

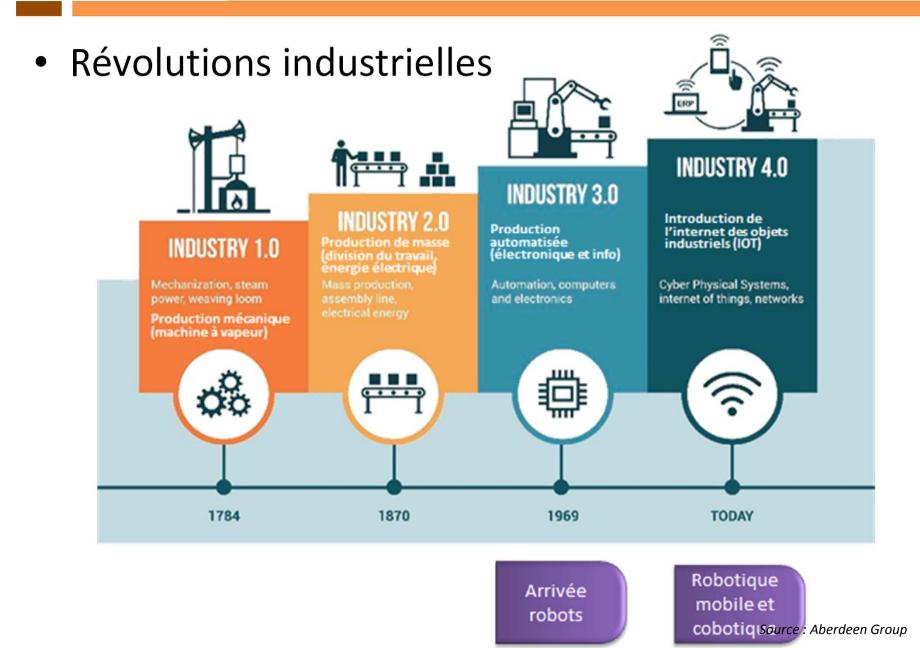
Robotique industrielle

M.CHERIF mehdi.cherif@ensam.eu

Activités autour de la robotique

- 1 cours en amphi
- 1 tp programmation HL Robotstudio
- 1 mini projet Robotstudio
- 1 tp Programmation manuelle (iiwa)

M.CHERIF mehdi.cherif@ensam.eu


Robotique industrielle

M.CHERIF mehdi.cherif@ensam.eu

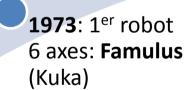
Quelques dates...

Quelques dates...

1961: 1^{er}

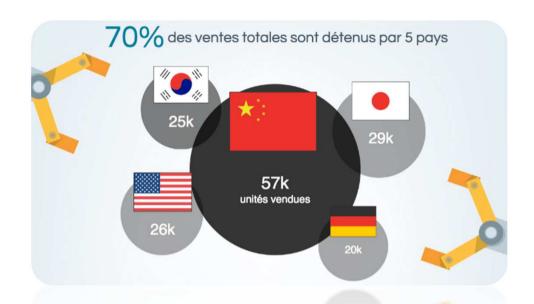
industriel:

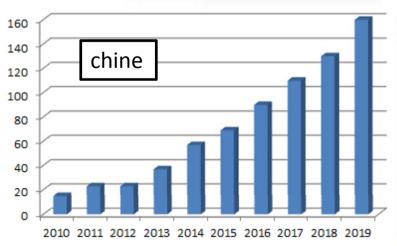
Unimate

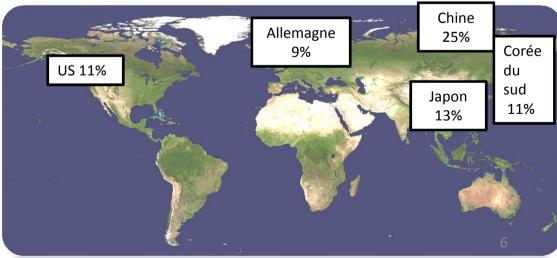

(General

Motors)

robot


1985: 1^{er} robot avec un bras de manipulation formé de 3 parallélogrammes: **Delta**




Quelques chiffres

Approvisionnement annuel des robots industriels

La robotique en générale

Domaine de l'exploration

- Accès difficile
- Nettoyage
- Espace
- Démantèlement nucléaire
- Déminage
- Chantier sous marin

Domaine du médical

- Assistance aux opérations chirurgicales
- Robotique médicale

Domaine de service

Robots humanoïdes

Domaine industriel

- Robots industriels
- cobots

atlas

Les enjeux de la robotisation

De nombreuses raisons de robotiser

Les ressources humaines

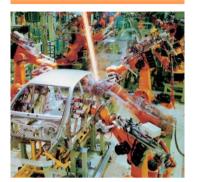
Le process

Améliorer les conditions de travail troubles musculo-squelettiques (TMS)

Gestion des personnels (tâches à forte valeur ajoutée)

Réduction des coûts de production (+ taux de charge machine)

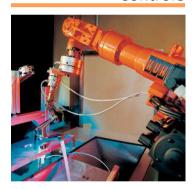
Améliorer la qualité des process (flexibilité)


Réduire les taux de rebus (répétabilité)

Accroître les cadences de production

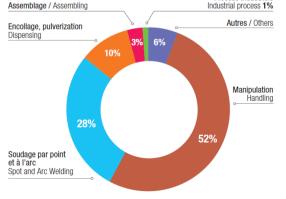
Domaines d'applications de la robotique industrielle

Soudure Points


Polissage

Manutention

Contrôle



Palettisation

Process industriels Industrial process 1%

Montage

Façonnage

Assemblage

Deux applications majeurs

- 52 % manipulateur
- 28 % soudage par point

Quelques exemples

Assemblage cobotique

Domaine spatial

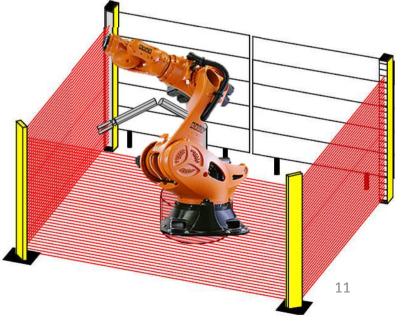
Domaine aéronautique

Répétabilité Gestion du couple de serrage

Gestion épaisseur peinture Environnement toxique

foil

Atout


- Charge embarquée variant de 500g à 2800kg
- Large rayon d'action (5m)
- Répétabilité
- Cadence de production (vitesse 2m/s)

Limitations

- Sécurité matérielle
- Intégration complexe
- Pas d'interaction homme/robot
- Faible flexibilité des cellules

