Imagerie et Vision Industrielle

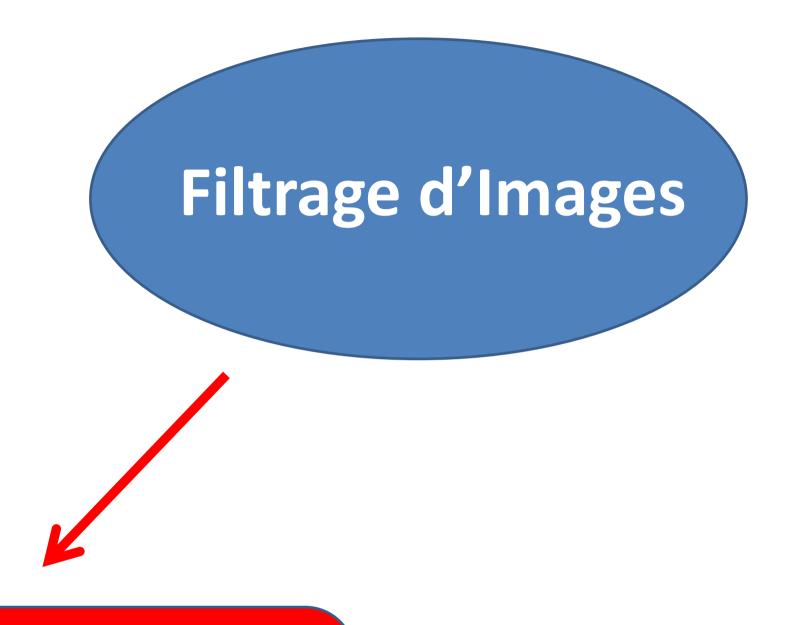
4: Filtrage Linéaire d'Image

Menu du Jour

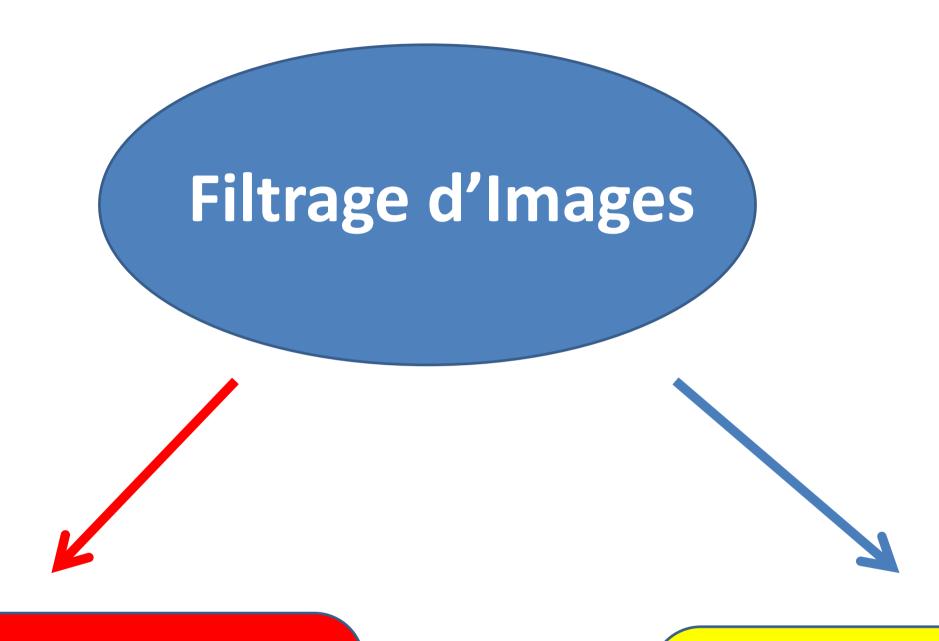
Filtrage d'Images

- Image comme fonction
- Filtres Linéaires

— Exemples de filtres: Box, Gaussien



Filtrage Spatial

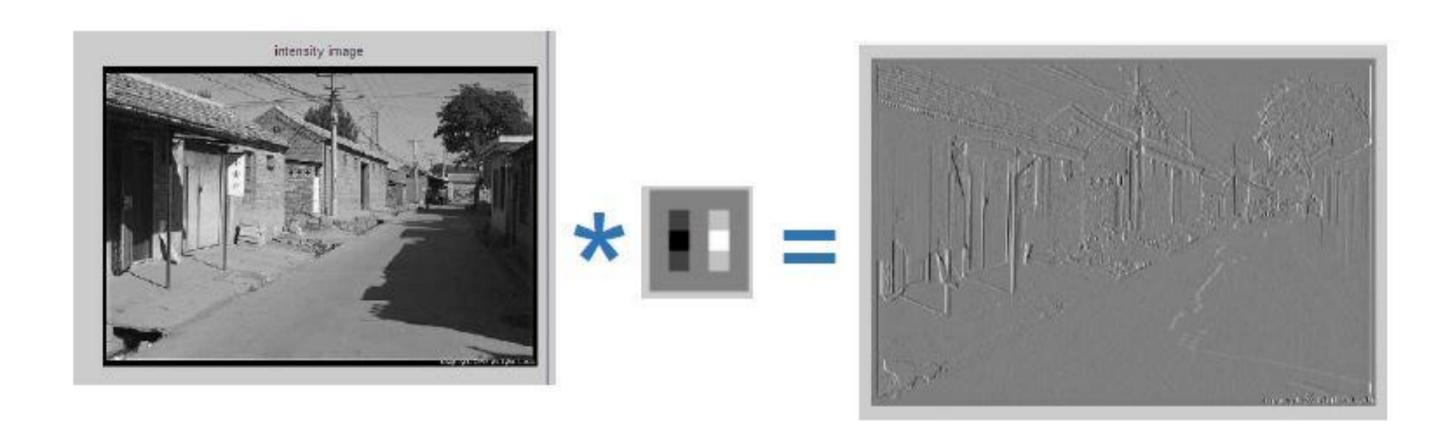


Filtrage Spatial

Filtrage Frequentiel

Filtrage dans le domaine spatial

1	0	-1
2	0	-2
1	0	-1



Filtrage dans le domaine Fréquentiel FFT Inverse FFT

Image comme Fonction 2D

Une image à niveaux de gris (grayscale) est une fonction 2D

Image à niveaux de gris

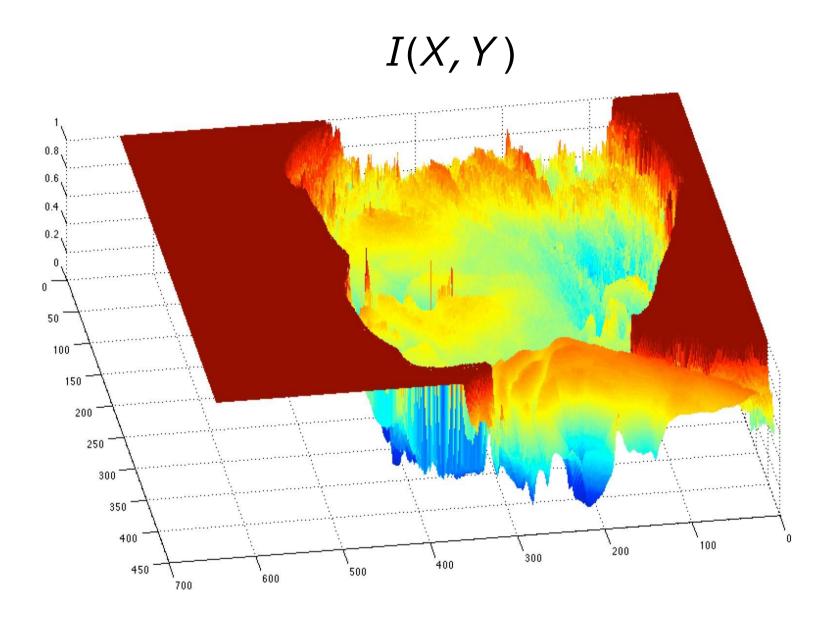
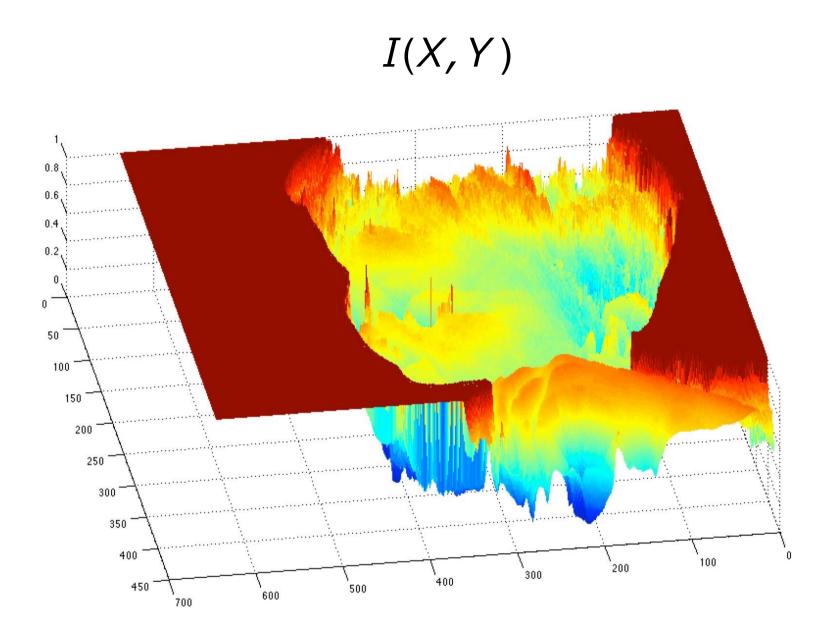


Image comme Fonction 2D

