabolic
surface, which intersect in the nonhyperbolic periodic orbit ro; cf. Prob-
lem 3.



368 4. Nonlinear Systems: Bifurcation Theory

Example 4 (A Pitchfork Bifurcation at a Nonhyperbolic Periodic
Orbit). Consider the planar system

i = -y + x(1 - r2)]µ - (r2 - 1)2]
y = x + y(1 - r2)[/2 - (r2 - 1)2].

In polar coordinates we have

r(1 -r 2)(µ - (r2 - 1)2]

8=1.

For all µ E R, this system has a one-parameter family of periodic orbits
represented by

-yo (t) = (cost, sin t)T

and for µ > 0 there is another family (with two branches as in Remark 1)
represented by

ryµ (t) = 1 ± µl/2 (cost, sin t)T.

Using equation (2) we can compute

DP( 1 ± µ1I2, µ) = e4µ(lf,.l/')7r

and

DP(1,1i) = e'"µ.

This determines the stability of the two families of periodic orbits as in-
dicated in Figure 5(a). We also see that DP(1,0) = 1; i.e., there is a

r

1

0

1

fl

Figure 5. The bifurcation diagram for the pitchfork bifurcation at the
nonhyperbolic periodic orbit -yo(t) of the system (a) in Example 4 and (b)
in Example 4 with t -t.
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nonhyperbolic periodic orbit ro with both of its characteristic exponents
equal to zero at the bifurcation value p = 0. Note that a Hopf bifurcation
occurs at the nonhyperbolic critical point at the origin at the bifurcation
value µ = 1. Also, note that if we reverse the sign of t in this example,
i.e., let t - -t, then we reverse the stability of the periodic orbits and we
would have the bifurcation diagram with a pitchfork bifurcation shown in
Figure 5(b).

Using the implicit function theorem, conditions can be given on the
derivatives of the Poincare map which imply the existence of a saddle-node,
transcritical or pitchfork bifurcation at a nonhyperbolic periodic orbit of
(1). We shall only give these conditions for planar systems. In the next
theorem P(s, p) denotes the Poincare map along a normal line E to a non-
hyperbolic periodic orbit ro at a bifurcation value p = po in (1). As in
Section 4.2, D denotes the partial derivative of P(s, p) with respect to the
spatial variable s.

Theorem 1. Suppose that f E C2(E x J) where E is an open subset of
R2 and J C R is an interval. Assume that for y = po the system (1) has a
periodic orbit ro C E and that P(s, p) is the Poincarg map for r'o defined
in a neighborhood N6(0, po). Then if P(0, po) = 0, DP(0, po) = 1,

D2P(0, po) 340 and Pµ(0, po) # 0, (3)

it follows that a saddle-node bifurcation occurs at the nonhyperbolic periodic
orbit ro at the bifurcation value p = po; i.e., depending on the signs of the
expressions in (3), there are no periodic orbits of (1) near ro when p < po
(or when p > po) and there are two periodic orbits of (1) near ro when
p > po (or when p < po). The two periodic orbits of (1) near ro are
hyperbolic and of the opposite stability.

If the conditions (3) are changed to
P,,(0, po) = 0 DP,. (0, po) 0 0 and

(4)
D2P(0, po) 4 0,

then a transcritical bifurcation occurs at the nonhyperbolic periodic orbit 1'o
at the bifurcation value p = po. And if the conditions (3) are changed to

Pµ(0,po)=0, DP,,(0,po) `0
5

D2P(0, po) = 0 and D3P(0, po) 96 0,
then a pitchfork bifurcation occurs at the nonhyperbolic periodic orbit ro at
the bifurcation value p = po.

Remark 2. Under the conditions (3) in Theorem 1, the periodic orbit 1'0
is a multiple limit cycle of multiplicity m = 2 and exactly two limit cycles
bifurcate from the semi-stable limit cycle ro as p varies from po in one sense
or the other. In particular, if D2P(0, po) and Pµ(0, po) have opposite signs,
then there are two limit cycles near ro for all sufficiently small p - po > 0
and if D2P(0, po) and P,,(0, po) have the same sign, then there are two
limit cycles near ro for all sufficiently small po - p > 0.
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Remark 3. It follows from equation (2) that

DP(0, po) = efO" "f(^to(*),µo)d*

where To is the period of the nonhyperbolic periodic orbit

ro: x = -YO (t).

Furthermore, in this case we also have a formula for the partial derivative
of the Poincare map P with respect to the parameter p in terms of the
vector field f along the periodic orbit ro:

Pu(0, µo) =
-wo jTo

af,O vfoao)d*f
A f7o(t), po)dt (6)f())I

where wo = ±1 according to whether ro is positively or negatively oriented,
and the wedge product of two vectors u = (ul, u2)T and v = (V1' V2)T is
given by the determinant

uAv= = ulv2 - v1U2.

This formula was apparently first derived by Andronov et al.; cf. equa-
tion (36) on p. 384 in [A-Il]. It is closely related to the Melnikov function
defined in Section 4.9.

These same types of bifurcations also occur in higher dimensional systems
when the derivative of the Poincar6 map, DP(xo, µo), for the periodic orbit
ro has a single eigenvalue equal to one and no other eigenvalues of unit
modulus; cf., e.g. Theorem 11.2, p. 65 in [Ru]. Furthermore, in this case the
saddle-node bifurcation is generic; cf. pp. 58 and 64 in [Ru].

Before discussing some of the other types of bifurcations that can occur
at nonhyperbolic periodic orbits of higher dimensional systems (1) with
n > 3, we first discuss some of the other types of bifurcations that can
occur at multiple limit cycles of planar systems. Recall that a limit cycle
7o(t) is a multiple limit cycle of (1) if and only if

0
fTO

V.f(7o(t))dt=0.

Cf. Definition 2 in Section 3.4 of Chapter 3. Analogous to Theorem 2 in
Section 4.4 for the bifurcation of m limit cycles from a weak focus of multi-
plicity m, we have the following theorem, proved on pp. 278-282 in [A-II),
for the bifurcation of m limit cycles from a multiple limit cycle of multi-
plicity m of a planar analytic system

x = P(x, y) (7)
Q(x,y).



4.5. Bifurcations at Nonhyperbolic Periodic Orbits 371

Theorem 2. If ro is a multiple limit cycle of multiplicity m of the planar
analytic system (7), then

(i) there is a 6 > 0 and an e > 0 such that any system a-close to (7) in
the C'°-norm has at most m limit cycles in a 6-neighborhood, N6 (170),
of I'o and

(ii) for any 6 > 0 and e > 0 there is an analytic system which is a-close to
(7) in the C'-norm and has exactly m simple limit cycles in N6(ro).

It can be shown that the nonhyperbolic limit cycles in Examples 2 and
3 are of multiplicity m = 2 and that the nonhyperbolic limit cycle in
Example 4 is of multiplicity m = 3. It can also be shown that the system
(5) in Section 4.4 with

t,(r,p) = [p - (r2 - 1)2][p - 2(r2 - 1)2]

has a multiple limit cycle -yo(t) = (cost, sin t)T of multiplicity m = 4 at
the bifurcation value p = 0 and that exactly four hyperbolic limit cycles
bifurcate from -yo(t) as p increases from zero; cf. Problem 4. Codimension-
(m - 1) bifurcations occur at multiplicity-m limit cycles of planar systems.
These bifurcations were studied by the author in [39].

We next consider some examples of period-doubling bifurcations which
occur when DP(xo, po) has a simple eigenvalue equal to -1 and no other
eigenvalues of unit modulus. Figure 6 shows what occurs geometrically at a
period-doubling bifurcation at a nonhyperbolic periodic orbit r o (shown as
a dashed curve in Figure 6). Since trajectories do not cross, it is geometri-
cally impossible to have a period-doubling bifurcation for a planar system.

Figure 6. A period-doubling bifurcation at a nonhyperbolic periodic
orbit I'o.
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This also follows from the fact that, by equation (2), DP(xo, po) = 1 for
any nonhyperbolic limit cycle 1'o.

Suppose that P(x, P) is the Poincare map defined in a neighborhood
of the point (xo, po) E E x J where xo is a point on the periodic orbit
ro of (1) with u = p0, and suppose that DP(xo,Po) has an eigenvalue
-1 and no other eigenvalues of unit modulus. Then generically a period-
doubling bifurcation occurs at the nonhyperbolic periodic orbit ro and it
is characterized by the fact that for all P near Po, and on one side or the
other of Po, there is a point x, E E, the hyperplane normal to ro at xo,
such that xµ is a fixed point of P2 = P o P; i.e.,

P2(X,,,P) = Xµ.

Since the periodic orbits with periods approximately equal to 2To corre-
spond to fixed points of the second iterate p2 of the Poincare map, the
bifurcation diagram, which can be obtained by using a center manifold re-
duction as on pp. 157-159 in [G/H], has the form shown in Figure 7. The
curves in Figure 7 represent the locus of fixed points of p2 in the (P, x)
plane where x is the distance along the curve where the center manifold
W°(ro) intersects the hyperplane E. In Figure 7(a) the solid curve for P > 0
corresponds to a single periodic orbit whose period is approximately equal
to 2To for small P > 0. Since there is only one periodic orbit whose period
is approximately equal to 2To for small P > 0, the bifurcation diagram for
a period-doubling bifurcation is often shown as in Figure 7(b).

x

0

x

-r_---- IL0

Figure 7. The bifurcation diagram for a period-doubling bifurcation.

We next look at some period-doubling bifurcations that occur in the
Lorenz system introduced in Example 4 in Section 3.2 of Chapter 3. The
Lorenz system was first studied by the meteorologist-mathematician E. N.
Lorenz in 1963. Lorenz derived a relatively simple system of three non-
linear differential equations which captures many of the salient features of
convective fluid motion. The Lorenz system offers a rich source of examples
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of various types of bifurcations that occur in dynamical systems. We dis-
cuss some of these bifurcations in the next example where we rely heavily
on Sparrow's excellent numerical study of the Lorenz system [S]. Besides
period-doubling bifurcations, the Lorenz system also exhibits a homoclinic
loop bifurcation and the attendant chaotic motion in which the numerically
computed solutions oscillate in a pseudo-random way, apparently forever;
cf. [S] and Section 4.8.

Example 5 (The Lorenz System). Consider the Lorenz system

z = 10(y - x)

y=px - y - xz (8)

i = xy - 8z/3

depending on the parameter p with µ > 0. These equations are symmetric
under the transformation (x, y, z) -i (-x, -y, z). Thus, if (8) has a periodic
orbit r (such as the ones shown in Figures 11 and 12 below), it will also
have a corresponding periodic orbit r' which is the image of r under this
transformation. Lorenz showed that there is an ellipsoid E2 C R3 which all
trajectories eventually enter and never leave and that there is a bounded
attracting set of zero volume within E2 toward which all trajectories tend.
For 0 < p < 1, this set is simply the origin; i.e., for 0 < p < 1 there is only
the one critical point at the origin and it is globally stable; cf. Problem 6 in
Section 3.2 of Chapter 3. For p = 1, the origin is a nonhyperbolic critical
point of (8) and there is a pitchfork bifurcation at the origin which occurs
as p increases through the bifurcation value it = 1. The two critical points
which bifurcate from the origin are located at the points

C1,2 = (±2 2(p - 1)/3, ±2 2(p - 1)/3, FL - 1);

cf. Problem 6 in Section 3.2 of Chapter 3. For p > 1 the critical point
at the origin has a one-dimensional unstable manifold W"(0) and a two-
dimensional stable manifold W'(0). The eigenvalues A1,2 at the critical
points C1,2 satisfy a cubic equation and they all have negative real part for
1 < p < µH where PH = 470/19 24.74; cf. [S], p. 10. Parenthetically, we
remark that A1,2 are both real for 1 < I< 1.34 and there are complex pairs
of eigenvalues at C1,2 for p > 1.34. The behavior near the critical points of
(8) for relatively small µ (say 0 < p < 10) is summarized in Figure 8. Note
that the z-axis is invariant under the flow for all values of p.
As p increases, the trajectories in the unstable manifold at the origin W"(0)
leave the origin on increasingly larger loops before they spiral down to the
critical points C1,2; cf. Figure 9. As p continues to increase, Sparrow's
numerical work shows that a very interesting phenomenon occurs in the
Lorenz system at a parameter value µ' = 13.926: The trajectories in the
unstable manifold W"(0) intersect the stable manifold W'(0) and form two
homoclinic loops (which are symmetric images of each other); cf. Figure 10.
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Figure 8. A pitchfork bifurcation occurs at the origin of the Lorenz system
at the bifurcation value µ = 1.

Figure 9. The stable and unstable manifolds at the origin for
10< t<p'!-- 13.926.

Homoclinic loop bifurcations are discussed in Section 4.8, although most
of the theoretical results in that section are for two-dimensional systems
where generically a single periodic orbit bifurcates from a homoclinic loop.
In this case, a pair of unstable periodic orbits r1,2 also bifurcates from
the two homoclinic loops as µ increases beyond µ' as shown in Figure 11;
however, something much more interesting occurs for the three-dimensional
Lorenz system (8) which has no counterpart for two-dimensional systems.
An infinite number of periodic orbits of arbitrarily long period bifurcate
from the homoclinic loops as µ increases beyond µ' and there is a bounded
invariant set which contains all of these periodic orbits as well as an infinite
number of nonperiodic motions; cf. Figure 6 in Section 3.2 and [S], p. 21.
Sparrow refers to this type of homoclinic loop bifurcation as a "homoclinic
explosion" and it is part of what makes the Lorenz system so interesting.
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Figure 10. The homoclinic loop which occurs in the Lorenz system at the
bifurcation value µ' ^_- 13.926.

Figure 11. A symmetric pair of unstable periodic orbits which result from
the homoclinic loop bifurcation at µ = Al.

The critical points C1,2 each have one negative and two pure imagi-
nary eigenvalues at the parameter value p = µH = 24.74. A subcritical
Hopf bifurcation occurs at the nonhyperbolic critical points C1,2 at the
bifurcation value p = µH; cf. Section 4.4. Sparrow has computed the
unstable periodic orbits r1,2 for several parameter values in the range
13.926 = p' < p < µH 24.74. The projection of 1'2 on the (x, z)-plane is
shown in Figure 12; cf. [S], p. 27.

We see that the periodic orbit r2 approaches the critical point at the
origin and forms a homoclinic loop as p decreases to µ': For µ > µH, all
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Figure 12. Some periodic orbits in the one-parameter family of periodic
orbits generated by the subcritical Hopf bifurcation at the critical point C2
at the bifurcation value µ = µH = 24.74. Reprinted with permission from
Sparrow (Ref. [S]).

three critical points are unstable and, at least for It > µH and µ near PH,
there must be a strange invariant set within E2 toward which all trajectories
tend. In fact, from the numerical results in [S], it seems quite certain that,
at least for µ near PH, the Lorenz system (8) has a strange attractor as
described in Example 4 in Section 3.2 of Chapter 3. This strange attractor
actually appears at a value µ = PA = 24.06 < µH at which value there is
a heteroclinic connection of W"(0) and W'(F1,2); cf. [S], p. 32.

In order to describe some of the period-doubling bifurcations that occur
in the Lorenz system and to see what happens to all of the periodic orbits
born in the homoclinic explosion that occurs at µ = /a' = 13.926, we next
look at the behavior of (8) for large µ (namely for µ > p = 313); cf. [S],
Chapter 7. For µ > 313, Sparrow's work [S] indicates that there is only one
periodic orbit F,o and it is stable and symmetric under the transformation
(x, y, z) - (-x, -y, z). For µ > 313, the stable periodic orbit r,,. and
the critical points 0, Cl and C2 make up the nonwandering set Q. The
projection of the stable, symmetric periodic orbit r on the (x, z)-plane
is shown in Figure 13 for p = 350. At a bifurcation value µ 313, the
nonhyperbolic periodic orbit undergoes a pitchfork bifurcation as described
earlier in this section; cf. the bifurcation diagram in Figure 5(b). As A
decreases below µ = 313, the periodic orbit I' becomes unstable and two
stable (nonsymmetric) periodic orbits are born; cf. the bifurcation diagram
in Figure 15 below. The projection of one of these stable, nonsymmetric,
periodic orbits on the (x, z)-plane is shown in Figure 13 for µ = 260;
cf. [S], p. 67. Recall that for each nonsymmetric periodic orbit r in the
Lorenz system, there exists a corresponding nonsymmetric periodic orbit
r' obtained from r under the transformation (x, y) z) -+ (-x, -y, z).

As p continues to decrease below µ = µ a period-doubling bifurcation
occurs in the Lorenz system at the bifurcation value µ = µ2 ^ 224. The
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Figure 13. The symmetric and nonsymmetric periodic orbits of the Lorenz
system which occur for large µ. Reprinted with permission from Sparrow
(Ref. [SJ).

projection of one of the resulting periodic orbits r2 whose period is ap-
proximately equal to twice the period of the periodic orbit 171 shown in
Figure 13 is shown in Figure 14(a) for u = 222. There is another one r2
which is the symmetric image of r2. This is not the end of the period-
doubling story in the Lorenz system! Another period-doubling bifurcation
occurs at a nonhyperbolic periodic orbit of the family r2 at the bifurca-
tion value p = µ4 = 218. The projection of one of the resulting periodic
orbits F4 whose period is approximately equal to twice the period of the
periodic orbit r2 (or four times the period of F1) is shown in Figure 14(b)
for p = 216.2. There is another one 1,4 which is the symmetric image of r4;
cf. [S], p. 68.

Y 222

Figure 14. The nonsymmetric periodic orbits which result from pe-
riod-doubling bifurcations in the Lorenz system. Reprinted with permission
from Sparrow (Ref. [S]).
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µ
Figure 15. The bifurcation diagram showing the pitchfork bifurcation and
period-doubling cascade that occurs in the Lorenz system. Reprinted with
permission from Sparrow (Ref. [S]).

And neither is this the end of the story, for as µ continues to decrease
below /[.4, more and more period-doubling bifurcations occur. In fact, there
is an infinite sequence of period-doubling bifurcations which accumulate
at a bifurcation value µ = µ` = 214. This is indicated in the bifurcation
diagram shown in Figure 15; cf. [S], p. 69. This type of accumulation of
period-doubling bifurcations is referred to as a period-doubling cascade.
Interestingly enough, there are some universal properties common to all
period-doubling cascades. For example the limit of the ratio

/`n-1 -An
e

An - /'n+1

where An is the bifurcation value at which the nth period-doubling bifur-
cation occurs, is equal to some universal constant 6 = 4.6992...; cf., e.g.,
[S], p. 58.

Before leaving this interesting example, we mention one other period-
doubling cascade that occurs in the Lorenz system. Sparrow's calculations
(S) show that at µ 166 a saddle-node bifurcation occurs at a nonhyper-
bolic periodic orbit. For µ < 166, this results in two symmetric periodic
orbits, one stable and one unstable. The stable, symmetric, periodic or-
bit is shown in Figure 16 for µ = 160. As µ continues to decrease, first a
pitchfork bifurcation and then a period-doubling cascade occurs, similar to
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Figure 16. A stable, symmetric periodic orbit born in a saddle-node bi-
furcation at p = 166; a stable, nonsymmetric, periodic orbit born in a
pitchfork bifurcation at p ^_- 154; and a stable, nonsymmetric, periodic
orbit born in a period-doubling bifurcation at p = 148. Reprinted with
permission from Sparrow (Ref. [S]).

that discussed above. One of the stable, nonsymmetric, periodic orbits re-
sulting from the pitchfork bifurcation which occurs at p ^_- 154.5 is shown
in Figure 16 for µ = 148.5. One of the double-period, periodic orbits is
also shown in Figure 16 for µ = 147.5. The bifurcation diagram for the
parameter range 145 < p < 166 is shown in Figure 17; cf. [S], p. 62.

There are many other period-doubling cascades and homoclinic explo-
sions that occur in the Lorenz system for the parameter range 25 < p < 145
which we will not discuss here. Sparrow has studied several of these bifur-
cations in [S]; cf. his summary on p. 99 of [S). Many of the periodic or-
bits born in the saddle-node and pitchfork bifurcations and in the period-
doubling cascades in the Lorenz system (8) persist as p decreases to the
value p = p' = 13.926 at which the first homoclinic explosion occurs and
which is where they terminate as p decreases. Others terminate in other
homoclinic explosions as p decreases (or as p increases).

To really begin to understand the complicated dynamics that occur in
higher dimensional systems (with n > 3) such as the Lorenz system, it is
necessary to study dynamical systems defined by maps or diffeomorphisms
such as the Poincar6 map. While the numerical studies of Lorenz, Sparrow
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Figure 17. The bifurcation diagram showing the saddle-node and pitch-
fork bifurcations and the period-doubling cascade that occur in the Lorenz
system for 145 < p < 167. Reprinted with permission from Sparrow (Ref.
[S])

and others have made it clear that the Lorenz system has some complicated
dynamics which include the appearance of a strange attractor, the study of
dynamical systems defined by maps rather than flows has made it possible
to mathematically establish the existence of strange attractors for maps
which have transverse homochnic orbits; cf. [G/H] and [Wi]. Much of the
success of this approach is due to the program of study of differentiable
dynamical systems begun by Stephen Smale in the sixties. In particular,
the Smale Horseshoe map, which occurs whenever there is a transverse
homoclinic orbit, motivated much of the development of the modern theory
of dynamical systems; cf., e.g. [Ru]. We shall discuss some of these ideas
more thoroughly in Section 4.8; however, this book focuses on dynamical
systems defined by flows rather than maps.

Before ending this section on bifurcations at nonhyperbolic periodic or-
bits, we briefly mention one last type of generic bifurcation that occurs at
a periodic orbit when DP(xo, µ0) has a pair of complex conjugate eigen-
values on the unit circle. In this case, an invariant, two-dimensional torus
results from the bifurcation and this corresponds to a Hopf bifurcation at
the fixed point x0 of the Poincare map P(x, µ); cf. [G/H], pp. 160-165 or
[Ru], pp. 63 and 82. The idea of what occurs in this type of bifurcation is
illustrated in Figure 18; however, an analysis of this type of bifurcation is
beyond the scope of this book.

PROBLEM SET 5
1. Using equation (2), compute the derivative of the Poincare map DP

(rµ, µ) for the one-parameter family of periodic orbits

-to(t) = \/A-(cost, sin t)T

of the system in Example 1.
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Figure 18. A bifurcation at a nonhyperbolic periodic orbit which results
in the creation of an invariant torus and which corresponds to a Hopf
bifurcation of its Poincare map.

2. Verify the computations of the derivatives of the Poincare maps ob-
tained in Examples 2, 3 and 4 by using equation (2).

3. Sketch the surfaces of periodic orbits in Examples 3 and 4.

4. Write the planar system

i = -y + x[µ - (r2 - 1)2][µ - 4(r2 - 1)2]

y = x + y[µ - (r2 - 1)2][p - 4(r2 - 1)2]

in polar coordinates and show that for all p > 0 there are one-
parameter families of periodic orbits given by

y (t) = 1 tµ1/2(cos t, sin t)T

and

rye (t) = 1 ± µ1/2/2(cos t, sin t)T.

Using equation (2), compute the derivative of the Poincare maps,
DP(/1 ± p1/2, µ) and DP(/1 ± µl 2/2, µ), for these families. And
draw the bifurcation diagram.

5. Show that the vector field f defined by the right-hand side of

i = -y + x[µ - (r - 1)2]
y=x+y[µ-(r-1)2]

is in C1(R2) but that f 0 C2(R2). Write this system in polar co-
ordinates, determine the one-parameter families of periodic orbits,
and draw the bifurcation diagram. How do the bifurcations for this
system compare with those in Example 2?
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6. For the functions 0(r,µ) given below, write the system (5) in Sec-
tion 4.4 in polar coordinates in order to determine the one-parameter
families of periodic orbits of the system. Draw the bifurcation dia-
gram in each case and determine the various types of bifurcations.

(a) ''(r,µ) = (r - 1) (r - µ - 1)
(b) 1/i(r,µ) _ (r - 1) (r - µ - 1) (r + p)

(c) r/'(r, µ) _ (r - 1)(r -,u - 1)(r + µ + 1)
(d) ',(r,.u) = (fp - 1)(r2 - 1)I1s - 1 - (r2 - 1)21

7. (One-dimensional maps) A map P: R - R is said to have a nonhy-
perbolic fixed point at x = xo if P(xo) = xo and IDP(xo)I = 1.

(a) Show that the map P(x, µ) = µ - x2 has a nonhyperbolic fixed
point x = -1/2 at the bifurcation value µ = -1/4. Sketch
the bifurcation diagram, i.e. sketch the locus of fixed points of
P, where P(x, µ) = x, in the (µ, x) plane and show that the
map P(x, µ) has a saddle-node bifurcation at the point (µ, x) _
(-1/4, -1/2).

(b) Show that the map P(x, µ) = µx(1 - x) has a nonhyperbolic
fixed point at x = 0 at the bifurcation value µ = 1. Sketch the
bifurcation diagram in the (µ, x) plane and show that P(x, µ)
has a transcritical bifurcation at the point (µ, x) = (1, 0).

8. (Two-dimensional maps) A map P: R2 - R2 is said to have a non-
hyperbolic fixed point at x = xo if P(xo) = xo and DP(xo) has an
eigenvalue of unit modulus.

(a) Show that the map P(x, µ) = (µ - x2, 2y)T has a nonhyperbolic
fixed point at x = (-1/2, 0)T at the bifurcation value µ = -1/4.
Sketch the bifurcation diagram in the (µ, x) plane and show that
P(x, µ) has a saddle-node bifurcation at the point (µ, x, y) _
(-1/4,-1/2,0).

(b) Show that the map P(x,p) = (y,-x/2 + µy - y')' has a
nonhyperbolic fixed point at x = 0 at the bifurcation value
µ = 3/2. Sketch the bifurcation diagram in the (µ, x) plane
and show that P(x, µ) has a pitchfork bifurcation at the point
(p,x,y) = (3/2,0,0).

Hint: Follow the procedure outlined in Problem 7(a).

9. Consider the one-dimensional map P(x, µ) = µ - x2 in Problem 7(a).
Compute DP(x, µ) (where D stands for the partial derivative with
respect to x) and show that along the upper branch of fixed points
given by x = (-1 + 4p)/2 we have

DP(-l+VF+ ,µ) = -1
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at the bifurcation value p = 3/4. Thus, for is = 3/4, the map P(x, µ)
has a nonhyperbolic fixed point at x = 1/2 and DP(1/2, 3/4) =
-1. We therefore expect a period-doubling bifurcation or a so-called
flip bifurcation for the map P(x, µ) to occur at the point (µo, xo) =
(3/4,1/2) in the (µ, x) plane. Show that this is indeed the case by
showing that the iterated map

P2(x,µ) =µ-(µ-x2)2

has a pitchfork bifurcation at the point (µo,xo) = (3/4,1/2); i.e.,
show that the conditions (4) in Section 4.2 are satisfied for the map
F = P2. (These conditions reduce to F(xo, µo) = xo, DF(xo, lb) =
1, D2F(xo, Fb) = 0, D3F(xo, po) 0 0, F,,(xo, µo) = 0, and DF,,(xo, loo)
34 0.) Show that the pitchfork bifurcation for F = P2 is super-
critical by showing that for µ = 1, the equation P2(x, p) = x has
four solutions. Sketch the bifurcation diagram for P2, i.e. the locus
of points where P2(x,µ) = x and show that this implies that the
map P(x, µ) has a period-doubling or flip bifurcation at the point
(µo,xo) = (3/4,1/2)-

10. Show that the one-dimensional map P(x, p) = µx(1 - x) of Prob-
lem 7(b) has a nonhyperbolic fixed point at x = 2/3 at the bifur-
cation value µ = 3 and that DP(2/3, 3) = -1. Show that the map
P(x, µ) has a flip bifurcation at the point (µo, xo) = (3,2/3) in the
(µ, x) plane. Sketch the bifurcation diagram in the (µ, x) plane.

11. Why can't the one-dimensional maps in Problems 9 and 10 be the
Poincare maps of any two-dimensional system of differential equa-
tions? Note that they could be the Poincar6 maps of a higher di-
mensional system (with n > 3) where x is the distance along the
one-dimensional manifold WC(r) C E where the center manifold of a
periodic orbit r of the system intersects a hyperplane E normal to r.

4.6 One-Parameter Families of Rotated Vector
Fields

We next study planar analytic systems

is=f(x,µ) (1)

which depend on the parameter µ E R in a very specific way. We assume
that as the parameter p increases, the field vectors f(x,p) or equivalently
(P(x, y, µ), Q(x, y, µ))T all rotate in the same sense. If this is the case,
then the system (1) is said to define a one-parameter family of rotated
vector fields and we can prove some very specific results concerning the
bifurcations and global behavior of the limit cycles and separatrix cycles of
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such a system. These results were established by G. D. F. Duff [7] in 1953
and were later extended by the author [23], [63].

Definition 1. The system (1) with f E C'(R2 x R) is said to define a
one-parameter family of rotated vector fields if the critical points of (1) are
isolated and at all ordinary points of (1) we have

(2)

If the sense of the above inequality is reversed, then the system (1) is said
to define a one-parameter family of negatively rotated vector fields.

Note that the condition (2) is equivalent to f A f, > 0. Since the angle
that the field vector f = (P, Q)' makes with the x-axis

O = tan-, Q,

it follows that
a0 PQ,, - QP,,
8p

= P2 + Q2

Hence, condition (2) implies that at each ordinary point x of (1), where
P2 + Q2 0 0, the field vector f(x, lc) at x rotates in the positive sense as µ
increases. If in addition to the condition (2) at each ordinary point of (1)
we have tan O(x, y, p) -+ ±oo as it -+ ±oo, or if O(x, y, µ) varies through
7r radians as µ varies in R, then (1) is said to define a semicomplete family
of rotated vector fields or simply a seemicompllete family. Any vector field

F(x)
- \Y(x,y)/

can be embedded in a semicomplete family of rotated vector fields

x = X (x, y) - lzY(x, y) (3)
y = AX(x,y)+Y(x,y)

with parameter µ E R. And as Duff pointed out, any vector field F =
(X,Y)T can also be embedded in a "complete" family of rotated vector
fields

x = X(x,y)cosu-Y(x,y)sinµ (4)
y = X(x,y)sinµ+Y(x,y)cosju

with parameter y E (-7r, ir]. The family of rotated vector fields (4) is called
complete since each vector in the vector field defined by (4) rotates through
27r radians as the parameter µ varies in (-ir, 7r]. Duff also showed that
any nonsingular transformation of coordinates with a positive Jacobian
determinant takes a semicomplete (or complete) family of rotated vector
fields into a semicomplete (or complete) family of rotated vector fields;
cf. Problem 1. We first establish the result that limit cycles of any one-
parameter family of rotated vector fields expand or contract monotonically
as the parameter p increases. In order to establish this result, we first prove
two lemmas which are of some interest in themselves.
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Lemma 1. Cycles of distinct fields of a semicomplete family of rotated
vector fields do not intersect.

Proof. Suppose that r,,, and rµ2 are two cycles of the distinct vector fields
F(µ1) and F(µ2) defined by (1). Suppose for definiteness that µl < µ2 and
that the cycles r,,, and r,.2 have a point in common. Then at that point

ArgF(µl) < ArgF(µ2);

i.e., F(µ2) points into the interior of I'µ,. But according to Definition 1,
this is true at every point on Fµ,F. Thus, once the trajectory lµ2 enters the
interior of the Jordan curve r,,, , it can never leave it. This contradicts the
fact that the cycle lµ2 is a closed curve. Thus, I'µ, and rJ2 have no point
in common.

Lemma 2. Suppose that the system (1) defines a one-parameter family
of rotated vector fields. Then there exists an outer neighborhood U of any
externally stable cycle rµa of (1) such that through every point of U there
passes a cycle r,. of (1) where µ < po if I, is positively oriented and µ >
µo if rµo is negatively oriented. Corresponding statements hold regarding
unstable cycles and inner neighborhoods.

Proof. Let N 0 denote the outer, co-neighborhood of rJ and let x be
any point of NE with 0 < e < co. Let I'(x,µ) denote the trajectory of (1)
passing through the point x at time t = 0. Let Q be a line segment normal
to r, which passes through x. If co and 11A -µoI are sufficiently small, t is a
transversal to the vector field F(p) in N 0. Let P(x, p) be the Poincare map
for the cycle l'µ0 with x E P. Then since r,,0 is externally stable, a meets x,
P(x, µo) and r 0 in that order. Furthermore, by continuity, P(x, µ.) moves
continuously along a as µ varies in a small neighborhood of po, and for
I /A - µo I sufficiently small, the arc of r(x, p) from x to P(x, µ) is contained
in N 0. We shall show that for e > 0 sufficiently small, there is a p < µo if
l'µ0 is positively oriented and a µ > µo if r,a is negatively oriented such
that P(x, p) = x. The result stated will then hold for the neighborhood
U = N. The trajectories are differentiable, rectifiable curves. Let s denote
the arc length along r(x, µo) measured in the direction of increasing t and
let n denote the distance taken along the outer normals to this curve; cf.
[A-II), p. 110. In NE, the angle function ()(x, ,u) satisfies a local Lipschitz
condition

Ie(s, nl, µ) - e(s, n2, µ)I < Min1 - n2l
for some constant M independent of s, n, µ and c < co. Also the continuous
positive function OE)/8µ has in NE a positive lower bound m independent of
E. Let n = h(s, µ) be the equation of r(x, µ) so that h(s, µo) = 0. Suppose
for definiteness that 1µp is positively oriented and let µ decrease from µo.
It then follows that for µo - µ sufficiently small

ds
>

1
[m(po - p) - Mh].



386 4. Nonlinear Systems: Bifurcation Theory

Integrating this differential inequality (using Gronwall's Lemma) from 0 to
L, the length of the arc r(x, µ) from x to P(x, p), we get

h(L,p) ? M (po - p)[1 - e-ML121 = K(po - µ)
Thus, we see that h(L, p) > e for µo - µ > e/K. But this implies that
for such a value of µ the point P(x, µ) has moved outward from rµ0 on
t past x. Since the motion of P(x, p) along f is continuous, there exists
an intermediate value pi of it such that P(x, pi) = x. It follows that
Ipi - µoI <- e/K. If e > 0 is sufficiently small, f'(x,,u) remains in NO for
µl < µ < µo. This proves the result. If r,+O is negatively oriented we need
only write µ - µo in place of µo - µ in the above proof.

The next theorem follows from Lemmas 1 and 2. Cf. [7].

Theorem 1. Stable and unstable limit cycles of a one-parameter family of
rotated vector fields (1) expand or contract monotonically as the parameter
µ varies in a fixed sense and the motion covers an annular neighborhood of
the initial position.

The following table determines the variation of the parameter p which
causes the limit cycle r to expand. The opposite variation of p will cause
I'µ to contract. AM > 0 indicates increasing p. The orientation of r is
denoted by w and the stability of r,, by o where (+) denotes an unstable
limit cycle and (-) denotes a stable limit cycle.

W + + - -
O' + - + -

+ +

Figure 1. The variation of the parameter µ which causes the limit cycle r'µ
to expand.

The next theorem, describing a saddle-node bifurcation at a semistable
limit cycle of (1), can also be proved using Lemmas 1 and 2 as in [7]. And
since f A fµ = PQ,, - QP, > 0, it follows from equation (6) in Section 4.5
that the partial derivative of the Poincar6 map with respect to the param-
eter it is not zero; i.e.,

ad(n, µ)
0c 0

aµ
where d(n, p) is the displacement function along t and n is the distance
along the transversal e. Thus, by the implicit function theorem, the relation
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d(n, ji) = 0 can be solved for p. as a function of n. It follows that the only
bifurcations that can occur at a multiple limit cycle of a one-parameter
family of rotated vector fields are saddle-node bifurcations.

Theorem 2. A semistable limit cycle 1', of a one-parameter family of
rotated vector fields (1) splits into two simple limit cycles, one stable and
one unstable, as the parameter µ is varied in one sense and it disappears
as µ is varied in the opposite sense.

The variation of it which causes the bifurcation of r'µ into two hyperbolic
limit cycles is determined by the table in Figure 1 where in this case o,
denotes the external stability of the semistable limit cycle I',,.

A lemma similar to Lemma 2 can also be proved for separatrix cycles
and graphics of (1) and this leads to the following result. Cf. [7].

Theorem 3. A separatrix cycle or graphic r o of a one-parameter family of
rotated vector fields (1) which is isolated from other cycles of (1) generates
a unique limit cycle on its interior or exterior (which is of the same stability
as r'o on its interior or exterior respectively) as the parameter µ is varied
in a suitable sense as determined by the table in Figure 1.

Recall that in the proof of Theorem 3 in Section 3.7 of Chapter 3, it
was shown that the Poincare map is defined on the interior or exterior
of any separatrix cycle or graphic of (1) and this is the side on which a
limit cycle is generated as A varies in an appropriate sense. The variation
of A which causes a limit cycle to bifurcate from the separatrix cycle or
graphic is determined by the table in Figure 1. In this case, o denotes
the external stability when the Poincare map is defined on the exterior of
the separatrix cycle or graphic and it denotes the negative of the internal
stability, i.e., (-) for an interiorly unstable separatrix cycle or graphic and
(+) for an interiorly stable separatrix cycle or graphic, when the Poincare
map is defined on the interior of the separatrix cycle or graphic.

For example, if for µ = µo we have a simple, positively oriented (w = +1),
separatrix loop at a saddle which is stable on its interior (so that o' = +1),
a unique stable limit cycle is generated on its interior as µ increases from
µo (by Table 1); cf. Figure 2.