Différentes architectures

DELTA

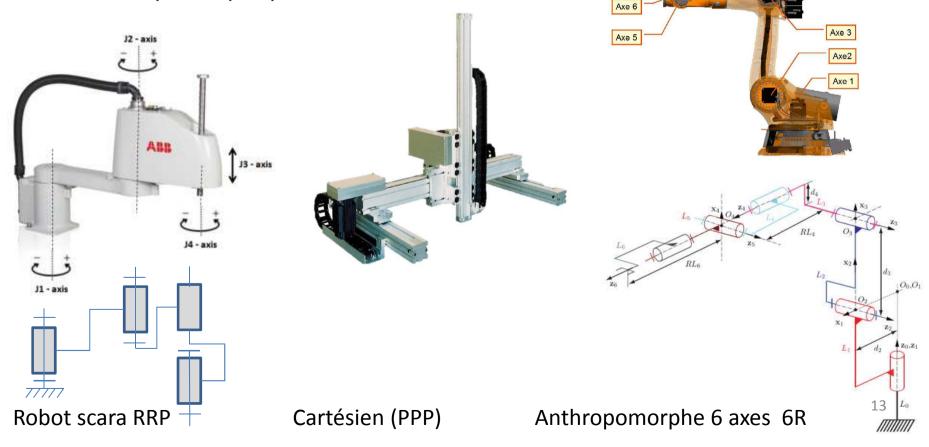
ANTHROPOMORPHES 6 AXES

http://www.cablebot.eu/en/

ROBOT A CABLES

Famille_robot

CARTESIEN

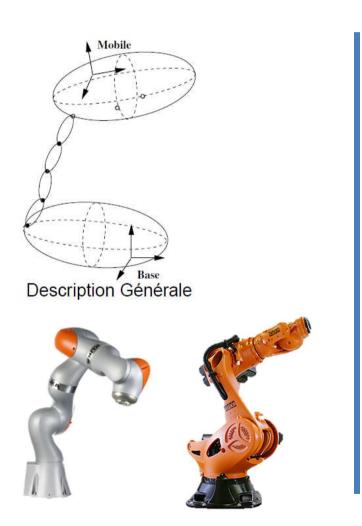


Les différentes architectures

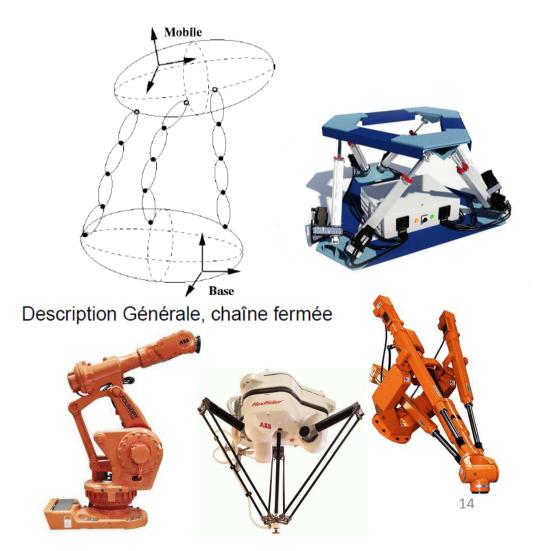
Axe 4

Exemple des robots

- Scara PRR
- Cartésien (PPP)
- Anthropomorphique 6R



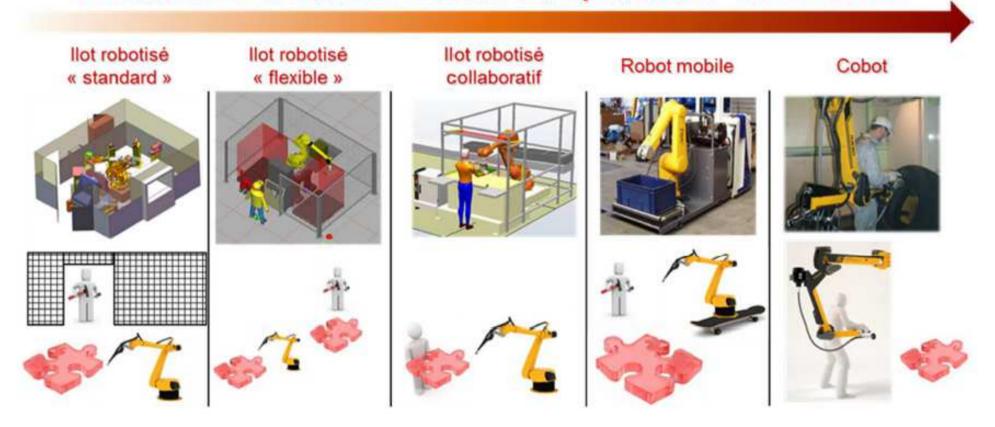
Les différentes architectures


Les robots sériels

Architecture de type chaine ouverte

Les robots parallèles

Architecture de type chaine fermée

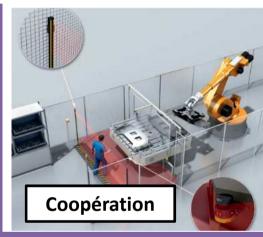

Vocabulaire

Partie opérative **EFFECTEUR** Porteur Partie commande Épaule Poignet Bras Équilibreur Tourelle Embase

Les différents secteurs de la robotique

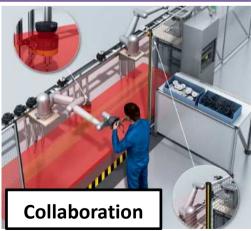
Une tendance forte

Interaction croissante entre l'opérateur et le robot



Les différents secteurs de la robotique

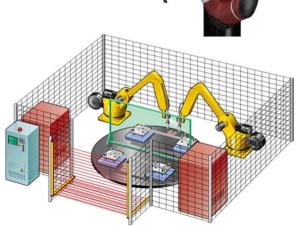
Espace de travail différent


Espace de travail partagé

Période différente PAS d'INTERACTION

Période commune

Les cobots (Collaborative Robot)


✓ Atouts

- Suppression des contraintes de sécurité Matérielle
- Travail collaboratif Homme/cobot
- Intégration et programmation simple
- Dextérité

