Examen Final (Optimisation non linéaire)

Master 1 COTA. S2, 2017/2018

Jeudi le 24 Mai 2018, Durée : 1h30mn.

Exercice 1 (7 Pts).

1) Considérons la mise à jour de rang un

$$H_1 = I + uv^T$$

où $u,v \in \mathbb{R}^n$ et $u \neq 0$. Trouver les valeurs propres de H_1 , puis montrer que

$$\det(H_1) = 1 + u^T v.$$

2) Soit $u_1, u_2, v_1, v_2 \in \mathbb{R}^n$ et considérons la mise à jour de rang deux

$$H_2 = I + u_1 u_2^T + v_1 v_2^T.$$

Montrer que

$$H_2 = (I + u_1 u_2^T) [I + (I + u_1 u_2^T)^{-1} v_1 v_2^T],$$

puis, en utilisant la question précédente et le théorème de Sherman-Morrison-Woodburg, montrer que

$$\det(H_2) = (1 + u_1^T u_2) (1 + v_1^T v_2) - (u_1^T v_2) (u_2^T v_2).$$

Théorème (de Sherman-Morrison-Woodburg). Soit A une matrice $n \times n$ non singulière et $u, v \in \mathbb{R}^n$. Si $1 + v^T A^{-1} u \neq 0$, alors la mise à jour de rang un $A + uv^T$ est inversible et

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}.$$

Solution: .

Soit $x \in \mathbb{R}^n$ un vecteur propre associé à la valeur propre λ de H_1 , on a

$$(I + uv^T) x = \lambda x \Longleftrightarrow uv^T x = (\lambda - 1)x$$

donc x est soit parallel à $u \neq 0$ ou orthogonale à v. Si x est orthogonale à v, alors la valeur propre correspondante est égale à 1; sinon la valeur propre correspondante est égale à $1 + u^T v$.

$$\det(H_1) = 1 + u^T v.$$

Optimisation non linéaire

Exercice 2 (6 Pts). On veut minimiser la fonction donnée par

$$f(x) = \frac{1}{2}x^T A x - x^T b; \quad x \in \mathbb{R}^2.$$

 $O\grave{u}\ A=\left(egin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}
ight),\ \ b=\left(egin{array}{cc} -1 \\ 1 \end{array}
ight)$ en utilisant la méthode SR1.

1) Montrer que si $\delta_k=(\delta_k^1,\delta_k^2)^T$ et $\gamma_k=(\gamma_k^1,\gamma_k^2)^T$, alors

$$S_{k+1} = S_k + \begin{bmatrix} \frac{\left(\delta_k^1 - \gamma_k^1\right)^2}{\left(\delta_k^1 - \gamma_k^1\right) \left(\delta_k^2 - \gamma_k^2\right) + \left(\delta_k^2 - \gamma_k^2\right) \gamma_k^2} & \frac{\left(\delta_k^1 - \gamma_k^1\right) \left(\delta_k^2 - \gamma_k^2\right)}{\left(\delta_k^1 - \gamma_k^1\right) \left(\delta_k^2 - \gamma_k^2\right) \gamma_k^2} \\ \frac{\left(\delta_k^1 - \gamma_k^1\right) \left(\delta_k^2 - \gamma_k^2\right)}{\left(\delta_k^1 - \gamma_k^1\right) \gamma_k^1 + \left(\delta_k^2 - \gamma_k^2\right) \gamma_k^2} & \frac{\left(\delta_k^2 - \gamma_k^2\right) \gamma_k^2}{\left(\delta_k^1 - \gamma_k^1\right) \gamma_k^1 + \left(\delta_k^2 - \gamma_k^2\right) \gamma_k^2} \end{bmatrix}$$

- **2)** Montrer que $t_k = \arg\min\{f(x_k + td_k), t > 0\} = -\frac{g(x_k)^\top d_k}{d_k^\top A d_k}, \ k = 0, 1, 2,$
- 3) Calculer les trois premières itérations de l'algorithme SR1 pour minimiser f sur \mathbb{R}^2 avec $x_0 = (2,2)^T$ et $S_0 = I$. Que peut on déduire.

Exercice 3 (7 Pts). On veut minimiser la fonction donnée par

$$f(x) = \frac{1}{2}x^T A x - x^T b; \quad x \in \mathbb{R}^2.$$

 $O\grave{u}\ A=\left(egin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}
ight),\ \ b=\left(egin{array}{cc} -1 \\ 1 \end{array}
ight)$ et en utilisant la méthode DFP.

3) Calculer les trois premières itérations de l'algorithme DFP pour minimiser f sur \mathbb{R}^2 avec $x_0 = (2,2)^T$ et $S_0 = I$. Que peut on déduire.

Bonne chance

Chargé du module : M. Sahari M.L.