µ<µo I> M0

Figure 2. The generation of a limit cycle at a separatrix cycle of (1).
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r, r2

Figure S. The generation of a limit cycle at a graphic of (1).

As another example, consider the case where for µ = µo we have a graphic
ro composed of two separatrix cycles r'1 and 1'2 at a saddle point as shown
in Figure 3. The orientation is negative so w = -1. The graphic is externally
stable so ao = -1. Thus, by Table 1 and Theorem 3, a unique, stable limit
cycle is generated by the graphic ro on its exterior as p increases from µo.
Similarly, the separatrix cycles F1 and F2 are internally stable so that o1
and o2 = +1. Thus, by Table 1 and Theorem 3, a unique, stable limit cycle
is generated by each of the separatrix cycles r'1 and 1'2 on their interiors
as it decreases from µo. Cf. Figure 3.

Consider one last example of a graphic ro which is composed of two
separatrix cycles F1 and r2 with F1 on the interior of r2 as shown in
Figure 4 with µ = µo. In this case, r1 is positively oriented (so that w1 =
+1) and is internally stable (so that o1 = +1). Thus, F1 generates a unique,
stable limit cycle on its interior as µ increases from µo. Similarly, F2 is
negatively oriented (so that w2 = -1) and it is externally stable (so that
o,2 = -1). Thus, r2 generates a unique, stable limit cycle on its exterior
as u increases from µo. And the graphic ro is negatively oriented (so that
wo = -1) and it is internally stable (so that oo = +1). Thus ro generates a
unique, stable limit cycle on its interior asp decreases from R. Cf. Figure 4.

µµo

Figure 4. The generation of a limit cycle at a graphic of (1).
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Specific examples of these types of homoclinic loop bifurcations are given
in Section 4.8 where homoclinic loop bifurcations are discussed for more
general vector fields. Of course, we do not have the specific results for more
general vector fields that we do for the one-parameter families of rotated
vector fields being discussed in this section.

Theorems 1 and 2 above describe the local behavior of any one-parameter
family of limit cycles generated by a one-parameter family of rotated vector
fields (1). The next theorem, proved by Duff [7] in 1953 and extended
by the author in [24] and [63], establishes a result which describes the
global behavior of any one-parameter family of limit cycles generated by a
semicomplete analytic family of rotated vector fields. Note that in the next
theorem, as in Section 4.5, the two limit cycles generated at a saddle-node
bifurcation at a semistable limit cycle are considered as belonging to the
same one-parameter family of limit cycles since they are both defined by the
same branch of the relation d(n, µ) = 0 where d(n, p) is the displacement
function.

Theorem 4. Let rA be a one-parameter family of limit cycles of a semi-
complete analytic family of rotated vector fields with parameter µ and let G
be the annular region covered by r,, as p varies in R. Then the inner and
outer boundaries of G consist of either a single critical point or a graphic
of (1) on the Bendixson sphere.

We next cite a result describing a Hopf bifurcation at a weak focus of
a one-parameter family of rotated vector fields (1). We assume that the
origin of the system (1) has been translated to the weak focus, i.e., that
the system (1) has been written in the form

is = A(µ)x + F(x, µ) (5)

as in Section 2.7 of Chapter 2. Duff [7] showed that if (5) defines a semicom-
plete family of rotated vector fields, then if det A(po) # 0 at some po E R,
it follows that det A(µ) 0 0 for all µ E R.

Theorem 5. Assume that F E C2(R2 x R), that the system (5) defines
a one-parameter family of rotated vector fields with parameter µ E R, that
detA(po) > 0, trace A(po) = 0, trace A(µ) $ 0, and that the origin is not
a center of (5) for Ec = po. It then follows that the origin of (5) absorbs or
generates exactly one limit cycle at the bifurcation value p = po.

The variation of p from po, Ap, which causes the bifurcation of a limit
cycle, is determined by the table in Figure 1 where or denotes the stability
of the origin of (5) at µ = µo (which is the same as the stability of the
bifurcating limit cycle) and w denotes the orientation of the bifurcating
limit cycle which is the same as the 0-direction in which the flow swirls
around the weak focus at the origin of (5) for p = µo. Note that if the
origin of (5) is a weak focus of multiplicity one, then the stability of the
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origin is determined by the sign of the Liapunov number a which is given
by equation (3) or (3') in Section 4.4.

We cite one final result, established recently by the author [25J, which
describes how a one-parameter family of limit cycles, r,,, generated by a
semicomplete analytic family of rotated vector fields with parameter µ E R,
terminates. The termination of one-parameter families of periodic orbits of
more general vector fields is considered in the next section. In the statement
of the next theorem, we use the quantity

p,, = max 1xI
xEr,.

to measure the maximum distance of the limit cycle r,, from the origin
and we say that the orbits in the family become unbounded as µ -+ µo if
Pa-4ooas p-+µo.
Theorem 6. Any one-parameter family of limit cycles r generated by a
semi-complete family of rotated vector fields (1) either terminates as the
parameter µ or the orbits in the family become unbounded or the family
terminates at a critical point or on a graphic of (1).

Some typical bifurcation diagrams of global one-parameter families of
limit cycles generated by a semicomplete family of rotated vector fields are
shown in Figure 5 where we plot the quantity p,, versus the parameter p.

Pµ Pµ P11

11

Figure 5. Some typical bifurcation diagrams of global one-parameter fam-
ilies of limit cycles of a one-parameter family of rotated vector fields.

In the first case in Figure 5, a one-parameter family of limit cycles is
born in a Hopf bifurcation at a critical point of (1) at µ = 0 and it expands
monotonically as u -+ oo. In the second case, the family is born at a Hopf
bifurcation at µ = 0, it expands monotonically with increasing µ, and it
terminates on a graphic of (1) at µ =µl. In the third case, there is a Hopf
bifurcation at µ = µl, a saddle-node bifurcation at µ = 0, and the family
expands monotonically to infinity, i.e., p, - oo, as µ - A2-

We end this section with some examples that display various types of
limit cycle behavior that occur in families of rotated vector fields. Note
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that many of our examples are of the form of the system

x=-y+x[*(r)-y]
x+y[*(r)-A] (6)

which forms a one-parameter family of rotated vector fields since

IP
Q r2>0P Q.

at all ordinary points of (6). The bifurcation diagram for (6) is given by
the graph of the relation r[-O(r) - p] = 0 in the region r > 0.

Example 1. The system

x=-px-y+xr2
x-/sy+yr2

has the form of the system (6) and therefore defines a one-parameter family
of rotated vector fields. The only critical point is at the origin, det A(p) =
1 + p2 > 0, and trace A(µ) = -2p. According to Theorem 5, there is a
Hopf bifurcation at the origin at µ = 0; and since for p = 0 the origin is
unstable (since r = r3 for p = 0) and positively oriented, it follows from
the table in Figure 1 that a limit cycle is generated as p increases from
zero. The bifurcation diagram in the (p, r)-plane is given by the graph of
r[r2 - µ] = 0; cf. Figure 6.

r i
fl

Figure 6. A Hopf bifurcation at the origin.

Example 2. The system

z = -y + x[-p + (r2 - 1)2]
y=x+y[-p+(r2-1)2]

forms a one-parameter family of rotated vector fields with parameter U.
The origin is the only critical point of this system, det A(Ep) = 1 + (1 -
p)2 > 0, and trace A(IA) = 2(1 - p). According to Theorem 5, there is
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I

r

V

µ

Figure T. The bifurcation diagram for the system in Example 2.

a Hopf bifurcation at the origin at µ = 1, and since the origin is stable
(cf. equation (3) in Section 4.4) and positively oriented, according to the
table in Figure 1, a one-parameter family of limit cycles is generated as µ
decreases from one. The bifurcation diagram is given by the graph of the
relation r[-µ + (r2 - 1)2] = 0; cf. Figure 7. We see that there is a saddle-
node bifurcation at the semistable limit cycle 10(t) = (cost, sin t)T at the
bifurcation value µ = 0. The one-parameter family of limit cycles born at
the Hopf bifurcation at µ = 1 terminates as the parameter and the orbits
in the family increase without bound.

The system considered in the next example satisfies the condition (2) in
Definition 1 except on a curve G(x, y) = 0 which is not a trajectory of (1).
The author has recently established that all of the results in this section
hold for such systems which are referred to as one-parameter families of
rotated vector fields (mod G = 0); cf. [23] and [63].

Example 3. Consider the system

s=-x+y2
-µx+y+µy2-xy.

We have

IP Q1
= (-x + y2)2 > 0

except on the parabola x = y2 which is not a trajectory of this system. The
critical points are at the origin, which is a saddle, and at (1, ±1). Since

Df(1' ±1) =
1 f2

I-p 1 f2µ

we have det A(p) = 2 > 0 and tr A(µ) = -1 ± 211 at the critical points
(1, ±1). Since this system is invariant under the transformation (x, y, µ)
(x, -y, -µ), we need only consider µ > 0. According to Theorem 5, there is
a Hopf bifurcation at the critical point (1, 1) at µ = 1/2. By equation (3')
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1.52

/A,.51

Figure 8. Phase portraits for the system in Example 3.
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in Section 4.4, a < 0 for p = 1/2 and therefore since w = -1, it follows from
the table in Figure 1 that a unique limit cycle is generated at the critical
point (1, 1) as it increases from p = 1/2. This stable, negatively oriented
limit cycle expands monotonically with increasing u until it intersects the
saddle at the origin and forms a separatrix cycle at a bifurcation value p =
pi which has been numerically determined to be approximately .52. The
bifurcation diagram is the same as the one shown in the second diagram in
Figure 5. Numerically drawn phase portraits for various values of µ E [.4, .6]
are shown in Figure 8.

Remark. It was stated by Duff in (7) and proved by the author in [63] that
a rotation of the vector field causes the separatrices at a hyperbolic saddle
to precess in such a way that, after a (positive) rotation of the field vectors
through 7r radians, a stable separatrix has turned (in the positive sense
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about the saddle point) into the position of one of the unstable separatrices
of the initial field. In particular, a rotation of a vector field with a saddle
connection will cause the saddle connection to break.

PROBLEM SET 6

1. Show that any nonsingular transformation with a positive Jacobian
determinant takes a one-parameter family of rotated vector fields into
a one-parameter family of rotated vector fields.

2. (a) Show that the system

px+y-xr2
-x+py-yr2

defines a one-parameter family of rotated vector fields. Use The-
orem 5 and the table in Figure 1 to determine whether the Hopf
bifurcation at the origin of this system is subcritical or super-
critical. Draw the bifurcation diagram.

(b) Show that the system

px-y+(ax-by)(x2+y2)+O(Ix14)
x +,uy + (ay + bx)(x2 + y2) + O(Ix14)

of Problem 1(b) in Section 4.4 defines a one-parameter family
of negatively rotated vector fields with parameter p E R in
some neighborhood of the origin. Determine whether the Hopf
bifurcation at the origin is subcritical or supercritical. Hint:
From equation (3) in Section 4.4, it follows that a = 97ra.

3. Show that the system

±=y(l+x)+AX +(µ-1)x2
y = -x(l +x)

satisfies the condition (2) except on the vertical lines x = 0 and x =
-1. Use the results of this section to show that there is a subcritical
Hopf bifurcation at the origin at the bifurcation value µ = 0. How
must the one-parameter family of limit cycles generated at the Hopf
bifurcation at µ = 0 terminate according to Theorem 6? Draw the
bifurcation diagram.

4. Draw the global phase portraits for the system in Problem 3 for
-3 < p < 1. Hint: There is a saddle-node at the point (0, ±1, 0) at
infinity.

5. Draw the global phase portraits for the system in Example 3 for the
parameter range -2 < µ < 2. Hint: There is a saddle-node at the
point (±1,0,0) at infinity.
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6. Show that the system

x=y+y2
y=-2x+µy-xy+(p+1)y2

satisfies condition (2) except on the horizontal lines y = 0 and y = -1.
Use the results of this section to show that there is a supercritical
Hopf bifurcation at the origin at the value p = 0. Discuss the global
behavior of this limit cycle. Draw the global phase portraits for the
parameter range -1 < µ < 1.

7. Show that the system

x=-x+y+y2
y = -Ax + (1z + 4)y + (µ - 2)y2 - xy

satisfies the condition (2) except on the curve x = y + y2 which is
not a trajectory of this system. Use the results of this section to show
that there is a subcritical Hopf bifurcation at the upper critical point
and a supercritical Hopf bifurcation at the lower critical point of this
system at the bifurcation value u = 1. Discuss the global behavior of
these limit cycles. Draw the global phase portraits for the parameter
range 0<µ<4.

4.7 The Global Behavior of One-Parameter
Families of Periodic Orbits

In this section we discuss the global behavior of one-parameter families of
periodic orbits of a system of differential equations

x=f(x,A) (1)

depending on a parameter µ E R. We assume that f is a real, analytic
function of x and p and that the components of f are relatively prime.
The global behavior of families of periodic orbits has been a topic of recent
research interest. We cite some of the recent results on this topic which
generalize the corresponding results in Section 4.6 and, in particular, we
cite a classical result established in 1931 by A. Wintner referred to as
Wintner's Principle of Natural Termination.

In Section 4.6 we saw that the only kind of bifurcation that occurs at
a nonhyperbolic limit cycle of a family of rotated vector fields is a saddle-
node bifurcation. We regard the two limit cycles generated at a saddle-
node bifurcation as belonging to the same one-parameter family of limit
cycles; e.g., we can use the distance along a normal arc to the family as
the parameter. For families of rotated vector fields, we have the result
in Theorem 6 of Section 4.6 that any one-parameter family of limit cycles
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expands or contracts monotonically with the parameter until the parameter
or the size of the orbits in the family becomes unbounded or until the family
terminates at a critical point or on a graphic of (1).

The next examples show that we cannot expect this simple type of be-
havior in general. The first example shows that, in general, limit cycles do
not expand or contract monotonically with the parameter. This permits
"cyclic families" to occur as illustrated in the second example. And the
third example shows that several one-parameter families of limit cycles can
bifurcate from a nonhyperbolic limit cycle.

Example 1. Consider the system

_ -y + x[(x - /t)Z + y2 - 1]
x+y[(x-µ)2+y2-1].

According to Theorem 1 and equation (3) in Section 4.4, there is a one-
parameter family of limit cycles generated in a Hopf bifurcation at the
origin asp increases from the bifurcation value p = -1. This family termi-
nates in a Hopf bifurcation at the origin as the parameter µ approaches the
bifurcation value µ = 1 from the left. Some of the limit cycles in this one-
parameter family of limit cycles are shown in Figure 1 for the parameter
range 0 < µ < 1. Since this system is invariant under the transformation
(x, y, µ) -' (-x, -y, -µ), the limit cycles for µ E (-1, 0) are obtained by
reflecting those in Figure 1 about the origin. We see that the orbits do
not expand or contract monotonically with the parameter. The bifurcation
diagram for this system is shown in Figure 2.

Remark 1. Even though the growth of the limit cycles in a one-parameter
family of limit cycles is, in general, not monotone, we can still determine
whether a hyperbolic limit cycle ro expands or contracts at a point xo E l'o
by computing the rate of change of the distance s along a normal a to the
limit cycle ro: x = -yo(t) at the point xo = ryo(to); i.e.

ds _ dM(0,µo)

dµ da(0,Fto)

where d(s, µ) = P(s, µ) - s is the displacement function along e,

d8 (0, o) = oI °.f (7o(t),µo)dt - 1
by Theorem 2 in Section 3.4 of Chapter 3, and

-41o To+to rTO+to V.f(-fo(r),µo)dr
dµ(0,Ito) =

If(xo,Po)I Jto
e to f A fy0(t),µo)dt

as in equation (6) in Section 4.5. All of the quantities which determine the
sign of ds/dµ, i.e., which determine whether ro expands or contracts at the
point xo = -y(to) E to, have the same sign along r o except the integral

Io - fTo+to ej`TO+eo V f(7o(*),vo)drf
A fµ('Yo(t),µo)dt.

to
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,/ / -,
1 .2 .3 ...

Figure 1. Part of the one-parameter family of limit cycles of the system in
Example 1.

0

Figure 2. The bifurcation diagram for the system in Example 1.

And the sign of this integral determines whether the limit cycle r o in the
one-parameter family of limit cycles is expanding or contracting with the
parameter µ according to the following table which is similar to the table
in Figure 1 of Section 4.6. The following table determines the change in
Dµ = p - po which causes an expansion of the limit cycle at the point
xo = -y(to) E 1'o. As in Section 4.6, w denotes the orientation of 1'o and o
its stability.
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WIo + + - -
0 + - + -

Dµ + - - +

For a one-parameter family of rotated vector fields, f A fµ > 0 and therefore
the integral Io is positive at all points on 1'o. The above formula for ds/dp
is then equivalent to a formula given by Duff [7] in 1953.

Example 2. Consider the system

_ -y + x[(r2 - 2)2 + p2 - 1]
x + y[(r2 -2)2+,,2 - 1].

The bifurcation diagram is given by the graph of the relation (r2 - 2)2 +
p2 -1 = 0 in the (p, r)-plane. It is shown in Figure 3. We see that there are
saddle-node bifurcations at the nonhyperbolic periodic orbits represented
by y(t) = /(cost, sin t)T at the bifurcation values p. = ±1. This type of
one-parameter family of periodic orbits is called a cyclic family. Loosely
speaking a cyclic family is one that has a closed-loop bifurcation diagram.

JL

µ
-1 0 1

Figure 3. The bifurcation diagram for the system in Example 2.

Example 3. Consider the analytic system

x=-y+x[p-(r2-1)21[p-(r2-1)1[p+(r2-1)]
y = x + y[p - (r2 -1)2) [p - (r2 - 1)][p + (r2 - 1)]
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The bifurcation diagram is given by the graph of the relation

[A-(r2-1)2J[p-(r2-1)] [A+(r2-1)] =0

Figure 4. The bifurcation diagram for the system in Example 3.

in the (,a, r)-plane with r > 0. It is shown in Figure 4. The main point of
this rather complicated example is to show that we can have several one-
parameter families of limit cycles passing through a nonhyperbolic periodic
orbit. In this case there are three one-parameter families passing through
the point (0, 1) in the bifurcation diagram. There is also a Hopf bifurcation
at the origin at the bifurcation value µ = -1.

As in the last example, the bifurcation diagram can be quite compli-
cated; however, in 1931 A. Wintner [34] showed that, in the case of analytic
systems (1), there are at most a finite number of one-parameter families
of periodic orbits that bifurcate from a nonhyperbolic periodic orbit and
any one-parameter family of periodic orbits can be continued through a
bifurcation in a unique way. Winter used Puiseux series in order to estab-
lish this result. Any one-parameter family of periodic orbits generates a
two-dimensional surface in RI x R where each cross-section of the sur-
face obtained by holding p constant, p = po, is a periodic orbit ro of
(1); cf. Figure 3 in Section 4.5. In this context, a cyclic family is simply
a two-dimensional torus in R" x R. If a one-parameter family of periodic
orbits of an analytic system (1) cannot be analytically extended to a larger
one-parameter family of periodic orbits, it is called a maximal family. The
question of how a maximal one-parameter family of periodic orbits termi-
nates is answered by the following theorem proved by A. Wintner in 1931.
Cf. [34).

Theorem 1 (Wintner's Principle of Natural Termination). Any
maximal, one-parameter family of periodic orbits of an analytic system (1)
is either cyclic or it terminates as either the parameter p, the periods Tµ,
or the periodic orbits l:'J, in the family become unbounded; or the family
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terminates at an equilibrium point or at a period-doubling bifurcation orbit
of (1).

As was pointed out in Section 4.5, period-doubling bifurcations do not
occur in planar systems and it can be shown that the only way that the
periods T. of the periodic orbits r in a one-parameter family of periodic
orbits of a planar system can become unbounded is when the orbits r,,
approach a graphic or degenerate critical point of the system. Hence, for
planar analytic systems, we have the following more specific result, recently
established by the author [25, 39], concerning the termination of a maximal
one-parameter family of limit cycles.

Theorem 2 (Perko's Planar Termination Principle). Any maximal,
one-parameter family of limit cycles of a planar, relatively prime, analytic
system (1) is either cyclic or it terminates as either the parameter µ or the
limit cycles in the family become unbounded; or the family terminates at a
critical point or on a graphic of (1).

We see that, except for the possible occurrence of cyclic families, this
planar termination principle for general analytic systems is exactly the
same as the termination principle for analytic families of rotated vector
fields given by Theorem 6 in Section 4.6. Some results on the termination
of the various family branches of periodic orbits of nonanalytic systems (1)
have recently been given by Alligood, Mallet-Paret and Yorke [1]. Their
results extend Wintner's Principle of Natural Termination to C'-systems
provided that we include the possibility of a family terminating as the
"virtual periods" become unbounded.

PROBLEM SET 7

1. Show that the system in Example 1 experiences a subcritical Hopf
bifurcation at the origin at the bifurcation values p = ±1.

2. Show that the system in Example 3 experiences a Hopf bifurcation
at the origin at the bifurcation value p = -1.

3. Draw the bifurcation diagram and describe the various bifurcations
that take place in the system

_ -y + x[(r2 - 2)2 + µ2 - 1] [r2 +2 p2 -2)

x+y[(r2-2)2+µ2-1][r2+2p2-2].
Describe the termination of all of the noncyclic, maximal, one-para-
meter families of limit cycles of this system.

4. Same as Problem 3 for the system

i=-y+x[(r2-2)2+p2-1][r2+p2-3]
?%=x+y[(r2-2)2+µ2-1][r2+p2-3].
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4.8 Homoclinic Bifurcations

In Section 4.6, we saw that a separatrix cycle or homoclinic loop of a planar
family of rotated vector fields

is = f(x,µ) (1)

generates a limit cycle as the parameter u is varied in a certain sense, i.e.,
as the vector field f is rotated in a suitable sense, described by the table in
Figure 1 in Section 4.6. In this section, we first of all consider homoclinic
loop bifurcations for general planar vector fields

is = f(x) (2)

and then we look at some of the very interesting phenomena that result in
higher dimensional systems when the Poincare map has a transverse homo-
clinic orbit. Transverse homoclinic orbits for the higher dimensional system
(2) with n > 3 typically result from a tangential homoclinic bifurcation.
These concepts are defined later in this section.

Even when the planar system (2) does not define a family of rotated
vector fields, we still have a result regarding the bifurcation of limit cycles
from a separatrix cycle similar to Theorem 3 in Section 4.6. We assume
that (2) is a planar analytic system which has a separatrix cycle So at
a topological saddle x0. The separatrix cycle So is said to be a simple
separatrix cycle if the quantity

vo - V f(xo) 0 0.

Otherwise, it is called a multiple separatrix cycle. A separatrix cycle So is
called stable or unstable if the displacement function d(s) satisfies d(s) < 0
or d(s) > 0 respectively for all s in some neighborhood of s = 0 where
d(s) is defined; i.e., So is stable (or unstable) if all of the trajectories in
some inner or outer neighborhood of So approach S0 as t -' oo (or as
t -* -oo). The following theorem is proved using the displacement function
as in Section 3.4 of Chapter 3; cf. [A-II], p. 304.

Theorem 1. Let xo be a topological saddle of the planar analytic system
(2) and let S0 be a simple separatrix cycle at x0. Then So is stable i ff
Q0 < 0.

The following theorem, analogous to Theorem 1 in Section 4.5, is proved
on pp. 309-312 in [A-Il].

Theorem 2. If So is a simple separatrix cycle at a topological saddle x0
of the planar analytic system (2), then

(i) there is a 6 > 0 and an e > 0 such that any system c-close to (2) in
the C' -norm has at most one limit cycle in a 6-neighborhood of So,
N6(So), and
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(ii) for any 6 > 0 and e > 0, there is an analytic system which is e-
close to (2) in the C' -norm and has exactly one simple limit cycle in
N6(So).

Furthermore, if such a limit cycle exists, it is of the same stability as So;
i.e., it is stable if oo < 0 and unstable if oo > 0.

Remark 1. If So is a multiple separatrix cycle of (2), i.e., if ao = 0, then
it is shown on p. 319 in [A-Il] that for all 6 > 0 and e > 0, there is an
analytic system which is a-close to (2) in the C'-norm which has at least
two limit cycles in N6(So).

Example 1. The system

th=y
x+x2-xy+µy

defines a semicomplete family of rotated vector fields with parameter it E
R. The Jacobian is

Df(x,y)= 0 1

11+2x-y -x+µ
There is a saddle at the origin with ao = µ. There is a node or focus
at (-1, 0) and trace Df(-1, 0) = 1 + p. Furthermore, for p = -1, if we
translate the origin to (-1,0) and use equation (3') in Section 4.4, we find
a = -37r/2 < 0; i.e., there is a stable focus at (-1, 0) at p = -1. It therefore
follows from Theorem 5 and the table in Figure 1 in Section 4.6 that a
unique stable limit cycle is generated in a supercritical Hopf bifurcation at
(-1,0) at the bifurcation value p = -1. According to Theorems 1 and 4 in
Section 4.6, this limit cycle expands monotonically with increasing p until
it intersects the saddle at the origin and forms a stable separatrix cycle So
at a bifurcation value p = po. Since the separatrix cycle So is stable, it
follows from Theorem 1 that a = po < 0. Numerical computation shows
that µo = -.85. The phase portraits for this system are shown in Figure 1.

-I <µ<po µ=90 µ>ILO

Figure 1. The phase portraits for the system in Example 1.

The limit cycle for p = -.9 and the separatrix cycle for p = po -.85 are
shown in the numerical plots in Figure 2. The bifurcation diagram for this
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r1

µ--.9 µ9-.85

Figure 2. The limit cycle and the separatrix cycle for the system in Exam-
ple 1.

P

1

U- µ

Figure 3. The bifurcation diagram for the system in Example 1.

system is shown in Figure 3 where p denotes the maximum distance of the
limit cycle from the critical point at (-1,0). We see that a unique stable
limit cycle bifurcates from the simple separatrix cycle So as us decreases
from the bifurcation value u = µo. And this is consistent with the table in
Figure 1 in Section 4.6.

Remark 2. For planar systems, the same sort of results concerning the
bifurcation of limit cycles from a graphic of (1) hold; an example is given
in Problem 1.

The next example shows how a separatrix cycle can be obtained from
a Hamiltonian system with a homoclinic loop. A limit cycle can then be
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made to bifurcate from the separatrix cycle by rotating the vector field in
an appropriate sense.

Example 2. The system

(3)

was considered in Example 3 of Section 3.3 in Chapter 3. It is a Hamiltonian
system with

y2 x2 x3
H(x, y) =

2
-

2
-

3

It has a homoclinic loop So at the saddle at the origin given by a motion
on the curve

y2 = x2 + 2x3/3.

There is a center inside So, the cycles being given by H(x, y) = C with
C < 0; cf. Figure 2 in Section 3.3 of Chapter 3. We next modify this system
as follows:

x = X(x,y,a) = y - a(y2 - x2 - 2x3/3)(x + x2)

y = Y(x,y,a) = x + x2 + a(y2 - x2 - 2x3/3)y (4)

Computing

X
'I= 2H x,y)[y2 + (x+x2)2],XQ .

we see that inside the homoclinic loop So, where H(x, y) = C with C < 0,
the vector field defined by (4) is rotated in the negative sense; i.e., for a > 0
the trajectories of (4) cross the closed curves H(x, y) = C with C < 0 from
their exterior to their interior. The critical point (-1,0) of (4) is a stable
focus. The homoclinic loop H(x, y) = 0 is preserved and we have the phase
portrait shown in Figure 4 below.

Figure 4. The phase portrait of the system (4) with an unstable separatrix
cycle So.
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We now fix a at some positive value, say a = .1, and rotate the vector
field defined by (4) as in equation (5) in Section 4.6 in order to cause a
limit cycle to bifurcate from the separatrix cycle So in Figure 1. We obtain
the one-parameter family of rotated vector fields

= P(x, y, µ) = X (x, y, .1) cos µ - Y(x, y, .1) sin µ
(5)Q(x, y, µ) X (x, y, .1) sin y + Y(x, y, .1) cos p.

Since the separatrix cycle So in Figure 1 is negatively oriented (with w =
-1) and unstable on its interior (with the negative of the interior stability
a = -1; see the paragraph following Theorem 3 in Section 4.6), it follows
from the table in Figure 1 in Section 4.6 that a limit cycle bifurcates from
the separatrix cycle So as µ increases from zero. The phase portraits for
the system (5) are shown in Figure 5. The trace of the linear part of (5) at

µ<O µ=0 0<µ<µ* µ->µ*

Figure 5. The phase portraits for the system (5)_

the critical point (-1,0) is easily computed. It is given by

rµ = trace Df(-1,O,µ) = Py(-1,O,µ)+Qy11(-1,O,µ)

= 2 [sinµ - 3 cos µ1 .

Clearly r, = 0 at u = µ* = tan-'(. 1/3) ^-- .033 and according to Theorem 5
and the table in Section 4.5 there is a subcritical Hopf bifurcation at the
critical point (-1, 0) at the bifurcation value µ = µ* = .033. Cf. Figure 5.
Also, the limit cycle for system (5) with µ = .01 is shown in Figure 6.

We see that for planar systems, one or more limit cycles can bifurcate
from a separatrix cycle. For analytic systems, it follows from Dulac's Theo-
rem in Section 3.3 of Chapter 3 that at most a finite number of limit cycles
can bifurcate from a homoclinic loop. However, in higher dimensions, even
in the analytic case, it is possible to have an infinite number of limit cycles
or periodic orbits bifurcating from a homoclinic loop. This was seen to be
the case for the Lorenz system discussed in Section 4.5. Indeed, it was the
occurrence of a homoclinic loop, similar to that shown in Figure 7, that
started the chain of events that led to the strange behavior encountered
in the Lorenz system. We next give a brief discussion of transverse and
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Figure 6. The limit cycle of the system (5) with µ = .01 generated in a
homoclinic loop bifurcation at u = 0.

tangential homoclinic orbits and point out that if the Poincar6 map of an
n-dimensional system with n > 3 has a transverse homoclinic orbit, then
we typically get the strange kind of behavior encountered in Sparrow's nu-
merical study of the Lorenz system; i.e., a kind of chaotic dynamics results
when the Poincar6 map has a transverse homoclinic orbit.

In Figure 7, the one-dimensional unstable manifold of the origin inter-
sects the two-dimensional stable manifold of the origin tangentially and
forms a homoclinic loop, r o. Figure 8 shows a transverse heteroclinic or-
bit, ro, where W'(xo) intersects Wu(xl) transversally; i.e., at any point
q E to, the sum of the tangent spaces TgW'(xo) and TgWu(xl) is equal
to R3. It is not possible for a dynamical system defined by (2) to have
a transverse homoclinic orbit since dim W'(xo) + dim Wu(xo) < n while
transversality requires that dimW'(xo) +dimWu(xo) > n.

Even though dynamical systems do not have transverse homoclinic or-
bits, it is possible for the Poincar6 map of a periodic orbit to have a trans-
verse homoclinic orbit. And, as we shall see, this has some rather amazing
consequences. In order to make these ideas more precise, we first give some
basic definitions and then state the Stable Manifold Theorem for maps. In
what follows we assume that the map P: R" -+ R° is a Cl-diffeomorphism;
i.e., a continuously differentiable map with a continuously differentiable in-
verse.
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Figure 7. A tangential intersection of the unstable and stable manifolds of
the origin which forms a homoclinic loop ro.

Figure S. A transverse heteroclinic orbit ro of a dynamical system in R3.

Definition 1. A point xo E R^ is a hyperbolic fixed point of the diffeo-
morphism P: R" -' R" if P(xo) = xo and DP(xo) has no eigenvalue of
unit modulus. An orbit of a map P: R^ -- R" is a sequence of points {xj}
defined by xi+i = P(xi)

The eigenvalues and generalized eigenvectors of a linear map x -, Ax are
defined as usual; cf. Chapter 1. The stable, center and unstable subspaces
of a linear map x -+ Ax, where A is a real, n x n matrix, are defined as

E° = Span{ui,vj I P I < 1)
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E` = Span{uj,vj I JA.I = 1}

E" = Span{u3,v3 I Pa.,I > 1}

where we are using the same notation as in Definition 1 of Section 1.9 in
Chapter 1. In the following theorem, we assume that the diffeomorphism
P: Rn -. R' has a hyperbolic fixed point which has been translated to the
origin; cf. Theorem 1.4.2, p. 18 in [G/H[ or Theorem 6.1, p. 27 in [Ru].

Theorem 3 (The Stable Manifold Theorem for Maps). Let P: Rn -
Rn be a Cl-difeomorphism with a hyperbolic fixed point 0 E Rn. Then
there exist local stable and unstable invariant manifolds S and U of class
C' tangent to the stable and unstable subspaces E' and E" of DP(0) and
of the same dimension such that for all x E S and n > 0, Pn(x) E S and
Pn(x) -+ 0 as n oo and for all x E U and n > 0, P-n(x) E U and
P-n(x) - 0 as n - oo.

We define the global stable and unstable manifolds

W'(0) = U P-n(S)
n>O

and

W"(0) = U Pn(U)
n>O

It can be shown that if P is a C'-diffeomorphism, then W'(0) and W"(0)
are invariant manifolds of class Cr.

Let us now assume that the Cl-diffeomorphism P: Rn Rn has a
hyperbolic fixed point (which we assume has been translated to the origin)
whose stable and unstable manifolds intersect transversally at a point xo E
Rn; cf. Figure 9.

Figure 9. A transverse homoclinic point xo.
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Since W'(0) and W"(0) are invariant under P, iterates of xo,P(xo),
P2(xo),... as well as P-1(xo), P-2(xo), ... also lie in W'(0) n W"(0). We
see that the existence of one transverse homoclinic point for P implies the
existence of an infinite number of homoclinic points and it can be shown
that they are all transverse homoclinic points which accumulate at 0; i.e.,
we have a transverse homoclinic orbit of P. This leads to a "homoclinic
tangle," part of which is shown in Figure 10, wherein W'(0) and W"(0)
accumulate on themselves. These ideas are discussed more thoroughly in
Chapter 3 of [Wi].

Figure 10. A transverse homoclinic orbit and the associated homoclinic
tangle.

In a homoclinic tangle, a high enough iterate of P will lead to a horseshoe
map as in Figure 11; cf. Figure 3.4.5, p. 318 in [Wi]. Furthermore, the
existence of a horseshoe map results in "chaotic dynamics" as described
below.

In the early sixties, Stephen Smale [31] described his now-famous horse-
shoe map and showed that it has a strange invariant set resulting in what is
termed chaotic dynamics. We now give a brief description of (a variant of)
the Smale horseshoe map. For more details, the reader should see Chap-
ter 2 in [Wi] or Chapter 5 in [G/H]. The Smale horseshoe map F: D - R2
where D = {x E R2: 0 < x < 1, 0 < y < 1); geometrically, F contracts D
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Figure 11. An iterate of P exhibiting a horseshoe map.

H,

Hi

H2
H2

Figure 12. The Smale horseshoe map.

in the x-direction and expands D in the y-direction; and then F folds D
back onto itself as shown in Figure 12 where Vl = F(Hi) and V2 = F(H2).
Furthermore, F is linear on the horizontal rectangles Hl and H2 shown in
Figure 12.
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D D n FID) D n F(D) n F2(D)

Figure 13. The action of F and F2 on D.

In order to begin to see the nature of the strange invariant set for F, we
next look at F2(D). The action of F and F2 on D is shown in Figure 13.
Similarly, the action of F-1 and F-2 on D is shown in Figure 14; cf. pp. 77-
83 in [Wi].

D D n F-1(D) D n F-'(D) n F-2(D)

Figure 14. The action of F-1 and F-2 on D.

If we look at the sets

and

Al - F-1(D) n D n F(D)

A2 - F-2(D) n F-1(D) n D n F(D) n F2(D)
pictured in Figure 15, we can begin to get an idea of the Cantor set structure
of the strange invariant set

00

A - n F' (D)
.i=-00

of the Smale horseshoe map F. The next theorem is due to Smale; cf. [G/H],
p. 235, [31] and [32].
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Figure 15. The sets Al and A2 which lead to the invariant set A for F.

Theorem 4. The horseshoe map F has an invariant Cantor set A such
that:

(i) A contains a countable set of periodic orbits of F of arbitrarily long

periods,

(ii) A contains an uncountable set of bounded nonperiodic orbits, and

(iii) A contains a dense orbit.

Furthermore, any C1-diffeomorphism G which is sufficiently close to F in
the C1-norm. has an invariant Cantor set S2 such that G restricted to i is
topologically equivalent to F restricted to A.

This theorem is proved by showing that the horseshoe map F is topo-
logically equivalent to the shift map o, on bi-infinite sequences of zeros and
ones:

0'(...)5-n,...,s-1;SO,s1,...,s,,.... )

(...,s-nf...IS-I)so;s1,...,s,,...

with s., E {0, 1} for j = 0, ±1, ±2, .... Cf. Theorems 2.1.2-2.1.4 in [Wi].
Also, cf. Problem 6.

Whenever the Poincare map of a hyperbolic periodic orbit has a trans-
verse homoclinic point, we get the same type of chaotic dynamics exhib-
ited by the Smale horseshoe map. This important result stated in the next
section is known as the Smale-Birkhoff Homoclinic Theorem; cf. Theo-
rem 5.3.5, p. 252 in [G/H). The occurrence of transverse homoclinic points
was first discovered by Poincare [27] in 1890 in his studies of the three-
body problem. Cf. [15]. Even at this early date he was well aware that very
complicated dynamics would result from the occurrence of such points.
In the next section, we briefly discuss Melnikov's Method which is one of
the few analytical tools available for determining when the Poincare map
of a dynamical system has tangential or transverse homoclinic points. As
was noted earlier, in dynamical systems, transverse homoclinic points and
the resulting chaotic dynamics typically result from tangential homoclinic
bifurcations.
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PROBLEM SET 8
1. Consider the system

x = y + y(x2 + y2)

x-x(x2-xy+y2)+µy.
(a) Show that this system is symmetric under the transformation

(x, y) (-x, -y) and that there is a saddle at the origin and
foci at (±1, 0) for I1I < 3.

