- Examen de « Outil de programmation» -

Exercice 1 (5 points): Traduire les expressions mathématiques suivantes en instructions MATLAB.

$x \leftarrow \frac{-b - \sqrt{b^2 - 4ac}}{2a}$	X=(-b-sqrt(b^2-4*a*c))/(2*a)
$U \leftarrow 12\sqrt{2} \operatorname{cos}(2\pi ft - \frac{3\pi}{4})$	U= 12*sqrt(2)*cos(2*pi*f*t-3*pi/4)
$Z \leftarrow e^{\sqrt{3n^2 + \ln(\frac{n}{5})}}$	$Z= \exp(\operatorname{sqrt}(3*n^2+\log(n/5)))$
$y \leftarrow e^{2-\sqrt{b^3-\frac{1}{a}}}$	$Y = \exp(2 - \operatorname{sqrt}(b^3 - 1/a))$
$z \leftarrow \frac{ 2n^5 - 3 }{\sqrt{4n^2 + \ln(6n)}}$	Z=abs(2*n^5-3)/sqrt(4*n^2+log(6*n))

Exercice 2 (8 points): Soit la fonction suivante qui calcule le minimum d'une matrice.

mini= function miniMat(M) x=size(M); for k=1:? for h=1:? if mini ? M(k,h) mini= M(?,?); end end

Remplacer les points d'interrogation (?) par l'expression qui convient et corriger les éventuelles erreurs.	Function mini =miniMat(M) X= size(M) Mini = M(1,1) For k=1: x(1) For h=1: x(2) If mini > M(k,h) Mini M(k, h); End End End End
Construisez la matrice A défini par : p=[3:2:5] A=(ones(3)+diag([p 10]))'+3*eye(3)'	A= 1 9 1 1 1 14

Université Badji Mokhtar – Faculté des Sciences de l'Ingénieur – Département

MI - Examen de « Outil de programmation» -

		4 92 1
Construit un vecteur b constituée des éléments paires de A	[n, m] = size(A) B= []; For i= 1:n For j=1:m If mod(A(I,j), 2)==0 B=[b A(I,j)] End End end	Contraction of the second
Construit une matrice C constituée des colonnes impaires de A.	C= A(:, 1:2:m)	
Calcule le maximum de b	Maxi= max(b)	
Calcule le minimum de C en utilisant la fonction précédente	Mini= miniMat(c)	

Exercice 3 (7 points): Qu'obtient-on lorsqu'on exécute les instructions suivantes:

Exercises (. Ferral)	
>> k= 9: - 2:1	K=9 7 5 3 1
>> b = [1 4.5 3 1] * (2 * eye(4))	B= 2 9 6 2
>> c=b - [0 9 5 0]	C= 2 0 1 2
>> a = b - [1 5 3 -1]	A=1 4 3 3
>> $s = [k(5) \ k(1) \ (K(5) - 1) \ (K(5) + 1); a;$ b, c]	1 9 0 2 1 4 3 3 2 9 6 2
	2 0 1 2 A= 1 4 6 2
>> a= (diag(s))' + [0 5 0 0]	/ / / / / / / / / / / / / / / / / / / /
>> q=diag(diag(ones(diag(3))))	Q= 1 0 0 0 1 0
	0 0 1