✓ Limitations

- Très faible capacité de charge
- Faible rayon d'action

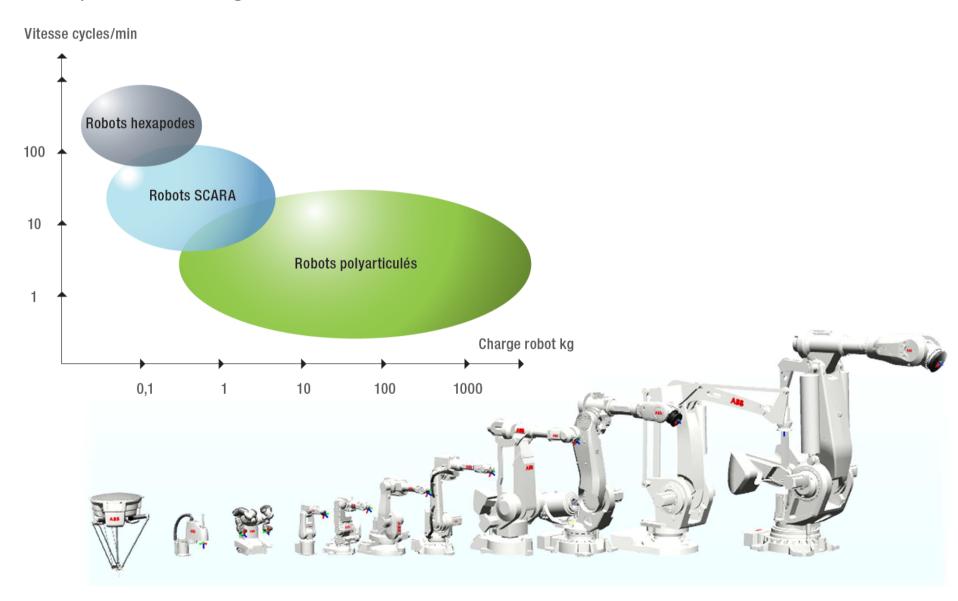
Comparaison robot / cobot

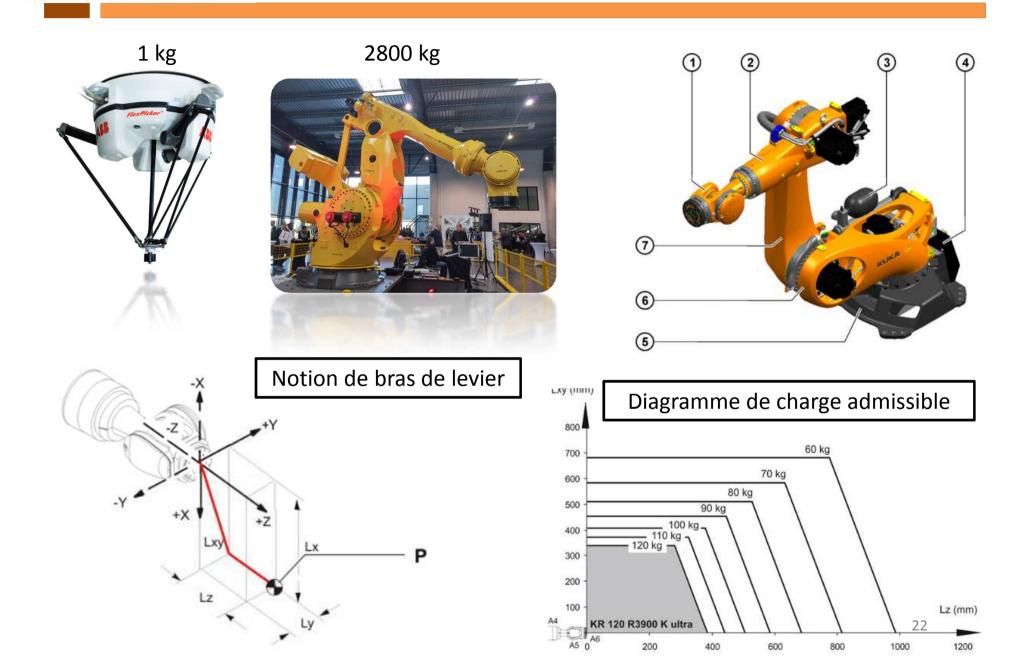
Caractéristiques	ROBOT	СОВОТ
Charge utile	+++	+
Zone de travail	+++	+
Précision de positionnement	+++	++
Vitesse	+++	+
Interaction Homme / robot (sécurité)	+	+++
Simplicité de programmation	++	+++
"Plug & produce" en production	+	+++
Diversité des tâches (flexibilité)	++	+++

Critères de choix d'un robot industriel

Les critères à prendre en compte pour le choix d'un robot:

- 1. Capacité de charges (50g→3000kg)
- 2. Rayon d'action
- 3. Type de montage
- 4. Indice de protection
- 5. Nombre d'axes externes

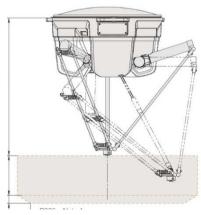



Critère de choix : Capacité de charge

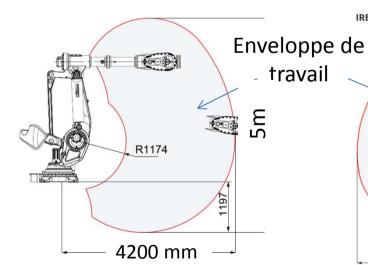
Capacité de charge selon l'architecture

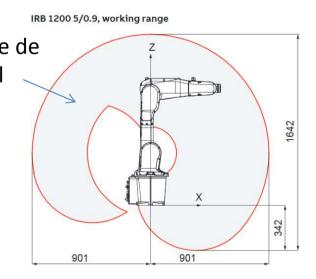
Critère de choix :Capacité de charge

Critère de choix : le rayon d'action


Le rayon d'action et la géométrie de la zone de travail accessible sont fonction de :

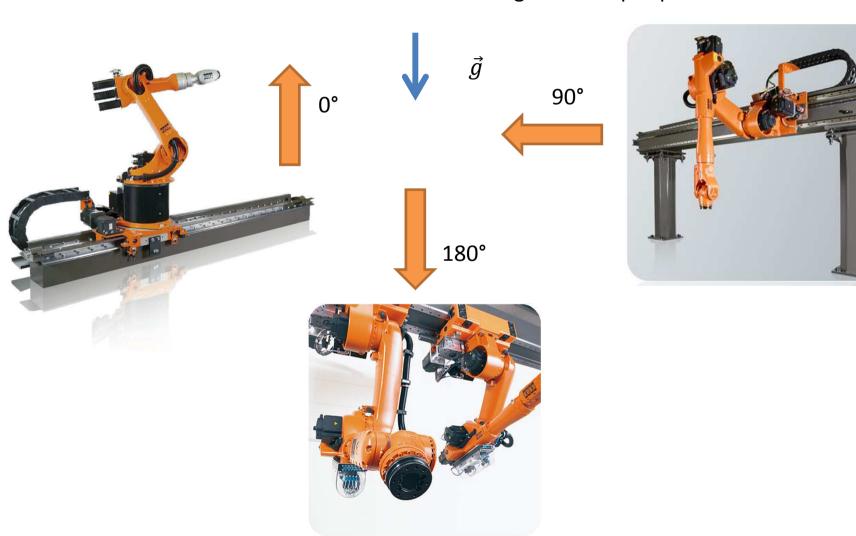
- La cinématique
- Le modèle de robot





800 mm

Critère de choix : rayon d'action


Désignation	Cinématique	Enveloppe de travail	Photo
ANTHROPOMORPHE 6_AXES	Joint 4 Joint 5 Joint 6 Joint 3 Joint 2 Joint 1		
ANTHROPOMORPHE 4_AXES	0.00		
SCARA	And		Ass
DELTA	And the second s		24

Critère de choix : Type de montage

Sens de montage du robot

Selon les modèles toutes les orientations de montage ne sont pas possibles

Critère de choix : indice de protection

Indice de protection : il est constitué de deux chiffres et permet de définir la protection d'un système vis-à-vis de la pénétration de :

- La poussière
- De l'eau

poussière

eau

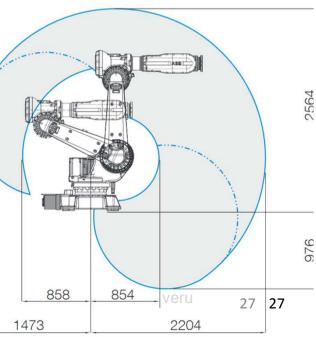
IP 5 4

Robot fonderie

Premier chiffre: protection des équipeme électriques contre la pénétration de co solides (y compris la poussière)		
 non protégé diamètre ≥ 50 mm diamètre ≥ 12,5 mm diamètre ≥ 2,5 mm diamètre ≥ 1 mm protégé contre la poussière étanche à la poussière 	 non protégé gouttes d'eau verticales gouttes d'eau (15° d'inclinaison) pluie projection d'eau projection sous pression projection à la lance projection puissante à la lance projection puissante sous pression immersion temporaire immersion prolongée nettoyage à haute pression / jet de vapeur 	

de l'immersion sous pression.

Robot de lavage


Exemple de fiche technique

Specification		
Reach	2.2 m	
Handling capacity	150 kg	
Extra loads can be	50 kg on to the upper and 100 kg	
mounted on to the robot:	on to the robot base.	
Number of axes:	6	
Protection:	IP 54	
	IP 67 with Foundry Plus 2 option	
Mounting:	Floor, tilted or inverted	
IRC5 Controller variants	Single cabinet	

Position repeatability:	repeatability: 0.03 mm	
Axis movements	working range	Axis max speed
Axis 1 Rotation	+170° to -170°	100°/s
Axis 2 Arm	+140° to -65°	90°/s
Axis 3 Arm	+70° to -180°	90°/s
Axis 4 Wrist	+300° to -300°	150°/s
Axis 5 Bend	+130° to -130°	120°/s
Axis 6 Turn	+300° to -300°	190°/s

Exemple d'application métier

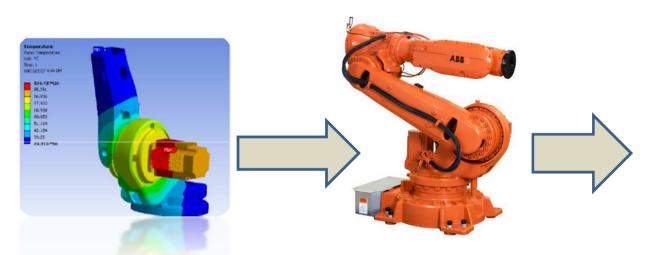
Des équipements spécifiques selon l'application