Une image à niveaux de gris (grayscale) est une fonction 2D

Image à niveaux de gris



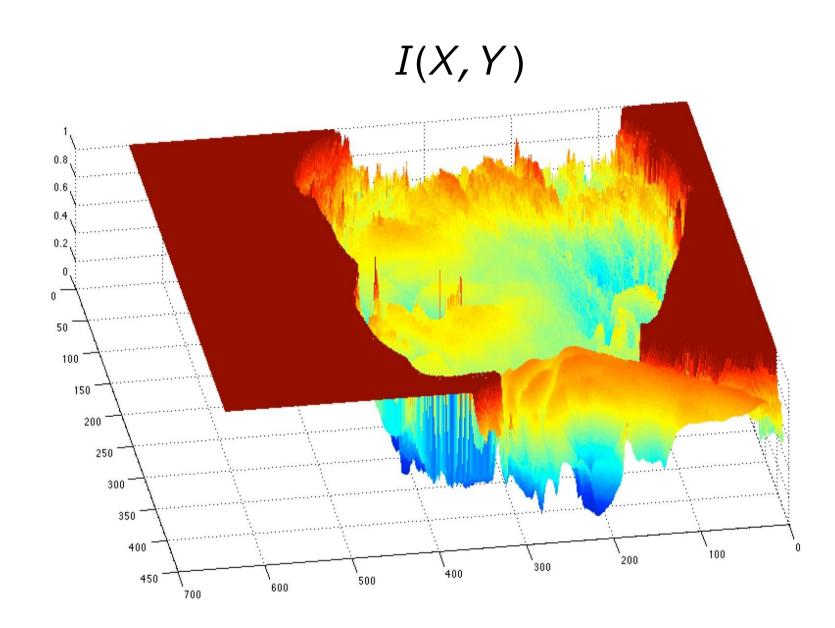
domaine: $(X, Y) \equiv ([1, largeur], [1, hauteur])$

Image comme fonction 2D

Une image à niveaux de gris (grayscale) est une fonction 2D

Image à niveaux de gris

Quelle est la dynamique de cette fonction image?



domaine: $(X, Y) \equiv ([1, largeur], [1, hauteur])$

Image comme fonction 2D

image (niveaux de gris) (grayscale)

Image à niveaux de gris

Quelle est la dynamique de cette fonction image? $I(X, Y) \in [0, 255]$



domaine: $(X, Y) \equiv ([1, largeur], [1, hauteur])$

Puisque les images sont des fonctions, on peut donc leur appliquer des operations, e.g., moyenne (average)

I(X, Y)

