Départ. Mines Section 1° Année LMD

TD: Application du Théorème de Gauss fin avril 2020

<u>EX1</u>

- 1- Calculer par le théorème de Gauss, en tout point de l'espace, le champ électrique E créé par une charge Q.
- 2- En déduire le potentiel V.

EX2

Reprendre le calcul, par le théorème de Gauss, du champ électrique E créé par un fil infini de densité de charge linéaire constante λ en un point M éloigné d'une distance x de ce fil

EX3

Soit un plan infini de charge surfacique constante σ positive Evaluez le champ électrostatique produit en tout point de l'espace en employant le théorème de Gauss. En déduire le potentiel à une constante près et quelles sont les surfaces équipotentielles?

EX4

Un cylindre infini de rayon R porte une charge uniforme en surface de densité σ.

- 1-Calculer le champ électrique en tout point de l'espace et déduire le potentiel à une constante près.
- 2-Recalculer le champ électrique en tout point de l'espace si la densité de charge du cylindre est devenue volumique ρ_0 constante.

EX5

On considère deux fils infinis perpendiculaires à un triangle équilatéral ABC et passant par les sommets A et B. Leurs densités uniformes de charge sont $+\lambda$ et -2λ (λ >0). 1-Trouver les champs E_A , E_B et les potentiels V_A , V_B crées par chacun des fils en C. 2- Déterminer le champ E et le potentiel V résultants en C.