Des solutions en catalogue

Robot de peinture

Robot de soudage

Robot de palettisation



Soudage_UR

Les métiers associés à la robotique

De nombreux métiers dans des secteurs très variés

Chez les fabricants de robots

- •R&D, production, SAV ...
- •Commerciaux, support technique
- •Marketing, Management produits

Chez l'intégrateur

- Chargé d'affaire, Chef de projet
- Ingénieur & techniciens en bureau étude
- •Mécanique et automatisme
- Programmeur, responsable de chantier

Chez l'utilisateur final

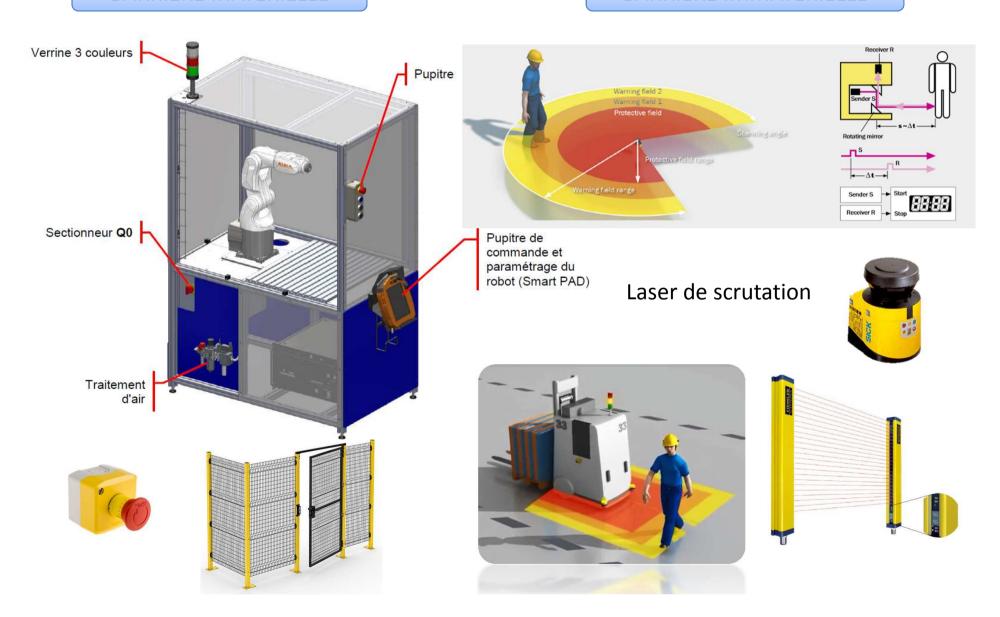
- Chef de projet
- Conducteur de ligne
- Technicien de maintenance

La sécurité

Les robots sont des machines potentiellement dangereuses!!

Risque d'écrasement avec les grands robots mais avec les petits aussi!