G(X,Y)

$$\frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$

$$a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$

$$b = \frac{I(X, Y) + G(X, Y)}{2}$$

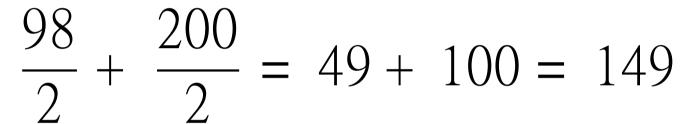
$$a = \frac{I(X, Y)}{2} + \frac{G(X, Y)}{2}$$

$$b = \frac{I(X, Y) + G(X, Y)}{2}$$

Question:

$$a = b$$

pixel en rouge (image cameraman) = 98 pixel en rouge (image de la lune) = 200

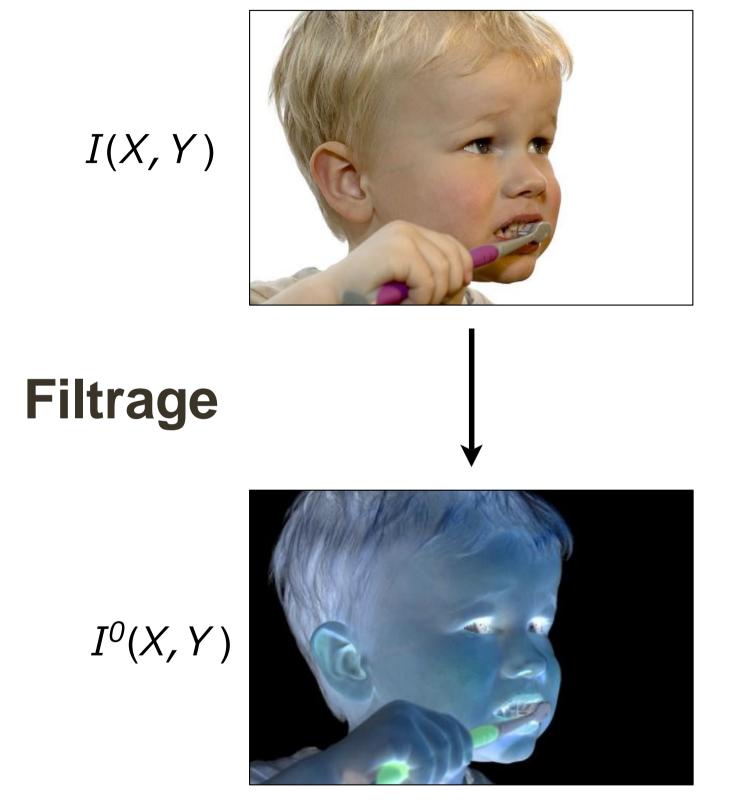


$$\frac{98 + 200}{2} = \frac{[298]}{2} = \frac{255}{2} = 127$$

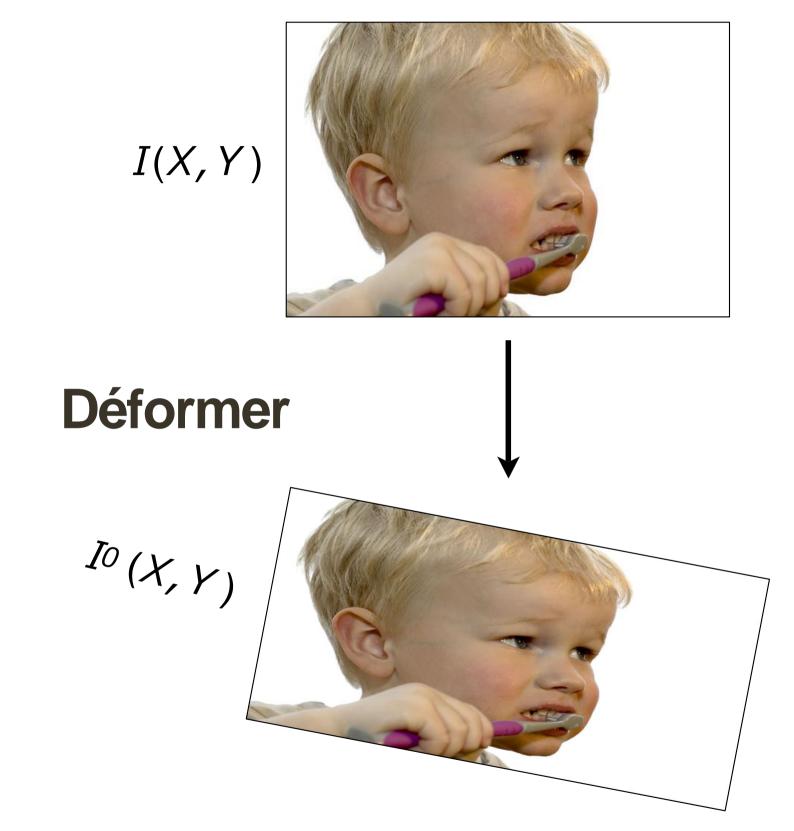
Question:

$$a = b$$

Types de transformations qu'on peut faire?



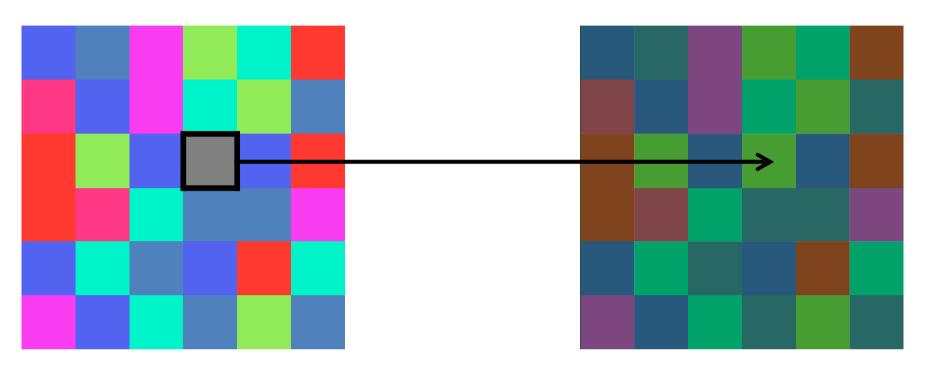
Changer la dynamique de la fonction image