(b) Show that for y # 0 this system defines a semicomplete one-
parameter family of rotated vector fields with parameter it E R.

(c) Use the results in Section 4.6 to show that a unique limit cycle
is generated in a Hopf bifurcation at each of the critical points
(±1,0) at the bifurcation value it = -1 and that these limit
cycles expand monotonically as p increases until they intersect
the origin and form a graphic So at a bifurcation value u = ul >
-1.

(d) Use Theorem 3 in Section 4.6 to show that So is stable; show
that ao = µ and deduce that pi < 0. (Numerical computation
shows that pi ^- -.74.)

(e) Use the results in Section 4.6 to show that a unique limit cycle,
surrounding both of the critical points (±1,0), bifurcates from
the graphic So as p increases beyond the bifurcation value it,.
Can you determine how this one-parameter family of limit cycles
terminates?

2. (a) Show that the system

x=y
x-x3

is a Hamiltonian system with H(x, y) = y2/2 - x2/2 + x4/4,
determine the critical points, and sketch the phase portrait for
this system.

(b) Sketch the phase portrait for the system

x=X(x,y,a)=y-aH(x,y)(x-x3)
y =Y(x,y,a) =x-x3+aH(x,y)y

for a > 0. Note that this system defines a negatively rotated
vector field inside the graphic H(x, y) = 0.

(c) Now fix or at a positive value, say a = .1, and embed the vector
field defined in part (b) in a one-parameter family of rotated
vector fields as in equation (5). For what range of p will this
system have a limit cycle i.e., determine the value of p for which
a limit cycle bifurcates from the graphic H(x, y) = 0 and the
value of µ for which there is a Hopf bifurcation.
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(d) What happens if you fix a at some negative value, say a
in part (c)?

3. Carry out the same program as in Problem 2 for the Hamiltonian
system

x=2y
y = 12x - 3x2.

Cf. [A-II], p. 306.

4. Find the stable, unstable and center subspaces, E', E" and E` for
the linear maps L(x) = Ax where the matrix

(a) A = [1 _o]

(b) A [102

1/1

2]

(c) A - [1 1]

1(d) A
1

=
1 2]

5. (a) Show that the map

P(x,y)=(y,x-y-y3)
is a diffeomorphism and find its inverse.

(b) Find the fixed points and the dimensions of the stable and un-
stable manifolds W'(xo) and W°(xo) at each of the fixed points
xo of P.

6. (The Bernoulli Shift Map) Consider the mapping F: [0, 1] - [0, 1]
defined by

F(x) = 2x(mod 1).
Show that if x E [0, 1] has the binary expansion

00

X = .8182... _Ej-1 2i

with sj E {0,1 } for j = 1,2,3,..., then F(x) = .8233 ... and for n > 0
Fn(x) = .sn+Isn+2.... Show that the repeating sequences .0 and .1
are fixed points for F, that .0-1 and TO are fixed points of F2, and that
.001, .010 and .100 are fixed points of F3. Fixed points of Fn are called
periodic orbits of F of period n. Show that F has a countable number
of periodic orbits of arbitrarily large period. Finally, show that if
the sequences for x and y differ in the nth place, then IFn-1(x) -
Fn-1(y)I > 1/2. This illustrates the sensitive dependence of the map
F on initial conditions.
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4.9 Melnikov's Method

Melnikov's method gives us an analytic tool for establishing the existence
of transverse homoclinic points of the Poincare map for a periodic orbit of
a perturbed dynamical system of the form

x = f(x) +eg(x) (1)

with x E R" and n > 3. It can also be used to establish the existence of
subharmonic periodic orbits of perturbed systems of the form (1). Further-
more, it can be used to show the existence of limit cycles and separatrix
cycles of perturbed planar systems (1) with x E R2. This section is only
intended as an introduction to Melnikov's method; however, more details
are given in the next three sections for planar systems and the examples
contained in this section serve to point out the versatility and power of
this method. A general theory for planar systems is developed in the next
section and some new results on second and higher order Melnikov theory
are given in Sections 4.11 and 4.12. The reader should consult Chapters 4
in [G/H] and [Wi) for the general theory in higher dimensions (n > 3).

We begin with a result for periodically perturbed planar systems of the
form

x = f(x) + eg(x,t) (2)

where x E R2 and g is periodic of period T in t. Note that this system can
be written as an autonomous system in R3 by defining x3 = t. We assume
that f E CI(R2) and that g E C'(R2 x R). Following Guckenheimer and
Holmes [G/H], pp. 184-188, we make the assumptions:

(A.1) For e = 0 the system (2) has a homoclinic orbit

ro: x = -YO (t), -oo < t < oo,

at a hyperbolic saddle point xo and

(A.2) For e = 0 the system (2) has a one-parameter family of periodic
orbits 7Q(t) of period TQ on the interior of ro with 87Q(0)/8a 96 0;
cf. Figure 1.

The Melnikov function, M(to), is then defined as

M(to) = f ef'o v.f(yo(e))dsf("Yo(t)) A g(7o(t), t + to)dt (3)
ao

where the wedge product of two vectors u and v E R2 is defined as u A v =
u1v2 - v1u2. Note that the Melnikov function M(to) is proportional to
the derivative of the Poincare map with respect to the parameter e in an
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Figure 1. The phase portrait of the system (2) under the assumptions (A.1)
and (A.2).

interior neighborhood of the separatrix cycle 170 (or in a neighborhood of
a cycle); cf. equation (6) in Section 4.5. Before stating the main result,
established by Melnikov, concerning the existence of transverse homoclinic
points of the Poincar6 map, we need the following lemma which establishes
the existence of a periodic orbit -f, (t) of (2), and hence the existence of the
Poincare map P, for (2) with sufficiently small e; cf. Lemma 4.5.1, p. 186
in [G/H].

Lemma 1. Under assumptions (A.1) and (A.2), for e sufficiently small,
(2) has a unique hyperbolic periodic orbit -y6(t) = xo + 0(e) of period T.
Correspondingly, the Poincard map PE has a unique hyperbolic fixed point
of saddle type x6 = xo + 0(e).

Theorem 1. Under the assumptions (A. 1) and (A.2), if the Melnikov func-
tion M(to) defined by (3) has a simple zero in [0, T] then for all sufficiently
small e 0 0 the stable and unstable manifolds W" (x,) and Wu(x6) of the
Poincard map P6 intersect transversally; i.e., P. has a transverse homo-
clinic point. And if M(to) > 0 (or < 0) for all to then W°(x6)f1W°(x6) = 0.

This theorem was established by Melnikov [21] in 1963. The idea of his
proof is that M(to) is a measure of the separation of the stable and un-
stable manifolds of the Poincar6 map P6i cf. [G/H], p. 188. Theorem 1
is an important result because it establishes the existence of a transverse
homoclinic point for P6. As was indicated in Section 4.8, this implies the
existence of a strange invariant set A for some iterate, F6, of P6 and the
same type of chaotic dynamics for (2) as for the Smale horseshoe map,
according to the following theorem whose proof is outlined on p. 252 in
[G/H] and on p. 108 in [Ru]:

Theorem (The Smale-Birkhoff Homoclinic Theorem). Let P:
R" -. R" be a diffeomorphism such that P has a hyperbolic fixed point
of saddle type, p, and a transverse homoclinic point q E W°(p) f1 Wu(p).
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Figure 2. The hyperbolic fixed point xe of the Poincare map PE in the
section Eo at t = 0 which is identified with the section at t = T.

Then there exists an integer N such that F = PI has a hyperbolic compact
invariant Cantor set A on which F is topologically equivalent to a shift map
on bi-infinite sequences of zeros and ones. The invariant set A

(i) contains a countable set of periodic orbits of F of arbitrarily long
periods,

(ii) contains an uncountable set of bounded nonperiodic orbits, and

(iii) contains a dense orbit.

Another important result in the Melnikov theory is contained in the next
theorem which establishes the existence of a homoclinic point of tangency
in W'(xE) f1 W"(xc); cf. Theorem 4.5.4, p. 190 in (G/H].

Theorem 2. Assume that (A.1) and (A.2) hold for the system

x = f (x) + eg(x, t, µ) (4)

depending on a parameter µ E R, that g is T-periodic in t, that f E Cl (R2)
and that g E C' (R2 x R x R). If the Melnikov function M(to,p) defined
by (3) has a quadratic zero at (to,µo) E (0,T] x R, i.e., if M(to,µo) _
OMo (to, 140) = 0, be (to,µo) # 0, and(to,µo) 34 0, then for all suffi-
ciently small e # 0 there is a bifurcation value µE = µo + 0(e) at which
W'(xE) and W"(xE) intersect tangentially.

Remark 1. If for E = 0, (2) or (4) are Hamiltonian systems, i.e., if

(OH _OH\T
f ay, Ox) '
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then V f = 0 and the Melnikov function has the simpler form

M(to) = f
oo

00

f (-yo (t)) A g(-to(t), t + to)dt. (5)

Example 1. (Cf. [G/fl, pp. 191-193.) Consider the periodically perturbed
Duffing equation

y

y=x-x3+e(pcost-2.5y).
The parameter µ is the forcing amplitude. For e = 0 we have a Hamiltonian
system with Hamiltonian

y2 x2 x4H(x, y) = 2 - 2 + 4

For e = 0 there is a saddle at the origin, centers at (±1, 0), and two homo-
clinic orbits

r0:':o : 'Yo (t) = ±( sech t, -f sech t tank t)T .

Figure 3. The phase portrait for the system in Example 1 with e = 0.

We will compute the Melnikov function for -yo +(t); the computation for
-yo (t) is identical. From (5)

wM(to) = f yo(t)[p cos(t + to) - 2.5yo(t)]dt
00



4.9. Melnikov's Method 419

_ - v"2-ju sech t tank t cos(t + to)dt
-00

rr00-5
J sech2 t tanha t dt

00

_ v2 irsech(2)sinto- 10
3.

The first integral can be found by the method of residues. See Problem 4.
We therefore have

n koM(to) = fµ7rsech (2) [sinto -
where ko = 10cosh(a/2)/(3fir) ^_- 1.88.

-ko

µ

o<µ<ko

-ka

µ

11-ko

Figure 4. The function sin to - ko/µ.

N.>ko>0

We see in Figure 4 that if 0 < u < ko, M(to) has no zeros and therefore
by Theorem 1, W, (x,.) 0; if IL = ko then M(to) has a quadratic
zero and by Theorem 2, there is a tangential intersection of W'(x.) and
W°(xe) at some p. = ko + 0(e); and if µ > ko > 0, M(to) has a simple
zero and by Theorem 1, W"(x,) and W°(x,) intersect transversally. This
is borne out by the Poincare maps for the perturbed Dulling equation of
this example with e = .1, computed by Udea in 1981, as shown in Figure 5
below; cf. Figure 4.5.3 in [G/H].

We would not expect the nonhyperbolic structure on the interior of the
separatrix cycle ro to be preserved under small perturbations as in (2).
However, under certain conditions, some of the periodic orbits ye(t) whose
periods T. are rational multiples of the period T of the perturbation func-
tion g, i.e.,

Ta="-`T,n
are preserved under small perturbations. We assume that f(x) is a Hamil-
tonian vector field on R2, that there is a one-parameter family of periodic
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Figure 5. Poincarc maps for the perturbed Duffing equation in Example 1
with e = .1 and (a) µ = 1.1, (b) u = 1.9, and (c) µ = 3.0. Reprinted with
permission from Guckenheimer and Holmes (Ref. [G/H]).
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orbits -r. (t) on the interior of the separatrix cycle r0 as in Figure 1, and
that the following assumption holds

ah,,
& 0 (A.3)

where hQ = H(yQ(t)).

Theorem 3. If in equation (2) f is a Hamiltonian vector field, then under
assumptions (A.1)-(A.3), if the subharmonic Melnikov function

T

Mm,n(t0) = f0m f (Ta(t)) A g(TQ(t), t + to)dt (6)

along a subharmonic periodic orbit yQ(t), of period mT/n, has a simple
zero in [0, mT] then for all sufficiently small e 36 0, the system (2) has a
subharmonic periodic orbit of period mT in an E-neighborhood of -y. (t).

Results similar to Theorems 1-3 are given for Hamiltonian systems with
two degrees of freedom in [G/H] on pp. 212-226 and in Chapter 4 of [Wi].

We next present some simple applications of the Melnikov theory for
perturbed planar systems of the form

x = f (x) + eg(x, p) (7)

with f E CI (RI) and g E C'(R2 x R). For simplicity, we shall assume
that f is a Hamiltonian vector field although this is not necessary if we use
equation (3) for the Melnikov function. Similar to Theorems 1, 2 and 3 we
have the following results established in the next section. Cf. [6, 37, 38].

Theorem 4. Under the assumption (A.1), if there exists a po E Rm such
that the function

M(1s) = f (yo (t)) A g(yo(t), p)dt

satisfies
M(p0) = 0 and M,,,(p0) 5&0,

then for all sufficiently small e 54 0 there is a pE = po + 0(e) such that the
system (7) with p = IA, has a unique homoclinic orbit in an 0(e) neighbor-
hood of the homoclinic orbit 170. Furthermore, if M(p0) # 0 then for all
sufficiently small e 96 0 and Ip - p01, the system (7) has no separatrix cycle
in an 0(e) neighborhood of r0 u {xo}.

Theorem 5. Under the assumption (A.2), if there exists a point (p0, ao) E
R'n+1 such that the function

M(p, a) = f
T.

f (Ta(t)) A g(-1'.(t), u)dt
0
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satisfies

M(p0, 0o) = 0 and Ma(p0, ao) 360,
then for all sufficiently small e $ 0, the system (7) with it = µ0 has a
unique hyperbolic limit cycle in an 0(e) neighborhood of the cycle y«o(t).
If M(p0, ao) 34 0, then for sufficiently small e # 0 the system (6) with
µ = i.o has no cycle in an 0(e) neighborhood of the cycle y, (t).

Remark 2. Under the assumption (A.2), it can be shown that if there
exists a point (µo, ao) E R'+1 such that

M(p0,ao) = M«(po,ao) = 0,

Ma«(po, ao) 310 and M,,, (po, ao) 54 0,

then for all sufficiently small e 54 0 there exists a pE = po + 0(e) such that
the system (7) with p = pE has a unique limit cycle of multiplicity two in
an 0(e) neighborhood of the cycle -yao (t). This result as well as Theorems 4
and 5 are proved in the next section.

Example 2. Consider the Lienard equation

=y-e[µ12"+22.2+{6323]
-2

with µ = (11122,3)T. The unperturbed system with e = 0 has a cen-
ter at the origin with a one-parameter family of periodic orbits -y«(t) =
(a cost, -a sin t)T of period T« = 2ir. It is easy to compute the Melnikov
function for this example.

T

M(p,a)= f f(7a(t))Ag(7«(t),p)dt
0

= - 2n

J 2«(t)[µ12«(t)+µ22c (t) +µ32u
0= - 2a

[µ1a2 cost t +µ2a3 cos3 t +µ3a4 cos4 t] dt
0

1
_ -27ra2

L
21 + Sµ3a2J .

We see that the equation M(µ, a) = 0 has a solution if and only if µ1µ3 <
0. It follows from Theorem 5 that if 41µ3 < 0 then for all sufficiently
small e # 0 the Lienard system will have a unique limit cycle which is
approximately a circle of radius

jp
+ 0(e).

heorem 6 in Section 3.8 of Chapter 3.Cf. T
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Example 3. Consider the perturbed Duffing equation

=y
x-x3+E[ay+/3x2y] (8)

of Exercise 4.6.4, p. 204 in [G/H], with the parameter µ = (a, /3)T. For
e = 0 this is a Hamiltonian system with Hamiltonian

y2 x2 x4H(x, y) = 2 - 2 + 4

The phase portrait for this system with e = 0 is given in Figure 3. The
graphic ro u {0} U ro shown in Figure 3 corresponds to H(x, y) = 0; i.e.,
it is represented by motions on the curves defined by

y2=x2
x4- 2'

We compute the Melnikov function in Theorem 4 for this system using the
fact that along trajectories of (8) dt = dx/i = dx/y. We only compute
M(x) along the right-hand separatrix ro ; the computation along r is
identical.

M(µ) =
J

f (70 (t)) A g(-y+
a

(t), µ)dt

00

yo(t)[a+Qxo(t)]dt= 1
r,

= 2 J x 1- x2/2(a +'6X2 )dx
0

=3a+15

We see that M(µ) = 0 if and only if /3 = -5a/4. Thus, according to
Theorem 4, for all sufficiently small e 36 0, there is a µe = a(1, -5/4)T+0(E)
such that the system (8) with µ = 1A,, i.e., with /3 = -5a/4 + 0(E), has
two homoclinic orbits r* at the saddle at the origin in an E-neighborhood
of ro . Also, for the vector field F = f + Eg in (8), we have

DF(0, E,,u) =
0
1 ea,1

Thus, by Theorem 1 in Section 4.7, the separatrix cycles 1E U {0} are stable
for ao = ea < 0 and unstable for ao = ea > 0. Cf. Figure 6 which shows
the separatrix cycles of (8) for co: < 0.

We end this section by constructing the global phase portraits for the
system in Example 3 for small e > 0, /3 > 0 and -oo < a < oo. The phase
portraits for /3 < 0 can then be obtained by using the symmetry of the
system (8) under the transformation (t, x, y, a, /3) -. (-t, -x, -y, -a, -,3).
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Figure 8. The graphic of the system (8) for small e 96 0, ,0 = -5a/4 + 0(e)
and ca < 0.

The case when /3 = 0 is left as an exercise; cf. Problem 2. For fixed 0 > 0
and c > 0, the system (8) defines a one-parameter family of rotated vector
fields (mod y = 0) with parameter a E R. Since the separatrix cycles
r U {0}, which exist for a = a" = -40/5 + 0(E) according to the results
in Example 3, are stable on their interiors and are negatively oriented,
it follows from Theorem 3 and the table in Figure 1 of Section 4.6 that a
stable limit cycle is generated on the interior of each of the separatrix cycles
I'E U {0} as a decreases from a'. Also, since the graphic r u r'E u {0},
shown in Figure 6, is stable on its exterior and negatively oriented, a stable
limit cycle L; is generated on the exterior of the graphic r U I'E u {0} as
a increases from a' according to Theorem 3 and the table in Section 4.6.

It follows from the equations (8) that the trace at the critical points at
(±1, 0) is given by

trace DF(±1, 0, e, µ) = E(a + /3).

And using equation (3') in Section 4.4, we find that for a = -,0 we have

2 QE <0.

Thus, for a = -,0 the weak foci at (±1,0) are stable and they are neg-
atively oriented. According to Theorem 5 and the table in Section 4.6, a
unique stable limit cycle bifurcates from the critical points at (±1, 0) in a
supercritical Hopf bifurcation at the bifurcation value a = -Q (where we
have fixed Q at some positive value). And according to Theorems 1 and 6 in
Section 4.6, these limit cycles expand monotonically with increasing a until
they intersect the saddle at the origin and form the graphic I'e U 1'E U {0}
at a = a* = -4/3/5 + 0(e).

We next determine the behavior at infinity and draw the global phase
portraits for (8). According to the theory in Section 3.10 of Chapter 3, the
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critical points at infinity are at (0,±1,0) and ±()3,1, 0)/ 1 + /32. Accord-
ing to Theorem 2 in Section 3.10 of Chapter 3, the behavior at these critical
points is determined by the system

OXx222 - x4 + axz2 + 3 - z4
f Z = xz3 - x3z + az3 + Qx2z.

The flow on the equator of the Poincare sphere determines that the minus
sign should be used in these equations. This system has two critical points
at (0, 0) and at (/3, 0). According to Theorem 1 in Section 2.11 in Chapter 2,
the critical point (/3, 0) is a saddle node. The origin is a higher degree critical
point with two zero eigenvalues. Using a Liapunov function, it can be shown
that it is a stable node as in Figure 7 below.

Figure 7. The behavior of the system (8) at infinity for c > 0 and /3 > 0.

We now employ the Poincare-Bendixson Theorem in Section 3.7 of Chap-
ter 3 to deduce that, at least for the parameter range on a where (8) has
a stable limit cycle L; enclosing the three critical points (0, 0), (±1, 0),
there must be an unstable limit cycle LQ on the exterior of L; which is the
a-limit set of the two saddle separatrices shown in Figure 7. According to
Theorem 1 and the table in Section 4.6, this unstable, negatively oriented
limit cycle L+ will contract as a increases; and similarly, the stable, neg-
atively oriented limit cycle L; will expand as a increases. The two limit
cycles LQ and L+ intersect in a saddle-node bifurcation at a semistable
limit cycle at a bifurcation value a = a"` > a'. We have numerically de-
termined that a** = -k(3 + 0(e) for some constant k = .752. .. Assuming
that no other semistable limit cycles occur as a varies in R, the global
phase portraits for the system (8) with small e > 0, any fixed (3 > 0 and
a E R are shown in Figure 8. This assumption and the above-mentioned
results concerning the behavior of the limit cycles of (8) are verified in
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-(3<a<a*

a*<a<a**

a> a**

Figure 8. The global phase portraits for the system (8) with 6 > 0 and
0 <e41.
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the next section. The bifurcation diagram for the one-parameter family of
limit cycles La generated at the critical point (1, 0) in a supercritical Hopf
bifurcation at a = -/3 and the bifurcation diagram for the one-parameter
family of limit cycles LP = La

(P)
u L.-(P) generated on the exterior of the

graphic as a increases from a' are shown in Figure 9.

P

a

Figure 9. The bifurcation diagram for the two one-parameter families of
limit cycles L. and LP of the system (8).

Numerical computation confirms the theoretical results described above.
For c = .1 and ,l3 = 1, the two stable limit cycles around the critical points
(±1, 0) for a = -.9, the separatrix cycle for a = a' = -.8, and the stable
limit cycle L; for a = -.77 are shown in Figure 10. The unstable limit
cycle L+ is also shown in each of the figures in Figure 10 for these values
of a.

For a > a", there are an infinite number of bifurcation values which
accumulate at a = a** and at which values there are trajectories connecting
the saddle at the origin to the saddles at infinity; cf. [G/HJ, pp. 62-64. Let
ao > ai > a2 denote these bifurcation values. Then an approaches
a" from the right as n -, oo and the phase portraits for a = ao, ai, .. .
are shown in Figure 11. The serious student should determine the phase
portraits for an+l < a < an, n = 0,1,2,..., in which cases no saddle
connections exist. This completes our discussion of the perturbed Duffing
equation (8).

PROBLEM SET 9

1. Use Theorem 5 to show that if µ3µ5 < 0 and 0 < µlµ5 < 9µ3/4O,
then for all sufficiently small e 54 0 the Lienard equation

2 = Y - C[lUlx + µ3i3 + µ5i5]
-x
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a -.9

-2

a s -,77

2

Figure 10. The limit cycles and the graphic of the system (8) with £ = .1
and0=1.
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Figure 11. Global phase portraits for the system (8) with Q > 0 and
0 <c<1.
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has exactly two limit cycles which are approximately circles of radii

a - ! 3µ3f 9113 - 40µiµ5

5µs

2. Construct the global phase portraits for the system (8) in Example 3
when0=0and0<e« 1. Use the fact that for a 00 and0=0
the system (8) has a saddle-node at the critical points (0, ±1, 0) at
infinity. This can be obtained from Figure 7 when the critical points
at ±(f,1, 0)/ 1 -+#2 approach the critical points at ±(0,1, 0) as
,0 -: 0+. How do the phase portraits in Figure 8 and in this problem
for /3 = 0 change if e < 0 (and Jej << 1)? Hint: Use the symmetry
(t, x, y, e, a, Q) -' (-t, x, -y, -e, a, /3).

3. For e = 0 the system

x=y
x+x2+ey[a+x]

is a Hamiltonian system which satisfies the assumptions (A.1) and
(A.2); cf. Example 3 and Figure 2 in Section 3.3 of Chapter 3. Show
that the homoclinic loop is given by a motion on the curve

I'o: y2 = x2 + 3x3.

Compute the Melnikov function along ro and use Theorem 4 to show
that for all sufficiently small e 96 0 there is an aE = 6/7 + 0(e) such
that this system has a homoclinic loop at the origin in an 0(e) neigh-
borhood of ro. Show that there is a subcritical Hopf bifurcation at
the critical point (-1, 0) at the bifurcation value a = 1 and, assuming
that there are no semistable limit cycles, sketch the phase portraits
for this system for -oo < a < oo.

4. Computation of I e f fOOOsech t tank t cos wo(t+to)dt by the Method
of Residues:

(a) Use integration by parts to show that

00-'00
f sech t sinwo(t + to)dt1 =

and then since sech t sin wot is an odd function, it follows that

00

I = -wo sin woto f sech t cos wot dt.
00
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(b) Let z = t + ir, f (z) = sech z coswoz = oa and let C denote
the contour shown below:

it
in c

is
2

-a o 0
t

Then, by the Residue Theorem

ic f (z)dz = 2iri Rest=i"/2 f(Z)-

Since f (z) has a simple pole at z = iir/2 (and no other singulari-
ties inside or on C), show that Res-=i"/2 P Z) = -i cosh(wo7r/2).

(c) For the contour C given above, show that for z = ±a + ir,

f" coswo(±a+ir) I (1+e"0"\
o cosh(±a + ir)

dr -ire-° 1 - e-2a )

which approaches zero as a -, oo; and for z = t + iir = -u + iir,
show that

fa-{" a
f (z)dz = cosh wow f cos wou sech u du.

+i" a

(d) Finally, using the above results, show that

-wo sin woto 2ir cosh(woa/2)
1 + cosh woir

_ -7rwo sin woto sech(woir/2)

since 1 + cosh wow = 2 cosh2(woir/2).

4.10 Global Bifurcations of Systems in R2

Thus far in this chapter we have considered local bifurcations that occur at
nonhyperbolic critical points and periodic orbits, and global bifurcations
that occur at homoclinic loops and in a one-parameter family of periodic or-
bits. According to Peixoto's Theorem in Section 4.1, the only bifurcations
that occur in a planar system are local bifurcations at a nonhyperbolic
equilibrium point or limit cycle of the system, or global bifurcations that
occur at a saddle-saddle connection or in a continuous band of cycles such
as those surrounding a center of the system. Local bifurcations are well un-
derstood, and the theory has been developed earlier in this chapter. Global
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bifurcations are more difficult to understand; however, Melnikov's method
gives us an excellent tool for studying global bifurcations that occur at
homoclinic (or heteroclinic) loops or in a one-parameter family of periodic
orbits of a perturbed dynamical system. In this section, we establish the
first-order Melnikov theory for perturbed planar analytic systems of the
form

x = f(x) +eg(x,e,µ) (11)

with x E R2 and µ E R1, presented in the previous section, and give
some additional examples of this theory. The Melnikov theory gives us an
excellent tool for determining the parameter values for which a limit cycle
bifurcates from a homoclinic (or heteroclinic) loop and for determining the
number of limit cycles in a continuous band of cycles that are preserved
under perturbation. In fact, the number, positions, and multiplicities of
the limit cycles of (1,) for small e # 0 are determined by the number,
positions, and multiplicities of the zeros of the Melnikov function for (1,, ).
If the Melnikov function is identically equal to zero across the continuous
band of cycles, then a higher order analysis is necessary. This is presented
in the next two sections.

We begin with a proof of the most basic result of the Melnikov theory
for perturbed planar systems, Theorem 5 in the previous section. In order
to give a proof of that theorem based on the Implicit Function Theorem,
it is first necessary to determine the relationship between the displacement
function and the Melnikov function in a neighborhood of a periodic orbit
of (1k). The relationship is determined by integrating the first variation of
(1,,) with respect to e along the periodic orbit. The details can be found
in [7) or in the proof of Lemma 1.1 in [37). Before giving that result, let
us restate the assumptions (A.1) and (A.2) in the previous section for the
system above. For convenience in presenting the theorems and proofs
in this section, we shall assume that the parameter a is the arc length along
an arc normal to the one-parameter family of periodic orbits ya(t) of (1,,)
with e = 0 and that a E I, an interval of the real line. This assumption is
not necessary as discussed in Remark 1 below.

(A.1) For e = 0, the system (1,,) has a homoclinic orbit

Fo: x=y0(t), -oo<t<00

at a hyperbolic saddle point x0.

(A.2) For e = 0, the system (1,,) has a one-parameter family of periodic
orbits

ra: x=ya(t), 0<t<Ta
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of period T. with parameter a E I C R equal to the arc length along
an arc E normal to the family ra.

Lemma 1. Assume that (A.2) holds for all a E I. Then the displacement
function d(a, e, µ) of the analytic system (1,), defined in Section 3.4, is
analytic in a neighborhood of I x {0} x R, and in that neighborhood

d(a, e, A) =
-ewoM(a, IL)

+ 0(c2)
If(7a(0))I

(2)

as a -, 0, where wo = ±1 according to whether the one-parameter family
of periodic orbits -y,, (t), with a E I, is positively or negatively oriented and
M(a, EL) is the Melnikov function for (1F,) given by

M(a, IL) = fT.
e- fo ° f c7o c9»dsf(7a (t)) A g(-j. (t), 0, µ)dt,

0

where Ta is the period of -y., (t) for a E I.

Corollary 1. Assume that (A.2) holds for all a E I. Then for a E I and
I E Rm

d.(a,0,IA) = If('Y(0))IM(a,IL).

And if for some ao E I and ILo E R"`, M(ao, µo) = 0, it follows that

dea(ao,0,{Lo) _ _WO M.(ao,lao)
If('Yao(0))I

Theorem 1. Assume that (A.2) holds for all a E I. Then if there exists
an ao E I and a µo E R" such that

M(oo, µo) = 0 and M0(ao, ILo) 0 0,

it follows that for all sufficiently small e 0 0, the analytic system (1,,.) has
a unique, hyperbolic, limit cycle r, in an 0(e) neighborhood of Fao; the limit
cycle rE is stable if ewoM.(ao, µo) > 0 and unstable if ewoMa(ao, µo) < 0.
Furthermore, if M(ao, I'o) # 0, then for all sufficiently small e 0 0, (l,0)
has no cycle in an 0(e) neighborhood of rao.
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Proof. Under Assumption A.2, d(a, 0, µ) _- 0 for all a E I and ts E R"'.
Define the function

d(a, e, µo)
for e 0F(a,e) = e

1d.(a,0, µo) for e = 0.

Then F(a, e) is analytic on an open set U C R2 containing I x {0}, and
by Corollary 1 and the above hypotheses,

F(ao, 0) = de (ao, 0,µo) = koM(ao, µo) = 0

and

F.(ao,0) = dea(ao,0,µo) = koM.(ao,µo) 0 0,

where the constant ko = -wo/If(7QO(0))I. Thus, by the Implicit Function
Theorem, cf. [R], there is a 6 > 0 and a unique function a(e), defined and
analytic for IeI < 6, such that a(0) = ao and F(a(e), e) = 0 for all let < 6.
It then follows from the above definition of F(a, e) that for e sufficiently
small, d(a(e), e, µo) = 0 and for sufficiently small e y6 0, da(a(e), e, µo) # 0.
Thus, for sufficiently small e 34 0, there is a unique hyperbolic limit cycle
r,. of (1,,) at a distance a(e) along E. Since a(e) = ao + 0(e), this limit
cycle lies in an 0(e) neighborhood of the cycle r 0. The stability of r, is
determined by the sign of da(ao, 0, µo); i.e., by the sign of M0(ao, µo), as
was established in Section 3.4. Finally, if M(ao, µo) 0 0, then by Lemma 1
and the continuity of F(a, µ), it follows for all sufficiently small e g& 0
and Ia - aoI = (e) that d(a,e,µo) # 0; i.e., (1µo) has no cycle in an 0(e)
neighborhood of the cycle r,,..

Remark 1. We note that it is not essential in Lemma 1 or in Theorem 1
for a to be the arc length a along E, but only that a be a strictly monotone
function of 1. In that case, the right-hand side of (2) must be multiplied
by 8e/8a. Also, under the hypotheses of Theorem 1, it follows from the
above proof that there is a unique one-parameter family of limit cycles r,
of (1,,,) with parameter e, which bifurcates from the cycle 1'a, of (1,,,) for
e 34 0. Thus, as in Theorem 2 in Section 4.7 and the results in [25], r. can
be extended to a unique, maximal, one-parameter family of limit cycles
that is either cyclic or unbounded, or which terminates at a critical point
or on a separatrix cycle of (1,,). Note that Chicone and Jacob's example
on p. 313 in [6] has one cyclic family and one unbounded family, and the
examples at the end of this section have families that terminate at critical
points and on separatrix cycles.

The next theorem establishes the relationship between zeros of multi-
plicity-two of the Melnikov function and the bifurcation of multiplicity-two
limit cycles of (1k) for e # 0 as noted in Remark 2 in the previous section.
This result also holds for higher multiplicity zeros and limit cycles as in
Theorem 1.3 in [37].
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Theorem 2. Assume that (A.2) holds for all a E I. Then if there exists
an ao E I and a Po E R' such that

M(ao, I+0) = Ma(a0, 140) = 0, Maa(ao, Ib) 9& 0,

and

Mµ1(ao, MO) 710,

it follows that for all sufficiently small a there is an analytic function µ(e) _
llo + 0(c) such that for sufficiently small e # 0, the analytic system (1µ(E))
has a unique limit cycle of multiplicity-two in an 0(e) neighborhood of the
cycle rQO.

Proof. Under assumption (A.2), d(a, 0, µ) - 0 for all a E I and µ E R.
Define the function F(a, E, µ) as in the proof of Theorem 1 with µ in place
of µo. Then F(a, e, s) is analytic in an open set containing I x {0} x R.
It then follows from Lemma 1 that, under the above hypotheses,

F(ao, 0, Fro) = de (ao, 0, Ib) = koM(ao, Is0) = 0,

Fa(ao,0,Ib) = de.(ao,0,Is0) = koM0(ao,E+0) = 0,

Faa(ao,0,t) = dEaa(ao,0,s0) = koMaa(ao,µo) # 0,

and

Fµ, (ao, 0, Iso) = dE,,1(ao, 0, Ib) = koM,,1(ao, µo) # 0.
Thus, by the Weierstrass Preparation Theorem for analytic functions, The-
orem 69 on p. 388 in [A-II], there exists a 6 > 0 such that

F(a, e, µ) = [(a - co)' + Al (e, µ)(a - co) + A2(E, I414(a, E, is),

where A, (e, µ), A2(e, µ), and 4i(a, e, µ) are analytic for IEI < 6, Ia - aol <
6, and II` - I+oI < b; Ai(0,l o) = A2(0,140) = 0, 4(ao,O,I+o) 0 0, and
8A2/8µ1(0,µ0) 0 0 since F,,, (ao, 0,µo) i 0. It follows from the above
equation that

Fa (al, e, µ) = [2(a - co) + Al (E, µ)]4'(a, E, µ)

+ [(a - ao)2 + Ai (e, Ia)(a - ao) + A2(e, Iu)]4a(a, E, 1A)

and

Faa(al, e, IA = E, Ii) + 2[2(a - ao) + A1(E, I+)]'a(a, E, IA)
+ [(a - ao)2 + A1(Is)(a - co) + A2(e, IU)]4aa(a, e, IA)-

Therefore, if 2(a - ao) + Al (e, µ) = 0 and (a - ao)2 + Al (E, µ)(a -
ao) + A2(e, µ) = 0, it follows from the above equations that (1,,) has a
multiplicity-two limit cycle. Thus, we set a = ao - Al (e, µ)/2 and find
from the first of the above equations that F(ao - Al (e, µ)/2, E, IA) = 0 if
and only if the analytic function

G(e,IA) = 4Ai(E,/L) - A2(E,µ) = 0
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since by continuity 1'(a, e, µ) 54 0 for small IEI, Ia - ao( and I t& - 1A01. But
G(0, Flo) = 0 since A1(0, t0) = A2(0, µo) = 0 and

00
(0, Fto) = -

.9A2
(0, loo) 0 08µl t7µl

since F1,1(ao, 0, E.to) 34 0. Let lio = (µ1o), ... , Then it follows from the
implicit function theorem, cf. [R], that there exists a 5 > 0 and a unique
analytic function g(e, µ2, ... , µ,") such that g(0,,...,) = µ1o) and

G(E,g(c,{L2,... (Lm),A2a... A.)=0
(0)for IeI <Iw2-µ2I <5. For I£I <6we define µ(e) _

(o) (o)) (o) (o) ); then, e + 0/e) and 1 hasM ,IL.2 ,...,µm ,µ2 ,...,Pm r '() = '0 l ( µ(e))
a unique multiplicity-two limit cycle rE through the point a(e) = ao -

A1(e, tt(e)) on E; and by continuity with respect to initial conditions and
parameters, it follows that r, lies in an 0(e) neighborhood of the cycle I ao
since A1(0, Eto) = 0.