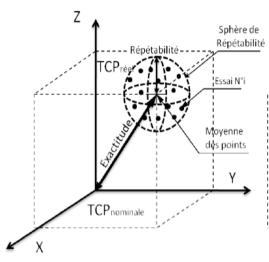
TOUJOURS RESPECTER LES CONSIGNES DE SECURITE

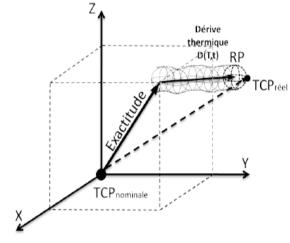


La sécurité

BARRIERE MATERIELLE

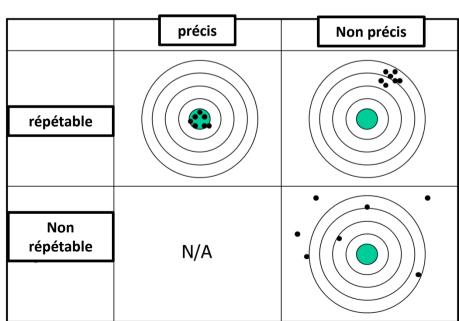
BARRIERE IMMATERIELLE

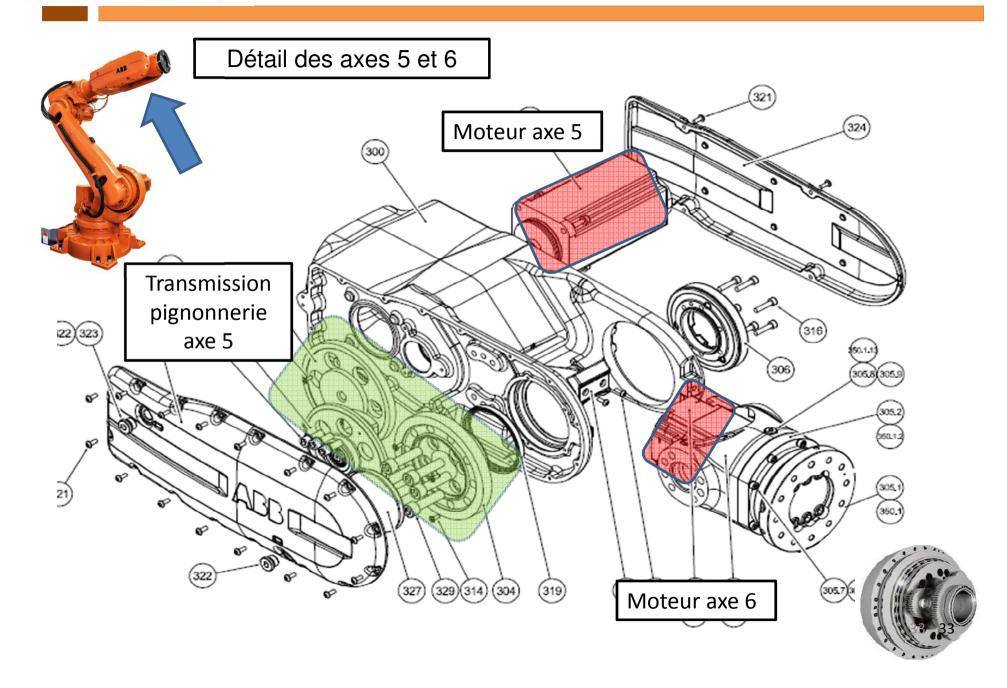




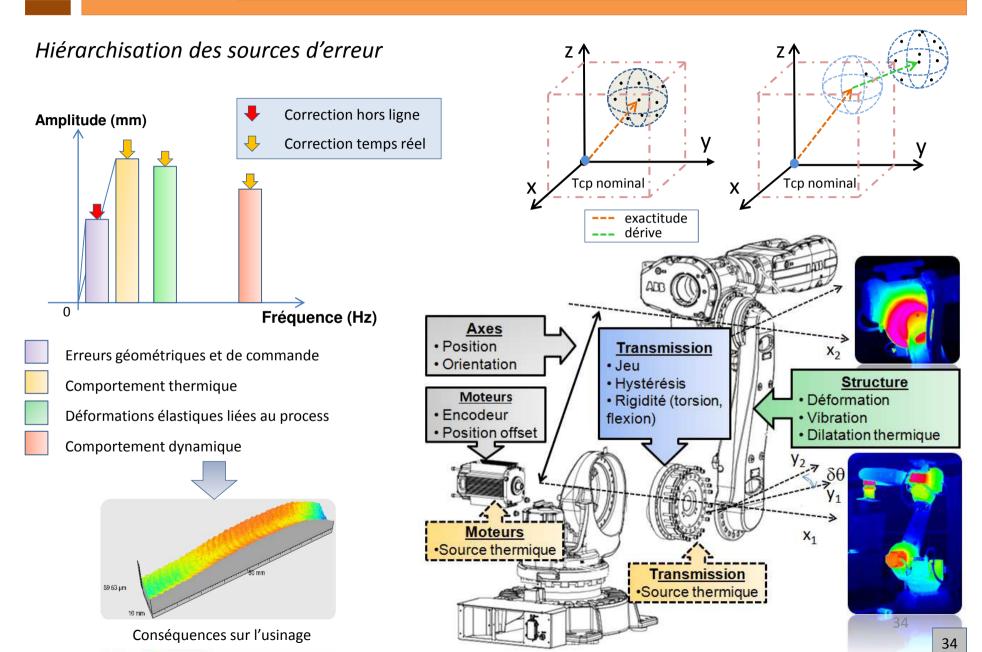
Performances des robots

Les différentes sources d'erreur


- Commande
- Calibration
- Jeu dans les liaisons
- Déformation des éléments


Précision : ±0.8mm

Répétabilité ±0.03mm



Structure type d'un robot 6 axes

Performances des robots

Programmation des robots industriels

Deux modes de programmation

Programmation par apprentissage

Les points sont parcourus en manuel et enregistrés au fur et à mesure

Avantage

Rapidité de mise en œuvre

Inconvénient

Complexité limitée des trajets et des formes

Programmation Hors Ligne

Les trajets sont générés à l'aide d'un logiciel externe de FAO

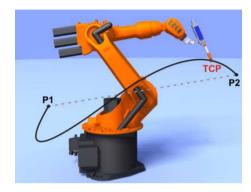
Avantage

Possibilité d'envoyer des fichiers de plusieurs milliers de lignes

Inconvénient

Compatibilité de la chaîne CFAO nécessaire

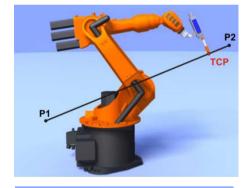
Abb peinture


Programmation des robots industriels

Trois types de mouvement possibles

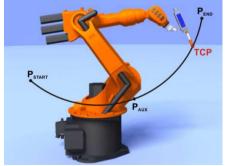
PTP (Point To Point)

L'outil se déplace suivant le chemin le plus rapide. Le trajet du robot entre P1 et P2 n'est pas connu à l'avance


- Risque de collision
- -Non maitrise du trajet
- +Pas de risque de singularité sur le trajet

LIN (Linéaire)

Le trajet suivi par l'outil est une ligne droite entre P1 et P2


- +Maîtrise des points de passages
- -risque de singularité sur le trajet

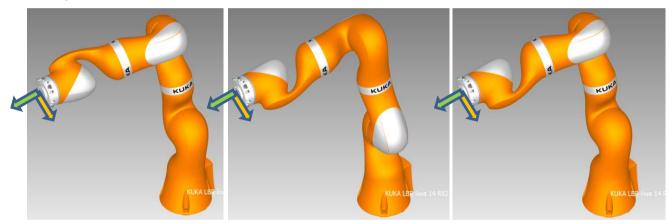
CIRC (Circulaire)

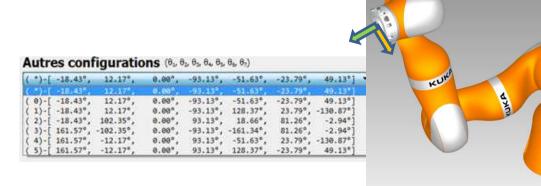
L'outil se déplace suivant un arc de cercle qui s'appuie sur 3 points à définir

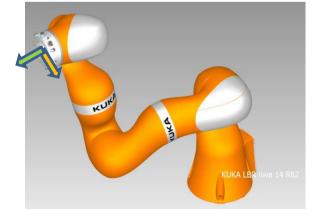

- +Maîtrise des points de passages
- + Peu risque de singularité sur le trajet

Programmation des robots industriels

Chaine numérique pour la programmation des robots Génération de trajectoires complexes (position + orientation)

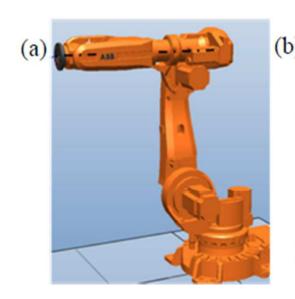

Commande des robots


Notion de configuration

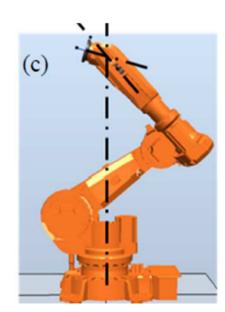

Spécificité des robots par rapport aux MOCN:

Il n'y pas forcément unicité de configuration des axes pour positionner le repère outil (point+ 3 orientations) sur une position donnée avec une orientation donnée :

5 configurations pour une même position et orientation de l'outil

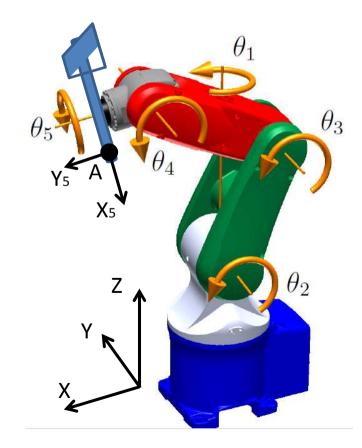

Commande des robots

Notion de singularité


Pour les manipulateurs anthropomorphes 6 axes comportent 3 types de singularités:

- la singularité de poignet (a)
- la singularité bras tendu lorsque l'on veut atteindre la frontière de l'espace de travail en position (b)
- la singularité d'épaule (c),

→ Perturbation de la vitesse de déplacement (modification des paramètres process)


2 Problématiques distinctes : l'une simple, l'autre un peu moins!!

P1 cinématique directe : Connaissant la position angulaire des 5 liaisons, quelles sont la position et l'orientation de l'effecteur dans le repère cartésien?

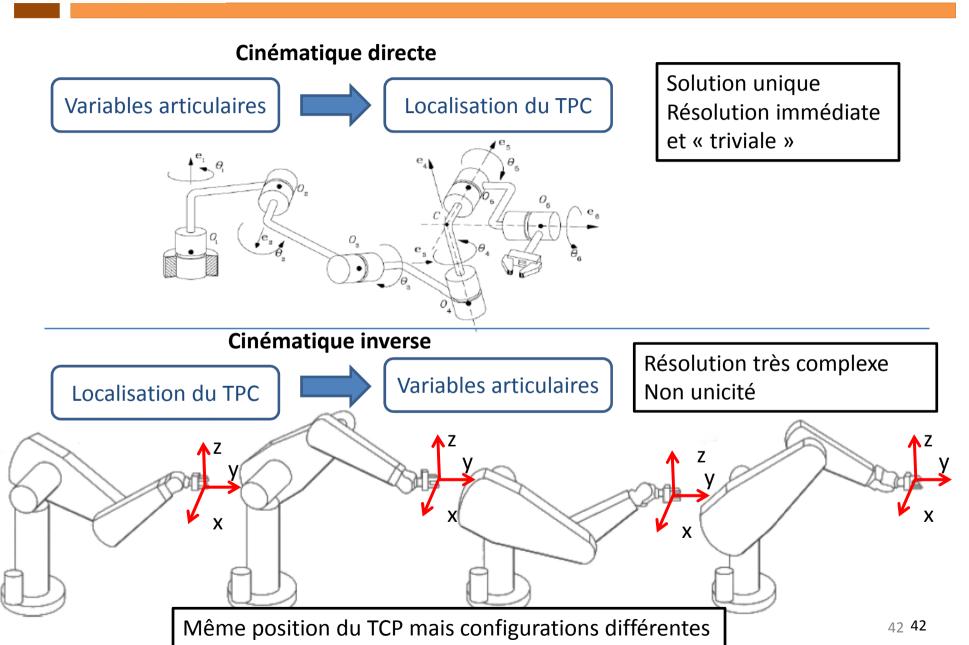
P2 cinématique inverse : Connaissant la position et l'orientation de l'effecteur dans l'espace cartésien, quelle doit être la consigne angulaire pour les différents moteurs?