Changer le domaine de la fonction image

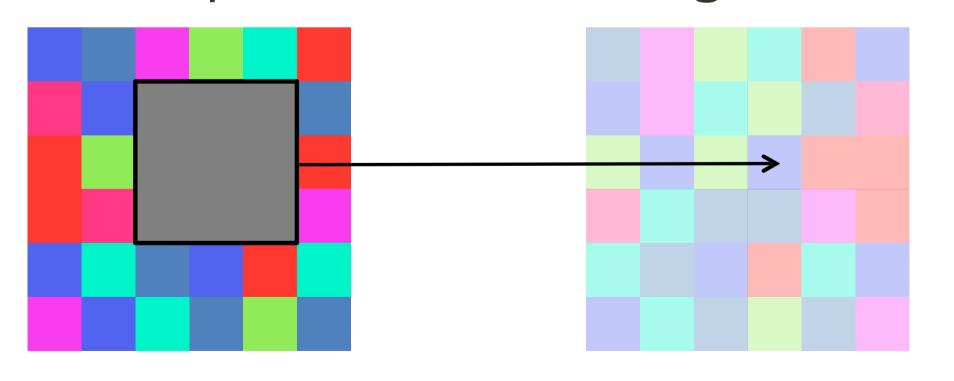
Types de filtrage?

Operation Point



Traitement ponctuel

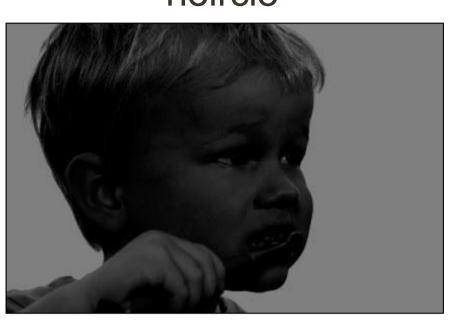
Operation sur Voisinage



"filtrage"

originale

noircie



Contraste réduit

I(X, Y)

inverser

illuminer

Contraste élevé

originale

Contraste réduit

I(X, Y)

I(X, Y) - 128

I(X, I) = 120

inverser illuminer

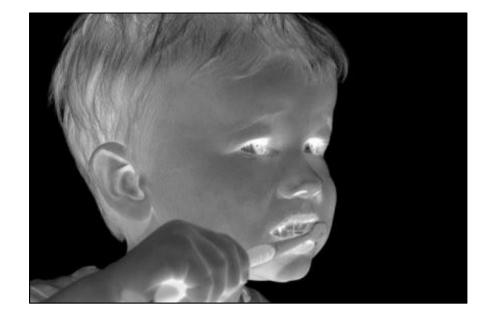
Contraste élevé

originale



I(X, Y)

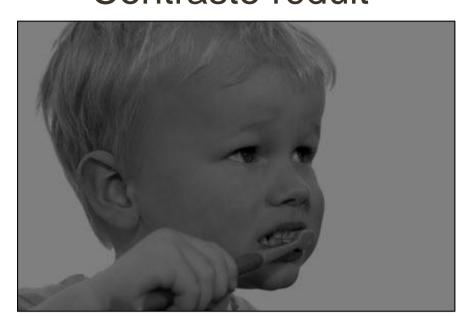
inverser



noircie

I(X, Y) - 128

Contraste réduit



 $\frac{I(X,Y)}{2t}$

Contraste élevé

originale

I(X, Y)

inverser



noircie

I(X, Y) - 128

illuminer

Contraste réduit



*I(X, Y)*2

Contraste élevé

originale

I(X, Y)

inverser

255 - I(X, Y)

noircie

I(X, Y) - 128

Contraste réduit

*I(X, Y)*2

Contraste élevé

originale

I(X, Y)

inverser



255 - I(X, Y)

noircie

I(X, Y) - 128

illuminer

$$I(X, Y) + 128$$

Contraste réduit

*I(X, Y)*2

Contraste élevé

originale

I(X, Y)

inverser

255 - I(X, Y)

noircie

I(X, Y) - 128

illuminer

$$I(X, Y) + 128$$

Contraste réduit

<u>I(X, Y)</u> 2

Contraste élevé

$$I(X, Y) *2$$

originale

I(X, Y)

inverser



255 - I(X, Y)