Remark 2. The proof of Theorem 2 actually establishes that there is an
n-dimensional analytic surface µl = g(e, /2, ... , ILm) through the point
(0, Eeo) E Rm+1 on which (1,) has a multiplicity-two limit cycle for e 0 0.
On one side of this surface the system (1,) has two hyperbolic limit cycles,
and on the other side (1,,) has no limit cycle in an 0(e) neighborhood of
r,,; i.e., the system (1,) experiences a saddle-node bifurcation as we cross
this surface. The side of the surface on which there are two limit cycles is
determined by wo and the sign of M,,, (ao, µo)Mcxa(ao, µo). Cf. (38].

Remark 3. If M(ao, lto) = Ma(ao, µo) = = MQk-')(ao, Ito) = 0, but
Mak) (ao, Ilo) # 0 and MIA, (ao, µo) # 0, then it can be shown that for
small e 96 0 (1µ(E)) has a multiplicity-k limit cycle near rao; however, if
l b l a k ) (ao, µo) = 0 for all k = 0,1, 2, ... , then dE (a, 0, µo) _ 0 for all a E I,
and a higher order analysis in e is necessary in order to determine the
number, positions, and multiplicities of the limit cycles that bifurcate from
the continuous band of cycles of (1,) for e 36 0. This type of higher order
analysis is presented in the next two sections.

Besides the global bifurcation of limit cycles from a continuous band of
cycles, there is another type of global bifurcation that occurs in planar sys-
tems, namely, the bifurcation of limit cycles from a separatrix cycle. The
Melnikov theory for perturbed planar systems also gives us explicit infor-
mation on this type of bifurcation; cf. Theorem 4 in the previous section.
In order to prove Theorem 4 in Section 4.9, it is necessary to determine the
relationship between the distance d(e, µ) between the saddle separatrices
of (1,) along a normal line to the homoclinic orbit -yo(t) in (A.1) above at
the point ryo(0). This is done by integrating the first variation of (1µ) with
respect to e along the homoclinic orbit ryo(t). The details are carried out
in Appendix I in [38]; cf. p. 358 in (37]:
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Lemma 2. Under assumption (A.1), the distance between the saddle sep-
aratrices at the hyperbolic saddle point xo along the normal line to 7o(t)
at 70(0) is analytic in a neighborhood of {0} x RI and satisfies

d(e, p)
E__M(p)

+ O(E2) (3)
If (70(0))

as a 0, where M(p) is the Melnikov function for (1µ) along the homo-
clinic orbit 1o(t) given by

M(µ) = f00

e- fo °'f(-Yo('))a f(7o(t)) A g(''0(t), 0, µ)dt.
00

Theorem 3. Under assumption (A.1), if there exists a po E R'" such that

M(po) = 0 and 0,

then for sufficiently small E 3& 0 there is an analytic function p(e) = po +
0(e) such that the analytic system (1µ(E)) has a unique homoclinic orbit re
in an 0(e) neighborhood of I'o. Furthermore, if M(µ0) 0, then for all
sufficiently small e # 0 and 11A - pol the system (lµ) has no separatrix
cycle in an 0(e) neighborhood of r0.

Proof. Under the hypotheses of Theorem 3, it follows from Lemma 2 that,
for small e, d(E, p) is an analytic function that satisfies d(0, po) = 0 and
dµ, (0, pl) # 0. It therefore follows from the Implicit Function Theorem
that there exists 6 > 0 and a unique analytic function h(e, pl, ... , µ,")
which satisfies h(0,µ2°), ... , p(,°)) = u(o) and d(E, h(e, p2, ... , µm ), /A2,. .. ,
µ,,,) = 0 for iEI < b, l µ2 - µ2°) < 6.... , and 1µm -14)1 < b. It there-
fore follows from the definition of the function d(e, p) that if we define
lp(e) = (h(e, µ2°), ... , µ2°), ... , µ;,°,)) for jej < b, then p(e) = lso +0(e)
and (1µ(E)) has a homoclinic orbit I'E. It then follows from the uniqueness
of solutions and from the continuity of solutions with respect to initial con-
ditions, as on pp. 109-110 of [38], that 1'e is the only homoclinic orbit in
an 0(e) neighborhood of r0 for up - pol < b.

The next corollary, which .is Theorem 3.2 in [37], determines the side of
the homoclinic loop bifurcation surface µl = h(e, µ2, ... , p,,,) through the
point (0, po) E R"+1 on which (1µ) has a unique hyperbolic limit cycle
in an 0(e) neighborhood of 1'o for sufficiently small e 0 0. In the following
corollary we let oo = - sgn[V g(xo, 0, po)]; then, under hypotheses (A.1)
and (A.2), ao determines the stability of the separatrix cycle re of (1µ(E))
in Theorem 3 on its interior and also the stability of the bifurcating limit
cycle for small e 96 0. They are stable if ao > 0 and unstable if ao < 0. We
note that under hypotheses (A.1) and (A.2), V f(xo) = 0 and, in addition,
if V g(xo, 0, µo) = 0, then more than one limit cycle can bifurcate from
the homoclinic loop rE in Theorem 3 as p varies from p(e); cf. Corollary 2
and the example on pp. 113-114 in [38].
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Corollary 2. Suppose that (A.1) and (A.2) are satisfied, that the one-
parameter family of periodic orbits rQ lies on the interior of the homoclinic
loop I'o, and that Opt = µ1 - h(e, 142, ... , Am) With h defined in the proof
o f Theorem 3 above. Then f o r all sufficiently small e 96 0,1142 - µ20l I, ... ,
and Ilin - 40) I,

(a) the system (1,,) has a unique hyperbolic limit cycle in an 0(e) interior
neighborhood of I'o if woooM, (po)Au, > 0;

(b) the system (114) has a unique separatrix cycle in an 0(e) neighborhood
of ro if and only if pi = h(e, A2,. - -, Am); and

(c) the system (1,) has no limit cycle or separatrix cycle in an 0(e) neigh-
borhood of r0 if woaoMµ, (p0)0µ1 < 0.

µt

0'
A2

Figure 1. If woobMµ,(po) > 0, then locally (114) has a unique limit cycle
if p1 > h(e, p2i ... , µm) and no limit cycle if h1 < h(e, 142, ... , pm) for all
sufficiently small e 34 0.

We end this section with some examples illustrating the usefulness of
the Melnikov theory in describing global bifurcations of perturbed planar
systems. In the first example we establish Theorem 6 in Section 3.8.

Example 1. (Cf. [37), p. 348) Consider the perturbed harmonic oscillator

i = -y + e(µ1x + µ2i2 + ... + µ2n+1x2n+1)
X.

In this example, (A.2) is satisfied with -y0 (t) = (a cos t, a sin t), where the
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parameter a E (0, oo) is the distance along the x-axis. The Melnikov func-
tion is given by

M(a,,a) = f f(7a(t)) A g(7a(t),0,l4)dt2x
0

r2,r_ -a2 J (It, Cos2 t + + p2n+la2n Cos2n+2 t)dt
0

_ -27ra2 21 +
8

µ3a2 + ... + 22n+1
C27z+ 1) a2nJ .2n+2

From Theorems 1 and 2 we then obtain the following results:

Theorem 4. For sufficiently small a 0, the above system has at most n
limit cycles. Furthermore, for e # 0 it has exactly n hyperbolic limit cycles
asymptotic to circles of radii rj, j = 1, ... , n as a -> 0 if and only if the
nth degree equation in a2

has n positive roots a2 = rJ2,j = 1,...,n.

Corollary 3. For 0 < pl < .3 and all sufficiently small e 76 0, the system

x=-y+e(plx-2x3+3x5)
y=x

has exactly two limit cycles asymptotic to circles of radii

r= 2/5 1 1-pl/.3

as e -' 0. Moreover, there exists a pl(e) = .3 + 0(e) such that for all
sufficiently small e # 0 this system with pl = pl(e) has a limit cycle of
multiplicity-two, asymptotic to the circle of radius r = 215, as a --+ 0.
Finally, for pl > .3 and all sufficiently small e 0 0, this system has no limit
cycles, and for pl < 0 it has exactly one hyperbolic limit cycle asymptotic

to the circle of radius 2/5 1 + 1 + jpll/.3.

The results of this corollary are borne out by the numerical results shown
in Figure 2, where the ratio of the displacement function to the radial
distance, d(r, e, p1)/r, has been computed for e = .1 and ul = .28, .29, .30,
and .31.
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Figure 2. The function d(r, e, FAi )/r for the system in Corollary 3 with
E = .1 and p, =.28,.29,30, and .31.

Example 2. (Cf. [37], p. 365.) Consider the perturbed Duffing equation
(8) in Section 4.9, which we can write in the form of the Lienard equation

x = Y + E(/Llx + 12x3)

y=x-x3
with parameter µ = (pi, µ2); cf. Problem 1, where it is shown that the
parameters,ul and µ2 are related to those in equation (8) in 4.9 by µl = a
and µ2 = Q/3. It was shown in Example 3 of Section 4.9 that the Melnikov
function along the homoclinic loop ro shown in Figure 3 of Section 4.9 is
given by

4 16 4 16
M(µ) = a+ 15Q = 3µi + 5 A2-

Thus, according to Theorem 3 above, there is an analytic function

µ(E) =µl

such that for all sufficiently small E 3& 0 the above system with µ = µ(E) has
a homoclinic orbit r,+, at the saddle at the origin in an 0(e) neighborhood
of I'+. We now turn to the more delicate question of the exact number and
positions of the limit cycles that bifurcate from the one-parameter family of
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periodic orbits -y ,(t) for e # 0. First, the one-parameter family of periodic
orbits -f,, (t) = (x,, (t), y0(t))T can be expressed in terms of elliptic functions
(cf. [G/H], p. 198 and Problem 4 below) as

xe(t) 2-a dn(
2t a2,a)

(t)=-v az sn ( t z
t

Y,, 2-a 2-a ,a cn ( 2-az a)

for 0 < t < T0, where the period T« = 2K(a) 2 - a2 and the parameter
a E (0, 1); K(a) is the complete elliptic integral of the first kind. The
parameter a is related to the distance along the x-axis by

x 2 = 2 or az = 2(x2 - 1)

2-az
and we note that

z ,

x

ax __ fa
as (2 - a2)3/2 > 0

for a E (0, 1) or, equivalently, for x E (1, V2-). For e = 0, the above system
is Hamiltonian, i.e., V V. f(x) = 0. The Melnikov function along the periodic
orbit rya (t) therefore is given by

Al(a,µ) = f
T.

f(-f. (t)) Ag(7a(t),0, z)dt
0

T. [µ2xa(t) + (µi - µz)xQ(t) - µlxa(t)] dt.
0

Then, substituting the above formula for x,,(t) and letting u = t/ 2 - a ,
we find that

4K(a) (222)3dnM(aµ) =2 +(A-12) (
2 2a2)

2-µl 2-a2 I dn2u 2-a2 du

1 f
4K(Q)

(2 - a2)5/2 0
[4112dn6 u + 2(µi -µz)(2 - a2)dn4u

dn4u

- µl (2 - a2)2dn2u]du.
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Using the formulas for the integrals of even powers of dn(u) on p. 194 of
[40],

dn2udu = 4E(a),

dn4udu = 3 [(a2 - 1)K(a) + 2(2 - a2)E(a)],
14K(a'0

and

(a)

f
4K

dneudu = 15[4(2 - a2)(a2 - 1)K(a) + (8a4 - 23x2 + 23)E(a)],

where K(a) and E(a) are the complete elliptic integrals of the first and
second kind, respectively, we find that

M(a,
µ) _ (2 - a2)5/2

{a[4(2_a2)(a2 - 1)K(a)

+ (8a4 - 23a2 + 23)E(a)]

- 2u(2 - a2)[(a2 - 1)K(a) + 2(2 - a2)E(a)]

+
Jul

2(2 - a2) [(a2 - 1)K(a) + 2(2 - a2)E(a)]
3

11

- ,ul (4 - 4a2 + a4)E(a))

After some algebraic simplification, this reduces to 1111

M(a, µ) = 3(2 - a2)5/2
{_61i2[(4 - 3a2 + 2)K(a)

- 2(a4 - a2 + 1)E(a)]
l

+µi[(a4-4a2+4)E(a)-2(a4-3a2+2)K(a)] } .
JJ1

It therefore follows that M(a, µ) has a simple zero if

µl - 6[(a4 - 3a2 + 2)K(a) - 2(a4 - a2 + 1)E(a)]
µ2 5[(a4 - 4a2 + 4)E(a) - 2(a4 - 3a2 + 2)K(a)J'

and that M(a, µ) = 0 for 0 < a < 1 if µl = µ2 = 0. Substituting
a2 = 2(x2 - 1)/x2, the function µl/µ2i given above, can be plotted, using
Mathematica, as a function of x. The result for 1 < x < f is given in
Figure 3(a) and for 0 < x < 1 in Figure 3(b). We note that the monotonicity
of the function µl/µ2 was established analytically in [37].

The next theorem then is an immediate consequence of Theorems 1 and
3 above. We recall that it was shown in the previous section that for µ2 > 0
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Figure S. The values of 111/142 that result in a simple zero of the Melnikov
function for the system in Example 2 for (a) 1 < x < f and (b) for
0<x<1.

and for e > 0 the system in this example has a supercritical Hopf bifur-
cation at the critical point ±(1, -s(µ1 + p2)) at Isl/µ2 = -3. We state
the following theorem for µ2 > 0 and e > 0, although similar results hold
for µ2 < 0 and/or e < 0. We see that, even though the computation of
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the Melnikov function M(a, p) in this example is somewhat technical, the
benefits are great: We determine the exact number, positions, and multi-
plicities of the limit cycles in this problem from the zeros of the Melnikov
function. Considering that the single most difficult problem for planar dy-
namical systems is the determination of the number and positions of their
limit cycles, the above-mentioned computation is indeed worthwhile.

Theorem 5. For p > 0 and for all sufficiently small e > 0, the system
in Example 2 with -3142 < Al < µ1(e) = -2.41A2 + 0(e) has a unique,
hyperbolic, stable limit cycle around the critical point (1, -e(µ1 + 02)),
born in a supercritical Hopf bifurcation at µl = -31A2i which expands
monotonically as µl increases from -31A2 to µ1(E) = -2.4µ2 + 0(E); for
µl = µ1(E), this system has a unique homoclinic loop around the critical
point (1, -E(µ1 +µ2)), stable on its interior in an 0(E) neighborhood of the
homoclinic loop r+, , defined in Section 4.9 and shown in Figure 3 of that
section.

Note that exactly the same statement follows from the symmetry of the
equations in this example for the limit cycle and homoclinic loop around the
critical point at -(1, -E(01 +,U2))- In addition, the Melnikov function for
the one-parameter family of periodic orbits on the exterior of the separatrix
cycle r U {0} U r+, , shown in Figure 3 of Section 4.9, can be used to
determine the exact number and positions of the limit cycles on the exterior
of this separatrix cycle for sufficiently small c # 0; cf. Problem 6.

We present one last example in this section, which also will serve as an
excellent example for the second-order Melnikov theory presented in the
next section.

Example 3. (Cf. [37], p. 362.) Consider the perturbed truncated pendu-
lum equations

2=y+E(µlx+µ2i3)
y=-x+x3

with parameter p = (µl,µ2). For e = 0, this system has a pair of hetero-
clinic orbits connecting the saddles at (fl, 0). Cf. Figure 4.

It is not difficult to compute the Melnikov function along the heteroclinic
orbits following what was done in Example 3 in Section 4.9. Cf. Problem 3.
This results in

M(µ)=2f(31+ 52).
Thus, according to a slight variation of Theorem 3 above (cf. Remark 3.1
in [371), there is an analytic function

/ 5
p(e) = µl 1 1, -

5)T

+ 0(E)

such that for all sufficiently small E 54 0 the above system with p = p(e)
has a pair of heteroclinic orbits joining the saddles at ±(1, -E(µ1 + p2)),
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Figure 4. The phase portrait for the system in Example 3 with c = 0.

i.e., a separatrix cycle, in an 0(e) neighborhood of the heteroclinic orbits
shown in Figure 4.

We next consider which of the cycles shown in Figure 4 are preserved
under the above perturbation of the truncated pendulum when e 0 0.
The one-parameter family of periodic orbits -y. (t) = (X. (t), y. (t))T can be
expressed in terms of elliptic functions as follows (cf. Problem 5):

(t) = V `a sn
t

X"
1+a2 l+a ' a
rio,V2

cnya(t)= 1+a2( V-tl+a a)dn1 l+a a/
for 0 < t < Ta, where the period Ta = 4K(a) 1 + a and the parameter
a E (0,1); once again, K(a) denotes the complete elliptic integral of the
first kind. The parameter a is related to the distance along the x-axis by

2 2a2 2
x

1 -+a2
or a2 = 2 - x2'

and we note that
8x _ f
8a (1 +a2)3/2 > 0

for a E (0, 1) or, equivalently, for x E (0, 1). For e = 0, the above system is
Hamiltonian, i.e., V f(x) = 0. The Melnikov function along the periodic
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orbit rya(t) therefore is given by

M(a, µ) = f f (la (t)) A g(-f. (t), 0, µ)dt
0

- 0fa

[µI xa(t) + (u2 - Ai)xa(t) - µzx«(t)Jdt.

Then, substituting the above formula for xa(t) and letting u = t/ 1 + a2,
we get

4K(a) 2a2 2a2
2

M(a, /.L) = f µl (1+a2
) sn2u + (µ2 - (I+a2)

sn4u

_ 2

2

( 2a2 ) 3
I\ snsu 1 + a2du

l + a
4K(a)_ 2a2

10(1 + a)5/2
(µt(1 + a2)2sn2u

+ 2a2(µ2 - µl)(1 + a2)sn4u - 4a4µ2snsu]du.

And then using the formulas for even powers of sn(u) on p. 191 of [40],

f4K(a) 4
sn2udu =

a2
[K(a) - E(a)],

0
K(a) 4j4

sn4udu = + a2)K(a) - 2(1 + a2)E(a)J,

and

K()f4

snudu = 1[(4a+ 3a2 + 8)K(a) - (8a4 + 7a2 +

where K(a) and E(a) are the complete elliptic integrals of the first and
second kind, respectively, we find that

M(a, u) =
8

(1 + a2)5/2
µi(1 + az)2[K(a) - E(a)]

+
3

(µ2 -µl)(1 + a2)[(2 + a2)K(a) - 2(1 + a2)E(a)J

- 5µ2[(4a4 + 3a2 + 8)K(a) - (8a4 + 7a2 + 8)E(a)] } .

And after some algebraic simplification, this reduces to
111

M(a, µ)
3(1 + a2)5/2 {

- 3a2 + 2)K(a) - 2(a4 - a2 + 1)E(a))

+ µi(a2 + 1)[(1 - a2)K(a) - (a2 + 1)E(a)J } .



4.10. Global Bifurcations of Systems in R2 447

It follows that M(a, µ) has a simple zero if

µl _ -6[(a4 - 3a2 + 2)K(a) - 2(c(4 - a2 + 1)E(a)]
µ2 5(a2 + 1)[(1 - a2)K(a) - (a2 + 1)E(a)]

and that M(a, µ) - 0 for 0 < a < 1 if µi = µ2 = 0. Substituting
a2 = x2/(2-x2), the ratio µl/µ2, given above, can be plotted as a function
of x (using Mathematica) for 0 < x < 1; cf. Figure 5. We note that the

0.2 0.4 0.6 0.8 1

' ' x

Figure 5. The values of µl/µ2 that result in a simple zero of the Melnikov
function for the system in Example 3 for 0 < x < 1.

monotonicity of the function µl/µ2 was established analytically in [37].

The next theorem then follows immediately from Theorems 1 and 3 in
this section. It is easy to see that the system in this example has a Hopf
bifurcation at the origin at µl = 0, and using equation (3') in Section 4.3
it follows that for µ2 < 0 and e > 0 it is a supercritical Hopf bifurcation.
We state the following for µ2 < 0 and e > 0, although similar results hold
for µ2>0and/or e<0.

Theorem 6. For µ2 < 0 and for all sufficiently small e > 0, the system in
Example 3 with 0 < µl < µ1(e) = -.6µ2 + 0(E) has a unique, hyperbolic,
stable limit cycle around the origin, born in a supercritical Hopf bifurcation
at µl = 0, which expands monotonically as µl increases from 0 to µ1(e) =
-.6µ2 + 0(E); for µl = µ1(e), this system has a unique separatrix cycle,
that is stable on its interior, in an 0(e) neighborhood of the two heteroclinic
orbits ryp (t) = ±(tanh t/ v r2, (1/ f) sech2 t/ f) shown in Figure 4.
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PROBLEM SET 10

1. Show that the perturbed Duffing oscillator, equation (8) in Section 4.9,

i=y
y=x-x3+E(ay+13x2y),

can be written in the form

t-Eg(x,p)i-x+x3=0
with g(x, µ) = a + #x2, and that this latter equation can be written
in the form of a Lienard equation,

=y+E(µlx+µ2x3)
x-x3,

where the parameter it = (41 i µ2) = (a,,3/3). Cf. Example 2.

2. Compute the Melnikov function M(a, µ) for the quadratically per-
turbed harmonic oscillator in Bautin normal form,

x = -y + A1x - A3x2 + (2A2 + A5)xy + Asy2

y = x + Aly + A2x2 + (21\3 + A4)xy - A2Y2,

with Ai _ E°_1 Aijei f o r i = 1, ... , 6 and µ = (Al, ... , As); and show
that M(a, µ) _- 0 for all a > 0 iff All = 0. Cf. [61 and [37], p. 353.

3. Show that the system in Example 3 can be written in the form

g(x,µ)i+x-x3 =0
with g(x, µ) = µl + 3µ2i2, and that this equation can be written in
the form of the system

i=y
y = -x + x3 + Ey(µl + 3µ2x2),

which for e = 0 is Hamiltonian with
y2 x2 x4

Follow the procedure in Example 3 of the previous section in or-
der to compute the Melnikov function along the heteroclinic orbits,
H(x, y) = 1/4, joining the saddles at (±1, 0). Cf. Figure 4.

4. Using the fact that the Jacobi elliptic function

y(u) = dn(u,a)

satisfies the differential equation

y" - (2 - a2)y + 2y3 = 0,
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cf. [40], p. 25, show that the function xa(t) given in Example 2 above
satisfies the differential equation in that example with e = 0, written
in the form

i-x+x3=0.
Also, using the fact that

dn'(u, a) = -a2sn(u, a)cn(u, a),
cf. [4], p. 25, show that xa(t) = ya(t) for the functions given in
Example 2.

5. Using the fact that the Jacobi elliptic function

y(u) = sn(u,a)
satisfies the differential equation

y" + (1 + a2)y - 2a2y3 = 0,

cf. [40], p. 25, show that the function xa(t) given in Example 3 above
satisfies the differential equation in that example with e = 0, written
in the form

i+x-x3=0.
Also, using the fact that

sn'(u, a) = cn(u, a)dn(u, a),
cf. [40], p. 25, show that ±,,(t) = ya(t) for the functions given in
Example 3.

6. The Exterior Duffing Problem (cf. [37], p. 366): For e = 0 in the equa-
tions in Example 2 there is also a one-parameter family of periodic
orbits on the exterior of the separatrix cycle shown in Figure 3 of the
previous section. It is given by

xa(t) = Va
cn t a2a -1 ( 2a -1 )

ya(t) = T-2a2a1sn 2at a do t

C ) ( 2a -1
where the parameter a E (1/f, 1). Compute the Melnikov function
M(a, µ) along the orbits of this family using the following formulas
from p. 192 of (40]:

4K(a)

f cn2udu = a2 [E(a) - (1 - a2)K(a)]
0

()
f

4K
cnudu = [2(2x2 - 1)E(a) + (2 - 3a2)(1-

j
4K( a)

cnsudu = 1[(23a4 - 23x2 + 8)E(a)

+ (1 - a2)(15a4 - 19a2 + 8)K(a)].
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Graph the values of µ1/µ2 that result in M(a, p) = 0 and deduce
that for µ2 > 0, all small e > 0 and µ1(e) < µl < µi (e), where
µ1(E) = -2.4µ2 +0(e) is given in Theorem 5 and µi (e) -2.256µl +
0(e), the system in Example 2 has exactly two hyperbolic limit cycles
surrounding all three of its critical points, a stable limit cycle on
the interior of an unstable limit cycle, which respectively expand and
contract monotonically with increasing µl until they coalesce at µl =
µi (e) and form a multiplicity-two, semistable limit cycle. Cf. Figure 8
in Section 4.9. You should find that M(a, µ) = 0 if

µl - 6[(a4 - 3a2 + 2)K(a) - 2(a4 - a2 + 1)E(a)]
µ2 5[(4a4 - 4a2 + 1)E(a) - (a2 - 1)(2a2 - 1)K(a)]

The graph of this function (using Mathematica) is given in Figure 6,
where the maximum value of the function shown in the figure is
-2.256..., which occurs at a 2!t.96.

Figure 6. The values of µl /µ2 that result in a zero of the Melnikov function
for the exterior Duffing problem with 1/f < a < 1 in Problem 6.

7. Consider the perturbed Duffing oscillator

x = y + E(µ'12 + µ2y2)
x-23

which, for e = 0, has the one-parameter family of periodic orbits
on the interior of the homoclinic loop r o+, shown in Figure 3 of the
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previous section, given in Example 2 above. Compute the Melnikov
function M(a, µ) along the orbits of this family using the following
formulas from p. 194 of [40]:

t
4K(a)

dn3udu = 7r(2 - a2)

4K(a)
dnsudu = 4 (8 - 8a2 + 3a4).

0

Graph the values of µl /µ2 that result in M(a, µ) = 0 and deduce that
for µ2 > 0, all small e > 0 and -2µ2 < P1 < µ1(F) Q5 -1.67µ2, the
above system has a unique, hyperbolic, stable limit cycle around the
critical point (1, -F(µ1+µ2)), born in a supercritical Hopf bifurcation
at µl = -2p2, which expands monotonically as µl increases from
-2p2 to µ1(e) -1.67µ2, at which value this system has a unique
homoclinic loop around the critical point at (1, -f(µ1 + µ2)).

8. Show that the system in Problem 7 can be written in the form

x=y
y=x-x3+6(ply+2µ2xy),

and then follow the procedure in Example 3 of the previous section
to compute the Melnikov function M(µ) along the homoclinic loop
and show that M(µ) = 0 if µl = -37rµ2/4f; i.e., according to
Theorem 3, for all sufficiently small e 96 0 the above system has a
homoclinic loop at µl = -3gµ2/4f+0(f). Also, using the symmetry
with respect to the y-axis, show that this system has a continuous
band of cycles for µl = 0 and draw the phase portraits for 1&2 > 0
and it, < 0.

9. Compute the Melnikov function M(a, µ) for the Lienard equation

i = -y + 6(µ1x + /p3-T3 + µ5i5 + 1 7x7)
x,

and show that for an appropriate choice of parameters it is possible
to obtain three hyperbolic limit cycles or a multiplicity-three limit
cycle for small e # 0. Hint:

f 2a
cost tdt

1 1
cosy

3

27r
2 f27r

tdt = 8

2,r 35

tar

f2w
toss tdt = 6tar 0cos8 tdt = 28
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4.11 Second and Higher Order Melnikov Theory

We next look at some recent developments in the second and higher order
Melnikov theory. In particular, we present a theorem, proved in 1995 by
Iliev [41], that gives a formula for the second-order Melnikov function for
certain perturbed Hamiltonian systems in R2. We apply this formula to
polynomial perturbations of the harmonic oscillator and to the perturbed
truncated pendulum (Example 3 of the previous section). We then present
Chicone and Jacob's higher order analysis of the quadratically perturbed
harmonic oscillator [6], which shows that a quadratically perturbed har-
monic oscillator can have at most three limit cycles. Two specific examples
of quadratically perturbed harmonic oscillators are given, one with exactly
three hyperbolic limit cycles and another with a multiplicity-three limit
cycle.

Recall that, according to Lemma 1 in the previous section, under As-
sumption (A.2) in that section, the displacement function d(a, E, µ) of the
analytic system (1,) is analytic in a neighborhood of I x {0} x R"', where I
is an interval of the real axis. Since, under Assumption (A.2), d(a, 0, µ) __ 0
for all a E I and µ E R, it follows that there exists an co > 0 such that
for all IeI<Eo,aEI,and µoER'",

f2
d(a, e, IA) = ed. (a, 0, IA) +

22
dee (a, 0, E+) + .. .

edl (a, {y) + e2d2(a, Ip) + .. .

As in the corollary to Lemma 1 in the previous section, dl (a, µ) is propor-
tional to the first-order Melnikov function M(a, p), which we shall denote
by Ml (a, µ) in this section and which is given by equation (2) in the last
section. The next theorem, proved by Iliev in [41] using Frangoise's re-
cursive algorithm for computing the higher order Melnikov functions [55],
described in the next section, gives us a formula for d2(a, p), i.e., for the
second-order Melnikov function M2(a, µ) in terms of certain integrals along
the periodic orbits r,, in Assumption (A.2) of the previous section. Iliev's
Theorem applies to perturbed planar Hamiltonian (or Newtonian) systems
of the form

= y+Ef(x,y,e,µ)
(1r.)

U'(x) + Eg(x, y, e, I4),
where U(x) is a polynomial of degree two or more, and f and g are analytic
functions. We note that for e = 0 the system (1,) is a Hamiltonian (or
Newtonian) system with

H(x, y) =
2

- U(x).

Before stating Iliev's Theorem, we restate Assumption (A.2) in the previ-
ous section with the energy h = H(x, y) along the periodic orbit as the
parameter:
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(A.2') For e = 0, the Hamiltonian system (1,,) has a one-parameter
family of periodic orbits

rh: x = 7h (t), 0 < t < Th,

of period Th with parameter h E I C R equal to the total energy
along the orbit, i.e., h = H(ryh(0)).

Theorem 1 (Iliev). Under Assumption (A.2'), if Mi(h, p) - 0 for all
h E I and p E R1, then the displacement function for the analytic system
(1,,)

d(h,e,IA) =
62M2(h,IA)

+ 0(E3) (2)
If (7h(0))I

as e 0, where the second-order Melnikov function is given by

h(x,y,1z)P2(x,h,IA) -Gi(x,y,p)P2h(x,h,IA)]dxM2(h,A) = irh [G1

-(x, y, It)
[f:(x, y, 0,14) + gy(X, y, 0, µ)]dxJr,, ry

+ j [g. (x, y, 0, I,.)dx - fE (x, y, 0, IL)dy],
r,,

where
y

F(x, y, IA) = I f (x, s, 0, p)ds -
fox

g(s, 0, 0, p)ds,
0

G(x, y, Ip) = g(x, y, 0, Ip) + F=(x, Y, IA),

G, (x, y, p) denotes the odd part of G(x, y, p) with respect to y, G2(x, y, p)
denotes the even part of G(x, y, p) with respect to y, G2(x, y2, p) = G2
(x,y,Ip),

0G1 1
Glh(x,y,IA) = !-

ay

(x,

(x, h, p) denotes the partial of P2(x, h, p) with respect to h.

In view of formula (2) for the displacement function, it follows that if
Mj(h, p) - 0 for all h E I and p E R'", then under Assumption (A.2'),
Theorems 1 and 2 of Section 4.10 hold with M2(h, p) in place of M(a, p)
and h in place of a in those theorems. The proofs in Section 4.10 remain
valid as given. We therefore have a second-order Melnikov theory where the
number, positions, and multiplicities of the limit cycles of (1,,) are given by
the number, positions, and multiplicities of the zeros of the second-order
Melnikov function M2(h, p) of (1,). This idea is generalized to higher order
in the following theorem, which also applies to the general system (1,) in
Section 4.10 under Assumption (A.2); cf. Theorem 2.1 in [37].
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Theorem 2. Under Assumption (A.2), suppose that there exists a µo E
R' such that for some k > 1

d(a,0,µo) _ di(a,µo) _ ... __ dk-1(a,No) = 0

for all a E I, and that there exists an ao E I such that

dk(ao, µo) = 0 and
8dk
as (ao, µo) 96 0;

then for all sufficiently small e 54 0, the system (1,,0) has a unique hyperbolic
limit cycle in an 0(E) neighborhood of the cycle 1'QO.

Remark 1. Theorem 2 in Section 4.10 also can be generalized to a higher
order to establish the existence of a multiplicity-two limit cycle of (1,,) in
terms of a multiplicity-two zero of M2(a, p) or, more generally, of dk(a, p)
with k > 2. As in Remark 3 in Section 4.10, we also can develop a higher
order theory for higher multiplicity limit cycles; this is done in Theorem 2.2
in [37].

Our first example is a quadratically perturbed harmonic oscillator that
has one limit cycle obtained from a second-order analysis. As you will see
in Problem 1 and in Chicone and Jacobs' higher order analysis presented
below, to second order any quadratically perturbed harmonic oscillator has
at most one limit cycle.

Example 1. Consider the following quadratically perturbed harmonic os-
cillator:

i = y + a(e)x + b(e)x2 + c(e)xy

-x
with a(e) = fat+f2a2+ , b(e) = eb1+e2b2+ , and c(E) = ec1+e2c2+ .

For E = 0, this is a Hamiltonian system with H(x, y) = y2/2 - U(x) _
y2/2 + x2/2; it has a one-parameter family of periodic orbits

xh(t) = 2hcost, yh(t) = 42-h- sin t

with total energy h E (0, co). Using Lemma 1 in the previous section, it is
easy to compute the first-order Melnikov function and find that

M, (h, µ) = 27rha1 =_ 0

for all h > 0 if a1 = 0. Therefore, for a second-order analysis it is appro-
priate to consider the system

x = y + e(eax + bx2 + cxy)

-x,
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where we let a2 = a, bl = b, and cl = c for convenience in notation. In
using Theorem 1 above to compute the second-order Melnikov function, we
see that

f (x, y, e, µ) = Lax + bx2 + cxy, g(x, y, e, µ) = 0,

F(x,y,IA) = bx2y + cxy2/2, G(x, y, t) = 2bxy + cy2/2,

Gi (x, y,14) = 2bxy, G2 (X, y, l.) = ,2/2, Gih(x, y, µ) = 2bx/y,

P2(x,h, µ) = 1 c(2h - s2)/2ds = c(hx - x3/6).
0

Figure 1. The function d(a, e, µ)/a for the system in Example 1 with
e =.01, a = c = -1, and b = 1.

Thus,

M2(h,s) _ r2bcx (hx -
3s)

- 2bcx2yJ dx
r,,L y

- j (bx2y cxy2/2)
(2bx + cy)dx - irA axdy.

Then, using dx = ydt and dy = xdt from the differential equations and the
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above formulas for xh(t) and yh(t), we find that

rz,r 6c z,
Mz(h,µ) = 2bch J X2 - - fx45(t)dt

0

r2a 2a

- 4bc f xh(t)yh(t)dt + a
J

xh(t)dt
0 0

=21rh(a- be h).

Thus, M2(h, µ) = 0 if h = 2a/bc. And since h = az/2, where a is the radial
distance, we see that for sufficiently small e 0 the above system has a
limit cycle through the point a = 2 a/bc + 0(s) on the x-axis if abe > 0.
For e = .01, a = c = -1, and b = 1, Figure 1 shows a plot of d(a, e, µ)/a
for the above system and we see that a limit cycle occurs at a = 2 + 0(s),
as predicted.

Example 2. We next consider the perturbed truncated pendulum in Ex-
ample 3 of the previous section. From the computation of the first-order
Melnikov function in that example, we see that MI (h, µ) - 0 iff µI = pz =
0. For a second-order analysis we therefore consider the system

=y+e(sax+bxz+cxy)
-x+x3,

where we have taken µl = sa and ILz = 0 in the system in Example 3 of the
previous section, and we see that Ml (h, µ) __ 0 for the above system. As
was noted in the previous section, for e = 0 there is a one-parameter family
of periodic orbits x0(t), yQ(t) with parameter a E (0, 1) that is related to
the distance along the x-axis by x 2 = 2az/(1 + a2) and is related to the
total energy by h = a 2/(1 + a2)2 . This is obtained by substituting the
functions xa(t) and ya(t), given in the previous section in terms of elliptic
functions, into the Hamiltonian

yz x2 x4 y2
H(x, y) = 2 + 2 - 4 = 2 - U(x)

for the above system with s = 0. Let us now use Theorem 1 above to
compute the second-order Melnikov function for this system. We have

f(x,y,s,µ) = sax + bxz + cxy, g(x,y,e,µ) = 0,

F(x,y,j.) = bxzy + cxyz/2, G(x,y,µ) = 2bxy + cyz/2,

G1 (x, y, IL) = 2bxy, C2 (X, Y, IL) =
cyz/2, Cth(x, y, µ) = 2bx/y,

P2(x,h,z) = J x c(2h - sz + s4/2)/2ds = c(hx - x3/6 + x5/20),
0
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and P2h (x, h, µ) = ex. Thus it follows from Theorem 1 that
hxz x4 x6 2M2(h,,u) = 2bc -- + -x y dx

Jr, y 6y 20y

dy.- 2bc i r,x2ydx - airh x

We then use dx = ydt and dy = (-x + x3)dt from the above differential
equations and substitute the formulas for xa(t) and ya(t) from Example 3
in the previous section, u = t/ 1 + a , and h = ca2/(1 + a2)2 into the
above formula to get

M2 (a, µ) = 2bc
a2 2a2 4K(a)

(-j-+,-2)2 1 + a2 Jo
sn2udu

1 4a2 4K(a)

6 (1 + a2)3/2 Jo
sn4udu

8as 4K(a)
s

+ 20(1+0,2)5/2 0
sn udu

+0,2

4a4 4K(a) r4K(a)
sn2udu - (1 + 0,2) J sn4udu- 2

(1 + 0,2)5/2 [1, 0

4K(a)

I
20,2

snsudu + a (1 -+C-,2 )3/2

rr 4K(a) 4K(a)
L(1 + 0,2) J sn2udu - 2a2 J sn4udu ,

0 0

where K(a) is the complete elliptic integral of the first kind and we have
used the identities cn2u = 1 - sn2u and dn2u = 1 - a2sn2u for the Jacobi
elliptic functions. Note that dh/d0, > 0 for a E (0, 1), and it therefore does
not matter whether we use the energy h or a as our parameter. Now, using
the formulas for the integrals of sn2u, sn4u, and sn6u given in Example 3
in the last section, we find after some simplifications that

(1 + 0,2)5/2M2(a, µ) = 2bc I - 24a2[K(a) - E(a)]

88
+

9
(1 + a2)[(2 + a2)K(a) - 2(1 + a2)E(a)]

- 152
[(40,4 + 3a2 + 8)K(a) - (8a4 + 7a2 + 8)E(a)] }

+ 8a(1+a2) ((1+a2)[K(a)-E(a)]- 3 [(2 + a2)K(a)-2(l+ a2)E(a)] y .