Effecteur

- Une géométrie
- Une origine
- Un repère associé

Les différents modèles

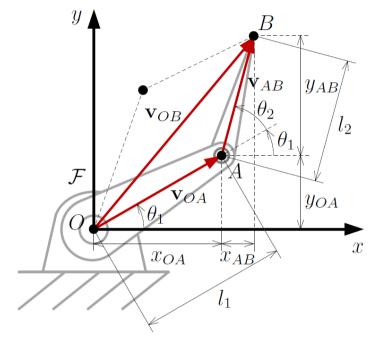
Le modèle géométrique direct (MGD): Il permet de connaitre la position et l'orientation dans l'espace cartésien connaissant les valeurs angulaires des différentes liaisons


$$\{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5\} \implies MGD \implies \{X_5, Y_5, Z_5, u_5, v_5, w_5\}$$

Avec $\{u_5, v_5, w_5\}$ les orientations angulaires par rapport à x,y,z

Le modèle géométrique inverse (MGI): il permet de connaître les valeurs angulaires des différentes liaisons pour atteindre une position et une orientation de l'effecteur

$$\{X_5, Y_5, Z_5, u_5, v_5, w_5\}$$
 MGI $\{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5\}$


Exemple sur un modèle de système 2 D

Modèle géométrique direct

$$\mathbf{v}_{OA} = \begin{bmatrix} x_{OA} \\ y_{OA} \end{bmatrix} = \begin{bmatrix} l_1 \cos \theta_1 \\ l_1 \sin \theta_1 \end{bmatrix},$$
 R1

$$\mathbf{v}_{AB} = \begin{bmatrix} x_{AB} \\ y_{AB} \end{bmatrix} = \begin{bmatrix} l_2 \cos(\theta_1 + \theta_2) \\ l_2 \sin(\theta_1 + \theta_2) \end{bmatrix}$$
 R2

$$\mathbf{v}_{OB} = \begin{bmatrix} x_B \\ y_B \end{bmatrix},$$
 R3

$$\mathbf{v}_{OB} = \mathbf{v}_{OA} + \mathbf{v}_{AB} = \begin{bmatrix} x_{OA} \\ y_{OA} \end{bmatrix} + \begin{bmatrix} x_{AB} \\ y_{AB} \end{bmatrix} = \begin{bmatrix} x_{OA} + x_{AB} \\ y_{OA} + y_{AB} \end{bmatrix} \quad \mathbf{R4}$$

$$= \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \end{bmatrix} = \begin{bmatrix} l_1 \cos \theta_1 + l_2 (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) \\ l_1 \sin \theta_1 + l_2 (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \end{bmatrix}$$

$$\begin{bmatrix} x_b \\ y_b \end{bmatrix} = \begin{bmatrix} l_1 \cos \theta_1 + l_2 (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) \\ l_1 \sin \theta_1 + l_2 (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \end{bmatrix}$$

Exemple sur un modèle de système 2 D

Modèle géométrique inverse

On calcule :
$$\mathbf{v}_{OB}^T \mathbf{v}_{OB} = x_{B+}^2 y_B^2$$

$$x_B^2 + y_B^2 = (l_1 \cos \theta_1 + l_2(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2))^2 + (l_1 \sin \theta_1 + l_2(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2))^2$$

avec
$$\sin^2 \theta + \cos^2 \theta = 1$$

On obtient
$$x_B^2 + y_B^2 = l_1^2 + l_2^2 + 2l_1l_2\cos\theta_2$$

Comme
$$2l_1l_2 > 0$$

On obtient
$$\theta_2 = \pm \arccos\left(\frac{x_B^2 + y_B^2 - l_1^2 - l_2^2}{2l_1l_2}\right)$$

$$\theta_2 = \pm \arccos\left(\frac{x_B^2 + y_B^2 - l_1^2 - l_2^2}{2l_1 l_2}\right)$$

Les deux solutions sont réelles si l'argument de la fonction arcos est dans l'intervalle [-1,1]. Cette condition est équivalente (2L₁.L₂>0) à

$$(l_1 - l_2)^2 \le x_B^2 + y_B^2 \le (l_1 + l_2)^2$$

A partir de la relation R5, on obtient les relations suivantes :

$$\begin{bmatrix} \cos \theta_1 (l_1 + l_2 \cos \theta_2) - l_2 \sin \theta_1 \sin \theta_2 \\ \sin \theta_1 (l_1 + l_2 \cos \theta_2) + l_2 \cos \theta_1 \sin \theta_2 \end{bmatrix} = \begin{bmatrix} x_B \\ y_B \end{bmatrix}$$

Ce système de deux équations linéaires en $\cos\theta_1$ et $\sin\theta_1$ admet la solution :

$$\cos \theta_1 = \frac{x_B l_1 + x_B l_2 \cos \theta_2 + y_B l_2 \sin \theta_2}{l_1^2 + l_2^2 + 2 l_1 l_2 \cos \theta_2},$$

$$\sin \theta_1 = \frac{y_B l_1 + y_B l_2 \cos \theta_2 - x_B l_2 \sin \theta_2}{l_1^2 + l_2^2 + 2 l_1 l_2 \cos \theta_2}.$$

$$x_B^2 + y_B^2 = l_1^2 + l_2^2 + 2 l_1 l_2 \cos \theta_2$$

$$\cos\theta_1 = \frac{x_B l_1 + x_B l_2 \cos\theta_2 + y_B l_2 \sin\theta_2}{x_B^2 + y_B^2},$$
 d'où
$$\sin\theta_1 = \frac{y_B l_1 + y_B l_2 \cos\theta_2 - x_B l_2 \sin\theta_2}{x_B^2 + y_B^2}.$$

En utilisant la fonction atan2 (y,x) définie par

$$\arctan 2(y, x) = \begin{cases} \arctan\left(\frac{y}{x}\right) \cdot sgn(y) & \text{si } x > 0\\ \frac{\pi}{2} \cdot sgn(y) & \text{si } x = 0\\ \left(\pi - \arctan\left(\frac{y}{x}\right)\right) \cdot sgn(y) & \text{si } x < 0 \end{cases}$$

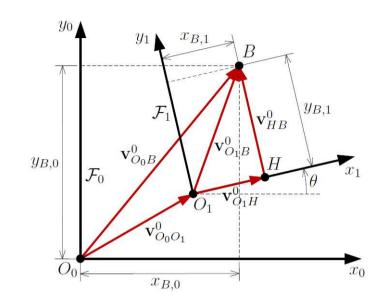
On obtient:

$$\theta_1 = \operatorname{atan2} (y_B l_1 + y_B l_2 \cos \theta_2 - x_B l_2 \sin \theta_2, x_B l_1 + x_B l_2 \cos \theta_2 + y_B l_2 \sin \theta_2)$$

On a donc identifié le MGI dans le cas plan 2D

Les matrices de rotations en 2D

$$\mathbf{v}_{O_{0}B}^{0} = \mathbf{v}_{O_{0}O_{1}}^{0} + \mathbf{v}_{O_{1}B}^{0} = \mathbf{v}_{O_{0}O_{1}}^{0} + \mathbf{v}_{O_{1}H}^{0} + \mathbf{v}_{HB}^{0}$$