noircie

I(X, Y) - 128

illuminer

$$I(X, Y) + 128$$

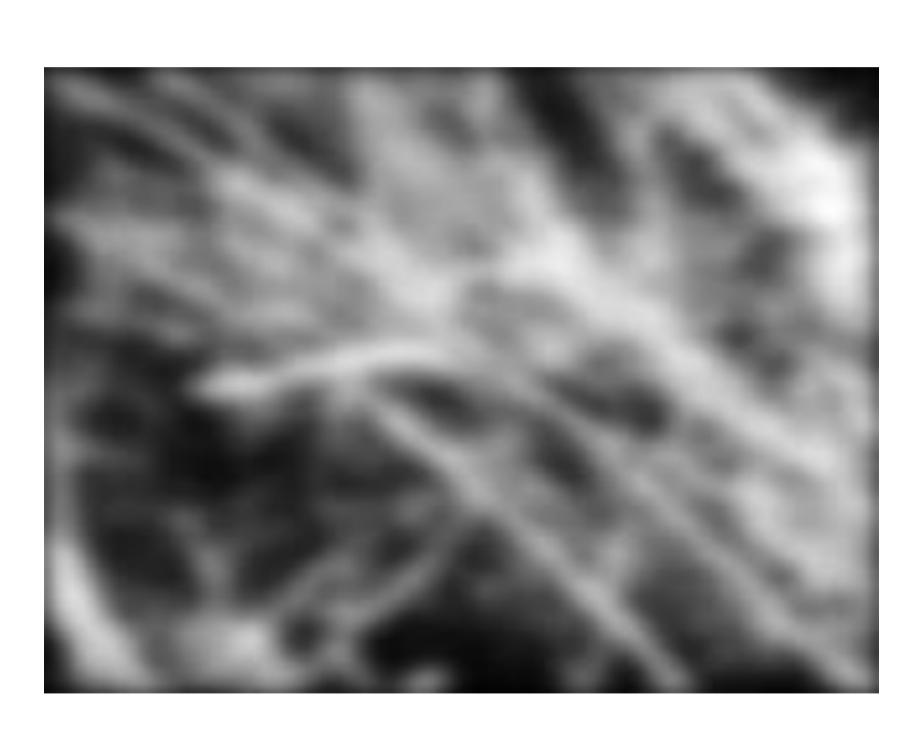
Contraste réduit

<u>I(X, Y)</u> 2

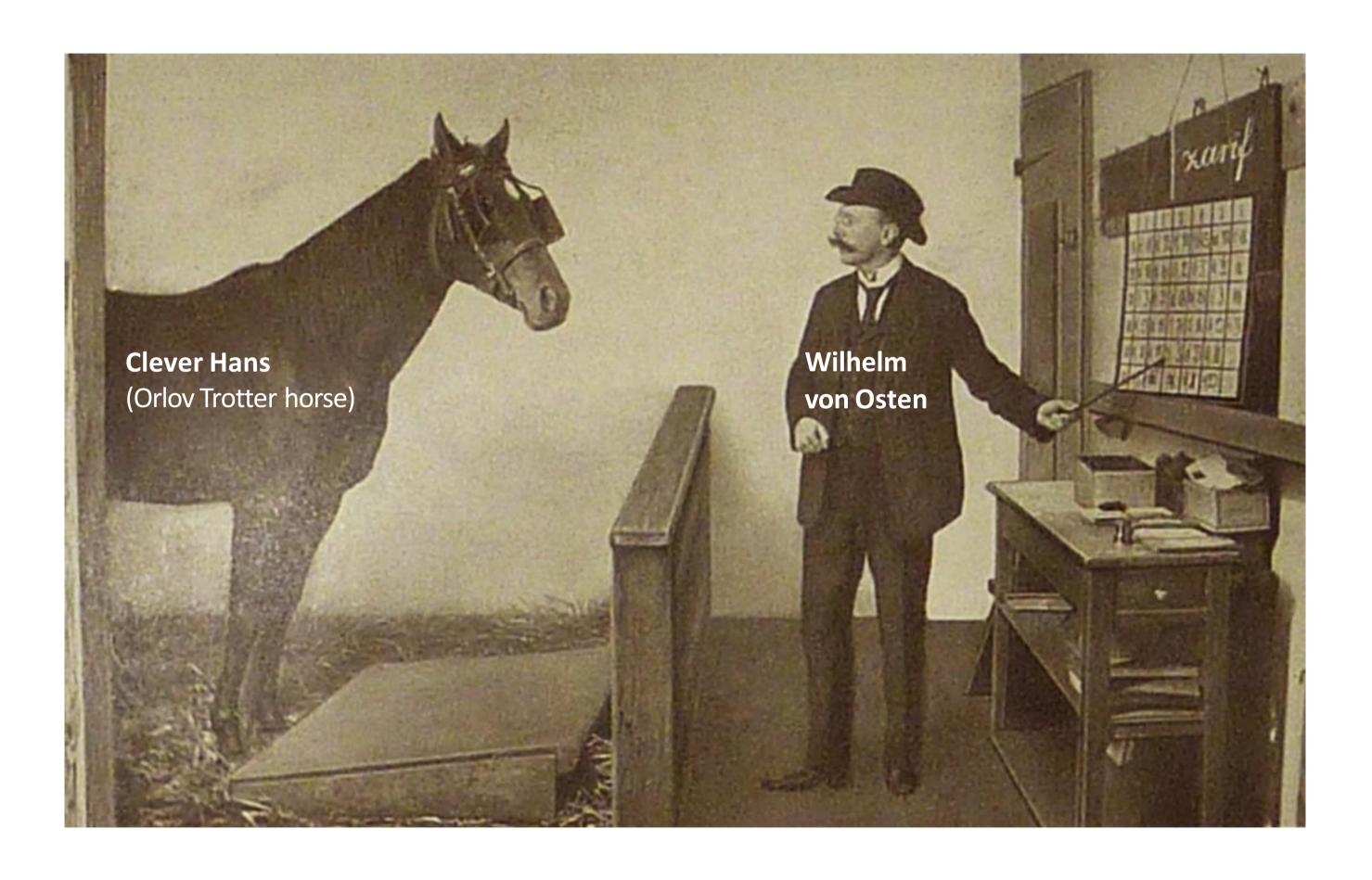
Contraste élevé

$$I(X, Y) *2$$

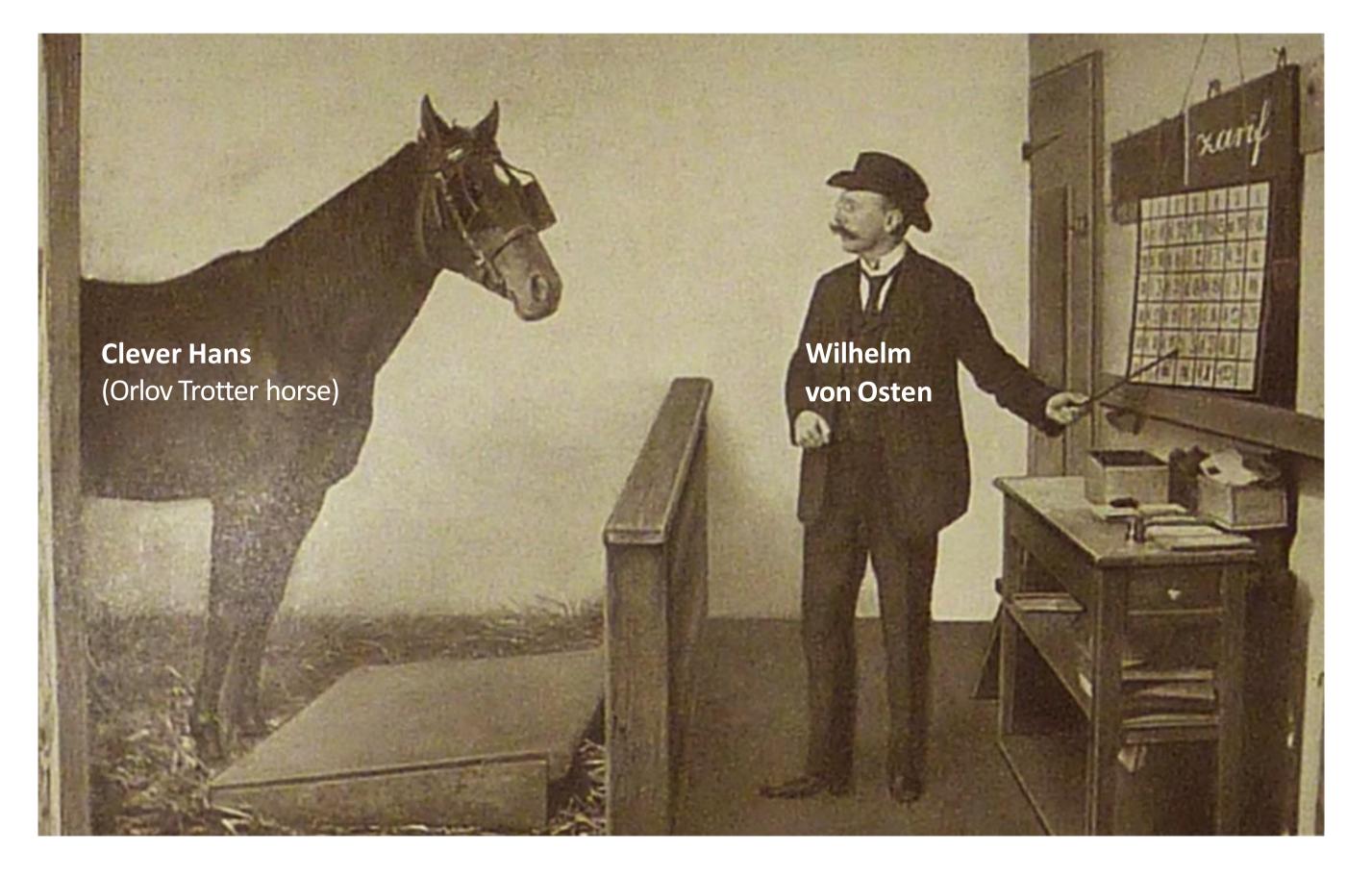
Filtrage Linéaire



Exemple 'amusant' du Jour: Clever Hans



Exemple 'amusant' du Jour: Clever Hans



Hans peut répondre à 89% des questions de math correctement

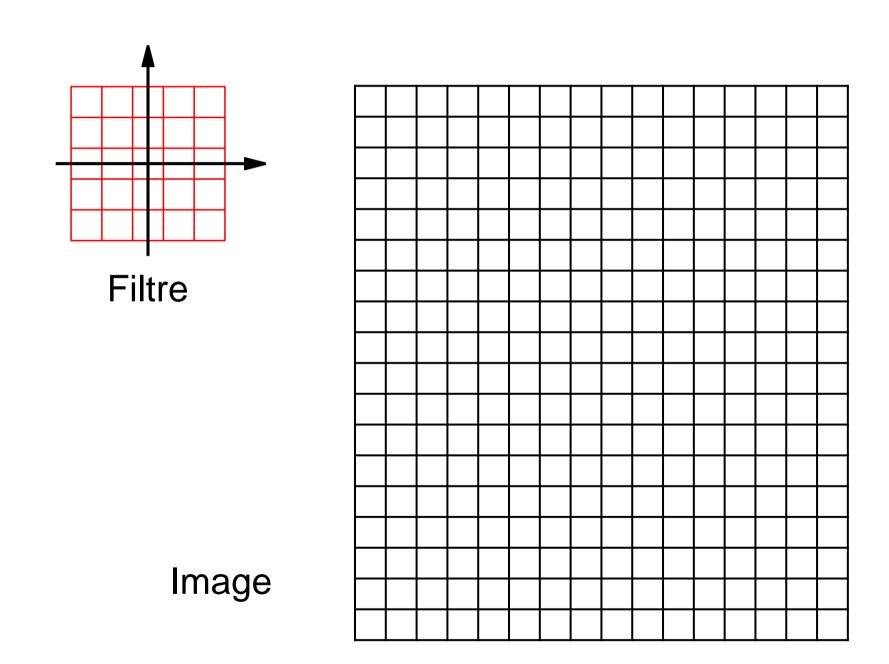
Exemple 'amusant' du Jour: Clever Hans

Le cours était intelligent, juste à l'inverse de la façon que pensait van Osten!

Filtres Linéaires