It follows that M2(a, µ.) = 0 if
JJJ

a _ -3[(94a4 - 42a2 + 188)K(a) - (188a4 + 52a2 + 188)E(a)]
be 225(1 + 0,2)[(0,2 - 1)K(a) + (a2 + 1)E(a)]
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X

Figure 2. The values of a/bc that result in a zero of the second-order
Melnikov function for the system in Example 2 for 0 < x < 1.

Substituting a2 = x2/(2 - x2) from Example 3 in the previous section,
the above ratio can be plotted as a function of x (using Mathematica) for
0 < x < 1. Cf. Figure 2.

Let us summarize our results for this example in a theorem that follows
from Theorems 1 and 2 in the previous section (with M2 (a, µ) in place of
M(a, µ) in those theorems) and from the fact that for e # 0 the system in
this example has a Hopf bifurcation at a = 0.

Theorem 3. For be > 0 and all sufficiently small e > 0, the system in
Example 2 with a < 0 has exactly one hyperbolic, unstable limit cycle, and
for 0 < a < a(e) = .0576bc+0(e) it has exactly two hyperbolic limit cycles,
a stable limit cycle on the interior of an unstable limit cycle; these two limit
cycles respectively expand and contract with increasing a until they coalesce
at a = a(e) and form a multiplicity-two semistable limit cycle; there are no
limit cycles for a > a(e). The stable limit cycle is born in a Hopf bifurcation
at a = 0; the unstable limit cycle is born in a saddle-node bifurcation at the
semistable limit cycle; it expands monotonically as a decreases from a(e),
and it approaches an 0(e) neighborhood of the heteroclinic orbits -y (t),
which are defined in Theorem 6 and shown in Figure 4 of Section 4.10, as
a decreases to -oo.

The results of the Melnikov theory are borne out by the numerical results
shown in Figure 3, where we have computed d(x, e, µ)/x for the system in
Example 2 with µ = (a, b, c), b = c = 1, e = .01, and a = .06, .01, -.01,
and -.25.
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5 x 10.5

a=.06 .01-.01

r.001

Figure 3. The displacement function d(x, e, µ)/x for the system of Exam-
ple 2 with e =.01 and b = c = 1.

We next consider the quadratically perturbed harmonic oscillator

_ -y + e[aio(e)x + aot(e)y + a2o(E)x2 + aii(e)xy + a02(e)y2]

x + e[bio(e)x + boi(e)y + b2o(e)x2 + biI(e)xy + bo2(E)y2]

(3)

Because of Bautin's Fundamental Lemma in [2] for this system, cf. Lem-
ma 4.1 in [6], we are able to obtain very specific results for the system (3).
The following result proved by Chicane and Jacobs in (6) is of fundamental
importance in the theory of limit cycles.

Theorem 4. For all sufficiently small a yl- 0, the quadratically perturbed
harmonic oscillator (3) has at most three limit cycles; moreover, for suffi-
ciently small e # 0, there exist coefficients a,,(e) and b,3(e) such that (3)
has exactly three limit cycles.

As in the proof of this theorem in [6], we obtain the following result from
Bautin's Fundamental Lemma. This result also follows from Francoise's
algorithm; cf. Problem 2 in Section 4.12.
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Lemma 1. The displacement function d(x, c, A) for the quadratically per-
turbed harmonic oscillator in the Bautin normal form

d
=-y+1\1x-1\3x2+(21\2+1\5)xy+1\6y2

y=x+1\1y+1\2x2+(21\3+1\4)xy-1\2y2

with 1\3 = 2e, As = e, and 1\; = cA11 + 621\:2 + for i = 1,2,4,5, is given
by

d(x,E,A) =edl(x,A)+62d2(x,A)+...,
where

dl(x,A) = 27r1\11x,

d2(x, A) = 21rA12x - 41\51x3

d3(x, A) = 27r1\13x - 41\52x3

d4 (x, A) = 27r1\14x - 1\53x3 + 241\211\41(1\41 + 5)x5,

- 7rd5(x, A) = 27r1\15x- 41\54x3+24 1\211\411\42+(1\41+5)(1\211\42+1\221\41)]x5,

and where, for 1\4 = -5e,
7r 3 7r

d6(x, A) = 27r1\16x - 41\55x + 24 (1\411\421\22

+ 1\421\21 + 1\431\411\21)x5 - 321\21x'

for all (x, e, A) E U x R6, where U is some open subset of R2 that contains
(0,00) x {0}.

This lemma has the following corollaries, which give specific informa-
tion about the number, location, and multiplicities of the limit cycles of
quadratically perturbed harmonic oscillators.

Corollary 1. For a > 0 and all sufficiently small e 96 0, the quadratic
system

x = -y+e2ax+e(y2+8xy-2x2)
y = x + e2ay + 4exy (4)

has exactly one hyperbolic limit cycle asymptotic to the circle of radius
r=va-

This corollary is an immediate consequence of Theorem 2 and the above
lemma, which implies that the displacement function for (4) is given by

d(x,e,a) = 27re2x(a - x2) + 0(66).

Corollary 2. For A > 0, B > 0, and A 76 B, let a = AB, b = A + B, and
c = 1. Then for all sufficiently small e # 0, the quadratic system

x = -y + e4ax + 8e3bxy + e(y2 - 24cxy - 2x2),

x + e4ay + 126c(y2 - x2)
(5)
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has exactly two hyperbolic limit cycles asymptotic to circles of radii r = VA-
and r = v /B-- as a -+ 0. For ab > 0 there exists a c = (b2/4a)+0(e) such that
for all sufficiently small e 0 the system (5) has a unique semistable limit
cycle of multiplicity two, asymptotic to the circle of radius r = 2IaI/IbI
as a - 0. For c > b2/4a and all sufficiently small e # 0, the system (5)
has no limit cycles.

The proof of this corollary is an immediate consequence of Theorem 2,
Remark 1, and the above lemma, which implies that the displacement func-
tion for (5) is given by

d(x,e,IA) = 21re4x(a - bx2 + cx4) + 0(e6)

with µ = (a, b, c).

Figure 4. The function d(x, e, s)/x for the system (5) with e = .02, a = 1/4,
b = 5/4, and c = 1, 25/16, and 2.

For example, according to Corollary 2, the quadratic system (5) with a =
1/4, b = 5/4 (i.e., A = 1/4, B = 1), and c = 1 has exactly two hyperbolic
limit cycles asymptotic to circles of radii r = 1/2 and r = 1 as a - 0.
Furthermore, for a = 1/4 and b = 5/4, there exists a c = (25/16) + 0(e)
such that (5) has a semistable limit cycle of multiplicity two, asymptotic to
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the circle of radius r = 2/5 = .63 as e - 0; and for c > 25/16, (5) has no
limit cycles. This is borne out by the numerical results shown in Figure 4,
where d(x, e, µ)/x has been computed for e = .02 and c = 1, 25/16, and 2.

Corollary 3. For distinct positive constants A, B, and C, let a = ABC,
b = AB + AC + BC, c = A + B + C, and d = 1. Then, for all sufficiently
small e 54 0, the quadratic system

1/3

i = -y + eeax + 8e5bxy + e y2 +8 0251 xy - 2x21 ,

ff (
/ 1/3 (6)

y = x + esax - 12e3(5L4 `2) 2 - 2)
_xXy + 6 (X y

Y]

has exactly three hyperbolic limit cycles asymptotic to circles of radii r =
-,I-A-, -,IB-, and s/C as e 0. Furthermore, for ab > 0 and c = b2/3a, there
exists a d = (c2/3b)+0(e) such that for all sufficiently small e # 0, (6) has
a unique limit cycle of multiplicity three, asymptotic to the circle of radius
r = 31ai/IbI as a 0.

The proof of this corollary is an immediate consequence of Theorem 2,
Remark 1, and the above lemma, which implies that the displacement func-
tion for (6) is given by

d(x,e,IA) = 2ae6x(a - bx2 + cx4 - dxs) + 0(e7)

with µ = (a,b,c,d).
For example, according to Corollary 3, the quadratic system (6) with

a = 3/4, b = 11/4, c = 3 (i.e., A = 1/2, B = 1, C = 3/2), and d = 1
has exactly three hyperbolic limit cycles asymptotic to circles of radii r =

1/2Q .71, r = 1, and 312?!1.2ase-1, 0. This is borne out by the
numerical result shown in Figure 5, where d(x, e, µ)/x has been computed
fore=.05.

Furthermore, according to Corollary 3, for a = 3/4, c = 3, and b =
v ac = 3//2, there exists a d = (2/ f) + 0(e) such that the quadratic
system (6) has a unique limit cycle of multiplicity three, asymptotic to the

circle of radius r = 7312 L .93 as e - 0. This is borne out by the
numerical results in Figure 6, where d(x, e, µ)/x has been computed for
e = .05.

We note that the formulas for dl (a, A) and d2 (a, A) in Lemma 1 above
follow from the first- and second-order Melnikov functions, respectively. Cf.
Problem 2 in Section 4.10 and Problem 1 below. However, the remaining
formulas in Lemma 1 depend on Bautin's Fundamental Lemma, Lemma 4.1
in [6], for their derivation. The results of the above lemma and its corollar-
ies are tabulated in the second row of Table 1, and we note that, according
to Theorem 4, a sixth- or higher-order analysis will produce at most three
limit cycles in a quadratically perturbed harmonic oscillator. The first row
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94

11 he - -r mot - t_

Figure 5. The function d(x, e,,u)/x for the system (6) with e = .05, a = 3/4,
b = 11/4, c = 3, and d = 1.

Figure 6. The function d(x, e, µ)/x for the system (6) with e = .05, a = 3/4,
b=3f/2, c=3, and d=2/f.
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TABLE 4.1. The maximum number of limit cycles obtainable from a kth
order analysis of an nth-degree polynomially perturbed harmonic oscillator.

n=
2 0 1 1 2 2 3
3 1 2
4 1 3
5 2 4

2m m-1 2m-1
2m+1 m 2m

in Table 1 simply reflects the fact that any linear system has no limit cy-
cles. The first two columns in Table 1 summarize some recent work by the
author and one of his REU students, J. Hunter Tart, during the summer of
1995; cf. Theorem 4 in Section 4.10 and Problems 4-7 below. The numbers
in Table 1 are the maximum number of limit cycles that are possible (and
that are obtained for some choice of coefficients) in a first-, second-, or kth-
order analysis of a polynomially perturbed harmonic oscillator where the
perturbation is of degree n. It would be an extremely interesting research
project to complete some of the rows in this table; e.g., what is the max-
imum number of limit cycles possible in a cubically perturbed harmonic
oscillator, and what order Melnikov theory is required to produce that
number? For a cubically perturbed harmonic oscillator, it is known that
this number is at least 11; cf. [42]. Also, it has been known for some time
that for a cubically perturbed harmonic oscillator with homogenous cubic
perturbations (and no quadratic perturbations), the maximum number of
limit cycles is 5; cf. [43].

Remark 2. In a private communication, I.D. Iliev informed me that, using
Francoise's recursive algorithm [55], he was able to show that the maximum
number of limit cycles obtainable from a kth order analysis of an nth-
degree polynomially perturbed harmonic oscillator is less than or equal
to [k(n - 1)/2] where [x] denotes the greatest integer in x. This work is
discussed in the next section. From Table 1, we see that this upper bound
is actually achieved for k = 1 or 2 and all n > 1; and Iliev has also shown
that it is achieved for k = 3 and all n > 1. It follows from Theorem 4 and
Table 1 that for n = 2 this upper bound is also achieved for 1 < k < 7,
but that for k > 6, the maximum number of limit cycles of a quadratically
perturbed harmonic oscillator is 3. And for n = 3, Iliev has shown that this
upper bound is achieved for 1 < k < 5, but that for k = 6, the maximum
number of limit cycles obtainable from a 6th order analysis of a cubically
perturbed harmonic oscillator is 5. Cf. Table 1 in Section 4.12. At this
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time, we do not know the maximum number of limit cycles possible for
a cubically perturbed harmonic oscillator, only that it is greater than or
equal to 11.

PROBLEM SET 11

1. Use Theorem 1 to show that the second-order Melnikov function for
the quadratically perturbed harmonic oscillator in Bautin normal
form

y + e[e)12x - 2x2 - (21121 + )51)xy + y2J

-x + e[e)12y - )21x2 + (4 + A41)xy + A21y2)

is given by M2(h, A) = 4ah()12-Aslh/4) or by M2(a, A) = 2aA14a2-
7r)51a4/4 since the radial distance a = 2h for the harmonic oscil-
lator; cf. the formula for d2(a, A) = M2(a, A)/a in Lemma 1.

2. Use Theorem 1 to compute the second-order Melnikov function for the
quadratically perturbed harmonic oscillator (4) in Corollary 1 above
and compare your result with the formula for d(x, e, a) immediately
following Corollary 1. (Be sure to let y --+ -y in order to transform
(4) into the form (1,) to which Theorem 1 applies.)

3. Use Lemma 1, Theorem 2 and the results cited in Remark 1 to prove
the corollaries in this section.

4. Use Theorem 1 to show that the second-order Melnikov function for
the quartically perturbed harmonic oscillator

s = y+e(eax+bxy+edx3+ex4)
-x+eCx4

is given by M2(a, µ) = 7ra2(L6 + 2a bea4 +
y
da2 + a), where a is

the radial distance from the origin, and deduce that for sufficiently
small e 96 0 this system can have three limit cycles for an appropriate
choice of coefficients µ = (a, b, c, d, e).

5. Use Theorem 1 to show that the second-order Melnikov function for
the harmonic oscillator with a sixth-degree perturbation of the form

x = y + e(eax + ebx3 + ecx5 + x6)
-x + e(Ax6 + Bx4 + Cx2)

is given by

189
M2(a) = rra2 (Aa'

0 + 320 Bas + 32Ca6

+ 8 ca4 + 4 bat + a
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and deduce that for sufficiently small e 54 0 this system can have five
limit cycles for an appropriate choice of coefficients.

6. Use Theorem 1 to show that the second-order Melnikov function for
the harmonic oscillator with a 2mth degree perturbation of the form

x = y + E(Ealx + + Eamx2m-l + x2m)

y = -x + E(Alx2m + ... + Amx2)

is given by M2(a) = 7ra2P2m-i (a2) where P2,,,-1 (a2) is a (2m - 1)th
degree polynomial in a2, i.e., P2m-1(a2) = k1Ala4m-2 + ... + a1
for some constant kl # 0. Then use Theorem 2 and Descarte's law
of signs to deduce that for sufficiently small E # 0, this system has
2m-1 limit cycles for an appropriate choice of coefficients a1, . . . , a,,,,
Ai,...,Am.

7. Use Theorem 1 to show that the second order Melnikov function for
the cubically perturbed harmonic oscillator

=y
y=-x+E(a+6x+xy+cx3+3x2y-y3)

is given by M2(h) = ah(2a+3bh+3ch2) and hence (since MI (h) __ 0),
this system can have two limit cycles.

4.12 F rancoise's Algorithm for Higher Order
Melnikov Functions

In this section we describe J. P. Francoise's algorithm [551 for determining
the first nonzero Melnikov function for a perturbed Hamiltonian system of
the form

i=Hy(x,y)+ef(x,y,E)
y=-H.(x,y)+Eg(x,y,E) (1)

where f and g are nth-degree polynomials in x and y and analytic in e.
It is assumed that the unperturbed system, (1) with E = 0, satisfies the
assumption (A.2') in Section 4.11:

(A.2') For c = 0 the Hamiltonian system (1) has a one-parameter fam-
ily of periodic orbits

Fh:X=7h(t), 0<t<Th
of period Th with parameter h E I C R equal to the total energy
along the orbit; i.e., h = H(ryh(O)).
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Remark 1. It follows from Lemma 1 and Remark 1 in Section 4.10 for
k = 1, from Theorem 1 in Section 4.11 for k = 2, or from Theorem 2.2 in
[37] for general k > 1, that if we regard the displacement function d(h, e)
for (1) as measuring the increment in the energy along a Poincare section
to the Hamiltonian flow (1), as was done in [57], then the first equation in
the previous section becomes

d(h,e) = edl(h) + e2d2(h) + (2)

where dk(h) = Mk(h), the kth-order Melnikov function for the system
(1). We shall assume that this is the case throughout this section where
we show how to use J. P. Frangoise's algorithm to determine dk(h) when
dl(h) = ... = dk_i(h) - 0 for h E I.

Since Frangoise's algorithm is stated in terms of differential forms, we
first make some basic remarks about differential one-forms. The student
is already familiar with the idea of the total differential of a function. For
example, the total differential of the second-degree polynomial Q(x, y) =
x2+2xy-3y2-x+y-10 is given by dQ = (2x+2y-1)dx+(2x-6y+1)dy.
This total differential or exact differential is also called a polynomial one-
form (of degree 1); however, not every polynomial one-form is an exact
differential. But any polynomial one-form of degree n can be written
as

fl = aijx'yjdx + E bijx'yjdy.
i+j<n i+j<n

(3)

Given a polynomial Hamiltonian function H(x, y), it is of fundamental
importance in applying Frangoise's algorithm to the system (1) to know
when we can decompose a polynomial one-form 11 into an exact differential
dQ and a remainder depending on H as

1=dQ+qdH (4)

where Q(x, y) and q(x, y) are polynomials in x and y. Clearly, if fl =
dQ + qdH, then since dH = 0 on any closed curve H(x, y) = h and since
the integral of an exact differential dQ around any closed curve is zero, it
follows that

fH=h JH=h
=dQ+Jh qdH-0

for all h E I. In order to apply Frangoise's algorithm to the system (1),
it is necessary that the converse of this statement hold; i.e., for a given
polynomial function H(x, y) we must be able to write any polynomial one-
form 1 which satisfies f H=h 11 = 0 for all h E I as H = dQ + qdH for some
polynomials Q(x, y) and q(x, y). If this is the case, then we say that the
polynomial function H(x, y) satisfies the condition (*) in Definition 1 below.
Before stating that definition, it is instructive to consider an example.
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Example 1. Let H(x, y) = (x2+y2)/2 and consider a polynomial one-form
of degree two

Sl = (a2ox2 + a11xy + a02y2 + alox + aoly + aoo)dx

+ (b2ox2 + bl lxy + b02y2 + blox + bol y + boo)dy.

Integrating S2 around the closed curve H(x, y) = h, i.e. around a closed
T

curve rh:'ryh(t) = ( 2h cost, 2h sin t) of the Hamiltonian system (1)
with e = 0, we find that

r 2a

J
S2 = 2h j (blocos2t - aolsin2t)dt = 2irh(blo - aol)

H=h 0

Therefore, in view of the above remarks, the polynomial one-form SZ in
this example cannot be written in the form (4) unless blo = aol. And if
blo = a01, then it is shown in the proof of Lemma 1 below that there
are specific polynomials Q(x, y) and q(x, y) of degrees 3 and 1 respectively
such that S2 can be written in the form (4). In Problem 1 the student will
see that any polynomial one-form of degree 3 or 4, as given in (3), can be
written in the form (4) provided f H=h fl - 0 for all h E I, i.e., provided
that blo = a01 and b12 + 3b3o = a21 + 3a03. And in general, we shall see
in Lemma 1 and Problem 1 below that for any polynomial one-form St
of degree n, fH=h S2 - 0 for all h E I if [(n + 1)/2] conditions on the
coefficients a23 and b2, are satisfied (where [x] denotes the greatest integer
in x); and in that case Il can be written in the form (4).

Definition 1. The polynomial function H(x,y) is said to satisfy the
condition (*) if for all polynomial one-forms S2,

SZ =_ 0 for h E 13 polynomials
JH=h

Q(x, y) and q(x, y) such that 12 = dQ + qdH. (*)

Frangoise [55] has shown that the Hamiltonian function for the harmonic
oscillator, H(x, y) = (x2 + y2)/2, satisfies the condition (*); cf. Lemma 1
below. And Iliev [59] has shown that the Bogdanov-Takens Hamiltonian,
H(x, y) = (x2 + y2)/2 - x3/3, satisfies the condition (*); cf. Problem 3.

Before presenting Flangoise's algorithm, we note that the system (1) can
be written in differential form as

(Hxdx + Hydy) + E(fdy - gdx) = 0.

And if we expand the analytic functions f and g in Taylor series about
E=0as

f(x,y,E) = fl(x,y)+Ef2(x,y)+E2f3(x,y)+...

and

9(x,y,6) = 91(x,y) + E92(x,y) + E293(x,y) + ...,
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then the above differential equation can be written as

dH = H,zdx + Hydy and wj = gjdx - f jdy for j = 1, 2, ... .
The following theorem is J. P. Francoise's algorithm for determining the

kth-order Melnikov function Mk(h) = dk(h) for the perturbed Hamiltonian
system (3) modified, as in [41] or [57], to include the case when the functions
f and g depend on e.

Theorem 1 (Frangoise). Assume that the polynomial function H(x, y)
satisfies the condition (*). Let d(h,e) be the displacement function for
the differential equation (5), measuring the increment in energy along a
Poincar6 section to the Hamiltonian flow. Then if dl (h) = = dk_1(h)
0 for all h E I and for some integer k > 2, it follows that

kdk(h) = JH#I S

where

R1=W1, Ilm=Wm+ F, giwj
i+j=m

for 2 < m < k, and the functions qi,i < 1 < k - 1, are determined
successively from the formulas S2i = dQi + gidH for i = 1, ... , k - 1.

Proof. This theorem is proved by induction on k as in [55]. For k = 1,
we begin with the classical formula of Poincar6 for the first-order Melnikov
function

dl(h) = Lh H
fl1 = f=h W1

= I [gl (x, y)dx - fl (x, y)dy] = T A f (7h(t)) A

with f = (Hy, -HH)T and g = (fl,g1)T as in Lemma 1 of Section 4.10 for
the Hamiltonian system (1).

For k = 2, we see that if dl (h) = 0, i.e. if f H_h S21 = 0 for all h E I, then
it follows from the fact that H(x, y) satisfies the condition (*) that

01 = dQi + gidH

for some polynomials Q1 and q1. This allows us to define 02 = 02 + glwl
And then multiplying the differential equation (5) by (1 + eqj), we find

(1 + Eq1) [dH - Ew1 - E2w2 +0 (E3)] = 0

or

or

dH + E(Q1 dH - w1) - E2(w2 + giwl) + 0 (E3) = 0

dH-EdQ1 -e2112+0(E3) =0
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as a 0. We then integrate this last equation around a trajectory -y of the
differential equation (5) with y(0) = yi,(0), using the fact that

fdH = d(h, e)

and that d(h, e) = 0(E2) since d1 (h) = 0. This implies that fry dQ1 = 0(E2)
(which can be seen by using the mean value theorem) and that

J c2 = J Q2 + 0(E2).
ry

L=h2

HThis
leads to

d(h, e) - E2 + 0 (E3) = 0

or

E2 [d2(h) - 1 X21 +0 (E3) = 0
H=h

as E -* 0, which yields the desired result for d2(h).

Now let us assume that d1(h) _ = 0 for h E I where d,,, (h) _
fN=h 521,, for 1 < m < k - 1 and where we have defined

S21 = w1 and Zn = W,,, + > qiwj (6)
i+7 =m

for 2 < m < k, the functions qi, 1 < i < k-1, being determined successively
from the formulas

iti = dQi + gidH (7)

for 1 < i < k-1 which follow from the assumption that dm(h) = f11 =,a 52m
0 for all h E I and for 1 < m < k - 1 since H satisfies the condition (*).

We then multiply the differential equation (5) by (1 + Eq + + Ek-1 qk-1)
to obtain

(1 + Eq1 + ... + Ek-1 qk-1)LdH - EW1 - ... - EkWk + 0(Ek+1)111 = 0

or equivalently

dH + E(41dH - w1) + E2(g2dH - gjw1 w2) + . .

+6 k-1 (qk-,dH - gk_2w1 - ... glwk-2 - wk-1)
-6k (wk + g1Wk-1 + ... + gk-1w1) + 0(Ek+1) = 0

which, according to (6) and (7), is equivalent to

dH - (EdQ1 + ... + Ek_ 1 dQk-1) - Ekf k + 0(Ek+1) = 0.

Integrating this last equation around the trajectory y of (5), using the fact
that

fdH=d(hE)



4.12. Frangoise's Algorithm for Higher Order Melnikov Functions 471

and that d(h,£) = 0(£k) which implies that frydQj = O(ek) for j =
1, ... , k - 1, we obtain

d(h,£)-ekJ ck+O(£k+1)=O
ry

as £ - 0. And since

we have

f Qk = 4 Slk + O(£k)
H

£k [dk(h)_f Ilk] + O(£k+) = O

=h

as e -+ 0,which implies that

dk(h) =
IH=h

Stk

and Theorem 1 is proved.

We now apply Frangoise's algorithm to the polynomially perturbed har-
monic oscillator, (1) with H(x, y) = (x2 + y2)/2. The following lemma,
proved by I. D. Iliev in [58], not only shows that the Hamiltonian H(x, y) =
(x2+y2)/2 satisfies the condition (*) for any polynomial one-form 11 of de-
gree n in x and y, but it also gives the degrees of the polynomials Q and
q in (*) in terms of n. This lemma therefore makes it possible to obtain
an upper bound on the number of limit cycles obtainable from a kth-order
analysis of the nth-degree polynomially perturbed harmonic oscillator (1);
cf. Table 1 below.

Lemma 1 (Iliev).Any polynomial one form Sl of degree n in x and y can
be expressed as

SZ = dQ + qdH + a(H)ydx

where H(x, y) = (x2 + y2)/2, Q(x, y) and q(x, y) are polynomials of degrees
(n+1) and (n-1) respectively and a(h) is a polynomial of degree [2 (n - 1)]
where [x] denotes the greatest integer in x.

Remark 2. We note that it follows from Lemma 1 and the fact that

JH=h
and

=h

that

IH=h

r 2,r
Sl = a(h)

J
ydx = a(h) I yh(t)dt.

H=h 0

Thus, if fH=h Sl =- 0 for all h E I, it follows that a(h) _- 0 for all h E I
and hence, according to Lemma 1, Sl = dQ + qdH; i.e., the Hamiltonian
function H(x,y) = (x2 + y2)/2 satisfies the condition (*).
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Lemma 1 is proved by induction in [58]. We illustrate the idea of the
proof by carrying out the first two steps in the induction proof and ask the
student to do more in Problem 1 at the end of this section.

Proof (for n = 1 and 2). For n = 1 we wish to show that for any given
polynomial one-form of degree 1,

SZ = (alox + aoly + aoo)dx + (blox + bogy + boo)dy,

we can find a second-degree polynomial

Q(x, Y) = Q20x2 + Q11 xy + Q02y2 + Qlox + Q01 Y

and zeroth-degree polynomials q(x, y) = qoo and a(h) = ao satisfying

S2 = dQ + qdH + a(H)ydx,

i.e., satisfying

(alox + aoly + aoo)dx + (blox + bogy + boo)dy

_ [(2Q20 + goo)x + (Q11 + ao)y + Qlo]dx

+ [Qllx + (2Qo2 + goo)y+Qol]dy

This is equivalent to 2Q20 +qoo = alo, Q11 + ao = aol, Qlo = aoo; Qll =
b1o, 2Qo2 + qoo = b01 and Qol = boo. There is one degree of freedom in
this system of six equations in seven unknowns and we are free to choose
qoo = 0. It will also be possible to choose qoo = 0 for any n > 1. We
therefore arrive at

alo 2 2Q(x, y) =
2

x' + bloxy +
2

boly + aoox + boot',

q(x, y) = 0 and a(h) = aol - blo.

For n = 2, we wish to show that for any given polynomial one-form of
degree 2,

S2 = (a2ox2 + a11xy + a02y2 + alox + aoly + aoo)dx

+ (b20x2 + bllxy + b02y2 + blox + boly + boo)dy,

we can find a third-degree polynomial

Q(x, Y) = Q30x3 + Q21x2y + Q12xy2 + Qo3y3

+ Q20x2 + Qllxy + Qo2y2 + Q1ox + Qo1y,

a first-degree polynomial q(x, y) = glox + gory, and a zeroth-degree poly-
nomial a(h) = ao satisfying

n = dQ + qdH + a(H)ydx,
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i.e., satisfying

Il = [(3Q3o + 91o)x2 + (2Q21 + gol)xy + Q12y2
+2Q2ox + (Q11 + ao)y + Qio] dx

+ [Q21x2 + (2Q12 + 91o)xy + (3Qo3 + goi)y2
Q11x + 2Qo2y + Qol] dy.

This is equivalent to 3Q30 + qio = a20, 2Q21 + qoi = all, Q12 = ao2, 2Q20 =
alo, Q11 + ao = aoi, Qio = aoo; Q21 = 620, 2Q12 + q10 = bii, 3Qo3 + qoi =
b02, Q1 = blo, 2Qo2 = bol, and Qoi = b0. The solution of this system of
twelve equations in twelve unknowns lead to

1
Q(x, y) = 3

(ago - bii + 2a02)x3 + b20x2y + ao2xy2 +
3

1
(bo2 - all + 2b2o)y3

1
+

2
alox2 + bloxy + boly2/2 + aoox + booy,

q(x, y) = (b11 - 2ao2)x + (all - 2b2o)y and a(h) = a01 - blo.

The student is asked to provide the proof for n = 3 and for the highest-
degree terms for n = 4 (noting that, as above, all of the other terms remain
the same). This will allow the student to see how the general nth step in
the induction proof should proceed.

Corollary 1. For H(x, y) = (x2 + y2)/2, any integral fH_h 12 of a polyno-
mial one-form of degree n has at most [2 (n - 1)] isolated zeros in (0, co).

Proof. As in Remark 2, fH_h S2 = 0 if a(h) = 0. And since a(h) is a
polynomial of degree [

a
(n - 1)], according to Lemma 1, fH=h f has at

most [ 2 (n - 1)] isolated zeros in (0, co).

The next corollary follows from Theorem 1 and Lemma 1.

Corollary 2. If H(x, y) = (x2 + y2)/2 and d1(h) = ... = dk_ 1(h) = 0 for
h E I = (0, co), then 12k is a polynomial one form of degree k(n - 1) + 1.

Proof. The proof follows by induction on k. For k = 1, deg ftl = deg w1 =
deg (g1dx - fidy) = n since fl and gi are polynomials of degree n in x and
y. Then, according to Theorem 1, deg 122 = deg (w2+g1w1) = deg (glwl) =
(n - 1) + n since deg 01 = n implies that deg ql = (n - 1) by Lemma 1.
Now assuming that deg S 1k_ 1 = (k - 1)(n -1) + 1, it follows from Lemma 1
that deg qk_1 = (k - 1)(n - 1) and then, according to Theorem 1,

deg nk = deg wk + E giwj
i+j=k

=deg(gk_ltdl)=(k-1)(n-1)+n=k(n-1)+1
and this completes the proof of Corollary 2.
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Theorem 2. Assume that H(x, y) = (x2+y2)/2 and that dk(h) is the first
Melnikov function for (1) that does not vanish identically. Then

dk(h) =
JH=h

has at most [1k(n - 1)] zeros, counting their multiplicities, for h E (0, oo).

Proof. By Corollary 2, 11k is a polynomial one-form of degree k(n -1) + 1
and then by Corollary 1, dk(h) = fH=h 12k has at most [Zk(n - 1)] isolated
zeros in (0, oo).

This theorem, together with Theorem 2 and Remark 1 in Section 4.11,
then allows us to estimate the number of limit cycles obtainable from a
kth-order analysis of an nth-degree polynomially perturbed harmonic os-
cillator. The results are displayed in Table 1 below. Cf. Table 1 at the end
of Section 4.11. Iliev [58] has also shown that the first three columns of
Table 1 are exact, i.e., that the maximum number of limit cycles given by
Theorem 2 above for k = 1, 2,3 is actually obtained for some perturbation,
and that the numbers shown in the third row are exact except that for
n = 3 and k = 6, the exact upper bound is 5 and not 6. We also know from
Section 4.11 that the numbers in the first two rows of Table 1 are exact.
Furthermore, Iliev [58] has conjectured that all of the numbers written ex-
plicitly in Table 1 are exact upper bounds except for n = 3 and k = 6, where
the maximum number of limit cycles obtainable is 5 and not 6. The first
row in Table 1 illustrates the fact that any linear system has no limit cycles
and from Chicone and Jacob's result, Theorem 4 in Section 4.11, we know
that the second row of Table 1 stabilizes at the value 3 for all k > 6; i.e., a
quadratically perturbed harmonic oscillator has at most 3 limit cycles and
it takes a 6th or higher order analysis in the small parameter a to actually
obtain 3 limit cycles. We believe that every row in Table 1 will stabilize at
some value N(n) for all k > K(n). We know that N(1) = 0, N(2) = 3, that
N(3) > 11, according to [42], and that K(3) > 11, according to Theorem 2.

TABLE 4.1. The maximum number of limit cycles obtainable from a
kth-order analysis of an nth-degree polynomially perturbed harmonic os-
cillator.

k=1 2 3 4 5 6 ...

n=1 0 0 0 0 0 0 ...
2 0 1 1 2 2 3 ...
3 1 2 3 4 5 6 ...
4 1 3 4 6 7 9 ...
5 2 4 6 8 10 12 ...

2m m-1 2m-1 3m-2 4m-2 5m-3 6m-3 ...
2m + 1 m 2m 3m 4m 5m 6m
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PROBLEM SET 12

1. (a) Carry out the third step in the induction proof of Lemma 1, i.e.,
for n = 3 determine polynomials

Q(x, y) = Q40x4 + Q31 x3y + Q22x2y2 + Q13xy3 + Q04y4

+ Q30x3 + Q21x2y + Q12xy2 + Q03y3 + Q20x2

+ Q11 xy + Q02Y2 + Q10x + Qo1y,

_q(x, y) = g2ox2 + g11xy + go2y2 + glox + gory and a(H(x, y))

al (x2 + y2)/2 + ao such that for any polynomial one-form Il of
degree 3 we have

S2 = dQ + qdH + a(H)ydx.

Note that all but the highest-degree terms in Q, q and a are
exactly the same as those obtained in the proof of Lemma 1 for
n = 2. Also, note that there are only four equations for the five
unknowns Q4o, Q22, Qo4, q20 and q02; so there is one degree of
freedom and we can choose qo2 = 0. In particular, you should
find that a(h) = (a21 + 3ao3 - b12 - 3b3o)h/2 + (aol - b1o) and
this implies that any polynomial one-form ft of degree 3 satisfies
fH=h 11 =- 0 for all h E I iff blo = aol and b12+3b30 = a21+3ao3

(b) Carry out the fourth step in the induction proof of Lemma 1
for the higher-degree terms not found in part (a); i.e., for n =
4, determine the highest-degree terms in Q(x, y) = Q50x5 +
Q41x4y + Q32x3y2 + Q23x2y3 + Q14xy4 + Q05y5, and q(x, y) =
g3ox3 + g21x2y + g12xy2 + go3y3 such that fl = dQ + qdH +
a(H)ydx is satisfied.

(c) Carry out the nth step (separately for n even and for n odd) in
the induction proof of Lemma 1 for the highest-degree terms in
Q(x, y), q(x, y) and a(H(x, y)); cf. [58).

2. Consider the quadratically perturbed harmonic oscillator in the Bautin
normal form given in Lemma 1 in Section 4.11:

(a) Use algorithm to show that if d,(h) = M1(h) = 0
for all h > 0 (i.e., if all = 0), then the second order Melnikov
function, M2(h) or d2(h), for

y + E[EA12x - 2x2 - (2A21 + As1)xy + y2)

-x + E[cA12y - A21x2 + (4 + A41)xy + y2]

is given by M2(h) = 41rhA12 - 7rh2A51 (as in Problem 1 in
Section 4.11). Hint: As in the proof of Lemma 1, for Sit =
[-A21 x2 + (4 + A41)xy + A21y2)dx + [2x2 + (2A21 + A51)xy - y2]dy,
you should find that q1(x, y) = A51x + A41 y.
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(b) If d1(h)-0and d2(h) -0forallh>0(i.e.,ifA11 = 0 and
A12 = A51 = 0), use Frangoise's algorithm to show that the third
order Melnikov function, M3(h) or d3(h), for

i = y + e[E2A13x - 2x2 - (2A21 + EA52)xy + y2]

-x + E[E2A13y - A21X2 + (4 + A41)xy + )121Y2]

is given by M3(h) = 47rhA13 - 7rh2A52 (as in Lemma 1 in Sec-
tion 4.11 where x = a = 2h and M3(h) = 2hd3( 2h,A)
with d3(x, A) given in Lemma 1 of Section 4.11). Hint: You
should find that gi(x,y) = A41y and, from Problem 1(a), that
g2(x,y) = A52x - (2A41 + aa1)x2 - A41(7A21 - A41 - 4)xy/4.