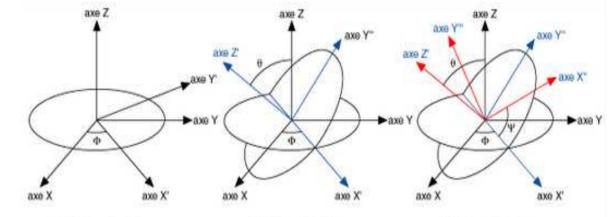

$$= \mathbf{v}_{O_{0}O_{1}}^{0} + \begin{bmatrix} x_{B,1}\cos\theta \\ x_{B,1}\sin\theta \end{bmatrix} + \begin{bmatrix} y_{B,1}\cos(\theta + 90^{\circ}) \\ y_{B,1}\sin(\theta + 90^{\circ}) \end{bmatrix}$$

$$= \mathbf{v}_{O_{0}O_{1}}^{0} + \begin{bmatrix} x_{B,1}\cos\theta \\ x_{B,1}\sin\theta \end{bmatrix} + \begin{bmatrix} -y_{B,1}\sin\theta \\ y_{B,1}\cos\theta \end{bmatrix}$$

$$= \mathbf{v}_{O_{0}O_{1}}^{0} + \begin{bmatrix} x_{B,1}\cos\theta - y_{B,1}\sin\theta \\ x_{B,1}\sin\theta + y_{B,1}\cos\theta \end{bmatrix}$$

$$= \mathbf{v}_{O_{0}O_{1}}^{0} + \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta - \cos\theta \end{bmatrix} \begin{bmatrix} x_{B,1} \\ y_{B,1} \end{bmatrix}$$

$$\mathbf{R}_{1}^{0} = \mathbf{v}_{O_{0}O_{1}}^{0} + \mathbf{R}_{1}^{0}\mathbf{v}_{O_{1}B}^{1},$$


$$\mathbf{R}_1^0 = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
 Coordonnées de x1 dans Ro

Coordonnées de y1 dans Ro

Généralisation au cas 3D

Définition des angles d'Euler 3 rotations successives

Rotation sur l'axe X'

$$R_{12} = \begin{pmatrix} C_{\phi} & -S_{\phi} & 0 \\ S_{\phi} & C_{\phi} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{12} = \begin{pmatrix} C_{\phi} & -S_{\phi} & 0 \\ S_{\phi} & C_{\phi} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{\theta} & -S_{\theta} \\ 0 & S_{\theta} & C_{\theta} \end{pmatrix} \qquad R_{34} = \begin{pmatrix} C_{\psi} & -S_{\psi} & 0 \\ S_{\psi} & C_{\psi} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

D'où la matrice de rotation.

$$R_{14} = R_{z1,\Phi}R_{x2,\theta}R_{z3,\psi} = R_{12}R_{23}R_{34}$$

$$R_{14} = \begin{pmatrix} (C_{\phi}C_{\psi} - S_{\phi}C_{\theta}S_{\psi}) & (-C_{\phi}S_{\psi} - S_{\phi}C_{\theta}C_{\psi}) & (S_{\phi}S_{\theta}) \\ (S_{\phi}C_{\psi} + C_{\phi}C_{\theta}S_{\psi}) & (-S_{\phi}S_{\psi} + C_{\phi}C_{\theta}C_{\psi}) & -C_{\phi}S_{\theta} \\ S_{\theta}S_{\psi} & S_{\theta}C_{\psi} & C_{\theta} \end{pmatrix}$$

La notion de matrice homogène

Un point P de E3 peut être représenté par ses coordonnées dites homogènes sous la forme d'un vecteur (x,y,z,t). Si t=1, les coordonnées après déplacement sont liées aux coordonnées avant déplacement par la relation :

Matrice homogène 4X4 qui caractérise le déplacement

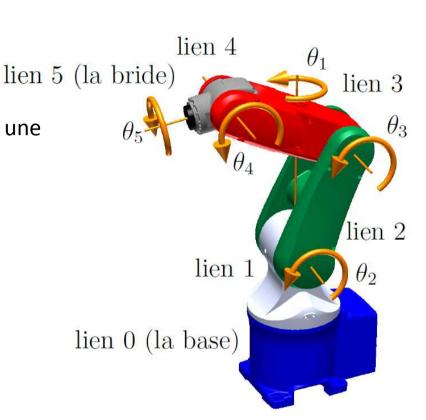
Relation de composition des déplacements

$$T_{02} = T_{01}T_{12}$$

$$\begin{pmatrix} P_0 \\ 1 \end{pmatrix} = \begin{pmatrix} R_{01} & d_{01} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R_{12} & d_{12} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P_2 \\ 1 \end{pmatrix} = \begin{pmatrix} R_{01}R_{12} & R_{01}d_{12} + d_{01} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P_2 \\ 1 \end{pmatrix}$$

Généralisation du modèle géométrique direct : Méthode de Denavit-Hartenberg

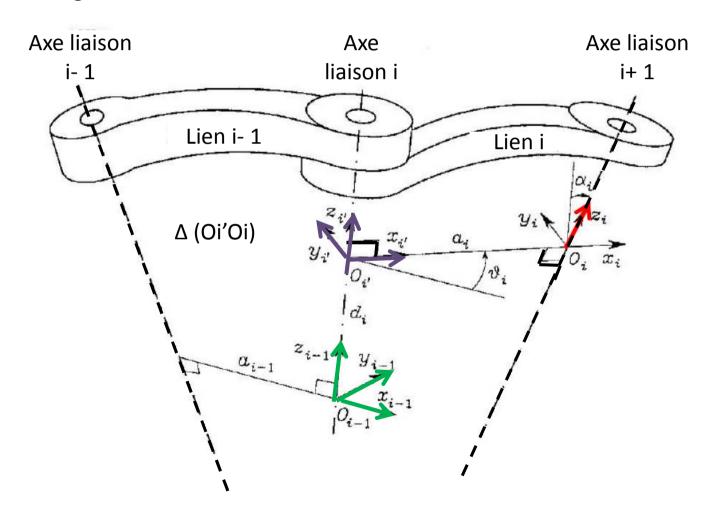
Objectif: définir un référentiel sur chaque lien avec une méthode systématique qui simplifie l'expression des matrices de rotation.



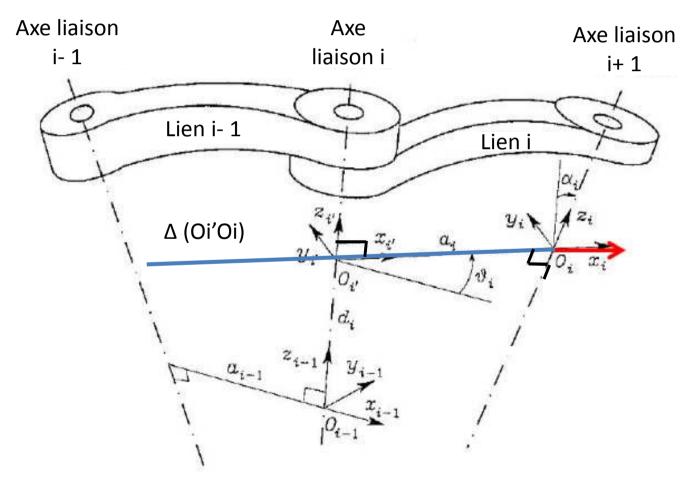
e:

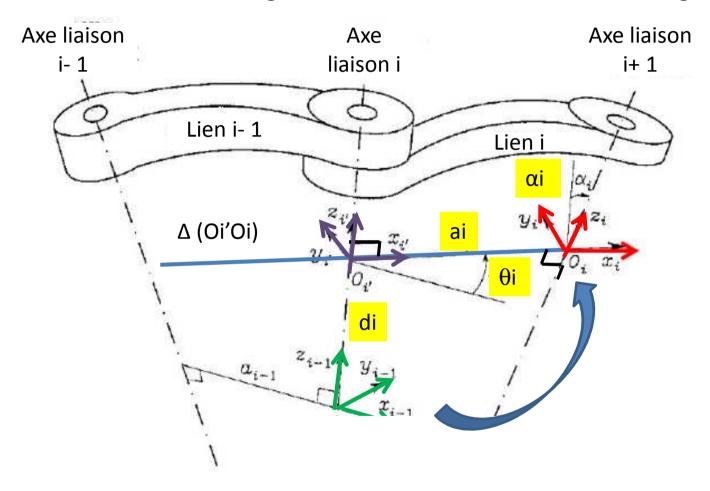
Paramétrage avec deux contraintes :

- → L'axe Zi est aligné avec l'axe de la liaison pivot i+1
- → L'axe xi coupe l'axe Zi-1 à angle droit