Soit I(X, Y) une image numérique $n \rightarrow n$ (on prend largeur = hauteur)

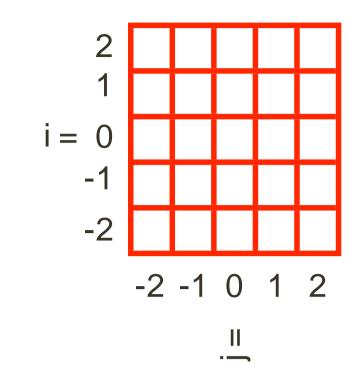
Soit F(X, Y) une autre image $m \rightarrow m$ (nôtre "filtre" ou "noyau")



On suppose m est impaire. (ici,m = 5)

Filtres Linéaires

Soit
$$k = \frac{m}{2}$$



On calcule une nouvelle image, $I^0(X, Y)$, comme suit:

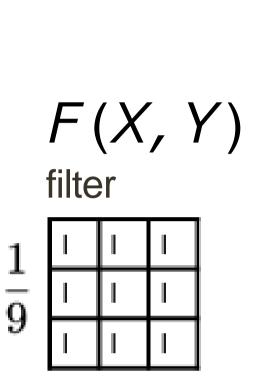
$$I^{O}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

image (signal)

Intuition: chaque pixel dans l'image de sortie est une combinaison linéaire du même pixel et ses pixels voisins dans l'image d'origine