(c) Use Frangoise's algorithm to derive the formulas for d4(h), ... ,
ds(h) in Lemma 1 in Section 4.11.

3. Consider the polynomially perturbed Hamiltonian system (1) with
H(x, y) = (x2 + y2)/2 - x3/3, that was treated by Iliev in [59]. Cf.
Problem 3 in Section 4.13. In order to gain an understanding of the
analysis carried out in [59], which parallels the analysis in this sec-
tion for the perturbed harmonic oscillator, the student should carry
out the first two steps (for n = 1 and 2) in the induction proof of
the following lemma due to Iliev [59] where a polynomial function
p(x, y, H) is said to have weighted degree n if

p(x, y, H) _ aijkx'y'H' .

i+j+2k<n

Lemma. For H(x, y) = (x2 + y2)/2 - x3/3, any polynomial one-
form 1 of degree n can be expressed as

S2 = dQ + qdH + a(H)ydx +,3(H)xydx

where Q(x, y, H) and q(x, y, H) are polynomials of weighted degree
(n + 1) and (n - 1) respectively and a(h) and (3(h) are polynomials
of degrees [2(n - 1)] and [2(n - 2)] respectively.

Hint: In the proof of this lemma for n = 2 we have

Q(x, y, H) = Q30x3 + Q21x2y + Q12xy2 + Q03y3
+ Q20x2 + Q11xy + Qo2y2 + Qlox + Q01y

+ (Blox + Boly)[(x2 + y2)/2 - x3/3],

q(x, y, H) = glox + qol y, a(h) = ao and 0(h) = 30. Note that it is
possible to choose B01 = 0 and q01 = 0.

Based on this lemma, Iliev [59] was able to prove that for k = 1
and for k = 2 with n even, the polynomially perturbed Bogdanov-
Takens system has at most k(n - 1) limit cycles and for k = 2 with
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n odd or for k > 3, it has at most k(n - 1) - 1 limit cycles. This
leads to the following table giving the maximum number of limit cy-
cles obtainable in a kth-order analysis of an nth-degree polynomially
perturbed Bogdanov-Takens Hamiltonian system. It is known that
the first three columns are exact and that for n = 2 and k > 2 the
maximum number of limit cycles is 2; cf. [59].

TABLE 4.2. The maximum number of limit cycles obtainable from
a kth-order analysis of an nth-degree polynomially perturbed Bog-
danov-Takens Hamiltonian system.

k=1 2 3 4 5 ...

n=1 0 0 0 0 0 ...
2 1 2 2 2 2 ...
3 2 3 5 7 ...
4 3 6 8 ...
5 4 7 11 ...

2m 21n - 1 4m-2 6m-4 ...
2m+1 2m 4m-1 6m-1 ...

4.13 The Takens-Bogdanov Bifurcation

In this section. we bring together several of the techniques and ideas de-
veloped in the previous sections in order to study the Takens-Bogdanov
or double-zero eigenvalue bifurcation. This is the bifurcation that results
from unfolding the normal form

= y
1

y = x2±xy.
In Section 2.13, we saw that this normal form is obtained from any system
with a double zero eigenvalue of the form

is = LO
11

x + Cax2
+ 6xy + cy2

I + 0(IxI3)
0 0 dx2 + exy + f y2

when d 0 0 and e + 2a ¢ 0; cf. Remark 1 in Section 2.13. As was noted in
that remark, a universal unfolding of the normal form (1) is given by

=y
µl +µ2y+X2±xy.

This was proved independently by Takens [44] in 1974 and Bogdanov [45]
in 1975. Since the above system with the plus sign is transformed into
the above system with the minus sign under the linear transformation of
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coordinates (x, y, t, Al, µ2) A l , it is only necessary to
consider the above system with the plus sign,

= y
2y=µi+µ2y+x2+xy,

in determining the different types of dynamical behavior that occur in
unfoldings of (1). Cf. Problem 6. Since there are two parameters in the
universal unfolding (2) of (1), we see that the Takens-Bogdanov bifurcation
is a codimension-two bifurcation.

In order to determine the various types of dynamical behavior that occur
for the system (2), let us begin by determining the location and the nature
of the critical points of (2). For µl = µ2 = 0 the system (2) reduces to the
system (1), which has a nonhyperbolic critical point at the origin, and it
follows from Theorem 3 in Section 2.11 that the system (1) has a cusp at
the origin. For µl > 0, the system (2) has no critical points; and for µl = 0
and µ2 # 0, (2) has one nonhyperbolic critical point at the origin. It follows
from Theorem 1 in Section 2.11, or from the Center Manifold Theory in
Section 2.12, that in this case (2) has a saddle-node at the origin. Cf.
Problem 1. Finally, for µl < 0, the system (2) has two hyperbolic critical
points,

x+ = (,0) and x_ = (-,0).
Furthermore, the linear part of the vector field f in (2) at these critical
points is determined by the matrix

10
Df(x±) =

L±2 µ2f
It follows that for µl < 0, x+ is a saddle and that x_ is a source for
µ2 > -µt and a sink for µ2 < It is a weak focus for µ2 = -µl,
and from equation (3') in Section 4.4 we find that

v- 31r >0,
212µi 13/2

i.e., x_ is an unstable weak focus of multiplicity one for µl < 0 and µ2 =
_µl,
We next investigate the bifurcations that take place in the system (2). For

µl = 0 and µ2 36 0, the system (2) has a single-zero eigenvalue. According
to Theorem 1 in Section 4.2, the system (2) experiences a saddle-node
bifurcation at points on the µ2-axis with µ2 0 0; i.e., there is a family of
saddle-node bifurcation points along the µ2-axis in the IA-plane:

SN: µi = 0, µ2 0 0.

Cf. Problem 2. Next, according to Theorem 1 in Section 4.4, it follows that
the system (2) experiences a Hopf bifurcation at the weak focus at x_ for
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parameter values on the semiparabola µ2 = -µl when µl < 0; i.e., for
µl < 0, there is a curve of Hopf bifurcation points in the µ-plane given by

H: µ2 = V1' JUI for µ1 < 0.

Furthermore, since o > 0, as was noted above, it follows from Theorem 1 in
Section 4.4 that there is a subcritical Hopf bifurcation in which an unstable
limit cycle bifurcates from x_ as 112 decreases from µ2 = -µl for each
µl < 0. This fact also follows from Theorem 5 in Section 4.6, since the
system (2) forms a semicomplete family of rotated vector fields with par
rameter µ2 E R. Furthermore, it then follows from Theorems 1, 4, and 6 in
Section 4.6 that for all µl < 0 the negatively oriented unstable limit cycle
generated in the Hopf bifurcation at µ2 = -µl expands monotonically
as µ2 decreases from -µl until it intersects the saddle at x+ and forms
a separatrix cycle or homoclinic loop at some parameter value 1,92 = h(µ1);
i.e., there exists a homoclinic-loop bifurcation curve in the µ-plane given
by

HL: /12 = h(µ1) for µl < 0.

It then follows from the results in [38] that h(µ1) is analytic for all µl < 0.
These are all of the bifurcations that occur in the system (2), and the
bifurcation set in the µ-plane along with the various phase portraits that
occur in the system (2) are shown in Figure 3 below.

In order to approximate the shape of the homoclinic-loop bifurcation
curve HL, i.e., in order to approximate the function h(µ1) for small µl, we
use the rescaling of coordinates and parameters

x=E2u, y=E3v, ji1=E4v1, and I12=62v2 (3)

with the time t -+ et, given in [44], in order to reduce the system (2) to a
perturbed system to which the Melnikov theory developed in Sections 4.9
and 4.10 applies. Substituting the rescaling transformation (3) into the
system (2) yields

u=v
v = vl +U 2 + E(v2V + uv). (4)

For e = 0, this is a Hamiltonian system with Hamiltonian H(u, v) = v2/2-
u3/3 - vlu. The phase portrait for this Hamiltonian system (2) with e = 0
is shown in Figure 1 for vl < 0, in which case there are two critical points
at (± -vl, 0). Cf. Figure 2 in Section 3.3.

The homoclinic loop 1'o in Figure 1 is given by

7o(t) _ (uo(t), vo(t)) _ C1 - 3sech2 (;/

3f sech2 (M tank (=)).
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Figure 1. The phase portrait for the system (4) with e = 0 and v, < 0.

Cf. p. 369 in [G/H]. Then, according to Theorem 4 in Section 4.9, the
Melnikov function along the homoclinic loop I'o is given by

00!vf(v) =
J 00

f(-yo(t)) A g(-fo (t), v)dt

=
f00

vo(t)[v2vo(t) + uo(t)vo(t)[dt
00

181v1l v100

V-2-

r

z f00 sech4 r tanh2 rdr

00

+ -vl J (1 - 3 sech2 r) scch4 r tanh2 rdr]
00

241vil v2 -vl
-v' 5 7 '

where we have used the fact that sech2 r = 1 - tanh2 r and

I
tanhk r sech2 rdr = 2

00 k+1'
Therefore, according to Theorem 4 in Section 4.9, the system (4) with
vl < 0 has a homoclinic loop if

5
V2 = 7 V/ -VI +0(E)



4.13. The Takens-Bogdanov Bifurcation 481

It then follows from (3) that, for µl < 0, the system (2) has a homoclinic
loop if

P2 = h(µ1) = 77+0(µi)
as µi -* 0. Cf. Figure 3 below. We note that the above computation of
the Melnikov function M(v) along the homoclinic loop of the system (4) is
equivalent to the computation carried out in Problem 3 in Section 4.9 since
the system (4) can be reduced to the system in that problem by translating
the origin to the saddle x+ and by rescaling the coordinates so that the
distance between the two critical points x+ is equal to one. (Cf. Figure 1
above and Figure 2 in Section 3.3.)

XX XX

q--µIT t )[--µIT

0
-µl

0
h(µ1)

Figure 2. Possible variations of the x-intercept of the limit cycle of the
system (2) for it, < 0.

As we have seen, the Melnikov theory, together with the rescaling trans-
formation (3), allows us to approximate the shape of the homoclinic-loop
bifurcation curve, HL, near the origin in the µ-plane; more importantly,
however, it also allows us to show that, for small µi < 0, the system (2)
has exactly one limit cycle for each value of µ2 E (h(µi), -µi . In other
words, no semistable limit cycles occur in the one-parameter family of limit
cycles generated in the Hopf bifurcation at the origin of system (2) when
µ2 = -µ1 This can happen as we saw in the one-parameter family of
limit cycles L. in Example 3 of Section 4.9; cf. Figure 9 in Section 4.9.
In other words, for µi < 0 the bifurcation diagram for the one-parameter
family of limit cycles generated in the Hopf bifurcation at the origin of (2)
when µ2 = -µi is given by Figure 2(a) and not 2(b).
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92

Figure 3. The bifurcation set and the corresponding phase portraits for
the system (2).

The fact that there are no semistable limit cycles for the system (2) with
µl < 0, such as those that occur at the turning points in Figure 2(b), fol-
lows from the fact that for µl < 0 and h(µ1) < µ2 < -µl the system (2)
has a unique limit cycle. This follows from Theorem 5 in Section 4.9, since
the Melnikov function M(v, a) along the one-parameter family of periodic
orbits of the rescaled system (4) has exactly one zero. The computation
of the Melnikov function M(v, a), as well as establishing its monotonicity,
was carried out by Blows and the author in Example 3.3 in [37]. Cf. Prob-
lem 3. The unfolding of the normal form (1), i.e., the Takens-Bogdanov
bifurcation, is summarized in Figure 3, which shows the bifurcation set in
the µ-plane consisting of the saddle-node, Hopf, and homoclinic-loop bi-
furcation curves SN, H, and HL, respectively, and the Takens-Bogdanov
bifurcation point, TB, at the origin. The phase portraits for the system (2)
with parameter values µ on the bifurcation set and in the components of
the IA-plane in the complement of the bifurcation set also are shown in
Figure 3.

In his 1974 paper [44], Takens also studies unfoldings of the normal form:

x=y
fx3 - x2y (5)

Cf. Problems 2 and 3 in Section 2.13. He studies unfoldings of (5) that
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preserve symmetries under rotations through ir, i.e., unfoldings of the form

x=y
(6)6)= I21x + µ12y ±

x3 - x2y.

Let us first of all consider the case with the plus sign, leaving most of
the details for the student to do in Problem 4. For µl > 0 there is only the
one critical point at the origin, and it is a topological saddle. For pl < 0
there are three critical points, a source at the origin for 142 > 0 and a sink
at the origin for µ2 < 0, as well as two saddles at (± -,u,, 0). There is
a pitch-fork bifurcation at points on the p2-axis with µ2 0 0. There is a
supercritical Hopf bifurcation at points on the pl-axis with pi < 0. And,
using the rotated vector field theory in Section 4.6, it follows that for Al < 0
there is a homoclinic-loop bifurcation curve 112 = h(µ1) = -µ115 + 0(,0).
This approximation of the homoclinic-loop bifurcation curve follows from
the Melnikov theory in Section 4.9 by making the rescaling transformation

x = eu, y = E2V, µl = E2v1, µ2 = e2v2, and t - et; (7)

cf. [44]. Under this transformation, the system (6) with the plus sign as-
sumes the form

ii =v
v = -u + u3 + £v(U2 - u2)

where we have set vl = -1, corresponding to /`1 < 0 as on p. 372 of [G/H].
But this is just Example 3 in Section 4.10 (with µl = v2 and µ2 = -1/3);
cf. Problem 3 in Section 4.10. From Theorem 6 in Section 4.10, it follows
that for vl = -1 the homoclinic-loop bifurcation occurs at v2 = 1/5+0(E).
For the system (6) with the plus sign, this corresponds to the fact that the
homoclinic-loop bifurcation curve in the p-plane is given by

HL: µ2 =h(µ1) _ -A115 + 0(µi) for pl < 0

as pi --+ 0. It is important to note that Theorem 6 in Section 4.10 also es-
tablishes the fact that there are no multiplicity-two limit cycle bifurcaations
for the system (6) with the plus sign. The student is asked to draw the
bifurcation set in the p-plane as well as the corresponding phase portraits
in Problem 4 below; cf. Figure 7.3.5 in [G/HJ.

We next consider equation (6) with the minus sign, leaving most of the
details for the student to do in Problem 5. For pi < 0 there is only one
critical point at the origin, and it is a sink for µ2 < 0 and a source for
P2 > 0. For µl > 0 there are three critical points, a saddle at the origin
and sinks at (± µl,0) for µ2 > µl and sources for p2 < p1. There is a
pitch-fork bifurcation at points on the µ2-axis with µ2 96 0. For p, < 0 there
is a supercritical Hopf bifurcation at points on the µl-axis, and for µl > 0
there is a subcritical Hopf bifurcation at points on the line µ2 = µl. Using
the rotated vector field theory in Section 4.6, it follows that for it, > 0
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there is a homoclinic-loop bifurcation curve µ2 = h(µ1) = 41Ll/5 + 0(ei).
This approximation of the homoclinic-loop bifurcation curve follows from
the Melnikov theory in Section 4.10 by making the rescaling transformation
(7) used by Takens in [44]. This transforms equation (6) with the minus
sign into

7i=v
1J = u-713+EV(v2-u2),

(8)

where we have set vi = +1, corresponding to µl > 0 as on p. 373 of
[G/H]. But this is just Example 2 in Section 4.10 (with µl = a = v2 and
µ2 =,3/3 = -1/3 as in Problem 1 in Section 4.10). Thus, from Theorem 5
in Section 4.10, it follows that for v1 = +1 the homoclinic-loop bifurcation
for the system (8) occurs at v2 = -2.4(-1/3) + 0(E) = 4/5 + 0(e); and
for the system (6) with the minus sign this corresponds to µ2 = h(µ1) =
4µ1/5 + 0(µi) as µl -+ 0+. Theorem 5 in Section 4.10 also establishes
that for h(µ1) < µ2 < µl there is exactly one limit cycle for this system.
However, that is not the extent of the bifurcations that occur in the system
(6) with the minus sign. There is also a curve of multiplicity-two limit cycles
C2 on which this system has a multiplicity-two semistable limit cycle. This
follows from the computation of the Melnikov function for the exterior
Duffing problem in Problem 6 of Section 4.10. It follows from the results of
that problem that there is a multiplicity-two limit cycle bifurcation surface,

C2: µ2 = C(µ1) = .752µl +0(µi)

as µl --+ 0+. The analyticity of the function C(µ1) for 0 < µl < b and
small 6 > 0 is established in [39]. Note that it is shown in Problem 1 in
Section 4.10 that the system (8), the system of Example 2 in Section 4.10
and the system of Example 3 in Section 4.9 are all equivalent. Also this
system was studied in Example 3.2 in [37]. It is left for the student to
draw the bifurcation set in the &-plane as well as the corresponding phase
portraits in Problem 5 below; cf. Figure 7.3.9 in [G/H] and Figure 4 below.

We close this section with one final remark about Takens-Bogdanov or
double-zero eigenvalue bifurcations. As in Remark 2 in Section 2.13, if
e + 2a = 0 in the system at the beginning of this section, then the normal
form for the double-zero eigenvalue is given by

=y
ax2 + bx2y + cx3y.

However, Dumortier et al. [46] show that, without loss of generality, the
coefficient b of the x2y-term can be taken as zero, and that it suffices to
consider unfoldings of the normal form

=y
x2 f x3y (9)
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in this case; cf. Lemma 1, p. 384 in [461. It is also shown in (461 that a
universal unfolding of the normal form (9) is given by

x = y
10

)y = µi + µ2y + µ3xy + x2 f x3y)

and this results in a codimension-three Takens-Bogdanov bifurcation, or
a codimension-three cusp bifurcation if we choose to name the bifurcation
after the type of critical point that occurs at the origin of (9), i.e., a cusp, as
was done in [46]. The universal unfolding of (9), given by (10), is described
in [46]. Cf. the bifurcation set in Figure 1 in Section 4.15.

Figure 4. The bifurcation set in the first quadrant and the corresponding
phase portraits for the system (6) with the minus sign.

PROBLEM SET 13

1. Show that the system (2) with µl = 0 and µ2 36 0,

=y
y = 1A2y + x2 + xy,

has a center manifold approximated by y = -x2/µ2+0(x3) as x - 0,
and that this results in a saddle-node at the origin.

2. Check that the conditions of Theorem 1 in Section 4.2 are satisfied
by the system (2) with v = (1, 0)T and w = (µ2, -1)T, and show
that for µl = 0 and P2 0 0 the system (2) experiences a saddle-node
bifurcation.

3. By translating the origin to the center shown in Figure 1 and normal-
izing the coordinates so that the distance between the critical points
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in Figure 1 is one [or by translating the origin to the center and set-
ting v1 = -1/4 in (4)], the system (4) can be transformed into the
system

x=y
y = -x + xz + e(ay +,Oxy).

Using the same procedure as in Problem 1 in Section 4.10, this system
can be transformed into the system

i = y + e(ax + bxz)
-x+xz

with (a, b) = (a, 0/2). This is the system that was studied in [37]. It
has a one-parameter family of periodic orbits given by

xa (t) - 3a2 t l2 1-a +a4snz 12(1-az+a4)1/4'
a/\\\

2(1-llaaz

+a

and

(t) = 3a2

t
Ya(t) \an 2(1-a2 +a4)1/4

lcn 2(1-az
t
+a4)1/4c)dn(2(1-az

t
+a4)1/z'a)

for 0 < a < 1. Following the procedure used in Example 3 in Sec-
tion 4.10, compute the Melnikov function M(a, a, b) along this one-
parameter family of periodic orbits using the formulas

r4K(a)

J snzudu =
4z [K(a) - E(a)]

a)

f
4K(

sn4udu = 3a4 [(2 + az)K(a) - 2(1 + az)E(a)]

given in Example 3 in Section 4.10 along with the fact that

4K(a)
snmudu = 0

for any odd positive integer m; cf. [40], p. 191. Graph the values of
a/b that result in M(a, a, b) = 0, and deduce that for b > 0, all
sufficiently small e > 0, and -2b/7 + 0(e) < a < 0, the above system
has exactly one hyperbolic, unstable limit cycle, born in a subcritical
Hopf bifurcation at a = 0, that expands monotonically as a decreases
to the value a(e) = -2b/7 + 0(e). [Note that for vl = -1/4, the
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system (4) has a homoclinic loop at v2 = 5/14 + 0(e) according to
the Melnikov computation in this section. Under the transformation
of coordinates defined at the beginning of this problem, it can be
shown that v2 = a + 1/2 and b = 1/2 if vi = -1/4. Thus the Hopf
bifurcation value a = 0 corresponds to v2 = 1/2 = '-vi, and the
homoclinic-loop bifurcation value a = -1/7 + 0(e) corresponds to
v2 = a + 1/2 = 5/14 + 0(e), as given above.]

4. Consider the system (6) with the plus sign. Verify the statements
made in this section concerning the critical points and bifurcations
for that system, draw the bifurcation set in the µ-plane, and construct
the phase portraits on the bifurcation set as well as for a point in each
of the components in the complement of the bifurcation set.

5. Consider the system (6) with the minus sign. Verify the statements
made in this section concerning the critical points and bifurcations for
that system, draw the bifurcation set in the 1A-plane, and construct
the phase portraits on the bifurcation set as well as for a point in
each of the components in the complement of the bifurcation set.

6. Draw the bifurcation set and corresponding phase portraits for the
system

=y
y=P1+µ2y+x2-xy.

Hint: Apply the transformation of coordinates (x, y, t, µl, µ2)
(x. -y. -t. µi, -p2) to the system (2) and to the results obtained
for the system (2) at the beginning of this section.

7. Draw the bifurcation set and corresponding phase portraits for the
system

=y
P1+µ2y+ x2.

Hint: For P2 = 0, note that the system is symmetric with respect to
the x-axis and apply Theorem 6 in Section 2.10.

4.14 Coppel's Problem for Bounded Quadratic
Systems

In 1966, Coppel [47] posed the problem of determining all possible phase
portraits for quadratic systems in R2 and classifying them by means of al-
gebraic inequalities on the coefficients. This is a rather formidable problem
and, in particular, a solution of Coppel's problem would include a solution
of Hilbert's 16th problem for quadratic systems. It was pointed out by Du-
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mortier and Fiddelaers that Coppel's problem as stated is insoluble; i.e.,
they pointed out that the phase portraits for quadratic systems cannot be
classified by means of algebraic inequalities on the coefficients, but require
analytic and even nonanalytic inequalities for their classification.

In 1968, Dickson and I initiated the study of bounded quadratic sys-
tems, i.e., quadratic systems that have all of their trajectories bounded for
I > 0; cf. [48]. In that study we were looking for a subclass of the class
of quadratic systems that was more amenable to solution and exhibited
most of the interesting dynamical behavior found in the class of quadratic
systems. In [48] we established necessary and sufficient conditions for a
quadratic system to be bounded and determined all possible phase por-
traits for bounded quadratic systems with a partial classification of the
phase portraits by means of algebraic inequalities on the coefficients.

This section contains a partial solution to Coppel's problem for bounded
quadratic systems, modified to include analytic inequalities on the coeffi-
cients (i.e., inequalities involving analytic functions), under the assumption
that any bounded quadratic system has at most two limit cycles. It is amaz-
ing that in 1900 Hilbert [49] was able to formulate the single most difficult
problem for planar polynomial systems: to determine the maximum num-
ber and relative positions of the limit cycles for an nth-degree polynomial
system. This is still an open problem for quadratic systems; however, we
do know that there are quadratic systems with as many as four limit cycles
(cf. [29]), and that any quadratic system has at most three local limit cycles
(cf. [21). The results on the number of limit cycles for bounded quadratic
systems are somewhat more complete. First, it was shown in [48] that any
bounded quadratic system has at most three critical points in R2. And in
1987 Coll et al. [50] were able to prove that any bounded quadratic system
with one or two critical points in R2 has at most one limit cycle. It also
was shown in [50] that any bounded quadratic system has at most two
local limit cycles and that there are bounded quadratic systems with three
critical points in R2 that have two local limit cycles. And just recently,
Li et al. [51], using the global Melnikov method described in Section 4.10,
were able to show that any bounded quadratic system that is near a center
has at most two limit cycles. The conjecture, posed by the author, that
any bounded quadratic system has at most two limit cycles is therefore
reasonable, and it is consistent with all of the known results for bounded
quadratic systems.

Since, according to [50], any bounded quadratic system with one or two
critical points in R2 has at most one limit cycle, it was possible, using
some of the author's results for establishing the existence and analyticity
of homoclinic-loop bifurcation surfaces in [38], to solve Coppel's problem (as
stated in [47]) for bounded quadratic systems with one critical point or for
bounded quadratic systems with two critical points (if we allow analytic
inequalities on the coefficients). These results are given below; they are
closely related to Theorem C in [50J. The solution of Coppel's problem
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for bounded quadratic systems (as stated below, where we allow analytic
inequalities on the coefficients), under the assumption that any bounded
quadratic system (with three critical points in R2) has at most two limit
cycles, also is given in this section; however, it still remains to show exactly
how the bifurcation surfaces in Theorem 5 below partition the parameter
space of the system (5) in Theorem 5 into components for Q < 0. This is
accomplished for :3 > 0 in Figures 15 and 16 below; but for Q < 0 it is still
not completely clear how the codimension 3 Takens-Bogdanov bifurcation
surface (described in Theorem 4 and Figure 1 in the next section) interact
with the other bifurcation surfaces for bounded quadratic systems.
Coppel's Problem for Bounded Quadratic Systems. Determine all
of the possible phase portraits for bounded quadratic systems in R2 and
classify them by means of inequalities on the coefficients involving functions
that are analytic on their domains of definition.

In this section we see that there is a rich structure in both the dynamics
and the bifurcations that occur in the class of bounded quadratic systems:
Their phase portraits exhibit multiple limit cycles, homoclinic loops, sad-
dle connections on the Poincare sphere, and two limit cycles in either the
(1, 1) or (2, 0) configurations; while the evolution of their phase portraits in-
cludes Hopf, homoclinic-loop, multiple limit cycle, saddle-node and Takens-
Bogdanov bifurcations. It will be seen that the families of multiplicity-two
limit cycles that occur in the class of bounded quadratic systems termi-
nate at either a homoclinic-loop bifurcation at "resonant eigenvalues" as
described in [38, 39, 52], at a multiple Hopf bifurcation, or at a degenerate
critical point as described in [39].

The main tools used to establish the results in this section are the theory
of rotated vector fields developed in [7, 23] and presented in Section 4.6 and
the results on homoclinic-loop bifurcation surfaces and multiple limit cycle
bifurcation surfaces and their termination developed in [38, 39, 52]. The
asymptotic results given in [51] serve as a nice check on the results of this
section for bounded quadratic systems near a center, and they complement
the numerical results in this section that describe the multiplicity-two limit
cycle bifurcation surfaces whose existence follows from the theory of rotated
vector fields as in [38]. In the problem set at the end of this section, the
student is asked to determine the bifurcation surfaces that occur in the
class of bounded quadratic systems. This serves as a nice application of
the bifurcation theory that is developed in this chapter, and it allows the
student to work on a problem of current research interest.

Let us begin by presenting some well-known results for BQS (i.e., for
Bounded Quadratic Systems). The following theorem is Theorem 1 in [48]:

Theorem 1. Any BQS is affinely equivalent to
allx

y=a21x+a22y+xy (1)
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with all <0 and a22 SO, or

=allx+al2y+y2
y = a22y (2)

with all < 0, a22 < 0, and all + a22 < 0; or

x=allx+a12y+y2
a21x + a22y - xy + Cy2 (3)

with Icl < 2 and either (i) all < 0, (ii) all = 0 and a21 = 0, or (iii) all = 0,
a21 96 0, a12 + a21 = 0, and ca21 + a22 < 0.

As we shall see in the next two theorems, the BQS determined by (1)
and (2), and also those determined by certain cases of (3) in Theorem 1,
have either only one critical point or a continuum of critical points. The
latter cases are integrable, and the cases with one critical point are easily
treated using the results in [48) and [50]. The most interesting cases are
those BQSs with two or three critical points which are determined by the
remaining cases of system (3) in Theorem 1; cf. Theorems 4 and 5 below.

The solution to Coppel's problem for BQS1 and BQS2 (i.e., BQS with
one or two critical points in R2, respectively) and for BQS with a continuum
of critical points is given in the next three theorems, where we also give
their global phase portraits. The first theorem follows from Lemmas 1, 3,
4, 15, 16, and 17 in [48] and the fact that any BQS1 has at most one limit
cycle which was established in [50]. Note that it was pointed out in [50]
that the phase portrait shown in Figure 1(b) was missing in [48].

Theorem 2. The phase portrait of any BQS1 is determined by one of the
separatrix configurations in Figure 1. Furthermore, the phase portrait of a
quadratic system is given by Figure 1

(a) if the quadratic system is affinely equivalent to (1) with all < 0 and
a22 < 0;

(b) if the quadratic system is affinely equivalent to (2) with all < 2a22 <
0;

(c) if the quadratic system is affinely equivalent to (2) with 2a22 < all <
0 or (3) with I cl < 2 and either

(i) all = a12 + a21 = 0, a21 # 0 and a22 < min(0, -ca21) or a22 =
0 < -ca21,

(ii) all <0,(a12-a21+call)2 <4(a11a22-a21a12), and all +a22
0, or

(iii) all < 0 and (a12 - a21 + call) = (alla22 - a2lal2) = 0;

(d) if the quadratic system is affinely equivalent to (3) with Icl < 2 and
either
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(i)

(ii)

all = a12 + a21 = 0 and 0 < a22 < -Ca2l, or

all < O,a11 + a22 > 0, and (a12 - a21 + ca11)2 < 4(a11a22 -

a12a21)

(a)

(c)

(b)

(d)

Figure 1. All possible phase portraits for BQS1.

We next give the results for BQS with a continuum of equilibrium points.
As in [481, these cases all reduce to integrable systems; cf. Figure 10, 11,
12, 14, and 15, in [481.

Theorem 3. The phase portrait of any BQS with a continuum of equilib-
rium points is determined by one of the configurations in Figure 2. Fur-
thermore, the phase portrait of a quadratic system is given by Figure 2

(a) if the quadratic system is affinely equivalent to (1) with all < 0 and
a22 = 0;

(b) if the quadratic system is affinely equivalent to (2) with all = 0 and
a22 < 0;

(c) if the quadratic system is affinely equivalent to (2) with all < 0 and
a22 = 0;
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(a)

(d)

(9)

(b)

(e)

(h)

(C)

(i)

Figure 2. All possible phase portraits for a BQS with a continuum of
equilibrium points.

(d) if the quadratic system is affinely equivalent to (3) with all = a21 = 0
and -2 < c < 0;

(e) iff the quadratic system is affinely equivalent to (3) with all = a21 =
c = 0;

(f) if the quadratic system is affinely equivalent to (3) with all = a21 = 0
and 0 < c < 2;

(g) if the quadratic system is affinely equivalent to (3) with all = a12 +
a21 = ca21 + a22 = 0, a21 36 0, and -2 < c < 0;

(h) iff the quadratic system is affinely equivalent to (3) with all = a12 +
a21 = a22 = c = 0 and a21 96 0;
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(i) if the quadratic system is affinely equivalent to (3) with all = a12 +
a21 =ca21+a22=0,a21 #0, and0<c<2.

Remark 1. Note that the classification of the phase portraits in Theo-
rems 2 and 3 is determined by algebraic inequalities on the coefficients.
Also, it follows from Theorem 3 and the results in [48] that any BQS with
a center is affinely equivalent to (3) with all = a12 + a21 = a22 = c = 0
and a21 0 0, and that the corresponding phase portrait is determined by
Figure 2(h).

We next present the solution to Coppel's problem for BQS2. In this case,
there is a homoclinic-loop bifurcation surface whose analyticity follows from
the results in [381. Due to the existence of the homoclinic-loop bifurcation
surface, the phase portraits of BQS2 cannot be classified by means of alge-
braic inequalities on the coefficients. However, any BQS2 has at most one
limit cycle according to [501, and we therefore are able to solve Coppel's
problem for BQS2 as stated at the beginning of this section.

First, note that it follows from Theorem 1 above and Lemma 8 in [481 that
any BQS2 is affinely equivalent to (3) with Icl < 2, all < 0, a12-a21+Caall 0
0, and either (a12-a21+Call)2 = 4(alla22-a21a12) or (alla22-a21a12) = 0.
As in [48] on p. 265, by translating the origin to the degenerate critical
point of (3), it follows that any BQS2 is affinely equivalent to (3) with
Icy<2,all<0,a12-a21+Call 00andalla22-a21a12=0.Forall<0,
by making the linear transformation of coordinates t ja11It, x -' 1a11
and y -+ y/fall I, it follows that any BQS2 is affinely equivalent to

i = -x + a12y + y2
(3')

y = a21x+a22y-xy+Cy2

with Icy < 2, a21 - a12 + c 54 0, and a22 = -a21a12. Finally, by letting
f3 = a12 and a = a21 + c, in which case a22 = -a12a21 = f3c - af3 and
a 36 f3, we obtain the following result:

Lemma 1. Any BQS2 is affinely equivalent to the one-parameter family
of rotated vector fields

i = -x+f3y+y2
y = ax - af3y - xy + c(-x +,6y + y2)

(4)

mod x = fly + y2 with parameter c E (-2, 2) and a 54 f3. Furthermore, the
system (4) is invariant under the transformation (x, y, t, a, f3, c) -4 (x -
y, t, -a, -f3, -c), and it therefore suffices to consider a > f3. The critical
points of (4) are at 0 = (0, 0) and P+ = (x+, y+) with x+ = a(a - f3) and
y+ = a - 0; P+ is a node or focus, and 0 is a saddle-node or cusp; and 0
is a cusp if c = a + 1/0.

The last statement in Lemma 1 follows directly from the results in
Lemma 8 in [48] regarding the critical points of (3). We next consider
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the bifurcations that take place in the three-dimensional parameter space
of (4). By translating the origin to the critical point P+ of (4), it is easy
to show that there is a Hopf bifurcation at the critical point P+ for any
point (a, /3, c) on the Hopf bifurcation surface

1+ a2
H+: 2a-/3

in R. This computation is carried out in Problem 1, where it also is shown
by computing the Liapunov number at the weak focus of (4), a, given by
(3') in Section 4.4, that P+ is a stable weak focus and that a supercritical
Hopf bifurcation of multiplicity one occurs at points on H+ as c increases.
The Hopf bifurcation surface H+ is shown in Figure 3. Note that for a > /3,
the surface H+ lies above the plane c = 2 for /3 > 3/2.

C

2

1

Figure 3. The Hopf bifurcation surface H+.

According to the theory of rotated vector fields in Section 4.6, the stable
(negatively oriented) limit cycle of the system (4), generated in the Hopf
bifurcation at c = (1 + a2)/(2a - /3), expands monotonically as c increases
from this value until it intersects the saddle-node at 0 and forms a sepa-
ratrix cycle around the critical point P+; cf. Problem 6. This results in a
homoclinic-loop bifurcation at a value of c = h(a, /3), and, according to the
results in [381, the function h(a, /3) is an analytic function of a and /3 for all
(a,#) E R2 with 2a -,0 36 0. Thus we have a homoclinic-loop bifurcation
surface

HL+: c = h(aQ).
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A portion of the homoclinic-loop bifurcation surface HL+, determined nu-
merically by integrating trajectories of (4), is shown in Figure 4.

Figure 4. The homoclinic-loop bifurcation surface HL+.

It follows from Lemma 11 in [48] that (4) has a saddle-saddle connection
between the saddle-node at the origin and the saddle-node at the point
(1, 0, 0) on the equator of the Poincare sphere if c = a. This plane in R3
determines the "saddle-saddle bifurcation surface"

SS: c = a.

There is one other bifurcation that occurs in the class of BQS2 given by (4):
A cusp or Takens-Bogdanov bifurcation occurs when both the determinant
and the trace of the linear part of (4) are equal to zero (i.e., when the
linear part of (4) has two zero eigenvalues); cf. Section 4.13. The Takens-
Bogdanov bifurcation, for which (4) has a cusp at the origin, is derived in
Problem 2 and it occurs for points on the surface

TB°: c = a+ 1

These are the only bifurcations that occur in the class BQS2 according
to Peixoto's theorem in Section 4.1. We shall refer to the plane a = Q as
a saddle-node bifurcation surface since P+ 0 as a - 3 in (4); i.e., as
shown in Problem 3, there is a saddle-node bifurcation surface

SN:a=(3.
For a = Q the system (4) has only one critical point which is located at the
origin; and the phase portrait for (4) with a = 0 is given by Figure 1(c).
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The relationship of the bifurcation surfaces described above for Icl < 2
is determined by Figure 6 below, which shows the bifurcation surfaces in
this section for various values of /3 in the intervals (-oo, -2), [-2, -1/2),
[-1/2, 0), (0, /3"), [)3-,3/2), [3/2, 2), and [2, oo). The number /3` = 1.43; this
is the value of /3 at which the homoclinic-loop bifurcation surface HL+
leaves the region in R3 where jcj < 2; cf. Figure 4. The phase portraits for
(4) with (a, /3, c) in the various regions shown in the "charts" in Figure 6
follow from the results in [48] for BQS2 and from the fact that any BQS2
has at most one limit cycle, which was established in [50]. These results then
lead to the following theorem. Note that the configuration (a'), referred to
in Figure 6, is obtained from the configuration (a), shown in Figure 5, by
rotating that configuration through it radians about the x-axis. Similar
statements hold for the configurations (b'), . . . , U').