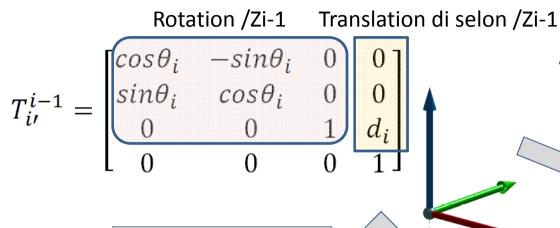

Seuls 4 paramètres (deux distances et deux angles) sont nécessaires (au lieu de 6) pour définir la position du repère Ri par rapport à Ri-1

Paramétrage selon la convention Denavit-Hartenberg

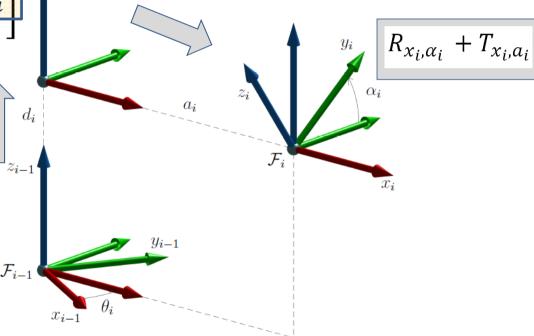

L'axe Zi est aligné avec l'axe de la liaison i+1


Paramétrage selon la convention Denavit-Hartenberg

L'axe xi est perpendiculaire à l'axe zi-1 et passe par Oi Avec Δ (Oi'Oi) perpendiculaire commune à (Zi-1) et (Zi)



Paramétrage selon la convention Denavit-Hartenberg



$$\left| R_{Z_{i-1},\theta_i} + T_{Z_{i-1},d_i} \right|$$

D'où finalement, la matrice Homogène correspondante :

 $T_i^{i\prime} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

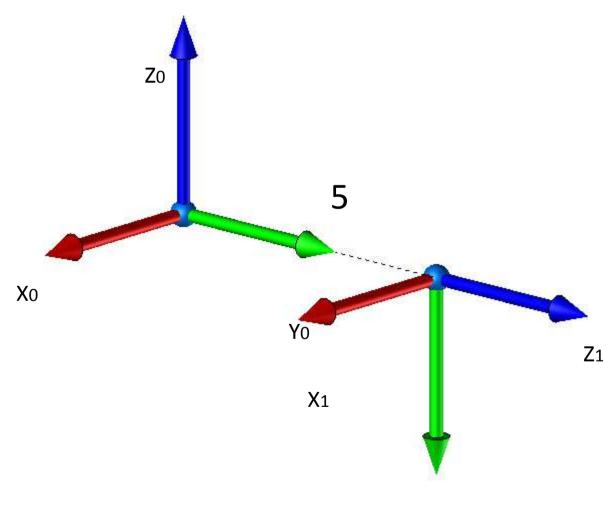
$$T_{i}^{i-1} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Matrice homogène de rotation
 - Rotation suivant x

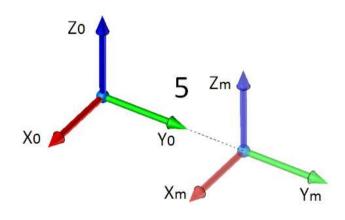
$$H_{rot,x}(\alpha) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos \alpha & -\sin \alpha & 0 \ 0 & \sin \alpha & \cos \alpha & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

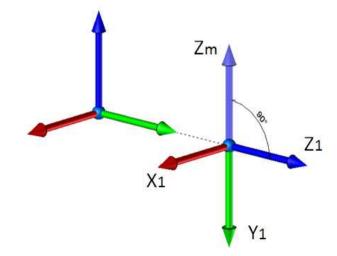
Rotation suivant y

$$H_{rot,y}(\beta) = egin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \ 0 & 1 & 0 & 0 \ -\sin \beta & 0 & \cos \beta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$


Rotation suivant z

$$H_{rot,z}(\gamma) = egin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \ \sin \gamma & \cos \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$


Exemple 1


Exemple 1

- Cas 1

$$H_1^0 = H_{trans}(0.5.0)H_{rot,x}(-90^\circ)$$

$$H_{trans} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{rot,x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^{\circ}) & -\sin(-90^{\circ}) & 0 \\ 0 & \sin(-90^{\circ}) & \cos(-90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple 1

— Cas 1

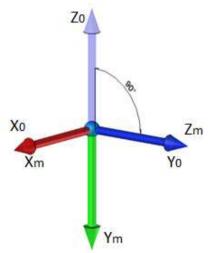
$$H_1^0 = H_{trans}(0,5,0)H_{rot,x}(-90^\circ)$$

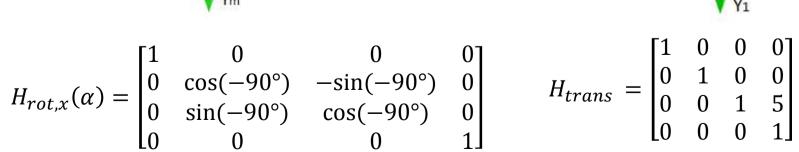
$$H_1^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^\circ) & -\sin(-90^\circ) & 0 \\ 0 & \sin(-90^\circ) & \cos(-90^\circ) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

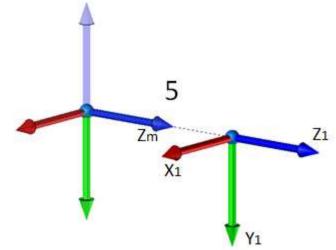
$$\begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 \\ \mathbf{0} & -1 & 0 & 0 \\ \mathbf{0} & 0 & 0 & 1 \end{bmatrix}$$

[1	0	0	0
0	1	0	5
0	0	1	0
0	0	0	1

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$


$$H_1^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$




Exemple 1

— Cas 2

$$H_1^0 = H_{rot,x} (-90^\circ) H_{trans} (0,0,5)$$

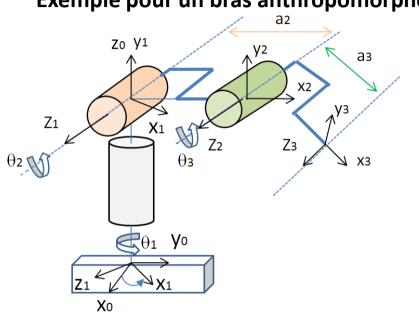
$$H_{trans} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple 1

— Cas 1

$$H_1^0 = H_{rot,x} (-90^\circ) H_{trans} (0,0,5)$$

$$H_1^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^\circ) & -\sin(-90^\circ) & 0 \\ 0 & \sin(-90^\circ) & \cos(-90^\circ) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$


$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_1^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple pour un bras anthropomorphe à 3 liaisons

	X1/R0	Y1/Ro	Z1/Ro	
	$cos\theta_1$	0	$sin\theta_1$	[0
$T_1^0 =$	$sin\theta_1$	0	$-cos\theta_1$	0
¹ 1 -	0	1	0	0
	Lo	0	0	1

Liaison	ai	αί	di	θί
1	0	$-\pi/2$	0	θ1
2	a2	0	0	θ2
3	a3	0	0	θ3

$$T_{i'}^{i-1} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & a_i\cos\theta_i \\ \sin\theta_i & \cos\theta_i & 0 & a_i\sin\theta_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ pour i=2,3}$$

A/RO

$$T_3^0 = \begin{bmatrix} C_1 C_{23} & -C_1 S_{23} & S_1 \\ S_1 C_{23} & -S_1 S_{23} & -C_1 \\ S_{23} & C_{23} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -C_1 (a_2 C_2 + a_3 C_{23}) \\ S_1 (a_2 C_2 + a_3 C_{23}) \\ a_2 S_2 + a_3 S_{23} \\ 1 \end{bmatrix}_{61}$$