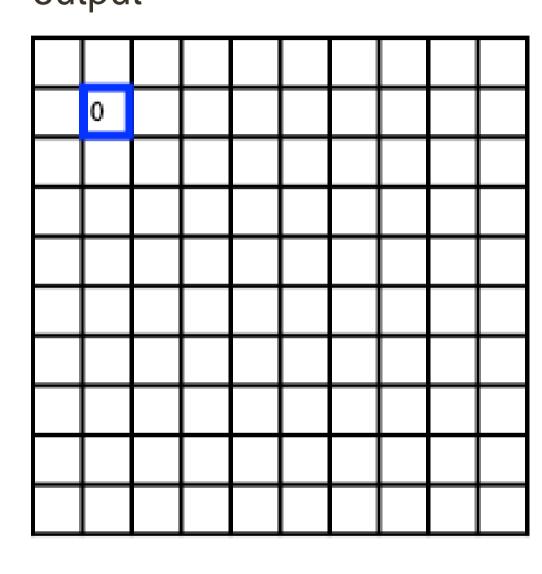




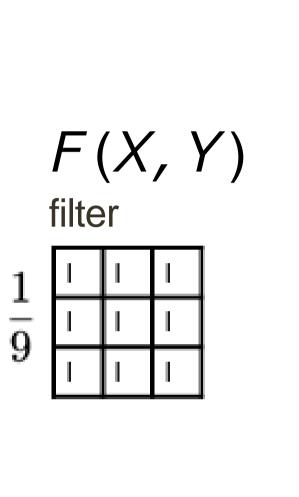
$$I(X,Y)$$
 image

			_		_		_		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

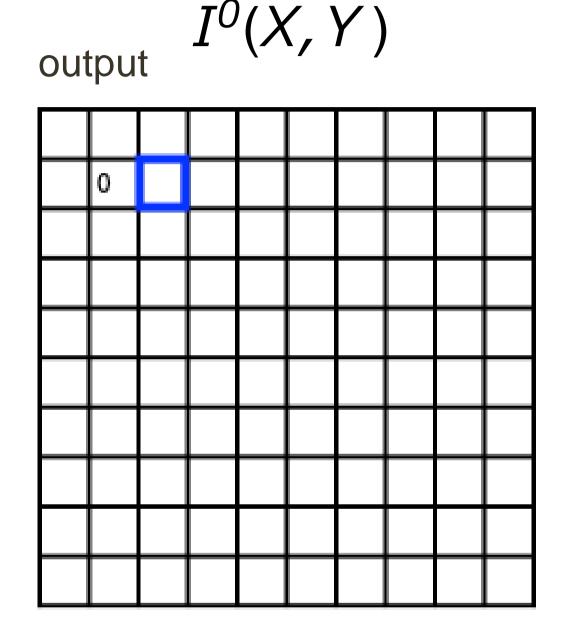
output
$$I^0(X,Y)$$



$$I^{0}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie
$$j = -k \ i = -k$$
filtre image (signal)



I(X,Y)

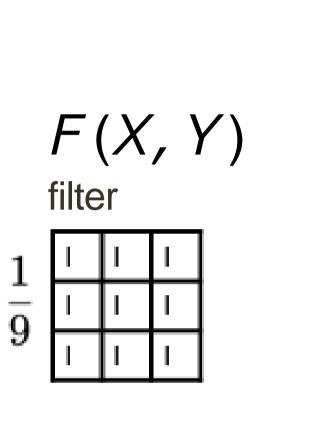


$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre

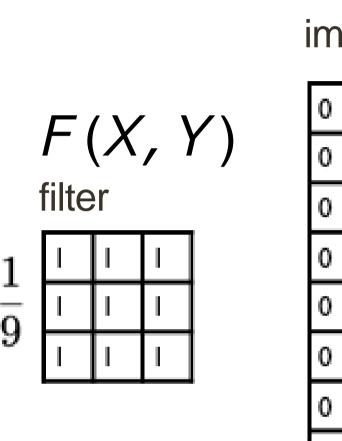
image (signal)

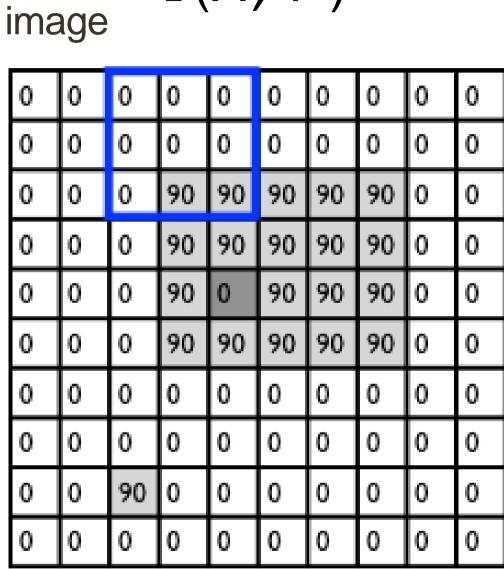


$$I(X,Y)$$
 image $I(X,Y)$ image $I(X,$

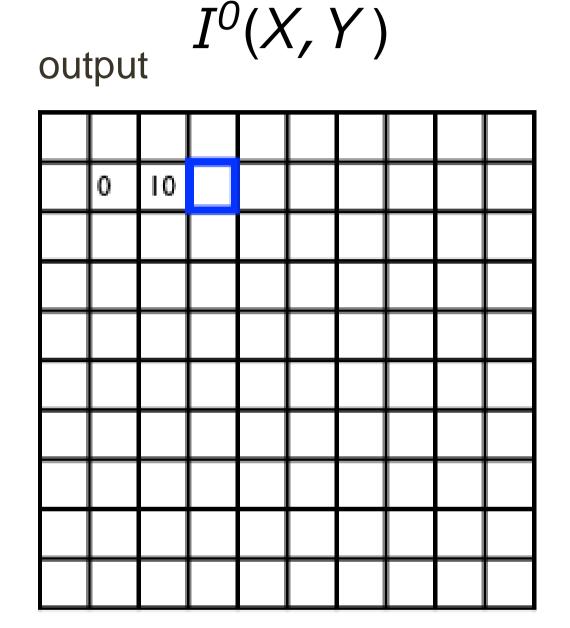
$$I^{O}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie

filtre image (signal)





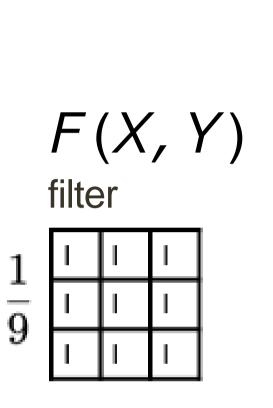
I(X,Y)