Theorem 4. The phase portrait for any BQS2 is determined by one of the
separatrix configurations in Figure 5. Furthermore, there exists a homoclinic-
loop bifurcation function h(a, /3) that is defined and analytic for all a #
/3/2. The bifurcation surfaces

2
H+: c =

2a /3'

HL+: c = h(a, /3),
SS: c = a,

and

TB°:c=a+

partition the region

R={(a,,6,c)ER3Ia>/3,Ici<2}

of parameters for the system (4) into components, the specific phase portrait
that occurs for the system (4) with (a, /3, c) in any one of these components
being determined by the charts in Figure 6.

Remark 2. The components of the region R defined in Theorem 4 and
described by the charts in Figure 6 also can be described by analytic in-
equalities on the coefficients a, /3, and c in (4). In fact, it can be seen from
the last three charts shown in Figure 6 that for /3 < 0, a > /3, and Icl < 2,
the system (4) has the phase portrait determined by Figure 5

(a) iffc = a and c < (1 + a2)/(2a - /3).

(b) iffc = a and c > (1 + a2)/(2a - /3).

(c') iffa + 1//3 < c < a and c < ( 1 + a2)/(2a - /3).

(cl) iffa < c < (1 + a2)/(2a - 0).
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iff c> a and (1 + a2)/(2a -,3) < c < h(a, /3).

if c = h(a, /3).

iff (1 + a2)/(2a -)3) < c < a + 1//3.

iffa+1//3<c<aand c>(1+a2)/(2a-/3).

iff c <0 +Q2 )/(2a - $) and c < a + 1//3.

if c > h(a, Q).

if c = a + 1//3 and c < (1 + a2)/(2a - /3).

iffc=a+1//3and c>(1+a2)/(2a-/3).

Similar results follow from the first four charts in Figure 6 for /3 > 0. In fact,
the configurations r, hi, i', and j' do not occur for /3 > 0; the inequalities
necessary and sufficient for c' or g' are c < a and c < (1 + a2)/(2a - /3) or
c > (1 + a2)/(2a - 0), respectively; and the above inequalities necessary
and sufficient for the configurations a, b, cl, d, e, and h remain unchanged
for/3>0.

Note that the system (4) with a > 2 and Icl < 2 has the single phase
portrait determined by the separatrix configuration in Figure 5(c'). Also
note that, due to the symmetry of the system (4) cited in Lemma 1, if for
a given c E (-2,2),,3 E (-oo, oo), and a > /3 the system (4) has one of the
configurations a, b, c', cl, d, e, f', g', h', hl, i' or j' described in Figure 5,
then the system (4) with -a and -/3 in place of a and /3 (and -a < -/3),
and with -c in place of c, will have the corresponding configuration a', b',
c, cc, d', e', f, g, h, hi, i, or j, respectively. We see that every one of the
configurations in Figure 5 (or one of these configurations rotated about the
x-axis) is realized for some parameter values in the last chart in Figure 6.
The labeling of the phase portraits in Figure 5 was chosen to correspond
to the labeling of the phase portraits for BQS3 in Figure 8 below.

It is instructive to see how the results of Theorem 4, together with the
algebraic formula for the surface H+ given in Theorem 4 and with the
analytic surface HL+ approximated by the numerical results in Figure 4,
can be used to determine the specific phase portrait that occurs for a given
BQS2 of the form (4).

Example 1. Consider the BQS2 given by (4) with a = 1 and /3 = .4 E
(0,0*), i.e., by

i = -x+.4y+y2
Ay - xy +c x+.4 + 2 (4')

where we let c = 1.2,1.3,1.375, and 1.5. Cf. the fourth chart in Figure 6.
It then follows from Theorem 4 and Figures 3 and 4 that this BQS2 with
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(b)

(f)

(h1)

(d)

(9)

(0)

(e)

(h)

Figure 5. All possible phase portraits for BQS2.
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-2s0<-1/2

-ins0<0

-00 <p<

Figure 6. The charts in the (a, c)-plane for the BQS2, (4).
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c = 1.2,1.3,1.375, and 1.5 has its phase portrait determined by Figures 5
(cl ), (d), (e), and (h) respectively. This is borne out by the numerical results
shown in Figure 7. Of course, the computer-drawn phase portrait for c =
1.375 only approximates the homoclinic loop that occurs at c = 1.375.

We. next present the solution to Coppel's problem for BQS3 under the
assumption that any BQS3 has at most two limit cycles. It has been shown
in [51] that any BQS3 which is near a center has at most two limit cycles,
and, because of the results presented in this section and in [53], we believe
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C = 1.375
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C= 1.3

C= 1.5

Figure 7. Computer-drawn phase portraits for the system (4').

that it is true in general that any BQS3 (and therefore any BQS) has at
most two limit cycles.

As we shall see, the class BQS3 has both homoclinic-loop and multiplicity-
two limit cycle bifurcation surfaces that are described by functions whose
analyticity follows from the results in [38]. Thus, just as in the case of
BQS2, it is once again necessary to allow inequalities involving analytic
functions in the solution of Coppel's problem for BQS3.

It follows from Theorem 1 above and Lemma 8 in [48] that any BQS3 is
aff rely equivalent to (3) with Icl < 2, al l < 0, and (a12 - a21 + ca11)2 >
4(a11a22 - a21a12) y6 0. It was shown in [48] that for any BQS3 of the
form (3), the middle critical point (ordered according to the size of the
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y-component of the critical point) is a saddle. Thus, by translating the
origin to the lower critical point and by making the linear transformation
of coordinates t - Iajl It. x -. x/la11I and y y/Ia11I in (3) with all < 0,
it follows that any BQS3 is affinely equivalent to (3') above with Icl < 2
and (a21 - a12 + c)2 > 4(-a22 - a12a21) > 0. Therefore, by letting 3 =
a12, a = a21 + c, and y2 = -a22 - a2la12, a positive quantity, it follows
from the above inequalities that la - /3I > 2IyI > 0, and we obtain the
following result:

Lemma 2. Any BQS3 is affinely equivalent to the one-parameter family
of rotated vector fields

i = -x +,3y + Y2
y = ax - (00 +y2)y-xy+c(-x+ /3y+y2)

(5)

mod x = jay+y2 with parameterc E (-2,2) and Ia-QI > 2IyI > 0. Further-
more, the system is invariant under the transformation (x, y, t, a, /3, y, c) -
(x, -y, t, -a, -j3, -y, -c), and it therefore suffices to consider a - 3 >
2y > 0. The critical points of (5) are at 0 = (0, 0), P+ = (x+, y+), and
P = (x-, y-) with xt = (/3+yt)yt and 2yt = a-/3f [(a-/3)2 -472]1/2.
The origin and P+ are nodes or foci, and P- is a saddle. The y-components
of 0. P-, and P+ satisfy 0 < y- < y+; i.e., 0, P-, and P+ are in the rel-
ative positions shown in the following diagram:

P+

.0

The last statements in Lemma 2 follow directly from the results in
Lemma 8 in [48] regarding the critical points of (3). The bifurcations
that take place in the four-dimensional parameter space of (5) are de-
rived in the problems at the end of this section. Hopf and homoclinic-loop
hifurcations occur at both 0 and P+; these bifurcation surfaces are de-
noted by H+, H°, HL+, and HL°; cf. Problems 1, 5, and 6. There are
also multiplicity-two Hopf bifurcations that occur at points in H+ and H°;
these surfaces are denoted by HZ and HZ; cf. Problems 1 and 5. Note that
it was shown in Proposition C5 in [50] that there are no multiplicity-two
Hopf bifurcations for BQS1 and BQS2, and that there are no multiplicity-
three Hopf bifurcations for BQS3. There are multiplicity-two homoclinic-
loop bifurcations that occur in HL+, as is shown in Problem 7 at the
end of this section, and this surface is denoted by HLZ . Also, just as in
the class BQS2, it follows from Lemma 11 in [48] that the class BQS3
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has a saddle-saddle bifurcation surface

SS:c= (a+3+S)/2.

where S = (a - -0)2- 4y2. and for (a, 0, y, e) E SS the system (5) has
a saddle-saddle connection between the saddle P- and the saddle-node at
the point (1, 0, 0) on the equator of the Poincare sphere. There is also a
saddle-node bifurcation that occurs as a -+ 0 + 2y; i.e., as P+ P-, and
this results in the following saddle-node bifurcation surface for (5):

SN: a = 0 + 2y.

Cf. Problem 3.
Next we point out that there is a Takens-Bogdanov (or cusp) bifurcation

surface TB+ that occurs at points where H+ intersects HL+ on SN; i.e.,
as in Figure 3 in Section 4.13, TB+ = H+ fl HL+ fl SN. As is shown in
Problem 4, it is given by

TB+:c= 1 +0+y and a=/3+2y.
0+2y

It is shown in Problem 8 that there is a transcritical bifurcation that occurs
as - - 0: i.e., as 0 P-, and this results in the following transcritical
bifurcation surface for (5):

TC:y=0.
Finally, as was noted earlier, there is the Takens-Bogdanov (or cusp) bi-
furcation surface TB° that occurs at points where H° intersects HL° on
TC; i.e., TB° = H° fl HL° fTC. Cf. Problems 2 and 3. It is given by

TB°:c=a+

cf. Theorem 4 above. All of these bifurcations are derived in the problem
set at the end of this section, including the multiplicity-two limit cycle
bifurcation surfaces C2 and C2 whose existence and analyticity follow from
the results in [38]: cf. Problem 6. These bifurcation surfaces for BQS3 are
listed in the next theorem, where they are described by either algebraic
or analytic functions of the parameters a, 0, y, and c that appear in (5).
Furthermore, these are the only bifurcations that occur in the class BQS3,
according to Peixoto's theorem.

The relative positions of the bifurcation surfaces described above and in
Theorem 5 below are determined by the atlas and charts for the system (5)
given in Figures A and C in [53] and shown in Figures 15 and 16 below for
3 > 0. The phase portraits for (5) with (a, (3, y. c) in the various compo-
nents of the region R, defined in Theorem 5 below and determined by the
atlas and charts, in [53], follow from the results in [48] for BQS3 under the
assumption that any BQS3 has at most two limit cycles. These results are
summarized in the following theorem.
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Theorem 5. Under the assumption that any BQS3 has at most two limit
cycles, the phase portrait for any BQS3 is determined by one of the sepa-
ratrix configurations in Figure 8. Furthermore, there exist homoclinic-loop
and multiplicity-two limit cycle bifurcation functions h(a, /j, -y), ho(a, /j, y),
f and fo(a,13,'y), analytic on their domains of definition, such
that the bifurcation surfaces

H+: c 1 + a(a +,C + S)/2
a + S

(i) 6)

(m) (n)

(C)

(k)

(0)

(d

(1)

Figure 8. All possible phase portraits for BQS3.
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H2 :c= -b+ 6 -4ad
2a

1 +'Y2

/3

,

HZ:c=
a/3-2a2-1+ 2a2-1)2-4(a-,3)(0 -2a)

2(/3 - 2a)
HL+: c = h(a, /3, ry),

HLZ:c= 1+a(a+/3-S)/2

a-S
HL°: c = ho(a, /3,'Y),

SS:c=(a+/3+S)/2 or a=c+ry2/(c-/3),
CZ:c=f(a,/3,Y),

and

C2 : c = fo (a,,8, 7)

with S = (a - (3)2 - 4ry2, a = 2(2S - 0), b = (a + /3 - S)(/3 - 2S) + 2,
and d = /3 - a - 3S partition the region

R = { (a, /3, 7, c) E R° I a >,8 + try, ,y > 0, Icl < 2}

of parameters for the system (5) into components, the specific phase portrait
that occurs for the system (5) with (a, /3, ry, c) in any one of these compo-
nents being determined by the atlas and charts in Figures A and C in [53],
which are shown in Figures 15 and 16 below for l3 > 0.

The purpose of the atlas and charts presented in [53] and derived below
for /3 > 0 is to show how the bifurcation surfaces defined in Theorem 5
partition the region of parameters for the system (5),

R={(a,/3,y,c)ER°Ia>/3+27,7>0,Icl<2},

into components and to specify which phase portrait in Figure 8 corre-
sponds to each of these components.

The "atlas," shown in Figure A in [53] and in Figure 15 below for /3 > 0,
gives a partition of the upper half of the (/3, y)-plane into components
together with a chart for each of these components. The charts are specified
by the numbers in the atlas in Figure A. Each of the charts 1-5 in Figure 16
determines a partition of the region

E = {(a, c) E R2 I a > /3 + 2ry, I cl < 2}

in the (a, c)-plane into components (determined by the bifurcation surfaces
H...... C2 in Theorem 5) together with the phase portrait from Figure 8
that corresponds to each of these components. The phase portraits are
denoted by a-o or a'-o' in the charts in Figure C in [53] and in Figure 16
below. As was mentioned earlier, the phase portraits a'-o' are obtained by
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rotating the corresponding phase portraits a-o throughout it radians about
the x-axis.

In the atlas in Figure 15, each of the curves rl, ... , r4 that partition the
first quadrant of the (/3, -y)-plane into components defines a fairly simple
event that takes place regarding the relative positions of the bifurcation
surfaces defined in Theorem 5. For example, the saddle-saddle connection
bifurcation surface SS, defined in Theorem 5, intersects the region E in
the (a, c)-plane if ,Q + -y < 2. (This fact is derived below.) Cf. Charts 1
and 2 in Figure 16 where we see that for all (a, c) E E and /3 +'y > 2 the
system (5) has the single phase portrait c' determined by Figure 8.

In what follows, we describe each of the curves r1,. .. , r4 that appear in
the atlas in Figure 15 as well as what happens to the bifurcation surfaces
in Theorem 5 as we cross these curves.

A. I', : SS INTERSECTS SN ON c = ±2

From Theorem 5, the bifurcation surfaces SS and SN are given by

a+/3+S
SS: c =

2

and

SN:a=ft +2ry,
respectively, where S = Substituting a = /3+2ry into the
equation for S shows that S = 0 on SN; substituting those quantities into
the SS equation shows that SS intersects SN at the point

SSf1SN:a=/3+2-y, c=/3+-y.

Thus SS intersects SN on c = ±2 if (/3, ry) E r', where

1'i:Q+ry=±2.

It follows that in the (a, c)-plane the SS and SN curves have the relative
positions shown in Figure 9.

B. r : TB+ INTERSECTS SN ON C = ±2

As was determined in Problem 4, a Takens-Bogdanov bifurcation occurs
at the critical point P+ of the system (5), given in Lemma 2, for points on
the Takens-Bogdanov surface

TB+:c=Q+2ry+/3+y.

Setting c = ±2 in this equation determines the curves

1r4.,3+ 2ry+P +ry=f2,
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SS

c=2

SS

SN

c=-2
SN

c=2

P+y>2 -2<p+If <2 0+7<-2

Figure 9. The position of the SS curve in the (a, c)-plane.

Y

5

P

Figure 10. The curves 1' in the (/j, -y)-plane.

where the point p E TB+ f1 SN enters and leaves the region Ici < 2 in the
(a, c)-plane, respectively. The curves I4 are shown in Figure 10. For points
(Q, -y) in between these two curves we have a Takens-Bogdanov bifurcation
point TB+ in the closure of the region E in the (a, c)-plane; cf. Figure 11
and charts 4 and 5 in Figure 16.
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(a,Y)EA (0,Y)EB

Figure 11. The position of the TB+ point in the (a, c)-plane.
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C. r2: H+ INTERSECTS C = 2

First, consider the case when -y = 0. In this case, it follows from Theorem 4
that

H+: c =
1+a2
2a-,0*

It then follows that 8c/8a = 0 if a2 - a/3 - 1 = 0 and that for any 0 E R,
the H+ curve has a minimum at a = (/3+ /32 + 4)/2. This minimum point
occurs at the intersection of the SS and H+ curves in the (a, c)-plane. (This
follows since for -y = 0, c = a on the SS curve, and substituting c = a into
the above formula for H+ yields a2 - a/3 - 1 = 0.) Thus, for 7 = 0, the
minimum point on the H+ curve intersects the horizontal line c = 2 at
the point c = a = (/3 = /32 + 4)/2 = 2, which implies that /3 = 3/2; cf.
Figure 6.

Next consider the case when 7 > 0. In this case, it follows from Theorem 5
that

1 + a(a + Q + S)/2H+: c= a+S
where S = (a -,8)2 - 472. Once again, we set Oc/Oa = 0 to find the
minimum point on the H+ curve (when it exists). This yields

(2a+/3)S2+[a2-2+(a-/3)2-412]S-(a-0)(2+a/3)=0. (*)

And setting c = 2 in the H+ equation yields

2 + (a - 4)S + a(a + /3 - 4) = 0. (**)

Eliminating a between the two equations (*) and (**) then yields the
curve

r2:7 = 72 (Q)
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Figure 12. The curve 172 in the (0. y)-plane.

-1/2<3<3/2 3=-1/2 0<-1/2

Figure 13. The position of the H+ curve in the (a. c)-plane.

in the (13,' )-plane, where H+ first intersects the horizontal line c = 2
in the (a, c)-plane: cf. Figures 12 and 13. The curve 1'2 was determined
numerically; it is shown in Figure 12 and in the atlas in Figure 15 below.
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r3:7=73(3)

Figure 14. The curve r3 in the ((3, 7)-plane.

D. r3: HL+ INTERSECTS c = 2

For -y = 0, it was noted just prior to Theorem 4 above that the homoclinic
loop bifurcation surface HL+ intersects the region Ic) < 2 if 3 < /3', where

?' 1.43 was determined numerically. Cf. Figure 4.
For -y > 0, it has been determined numerically, by integrating trajectories

of (5), that for -2 < /3 < /3', the HL+ curve intersects the region Icl < 2
if the point (3, 7) lies below the curve

r3: 7 = 73(3)

in the (/3, -y)-plane. Cf. Figure 14, where we see that the curve r3 parallels
the r2 curve in the (/3, -y)-plane, going from the point (,Q', 0) to the point
(-2, 21) common to r2i r3, and F. This is not surprising since the HL+4 4
curves "parallel" the H+ and SS curves in the (a, c)-plane. The r2 and r3
curves are shown in Figure 14.

THE ATLAS IN THE FIRST QUADRANT

At this point we can determine exactly which phase portrait occurs in the
system (5) for 7, c) E R with /3 > 0. The curves r+, r2, r3, and r4+1
discussed above, are shown in Figure 15 together with the chart numbers
1-5 that correspond to each of the components in the first quadrant of
the (/3, 7)-plane that are determined by the curves ri -1'4 . We also show
charts 1-5 in Figure 16 and the phase portraits that occur in these charts
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I 3/2 2

Figure 15. The atlas A in the first quadrant of the (Q, -y)-plane.

SN

I

C=2

c'

c=-2

Figure 16. The charts in the (a, c)-plane, that appear in the first quadrant
of the atlas A shown in Figure 15.
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Figure 17. The phase portraits that occur in the charts shown in Figure 16;
cf. Figure 8 (and Figure 5 for c, ci and i on SN).

in Figure 17. This should give the student a very good idea of how the
results in this section allow us to determine the phase portrait of any BQS
of the form (5) with /3 > 0 and y > 0. It also should be clear that as
y 0, the first four charts shown in Figure 16 reduce to the first four
charts in Figure 6, and the phase portraits shown in Figure 17 reduce to
the corresponding phase portraits in Figure 5. Note that all of the phase
portraits shown in Figure 17 occur in chart 5 shown in Figure 16.

E. THE SURFACE O = 0

As we cross the plane /3 = 0, the bifurcation surfaces H° and HL° enter
into the region R; i.e., for /3 > 0 (and -y > 0), the H° and HL° curves do
not intersect the region

E={(a,c)ER2Ia>/3+2y,Icl<2}
in the (a, c)-plane; and for /3 < 0 (and -y > 0), they do. Also, for y = 0
and /3 > 0, there is no Takens-Bogdanov curve TB° in the region E in the
(a, c)-plane, while for /3 < 0 there is; cf. Problem 8. Figure 18 depicts what
happens as we cross the plane /3 = 0; cf. Problem 9.

It is instructive at this point to look at some examples of how Theorem 5,
together with the atlas an charts in (53] can be used to determine the phase
portrait of a given BQS3 of the form (5). The atlas and charts determine
which phase portrait in Figure 8 occurs for a specific BQS3 of the form (5),
provided that we use the algebraic formulas given in Theorem 5 and/or the
numerical results given in (53] for the various bifurcation surfaces listed
in Theorem 5. We consider the system (5) with /3 = -10 in the following
examples because some interesting bifurcations occur for large negative
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c=2

SN

c = -2

p>o p<o

Figure 18. The appearance of the H° and HL° curves in the (a, c)-plane
for/3<0.

values of /3, and also because we can compare the results for /3 = -10
with the asymptotic results given in [51) and in Theorem 6 below for large
negative /3. This is done in Example 4 below.

Example 2. Consider the system (5) with /3 = -10 and -y = 3.5. The
bifurcation curves for /3 = -10 and -y = 3.5 are shown in [53] and in
Figure 19. The bifurcation curves H+, HL+, H°, HL°, SS, C2+, and C2
partition the region a > -3 and Icl < 2 into various components. The
phase portrait for the system (5) with /3 = -10, -t = 3.5, and (a, c) in any
one of these components is determined by Figure 8 above. Note that every
one of the configurations a-o or a'-o' in Figure 8 occurs in Figure 19.

Also note that the multiplicity-two limit cycle bifurcation curve C2 has
two branches, one of them going from the left-hand point Hz on the curve
H+ to the point HLZ on the curve HL+, and the other branch going from
the right-hand point HZ to infinity, asymptotic to the SS curve, as a -+ oo.
Cf. the termination principle for one-parameter families of multiple limit
cycles in [39]. A similar comment holds for the multiplicity-two limit cycle
bifurcation curve CZ shown in Figure 19. The region of the (a, c)-plane
containing the two branches of the CZ curve is shown on an expanded
scale in Figure 20. The system (5) with /3 = -10, y = 3.5, and (a, c) in
the shaded regions in Figure 20 has two limit cycles around the critical
point P+; the phase portrait for these parameter values is determined by
the configuration (k) in Figure 8 above.

The bifurcation curves HL+, HL°, C21, and CZ; i.e., the graphs of the
functions c = h(a, -10, 3.5), c = ho(a, -10, 3.5), c = f (a, -10, 3.5), and
c = fo(a, -10, 3.5), respectively, were determined numerically. The most
efficient and accurate way of doing this is to compute the Poincare map
P(r) along a ray through the critical point P+ in order to determine the
HL+ and C2 curves (or through the critical point 0 in order to determine
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Figure 19. The bifurcation curves H+, HL+, H°, HL°, SS, C2+, and C2
for the system (5) with /3 = -10 and -y = 3.5.

the HL° and CZ curves). The displacement function d(r) = P(r)-r divided
by r, i.e., d(r)/r, along the ray 0 = it/6 through the point P+ for the system
(5) with 6 = -10, -y = 3.5, and a = 1.1 is shown in Figure 21 for various
values of c. In Figure 21(a) we see that for a = 1.1, a homoclinic loop occurs
at c - .04, i.e., (1.1,.04 . . .) is a point on the homoclinic loop bifurcation
curve HL+ for ,0 = -10 and y = 3.5, as shown in Figure 20. Also, the
displacement function curve d(r)/r shown in Figure 21(a) is tangent to
the r-axis (which is equivalent to saying that the curve d(r) is tangent
to the r-axis) at c - .09. The blow-up of some of these curves, given in
Figure 21(b), shows that the displacement function d(r) is tangent to the
r-axis at c = .0885; i.e., (1.1, .0885 . . .) is a point on the right-hand branch
of the multiplicity-two cycle bifurcation curve Cz for,Q = -10 and y = 3.5,
as shown in Figure 20. It also can be seen in Figure 21(b) that the system
(5) with ,6 = -10, -y = 3.5, a = 1.1, and c = .088 has two limit cycles at
distances r 4.9 and r = 7.7 along the ray 0 = it/6 through the critical
point P+; and for c = .087 there are two limit cycles at distances r = 1.7
and r ?i 8.4 along the ray 0 = it/6 through the critical point P+. Cf.
Figure 8(k).

Figure 22 shows a blow-up of the region in Figure 19 where the curves
SS, H°, and HL° intersect and where the curve C2 emerges from the
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Figure 20. The regions in which (5) with /3 = -10 and y = 3.5 has two
limit cycles around the critical point P+.

point HZ on the H° curve. The curve CZ is tangent to H° at H2, and it is
asymptotic to the curve HL° as a or c decrease without bound.

Example 3. Once again consider the system (5) with Q = -10, but this
time with -y = 3. The bifurcation curves for this case are shown in Figure 23.
We see that the bifurcation curve CZ only has one branch, which goes from
the point HL2 on the curve HL+ to infinity along the SS curve as a - oc.
The reason why there can be one or two branches of the bifurcation curve
CZ in the (a, c)-plane for various values of,3 and y is discussed in [53]. Once
again, the points on the bifurcation curves HL+ and CZ were computed
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aa+

a'a
a'
AN
a.
1.

(a)

C=.087

C=.088

C=.089

C=.09

(b)

515

Figure 21. The displacement function d(r)/r for the system (5) with
Q=-10,-y = 3.5, and a = 1.1.

using the Poincare map as described in the previous example. The point
HLZ and the bifurcation curves H+, H°, and SS follow from the algebraic
formulas in Theorem 5.

We next compare the results of Theorem 5 with the asymptotic results
in [51], where Li et al. study the unfolding of the center for a BQS given
in Remark 1 above. They study the system

x = -bx-ay+y2
6

y = 6v2x + by - xy + 6v3y2
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Figure 22. A blow-up of the region in Figure 12 where SS, H°, and HL°
cross.

for a > 0, b < 0, 0 < 5 << 1, and 16v3I < 2; cf. equation (1.1) and Theorem C
in [51]. The system (6) with b = 0 is of lnely equivalent to the BQS2 with
a center given in Remark 1. We note that there is a removable parameter
in the system (6); i.e., for a > 0 the transformation of coordinates t -
at, x -+ x/a and y -- y/a reduces to (6) to

i = -bx-y+y2
y = bv2x + by - xy + bv3y2

(6 )

with b < 0. For b > 0, the linear transformation of coordinates t -+ St, x -+
x/b, and y y/b transforms (6') into

1x=-x-by+y2
y = v2x+ b

3y-xy+6v3y2

with b < 0. Comparing (6") to the system (5), we see that they are identical
with the parameters relayed by

1
Q=-b av2+bv3

(7)
c=bv3 y= (v2-b)/b
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a

Figure 23. The bifurcation curves H+, HL+, H°, SS, and C2 for the
system (5) with (3 = -10 and ry = 3, and the shaded region in which (5)
has two limit cycles around the critical point P+.

for 6 > 0 and v2 > b. Note that the transcritical bifurcation surface y = 0
corresponds to v2 = b in (7). Since the Jacobian of the (nonlinear) trans-
formation defined by (7),

8(a, c)

8(6, v2, v3, b) b b(v2 - b)

it follows that (7) defines a one-to-one transformation of the region

{(a,3,ry,c)ER4I(3<0,-y>0}
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onto the region
{(6,v2iv3,b)ER4 16>0,v2>b}.

For 0 < 6 << 1, the asymptotic formulas for the bifurcation surfaces
H+, H2+, HL+, HL2, and C2 (denoted by H, Al i he, A2 and de) in [51] can
be compared to the corresponding bifurcation surfaces in Theorem 5 above
with /3 = -1/6 << -1. Substituting the parameters defined by (7) into
Theorem C in [51], or letting /3 -oo in Theorem 5 above, leads to the
same asymptotic formulas for the bifurcation surfaces H+, H2+1 and HL2.
These formulas are given in Theorem 6 below. This serves as a nice check on
our work. In addition, we obtain a bonus from the results in [51]. Namely,
an asymptotic formula for the bifurcation surface C2+; this does not follow
from Theorem 5, since only the existence of the function f (a, /3, -y) is given
in Theorem 5. This asymptotic formula for C2 follows from the Melnikov
theory in [51]; cf. Section 4.10. The last statement in Theorem 6 follows
from the results in [38] and [52].

Theorem 6. For /3 = -1/6 << -1 and rye = 1#Jr2 in (5), it follows that
H+:c= (1 - r 2a + a2)6 + 0(62),

H2 : c = 36 + 0(62), 2a = I'2 f r4 = 4/3 + 0(6) for r > ° 4/3,

HL2: c = 26 + 0(62), a = 36 + 0(b2),

and

C2+: c = -26 [2a2 - 2r2a - 1 + (2a2 - 2r2a - 1)2 - 1] + 0(62)

as 6 -+ 0. Furthermore, for each fixed /0 << -1 and 72 = l1lr2 with I' >
° 4/3, the multiplicity-two limit cycle bifurcation curve C2 is tangent to

the H+ curve at the point(s) H2+, and it has a flat contact with the HL+
curve at the point HL2.

Remark 3. The result for the homoclinic-loop bifurcation surface HL+
given in [51], namely that v2 = 0(6), does not add any significant new
result to Theorem 5. However, just as Li et al. give the tangent line to C2
at HL2 ; i.e., v3 = -2v2/6 + 4 + 0(6), as the linear approximation to HL+
at HL2 in Figure 1.4 in [51], we also give the linear approximation to HL+
at HL2:

c=-3a+46+0(62)
as 6 - 0. This is simply the equation of the tangent line to C2 at HL2
for 3 = -1/6 « -1 and rye = 1,31r2, and it provides a local approximation
for the bifurcation surface HL+ near HL2 for small 6 > 0. It can be
shown using this linear approximation for HL+ at HL2 and the asymptotic
approximation for H+ and C2 given in Theorem 6 that, for any fixed r >
(4/3)1/4, the branch of C2 from H2 to HL2 lies in an 0(6) neighborhood
of H+ U HL+ above H+ and HL+.
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We also obtain the following asymptotic formulas for small 6 > 0 from
Theorem 5 (where /3 = -1/6). Note that the first formula for the Hopf
bifurcation surface H° is exact.

H°:c=a-r2-6,
H2:c=-F2-+o(6), a = r2 - r2 + 0(6),

SS: c = a - r2 + 0(62) for a = r2 + 0(6),

SS n H°: c = -
r2

+ 0(6), a = r2 r2 + 0(6).

It also follows from Theorem 5 that the surfaces SS crosses the plane c = 0
at a=1,3172=r2 forall/3<0.

Let us compare the results in Examples 2 and 3 above with the asymp-
totic results given above and in Theorem 6.

Example 4. Figure 24 shows the bifurcation curves H+, HL+, H°, SS,
and C2 as well as the points H2 and HLZ on H+ and HL+, respec-
tively, given by Theorem 5 for /3 = -10 and -y = 3.5. Cf. Figure 20. It
also shows the approximations N H+,, H°,, SS, and N C2 to these
curves as dashed curves (and the approximation - H2 to Hi) given by
the asymptotic formulas in Theorem 6 and the above formulas for /3 = -10
and ry = 3.5. The approximation is seen to be reasonably good for this rear
sonably large negative value of /3 = -10. (For larger negative values of 6,
the approximation is even better, as is to be expected, and as is illustrated
in Example 5 below.) In Figure 24, we see that the approximation of H+ by
the asymptotic formula in Theorem 6 is particularly good for 1 < a < 1.5
but not as good for a near zero; however, the difference between the H+
and - H+ curves at a = 0,.04 = 0(62) for 6 = -1/0 = .1 in this case.

Figure 25 shows the same type of comparison for /3 = -10 and ry = 3. We
note that both C2 n H+ = 0 and (- CZ) n (- H+) = 0; i.e., there are no
H2 nor - H2 points on H+ or - H+, respectively. Thus, the asymptotic
formulas in Theorem 6 also yield some qualitative information about the
bifurcation curves H+ and C2 for /3 << -1.

Example 5. We give one last example to show just how good the asymp-
totic approximations in Theorem 6 are for large negative /3. We consider
the case with /3 = -100 and ry = 12, in which case r = 6ry2 = 1.44 > V-4-1-3
and, according to the asymptotic formula in Theorem 6 for H2+1 there will
be two points H2 on the curve H+. Since the bifurcation curves given by
Theorem 5 and their asymptotic approximations given by Theorem 6 (and
the formulas following Theorem 6) are so close, especially for .3 < a < 2, we
first show just the approximations - H+, - C2+, . SS, , H°, and N H2 in
Figure 26. These same curves are shown as dashed curves in Figure 27 along
with the exact bifurcation curves given by Theorem 5. The comparison is
seen to be excellent. In particular, H+ and - H+ as well as H° and - H°,
and SS and - SS are indistinguishable (on this scale) for .3 < a < 2. For
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Figure 24. A comparison of the bifurcation curves given by Theorem 5
with their asymptotic approximations given by Theorem 6 for /3 = -10
and -y = 3.5.

a near zero, the approximation of H+ by - H+ is within .0003 = 0(52) for
5 = -1/(3 = 1/100 in this case. One final comment: In Figures 26 and 27,
we see that there is a portion of N C2 between the two points - H2 on
- H+. However, this portion of - C2 (for r > ° 413) has no counterpart
on C2+, since dynamics tells us that there are no limit cycles for parameter
values in the region above H+ in this case. Cf. Remark 10 in [38].

We end this section with a theorem summarizing the solution of Coppel's
problem for BQS, as stated in the introduction, modulo the solution to
Hilbert's 16th problem for BQS3:
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Figure 25. A comparison of the bifurcation curves given by Theorem 5
with their asymptotic approximations given by Theorem 6 for 6 = -10
and ry=3.

Theorem 7. Under the assumption that any BQS3 has at most two limit
cycles, the phase portrait of any BQS is determined by one of the configura-
tions in Figures 1, 2, 5, or 8. Furthermore, any BQS is affinely equivalent
to one of the systems (1)-(5) with the algebraic inequalities on the coef-
ficients given in Theorem 2 or 3 or in Lemma 1 or 2, the specific phase
portrait that occurs for any one of these systems being determined by the
algebraic inequalities given in Theorem 2 or 3, or by the partition of the
regions in Theorem 4 or 5 described by the analytic inequalities defined by
the charts in Figure 6 or by the atlas and charts in Figures A and C in
]53], which are shown in Figures 15 and 16 for 0 > 0.
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-SS, -H°

a

Figure 26. The asymptotic approximations for the bifurcation curves
H+, H°, SS, and CZ given by Theorem 6 for 0 = -100 and ry = 12.

Corollary 1. There is a BQS with two limit cycles in the (1, 1) configu-
ration, and, under the assumption that any BQS3 has at most two limit
cycles, the phase portrait for any BQS with two limit cycles in the (1, 1)
configuration is determined by the separatrix configuration in Figure 8(n).

Corollary 2. There is a BQS with two limit cycles in the (2, 0) configu-
ration, and, under the assumption that any BQS3 has at most two limit
cycles, the phase portrait for any BQS with two limit cycles in the (2, 0)
configuration is determined by the separatrix configuration in Figure 8(k).

Remark 4. The termination of any one-parameter family of multiplicity-
m limit cycles of a planar, analytic system is described by the termination
principle in [39]. We note that, as predicted by the above-mentioned termi-
nation principle, the one-parameter families of simple or multiplicity-two
limit cycles whose existence is established by Theorem 5 (several of which
are exhibited in Examples 2-5) terminate either

(i) as the parameter or the limit cycles become unbounded, or
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HL*

a

Figure 27. A comparison of the bifurcation curves given by Theorems 5
and 6for 0=-100and y=12.

(ii) at a critical point in a Hopf bifurcation of order k = 1 or 2, or

(iii) on a graphic or separatrix cycle in a homoclinic loop bifurcation of
order k = 1 or 2, or

(iv) at a degenerate critical point (i.e., a cusp) in a Takens-Bogdanov
bifurcation.

PROBLEM SET 14
In this problem set, the student is asked to determine the bifurcations that
occur in the BQS2 or BQS3 given by

-x + Qy + y2
(5)ax-(a1+y2)y-xy+c(-x+13y+y2)

with a - 3 > 2y > 0; cf. Lemmas 1 and 2. According to Lemma 2, the
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critical points of (5) are at 0 = (0, 0) and Pt = (xt, yf) with

x± = (/3 + y})yt

and

Y
= a-/3t (a-/3)2-4y2 (8)

2

If we let f(x, y) denote the vector field defined by the right-hand side of
(5), it follows that

Df(0,0) 1= [ci.c
/3 l

a/3--y2] ,

and that

t t -1Df /3+2yt
(x , y ) _ [a - c - y} /3(c - a) + (2c - a)yf]

-1 a±S
a+/3-2cT- S (c-a)(a+/3)+c(a-/3)±(2c-a)S

2 2

,

where S = (a - /3)2 - 4y2.
If we use 6(x, y) for the determinant and r(x, y) for the trace of Df(x, y),

then it follows from the above formulas that

6(0, 0) = dct Df(0, 0) = rye > 0,
r(0, 0) = tr Df (0, 0) = -1 + c/3 - ap - rye,

6(xf, y}) = det Df(xt, yf) = ±Syt,

and

r(xf, Y:') = tr Df(x±, y}) = -1 + /3(c - a) + (2c - a)yf.

These formulas will be used throughout this problem set in deriving the
formulas for the bifurcation surfaces listed in Theorem 5 (which reduce to
those in Theorem 4 for -y = 0).

