Solutions des exercices 4, 5 et 6

Exercice 4:

Comme le processus $\left(\int\limits_0^t \alpha_s dB_s\right)_{t\geq 0}$ est une martingale, alors la variable aléa-

toire $\left(\int_{0}^{t} \alpha_{s} dB_{s}\right)^{2}$ est \mathcal{F}_{t} -mesurable et comme

$$\int_{0}^{t} \alpha_{s}^{2} ds = \sum_{k} \alpha_{t_{k} \wedge t}^{2} \left(t_{k+1} \wedge t - t_{k} \wedge t \right)$$

est aussi \mathcal{F}_t -mesurable pour tout $t \geq 0$. On en déduit que la variable aléatoire M_t est \mathcal{F}_t -mesurable pour tout $t \geq 0$, qui signifie que le processus M est adapté.

Comme

$$|M_t| \le \left(\int_0^t \alpha_s dB_s\right)^2 + \int_0^t \alpha_s^2 ds,$$

alors

$$\mathbb{E}\left(|M_t|\right) \leq \mathbb{E}\left(\int\limits_0^t \alpha_s dB_s\right)^2 + \mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) = 2\mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) < \infty$$

qui signifie que le processus M est intégrable.

Exercice 5:

On a pour tout $t \geq 0$, à cause de la densité de \mathbb{Q} dans \mathbb{R} ,

$$\{T > t\} = \bigcap_{s \le t} \{|B_s| \le 1\} = \bigcap_{\substack{s \le t \\ s \ne 0}} \{|B_s| \le 1\}.$$

Or chacun ndes ensembles $\{|B_s| \leq 1\} = B_s^{-1}([-1,1]) \in \mathcal{F}_t$ et comme la tribu \mathcal{F}_t est stable par rapport à l'intersection dénombrable, alors l'événement $\{T > t\}$ appartient à \mathcal{F}_t , d'où T est un temps d'arrêt.

Exercice 6:

Soient

$$X_t = X_0 + M_t + V_t$$
$$= X_0 + M'_t + V'_t,$$

deux représentations de la semi-martingale X, où M et M'sont des martingales et V et V' sont des processus à variations finies. Alors on a par différence $M_t - M_t' = V_t' - V_t$.

Comme M-M' est une martingale et V'-V est un processus à variations finies, alors $M_t-M'_t=V'_t-V_t=0$ p.s.pour tout ≥ 0 , doù

$$M_t = M_t'$$
 et $V_t' = V_t$ p.s.pour tout ≥ 0 .