1. (a) Show that for a 0 /3+2y there is a Hopf bifurcation at the criti-
cal point P+ of (5) for parameter values on the Hopf bifurcation
surface

H+: c 1 + a(a +,6 + S)/2
a+S

where S = (a - /3)2 - 4y2 and that, for -y = 0 and a > /3 as
in Lemma 1, this reduces to the Hopf bifurcation surface for (4)
given by

1+a2
H+: 2a-/3
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Furthermore, using formula (3') in Section 4.4, show that for
points on the surface H+, P+ is a stable weak focus (of multi-
plicity one) of the system (4), and that a supercritical Hopf bi-
furcation occurs at points on H+ as c increases. Cf. Theorem 5'
in Section 4.15.

(b) Use equation (3') in Section 4.4 and the fact that a BQS3 cannot
have a weak focus of multiplicity m > 3 proved in [50] to show
that the system (5) has a weak focus of multiplicity two at P+ for
parameter values (a,#, y, c) E H+ that lie on the multiplicity-
two Hopf bifurcation surface

HZ :c=
-b+vV - 4ad

2a

where a = 2(2S-,6),b = (c,+#-S)(#- 2S) + 2, and d =
/3 - a - 3S with S given above. Note that the quantity a, given
by equation (3') in Section 4.4, determines whether we have a su-
percritical or a subcritical Hopf bifurcation, and that or changes
sign at points on H2+; cf. Figure 20. Cf. Theorem 6' in Sec-
tion 4.15.

2. Show that there is a Takens-Bogdanov bifurcation at the origin of the
system (5) for parameter values on the Takens-Bogdanov bifurcation
surface

TB°:c=a+ 1 and y=0
for a 5 /3; cf. Theorems 3 and 4 in Section 4.15. Note that the system
(5) reduces to the system (4) for y = 0. Also, cf. Problem 8 below.

3. Note that for a = /3 + 2-y, the quantity S = 4y2 = 0.
This implies that x+ = x- and y+ = y-; i.e., as a - /3 + 2y, P+ --
P-. Show that for a = /3 + 2y, 6(xt, yt) = 0 and 7-(xt, yf) 96 0 if
c 76 1/(0 + 2y) + /3 + y; i.e., Df(xf, yf) has one zero eigenvalue in
this case. Check that the conditions of Theorem 1 in Section 4.2 are
satisfied, i.e, show that the system (5) has a saddle-node bifurcation
surface given by

SN: a = /3 + 2y.

Cf. Theorem 1' and Problem 1 in Section 4.15. Note that this equation
reduces to a = /3 for the system (4), where y = 0 and as Theorem 2
in the next section shows, in this case we have a saddle-node or cusp
bifurcation of codimension two.

4. Show that for a = /3 + 2y and c = 1/(/3 + 2y) +,0 + y, the matrix

r-1 all

rA = Df(xt,yt) = _a 1J ,
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and that 6(x±, y}) = r(x±, y±) = 0, where, as was noted in Prob-
lem 3, (x+, y+) = (x-, y-) for a = 3 + 2y. Since the matrix A # 0
has two zero eigenvalues in this case, it follows from the results in
Section 4.13 that the quadratic system (5) experiences a Takens-
Bogdanov bifurcation for parameter values on the Takens-Bogdanov
surface

TB+:c=
/3

1

+2y
+,3+-y and a=/3+2y

for -y # 0; cf. Theorems 3' and 4' in Section 4.15. Note that it was
shown earlier in this section that for the TB+ points to lie in the
region Ic[ < 2, it was necessary that the point (/3, -y) lie in the region
between the curves r±

Q
in Figure 10; this implies that 0 + 2-y > 0,

i.e., that a > 0 in this case. It should also he noted that a codi-
mension two Takens-Bogdanov bifurcation occurs at points on the
above TB+ curve for ry # -(/32 + 2)/20; however, for 3 < 0 and
y = -(/32 + 2)/2/3, a codimension three Takens-Bogdanov bifurca-
tion occurs on the TB+ curve defined above. Cf. the remark at the
end of Section 4.13, reference [46] and Theorem 4' in the next section.
Also, it can be shown that there are no codimension four bifurcations
that occur in the class of bounded quadratic systems.

5. Similar to what was done in Problem 1, for -y 54 0 and 3 54 0 set
r(0, 0) = 0 to find the Hopf bifurcation surface

2

H°:c=a+ 1 _f

for the critical point at the origin of (5). Cf. Theorem 5 in Section 4.15.
Then, using equation (3') in Section 4.4 and the result in (50] cited
in Problem 1, show that for parameter values on H° and on

-b + v(b2 -- 4adH2:c=
2a

with b = 1 + 2a2 - a/3, a = Q - 2a, and d = a - 3, the system
(5) has a multiplicity-two weak focus at the origin. Cf. Theorem 6 in
Section 4.15.

6. Use the fact that the system (5) forms a semi-complete family of
rotated vector fields mod x = 3y + y2 with parameter c E R and
the results of the rotated vector field theory in Section 4.6 to show
that there exists a function h(a, /3, y) defining the homoclinic-loop
bifurcation surface

HL+: c = h(a, /3.'y),

for which the system (5) has a homoclinic loop at the saddle point P-
that encloses P+. This is exactly the same procedure that was used
in Section 4.13 in establishing the existence of the homoclinic-loop
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bifurcation surface for the system (2) in that section. The analyticity
of the function h(a. Q, y) follows from the results in [38]. Carry out
a similar analysis, based on the rotated vector field theory in Sec-
tion 4.6, to establish the existence (and analyticity) of the surfaces
HL°, CZ , and C. Remark 10 in [38] is helpful in establishing the ex-
istence of the CZ and CZ surfaces, and their analyticity also follows
from the results in [38]. Cf. Remarks 2 and 3 in Section 4.15.

7. Use Theorem 1 and Remark 1 in Section 4.8 to show that for points on
the surface HL+, the system (5) has a multiplicity-two homoclinic-
loop bifurcation surface given by

HLz:c= 1+a(a+Q-S)/2

a-S
with S given above. Note that under the assumption that (5) has at
most two limit cycles, there can be no higher multiplicity homoclinic
loops.

8. Note that as y 0, the critical point P- -+ 0. Show that for y =
0, b(0.0) = 0 and that r(0, 0) 54 0 for c 1/0 + a: i.e., Df(0, 0)
has one zero eigenvalue in this case. Check that the conditions in
equation (3) in Section 4.2 are satisfied in this case, i.e., show that
the system (5) has a transcritical bifurcation for parameter values on
the transcritical bifurcation surface

TC:y=0.

Y

Figure 28. The Takens-Bogdanov bifurcation surface TB° = H° fl HL°
fl TC in the (a, c)-plane for a fixed 3 < 0.
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Note that the H° and HL° surfaces intersect in a cusp on the ry = 0
plane as is shown in Figure 28.

9. Re-draw the charts in Figure 16 for -1 << ,3 < 0. Hint: As in Fig-
ure 18, the HL° and H° curves enter the region E for /3 < 0, and for
points on the HL° curve we have the phase portrait (f) in Figure 8,
etc.

4.15 Finite Codimension Bifurcations in the Class
of Bounded Quadratic Systems

In this final section of the book, we consider the finite codimension bifur-
cations that occur in the class of bounded quadratic systems (BQS), i.e.,
in the BQS (5) in Section 4.14:

i=-x+/3y+y2
y = ax- (a/3+y2)y-xy+c(-x+f3y+y2) (1)

with a > /3 + 2-y, -y > 0 and Icl < 2. As in Lemma 2 of Section 4.14,
the system (1) defines a one-parameter family of rotated vector fields mod
x = /3y + y2 with parameter c and it has three critical points 0, Pt with a
saddle at P- and nodes or foci at 0 and P+. The coordinates (xt, yf) of
Pt are given in Lemma 2 of Section 4.14.

We consider saddle-node bifurcations at critical points with a single-
zero cigenvaluc, Takens-Bogdanov bifurcations at a critical point with a
double-zero eigenvalue, and Hopf or Hopf-Takcns bifurcations at a weak
focus. Unfortunately, there is no universally accepted terminology for nam-
ing bifurcation. Consequently, the saddle-node bifurcation of codimension
two referred to in Theorem 3.4 in [60], i.e., in Theorem 2 below, is also
called a cusp bifurcation of codimension two in Section 4.3 of this book
and in [G/S]; however, once the codimension of the bifurcation is given
and the bifurcation diagram is described, the bifurcation is uniquely deter-
mined and no confusion should arise concerning what bifurcation is taking
place, no matter what name is used to label the bifurcation.

In this section we see that the only finite-codimension bifurcations that
occur at a critical point of a BQS are the saddle-node (SN) bifurcation
of codimension 1 and 2, the Takens-Bogdanov (TB) bifurcations of codi-
mension 2 and 3, and the Hopf (H) or Hopf-Takens bifurcations of codi-
mension 1 and 2 and that whenever one of these bifurcations occurs at a
critical point of the BQS (1), a universal unfolding of the vector field (1)
exists in the class of BQS. We use a subscript on the label of a bifurcation
to denote its codimension and a superscript to denote the critical point at
which it occurs: for example, SN2 will denote a codimension-2, saddle-node
bifurcation at the origin, as in Theorem 2 below.
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Most of the results in this section are established in the recent work
of Dumortier, Herssens and the author [60]. This section, along with the
work in [60], serves as a nice application of the bifurcation theory, normal
form theory, and center-manifold theory presented earlier in this book. In
presenting the results in [60], we use the definition of the codimension of a
critical point given in Definition 3.1.7 on p. 295 in [Wi-Il]. The codimension
of a critical point measures the degree of degeneracy of the critical point.
For example, the saddle-node at the origin of the system in Example 4 of
Section 4.2 for uc = 0 has codimension 1, the node at the origin of the
system in Example 1 in Section 4.3 has codimension 2 and the cusp at
the origin of the system (1) in Section 4.13 has codimension 2. We begin
this section with the results for the single-zero-eigenvalue or saddle-node
bifurcations that occur in the BQS (1).

A. SADDLE-NODE BIFURCATIONS

First of all, note that as -y -* 0 in the system (1), the critical point P- -+ 0
and the linear part of (1) at (0, 0) has a single-zero eigenvalue for (3(c-a) 96
1; cf. Problem 1. The next theorem, which is Theorem 3.2 in [60], describes
the codimension-1, saddle-node bifurcation that occurs at the origin of the
system (1).

Theorem 1 (SN°). For ry = 0, a 34 (j and (i(c - a) 96 1, the system (1)
has a saddle-node of codimension 1 at the origin and

i=-x+,6y+y2
y = µ+ax-a,$y-xy+c(-x+(3y+y2) (2)

is a universal unfolding of (1), in the class of BQS for Icy < 2, which has a
saddle-node bifurcation of codimension 1 at p = 0. The bifurcation diagram
for this bifurcation is given by Figure 2 in Section 4.2.

The proofs of all of the theorems in this section follow the same pattern:
We reduce the system (1) to normal form, determine the resulting flow
on the center manifold, and use known results to deduce the appropriate
universal unfolding of this flow. We illustrate these ideas by outlining the
proof of Theorem 1. Cf. the proof of Theorem 3.2 in [60).

The system (1) under the linear transformation of coordinates

x=u+13v
y=(c-a)u+v,

which reduces the linear part of (1) at the origin to its Jordan normal form,
becomes

it = u + a20u2 + aaluv + a02v2

v = b2ou2 + bl 1 uv + b02v2
(3)
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where a20 = (a - c)(a/3c - a +18 - 13c2 + c)/((3(c - a) - 1]2, ... , b02 =
((3 - a)/[/3(c - a) - 1]2, cf. Problem 2 or (60], and where we have also let
t - [/3(c - a) - 1]t. On the center manifold,

u = -a02v2 + 0(v3),

of (3) we have a flow defined by

v = b02v2 + 0(v3)

with b02 34 0 since a 34/3. Thus, there is a saddle-node (of codimension 1)
at the origin of (3). Furthermore, the system obtained from (2) under the
above linear transformation of coordinates, together with t
1]2t, has a flow on its center manifold defined by

[/3(c - a) -

v=µ+((3-a)v2+0(v,v3,1.12,...). (4)

As in Section 4.3, the 0(v) terms can be eliminated by translating the origin
and, as in equation (4) in Section 4.3, we see that the above differential
equation is a universal unfolding of the corresponding normal form (4) with
µ = 0; i.e., the system (2) is a universal unfolding of the system (1) in this
case. Furthermore, by translating the origin to the 0(µ) critical point of
(2), the system (2) can be put into the form of system (1) which is a BQS
for Icl < 2.

Remark 1. The unfolding (2), with parameter µ, of the system (1) with
y = 0, a 0,0 and /3(c-a) 96 1, gives us the generic saddle-node, codimension-
1 bifurcation described in Sotomayor's Theorem 1 in Section 4.2 (Cf. Prob-
lem 1), while the unfolding (1) with parameter -y gives us the transcritical
bifurcation, labeled TC in Section 4.14.

We next note that as a -, ,Q + 2y in the system (1), the critical point
P- P+ and the linear part of (1) at P+ has a single-zero eigenvalue for
c # (3 + -y + 1/(,0 + 2y); cf. Problem 3 in Section 4.14. The next theorem
gives the result corresponding to Theorem 1 for the codimension-1, saddle-
node bifurcation that occurs at the critical point P+ of the system (1).
This bifurcation was labeled SN in Section 4.14.

Theorem 1' (SNt ). For a = (3 + try, y 54 0 and (/3 + 2y) (c - a +'Y) 0 1,
the system (1) has a saddle-node of codimension 1 at P+ = (x+, y+) and

i = -x + lay + y2
1! = y+(Q+2-y)x-(l3+7)2y-xy+c(-x+/3y+y2)

(5)

is a universal unfolding of (1), in the class of BQS for Icl < 2, which has a
saddle-node bifurcation of codimension 1 at µ = 0. The bifurcation diagram
for this bifurcation is given by Figure 2 in Section 4.2

If both y - 0 and a - 0 + 2y in (1), then both P} -+ 0 and the linear
part of (1) still has a single-zero eigenvalue for 0(c-a) 36 1; cf. Problem 1.
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The next theorem, which is Theorem 3.4 in [60], cf. Remark 3.5 in [60],
describes the codimension-2, saddle-node bifurcation that occurs at the
origin of the system (1) which, according to the center manifold reduction
in [60], is a node of codimension 2. The fact that (6) below is a BQS for
Ic[ < 2 follows, as in [60], by showing that (6) has a saddle-node at infinity.

Theorem 2 (SN2 ). For y = 0, a = f3 and 6(c - a) 0 1, the system (1)
has a node of codimension 2 at the origin and

i = -x+/3y+y2 (6)
p2 +µ2)y-xy+c(-x+$y+y2)

is a universal unfolding of (1), in the class of BQS for [cl < 2, which
has a saddle-node (or cusp) bifurcation of codimension 2 at is = 0. The
bifurcation diagram for this bifurcation is given by Figure 2 in Section 4.3.

In the proof of Theorem 2, or of Theorem 3.4 in [60], we use a center
manifold reduction to show that the system (1), under the conditions listed
in Theorem 2, reduces to the normal form (5) in Section 4.3 whose universal
unfolding is given by (6) in Section 4.3, i.e., by (6) above; cf. Problem 2.

B. TAKENS-BOGDANOV BIFURCATIONS

As in paragraph A above, as y -+ 0, P- -+ 0; however, the linear part
of (1) at the origin has a double-zero eigenvalue for 8(c - a) = 1; cf.
Problem 1. The next theorem, which follows from Theorem 3.8 in [60],
describes the codimension-2, Takens-Bogdanov bifurcation that occurs at
the origin of the system (1) which, according to the results in [60], is a cusp
of codimension 2. The fact that the system (7) below is a BQS for Icl < 2
and 142 N 0 follows, as in [60], by looking at the behavior of (7) on the
equator of the Poincare sphere where there is a saddle-node.

Theorem 3 (TB°). For y = 0, a # p, f3(c - a) = 1 and /3 0 2c, the
system (1) has a cusp of codimension 2 at the origin and

i = -x+Qy+y2
µl+ax-(a/3+µ2)y-xy+c(-x+,0y+y2) (7)

is a universal unfolding of (1), in the class of BQS for Ic[ < 2 and µ2N 0,
which has a Takens-Bogdanov bifurcation of codimension 2 at µ = 0. The
bifurcation diagram for this bifurcation is given by Figure 3 in Section 4.13.

In the proof of Theorem 3, or of Theorem 3.8 in [60], we show that
the system (1), under the conditions listed in Theorem 3, reduces to the
normal form (1) in Section 4.13 whose universal unfolding is given by (2)
in Section 4.13, i.e., by (7) above; cf. Problem 3.
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The next theorem gives the result corresponding to Theorem 3 for the
codimension-2, Takens-Bogdanov bifurcation that occurs at the critical
point P+ of the system (1).

Theorem 3' (TB3 ). For a = fi+2-t, 7 # 0, (0 +27)(c-a+7) = 1 and
f32 + 2,37 + 2 # 0, the system (1) has a cusp of codimension 2 at the critical
point P+ and

i=-x+Qy+y2
y = µi+(Q+27)x+[(/3+7)2+µ2]y-xy+c(-x+Qy+ y2) (8)

is a universal unfolding of (1), in the class of BQS for Icl < 2 and µ2N 0,
which has a Takens-Bogdanov bifurcation of codimension 2 at µ = 0. The
bifurcation diagram for this bifurcation is given by Figure 3 in Section 4.13.

The next theorem, which follows from Theorem 3.9 in [60], describes
the codimension-3, Takens-Bogdanov bifurcation that occurs at the origin
of the system (1), which, according to the results in [61], is a cusp of
codimension 3; cf. Remarks 1 and 2 in Section 2.13. The fact that the
system (9) below is a BQS for Icy < 2,µ2N 0 and µ3N 0, follows as in [60],
by showing that (9) has a saddle-node at infinity.

Theorem 4 (TB3). For ry = 0, a 54 f3, f3(c - a) = 1 and /3 = 2c, the
system (1) has a cusp of codimension 3 at the origin and

i = -x+Qy+y2
µi + ax - (a$ + µ2)y - (1 + µ3)xy + c(-x + 'ay + y2) (9)

is a universal unfolding of (1), in the class of BQS for Ici < 2,µ2N 0
and µ3N 0, which has a Takens-Bogdanov bifurcation of codimension 3 at
µ = 0. The bifurcation diagram for this bifurcation is given by Figure 1
below.

In proving this theorem, we show that the system (1), under the condi-
tions listed in Theorem 4, reduces to the normal form (9) in Section 4.13
whose universal unfolding is given by (10) in Section 4.13, i.e. by (9) above;
cf. [46] and the proof of Theorem 3.9 in [60].

The next theorem describes the Takens-Bogdanov bifurcation TB3 that
occurs at the critical point P+ of the system (1).

Theorem 4' (TB3 ). Fora = /3+27, y # 0, ($+27)(c-a+7) = 1 and
Q2+2f37+2 = 0, the system (1) has a cusp of codimension 3 at the critical
point P+ and

i = -x+Qy+y2
µ1 + (/3 + 27)x + [(Q +7)2 + 1A21y - (1 + µ3)xy + c(-x + /3y + y2)

(10)
is a universal unfolding of (1), in the class of BQS for Icy < 2, µ2 - 0
and µ3N 0, which has a Takens-Bogdanov bifurcation of codimension 3 at
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TB2

Figure 1. The bifurcation set and the corresponding phase portraits for the
codimension-3 Takens-Bogdanov bifurcation (where s and u denote stable
and unstable limit cycles or separatrix cycles respectively).

µ = 0. The bifurcation diagram for this bifurcation is described in Figure 1
above.

It was shown in [46] and in [61] that the bifurcation diagram for the
system (9), which has a Takens-Bogdanov bifurcation of codimension 3
at µ = 0, is a cone with its vertex at the origin of the three-dimensional
parameter space (µl, µ2, µ3). The intersection of this cone with any small
sphere centered at the origin can be projected on the plane and, as in [46]
and [61], this results in the bifurcation diagram (or bifurcation set) for the
system (9) or for the system (10) shown in Figure 1 above. The bifurcation
diagram in a neighborhood of either of the TB2 points is shown in detail
in Figure 3 of Section 4.13. The Hopf and homochnic-loop bifurcations of
codimension 1 and 2, H1, H2, HLI, and HL2 were defined in Theorem 5
in Section 4.14 and are discussed further in the next paragraph. Also, in
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Figure 1 we have deleted the superscripts on the labels for the bifurcations
since Figure 1 applies to either (9) or (10).

C. HOPF OR HOPF-TAKENS BIFURCATIONS

As in Problem 5 in Section 4.14, the system (1) has a weak focus of mul-
tiplicity 1 (or of codimension 1) at the origin if c = a + (1 + 72)/13 and
c 3& h? (a, 0) where

h2(a,0)= La/3-2a2 - 1+ (a/3-2a2-1)2 -4(a-/3)(,0-2a) /(2/3-4a).

The next theorem follows from Theorem 3.16 in [60].

Theorem 5 (H°). Forty 96 0, /3 36 0, c = a+(1 +y2)//3 and c # h2(a, /3),
the system (1) has a weak focus of codimension 1 at the origin and the
rotated vector field

-x+/3y+y2
ax-(a/3+-t2)y-xy+(c+µ)(-x+/3y+y2) (1

)

with parameter µ E R is a universal unfolding of (1), in the class of BQS
for ]c] < 2 and µ - 0, which has a Hopf bifurcation of codimension 1 at
µ = 0. The bifurcation diagram for this bifurcation is given by Figure 2 in
Section 4.4.

The idea of the proof of Theorem 5 is that under the above conditions,
the system (1) can be brought into the normal form in Problem 1(b) in
Section 4.4 and, as in Theorem 5 and Problem 1(b) in Section 4.6, a rotation
of the vector field then serves as a universal unfolding of the system. In (60]
we used the normal form for a weak focus of a BQS given in [50] together
with a rotation of the vector field to obtain a universal unfolding.

The next theorem treats the Hopf bifurcation at the critical point P+
and, as in Theorem 5 or Problem 1 in Section 4.14, we define the function
hz (a, /3, y) _ (-b + vrby---4-ad-) /2a with a = 2(2S-/3), b = (a+/3-S)(/3-
2S)+2,da-3Sand S= a-/3)
Theorem 5' (Hi ). For a 0,8 + 2y, 02 - 2a/3 - 472 0 0, c = [1 + a(a +
/3 + S)/2]/(a + S) and c q& 14 (a,#, y), the system (1) has a weak focus of
codimension 1 at P+ and the rotated vector field (11) with parameter p E R
is a universal unfolding of (1), in the class of BQS for ]c] < 2 and µ - 0,
which has a Hopf bifurcation of codimension 1 at µ = 0. The bifurcation
diagram for this bifurcation is given by Figure 2 in Section 4.4.

The next theorem, describing the Hopf-Takens bifurcation of codimen-
sion 2 that occurs at the origin of the system (1) follows from Theorem 3.20
in [60]. The details of the proof of that theorem are beyond the scope of
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Figure 2. The bifurcation diagram and the bifurcation set (in the µl,µ2
plane) for the codimension-2 Hopf-Takens bifurcation. Note that at
µi = µ2 = 0 the phase portrait has an unstable focus (and no limit cycles)
according to Theorem 4 in Section 4.4. Cf. Figure 6.1 in [G/S].
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this book; however, after reducing the system (12) to the normal form for a
BQS with a weak focus in [50], we can use Theorem 4 in Section 4.4 and the
theory of rotated vector fields in Section 4.6 to analyze the codimension-2,
Hopf-Takens bifurcation and draw the corresponding bifurcation set shown
in Figure 2 above. Cf. Problem 4. The fact that (12) is a universal unfolding
for the Hopf Takens bifurcation of codimension 2 follows from the results
of Kuznetsov [64], as in [60]; cf. Remark 4 below. The results for the Hopf
Takens bifurcation of codimension-2 that occurs at the critical point P+ of
the system (1) are given in Theorem 6' below. Recall that it follows from
the results in [50) that a BQS cannot have a weak focus of multiplicity (or
codimension) greater than two.

Theorem 6 (HZ). Fory#0.13# 0,c=a+(1+rye)/fl andc.=h2(a,d),
the system (1) has a weak focus of codimension. 2 at the origin and

:c = -x+13Y+y2
(12)

a:r - ((Ifl + y2)y-(1+112).ry+(e+111)(-x+fill +Y2)

is a universal unfolding of (1). in the class of BQS for 1cl < 2. lai - 0 and
112 0, which has a Hopf-Takens bifurcation of codimension 2 at Et = 0.
The bifurcation diagram for this bifurcation is given by Figure 2 above.

Theorem 6' (H2+). For a 0 (3 + 2y. 32 - 2a/3 - 4y2 0 0, c = [1 + a((, +
13 + S)/2]/(a + S) and e = h2 (a. /1. y). the system (1) has a weak focus of
codimension 2 at P+ and the system (12) is a universal unfolding of (1). in
the class of BQS for Icl < 2, /LI - 0. and lie - 0, which has a Hopf- Takens
bifurcation of codirnension 2 at A = 0. The bifurcation diagram for this
bifurcation is given by Figure 2 above.

We conclude this section with a few remarks concerning the other finite-
codimension bifurcation that occur in the class of BQS.

Remark 2. It follows from Theorem 6 above and the theory of rotated
vector fields that there exist multiplicity-2 limit cycles in the class of BQS.
(This also follows as in Theorem 5 and Problem 6 in Section 4.14.) The
BQS (1) with parameter values on the multiplicity-2 limit cycle bifurcation
surfaces C20 or C2 in Theorem 5 of Section 4.14 has a universal unfolding
given by the rotated vector field (11). in the class of BQS for lc[ < 2
and IA - 0, which, in either of these cases, has a codimension-1, saddle-
node bifurcation at a semi-stable limit cycle (as described in Theorem 1 of
Section 4.5) at lc = 0. The bifurcation diagram for this bifurcation is given
by Figure 2 in Section 4.5.

Remark 3. As in Theorem 5 in Section 4.14, there exist homoclinic loops
of multiplicity 1 and also homoclinic loops of multiplicity 2 in the class of
BQS. And under the assumption that any BQS has at most two limit cycles,
there are no homoclinic loops of higher codimension; however, Hilbert's
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16th Problem for the class of BQS is still an open problem; cf. Research
Problem 2 below. The BQS (1) with parameter values on the homoclinic-
loop bifurcation surfaces HL° and HL+ (or on the SS bifurcation surface)
in Theorem 5 of Section 4.14 has a universal unfolding given by the rotated
vector field (11). in the class of BQS for [ci < 2 and It - 0, which in
either of these cases has a homoclinic-loop bifurcation of codimension 1
at It = 0. For parameter values on the bifurcation surface HL+ fl HLZ in
Theorem 5 of Section 4.14, it is conjectured that the BQS (1) has a universal
unfolding given by the system (12). in the class of BQS for Ic[ < 2,µt - 0
and p2 - 0, which has a homoclinic-loop bifurcation of codimension 2 at
1z = 0, the bifurcation diagram being given by Figure 8 (or Figure 10)
in [38]: cf. Theorem 3 and Remark 10 in [38]. Also. cf. Figure 1 above,
Figure 20 in Section 4.14 and Figure 7 (or Figure 12) in [38]. Finally,
for parameter values on the homoclinic-loop bifurcation surface HL+ (or
on the SS bifurcation surface) in Theorem 4 in Section 4.14. which has a
saddle-node at the origin, it is conjectured that the BQS (1) has a universal
unfolding given by a rotation of the vector field (1), as in equation (11),
together with the addition of a parameter µl, as in equation (7), to unfold
the saddle node at the origin; this will result in a codinension-2 bifurcation
which splits both the saddle-node and the homoclinic loop (or saddle-saddle
connection).

Remark 4. In this section we have considered the finite codimension bi-
furcations that occur in the class of bounded quadratic systems. In this
context, it is worth citing some recent results regarding two of the higher
codimension bifurcations that occur at critical points of planar systems:

A. The single-zero eigenvalue or saddle node bifurcation of codimension in.
SN,,,: In this case, the planar system can be put into the normal form

.c = -.r,rp+1 +0( Ix[ne+2)

y = -y + O([xI'"+2)

and a universal unfolding of this normal form is given by

.1' = Fit +µ2.r+... +µtnr,n-t -.r°"+l

-J.
cf. Section 4.3.

B. A pair of pure imaginary eigenvalues, the Hopf-Takens bifurcation of
codimension in, H,,,: It has recently been shown by Kuznetsov [64] that
any planar C'-system

is = f(x,µ) (13)

which has a weak focus of multiplicity one at the origin for it = 0, with
the eigenvalues of crossing the imaginary axis at it = 0, can be
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transformed into the normal form in Theorem 2 in Section 4.4 with b = 0
and a = ±1 by smooth invertible coordinate and parameter transforma-
tions and a reparatneterization of tithe, a universal unfolding of that normal
form being given by the universal unfolding in Theorem 2 in Section 4.4
with b = 0 and a = ±1 (the plus sign corresponding to a subcritical Hopf
bifurcation and the minus sign corresponding to a supercritical Hopf bifur-
cation). Furthermore, Kuznetsov 164] showed that any planar C'-system
(13) which has a weak focus of multiplicity two at the origin for 1A = 0 and
which satisfies certain regularity conditions can be transformed into the
following normal form with µ = 0 which has a universal unfolding given
by

+' = EaI.x - y + 11.2xIxI2 ± xIxl` + O(Ixls)

u = x + III Y + 1L2Y1X12 ± y1X14 + O(Ix113).

Finally, it is conjectured that any planar C'-system (13) which has a weak
focus of multiplicity m at the origin for E.a = 0 and which satisfies certain
regularity conditions can be transformed into the following normal form
with µ = 0 which has a universal unfolding given by

µ1x - Y+ 112xIX12 +... + xIxI2,,, + O(IXI2(,,,+'))

y = x + µ'y + lt2yIX12 +.. - + /an,yIXI2(m-1) ± uIX12,,, + O(Ix12(,,,+1)).

PROBLEM SET 15
1. Show that as y 0 the critical point P- of (1) approaches the origin,

that 6(0, 0) = 0 and that r(0, 0) = -1 + (3(c - a). Cf. the formulas
for 6 and r in Problem Set 14. Also, show that the conditions of
Sotomayor's Theorem 1 in Section 4.2 are satisfied by the system
(2) for (c - a)13 # 1. a 96 $ and y = 0 and by the system (5) for
y96 0,(0+2y)(c-a-y)01and a=/3+2y.

2. Use the linear transformation following Theorem 1 to reduce the sys-
tem (1) with -y = 0, a = I$ and 13(c - a) # 1 to the system (3) with
b02 = 0 and show that on the center manifold, u = -a02v2 + 0(v3).
of (3) we have a flow determined by v = -v3 + 0(v4), after an ap-
propriate rescaling of time. And then, using the same linear trans-
formation (and resealing the time), show that the flow oil the cen-
ter manifold of the system obtained from (6) is determined by i' _
µ1 + µ2v - V3 + 0(µt V. µ1, µ2, t', ...). Cf. equation (16) and Prob-
lem 6(b) in Section 4.3.

3. Show that under the linear transformation of coordinates x = (u -
v)/(ac. - a2 - 1), y = (c - (V)ta/((Vc - a2 - 1), the system (1) with

=0,a 96 i3.f3(c-a) = 1 and 1354 2c reduces to
is = v + ata2 + buy

it = tae + euv
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witha=(c2-ac-1)/(ac-a2-1)andb=e=1/(ac-a2-1)
and note that e + 2a = -(1 - 2c2 + 2ac)/(a2 - ac + 1) 36 0 iff
(1 - 2c2 + 2ac) # 0 or equivalently if (3 # 2c. As in Remark 1 in
Section 2.13, the normal form (1) in Section 4.13 results from any
system of the above form if e + 2a 0 0 and, as was shown by Takens
1441 and Bogdanov [451, the universal unfolding of that normal form is
given by (2) in Section 4.13; and this leads to the universal unfolding
(7) of the system (1) in Theorem 3.

4. (a) Use the results of Theorem 4 (or Problem 8b) in Section 4.4 to
show that the system

µx-y+x2+xy
i=x+µy+x2+mxy

has a weak focus of multiplicity 2 for p = 0 and m = -1.
(Also, note that from Theorem 4 in Section 4.4, W2 = -8 < 0
fore=0,m=-1,n=0anda=b=e=1.)Show that
this system defines a family of negatively rotated vector fields
with parameter p in a neighborhood of the origin and use the
results of Section 4.6 and Theorem 2 in Section 4.1 to establish
that this system has a bifurcation set in a neighborhood of the
point (0, -1) in the (p, m) plane given by the bifurcation set in
Figure 2 above (the orientations and stabilities being opposite
those in Figure 2.)

(b) In the case of a perturbed system with a weak focus of multi-
plicity 2 such as the one in Example 3 of Section 4.4,

3 16
5Y - dux + a3X + 5x

(where we have set a5 = 16/5) we can be more specific about
the shape of the bifurcation curve C2 near the origin in Figure 2:
For p = a3 = 0, use equation (3') in Section 4.4 to show that
this system has a weak focus at the origin of multiplicity m > 2
and note that by Theorem 5 in Section 3.8, the multiplicity
m < 2. Also, show that for p = a3 = 0 and e > 0, the origin
is a stable focus since r < 0 for x 96 0. For p = 0, e > 0 and
a3 # 0, use equation (3') in Section 4.4 to find a. Then show
that for e > 0 this system defines a system of negatively rotated
vector fields (mod x = 0) with parameter p and use the results
of Section 4.6 and Theorem 2 in Section 4.1 to establish that
this system has a bifurcation set in a neighborhood of the origin
in the (p, a3) plane given by the bifurcation set in Figure 2
above (the stabilities of the limit cycles being opposite those
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metric theory of nonlinear differential equations and dynamical systems.

Although the main topic of the book is the local and global behavior of
nonlinear systems and their bifurcations, a thorough treatment of linear
systems is given at the beginning of the text. All the material necessary
for a clear understanding of the qualitative behavior of dynamical sys-
tems is contained in this textbook, including an outline of the proof and
examples illustrating the proof of the Hartman-Grobman theorem, the
use of the Poincare map in the theory of limit cycles, the theory of rotated
vector fields and its use in the study of limit cycles and homoclinic loops,
and a description of the behavior and termination of one-parameter fam-
ilies of limit cycles.

In addition to minor corrections and updates throughout, this new edi-
tion contains materials on higher order Melnikov functions and the
bifurcation of limit cycles for planar systems of differential equations,
including new sections on Francoise's algorithm for higher order Melnikov
functions and on the finite codimension bifurcations that occur in the
class of bounded quadratic systems.

ISBN 0 387-95116-4

ISBN 0-387-95116-4
9

www.springer-ny.com


	Cover
	Title
	Copyright
	Dedication
	Series Preface�
	Preface to the Third Edition�
	Contents�
	1 Linear Systems�
	1.1 Uncoupled Linear Systems�
	1.2 Diagonalization�
	1.3 Exponentials of Operators�
	1.4 The Fundamental Theorem for Linear Systems�
	1.5 Linear Systems in R^2�
	1.6 Complex Eigenvalues�
	1.7 Multiple Eigenvalues�
	1.8 Jordan Forms�
	1.9 Stability Theory�
	1.10 Nonhomogeneous Linear Systems�

	2 Nonlinear Systems: Local Theory�
	2.1 Some Preliminary Concepts and Definitions�
	2.2 The Fundamental Existence-Uniqueness Theorem�
	2.3 Dependence on Initial Conditions and Parameters�
	2.4 The Maximal Interval of Existence�
	2.5 The Flow Defined by a Differential Equation�
	2.6 Linearization�
	2.7 The Stable Manifold Theorem�
	2.8 The Hartman-Grobman Theorem�
	2.9 Stability and Liapunov Functions�
	2.10 Saddles, Nodes, Foci and Centers�
	2.11 Nonhyperbolic Critical Points in R^2�
	2.12 Center Manifold Theory�
	2.13 Normal Form Theory�
	2.14 Gradient and Hamiltonian Systems�

	3 Nonlinear Systems: Global Theory�
	3.1 Dynamical Systems and Global Existence Theorems�
	3.2 Limit Sets and Attractors�
	3.3 Periodic Orbits, Limit Cycles and Separatrix Cycles�
	3.4 The Poincare Map�
	3.5 The Stable Manifold Theorem for Periodic Orbits�
	3.6 Hamiltonian Systems with Two Degrees of Freedom�
	3.7 The Poincare-Bendixson Theory in R^2�
	3.8 Lienard Systems�
	3.9 Bendixson's Criteria�
	3.10 The Poincare Sphere and the Behavior at Infinity�
	3.11 Global Phase Portraits and Separatrix Configurations�
	3.12 Index Theory�

	4 Nonlinear Systems: Bifurcation Theory�
	4.1 Structural Stability and Pcixoto's Theorem�
	4.2 Bifurcations at Nonhyperbolic Equilibrium Points�
	4.3 Higher Codimension Bifurcations at Nonhyperbolic Equilibrium Points�
	4.4 Hopf Bifurcations and Bifurcations of Limit Cycles from a Multiple Focus�
	4.5 Bifurcations at Nonhyperbolic Periodic Orbits�
	4.6 One-Parameter Families of Rotated Vector Fields�
	4.7 The Global Behavior of One-Parameter Families of  Periodic Orbits�
	4.8 Homoclinic Bifurcations�
	4.9 Melnikov's Method�
	4.10 Global Bifurcations of Systems in R^2�
	4.11 Second and Higher Order Melnikov Theory�
	4.12 Frangoise's Algorithm for Higher Order Melnikov Functions�
	4.13 The Takens-Bogdanov Bifurcation�
	4.14 Coppel's Problem for Bounded Quadratic Systems�
	4.15 Finite Codimension Bifurcations in the Class of  Bounded Quadratic Systems�

	References�
	Additional References�
	Index�
	Back Cover