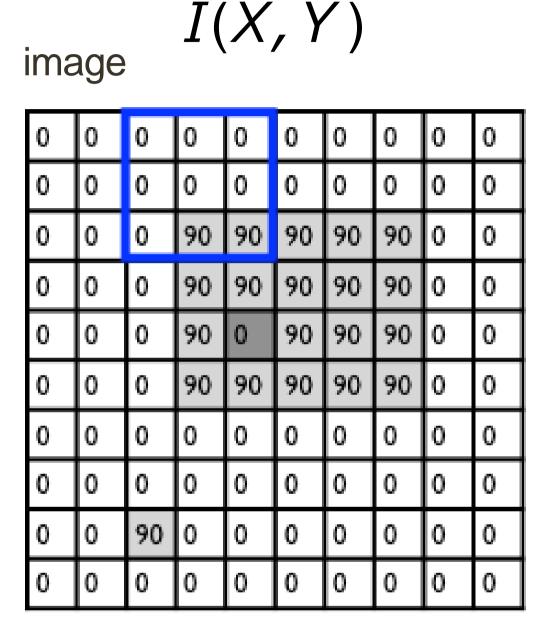


$$I^{O}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

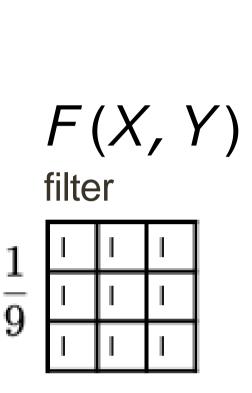
filtre image (signal)

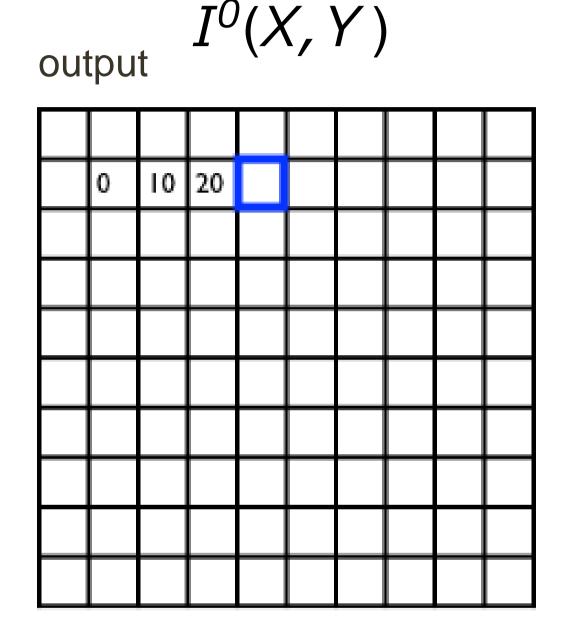




$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

filtre image (signal)



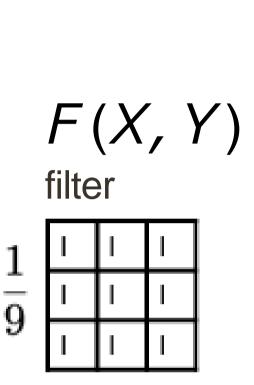


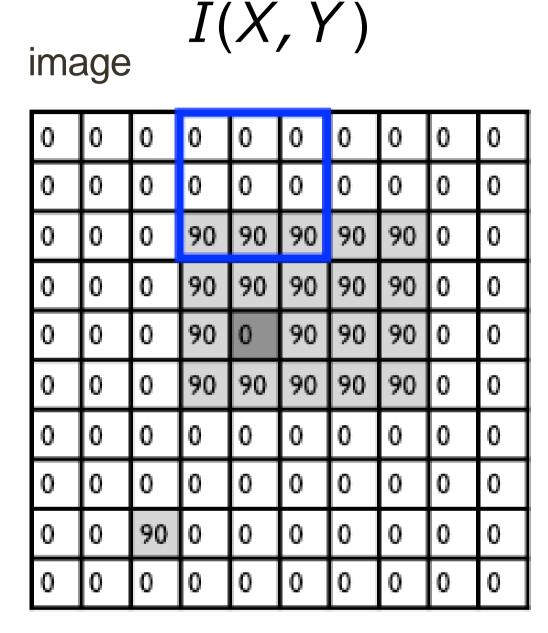
$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre

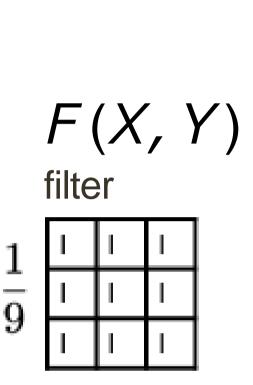
image (signal)

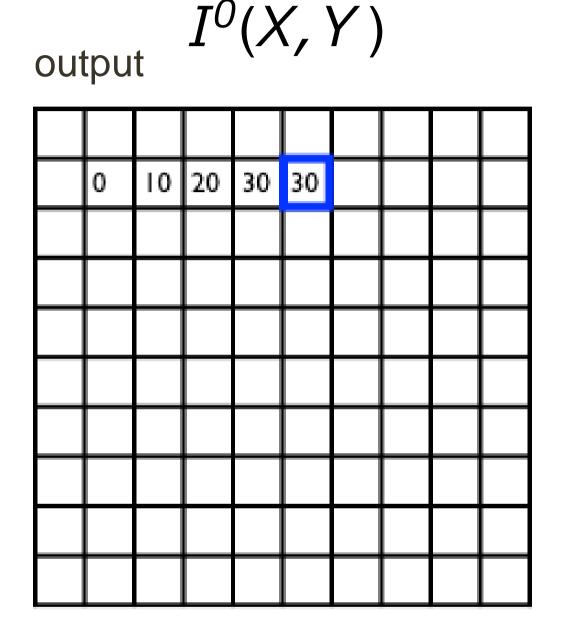




$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

filtre image (signal)



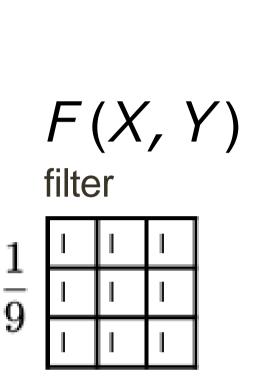


$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

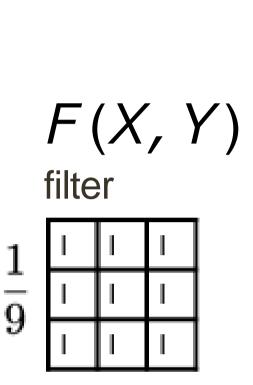
sortie

filtre

image (signal)



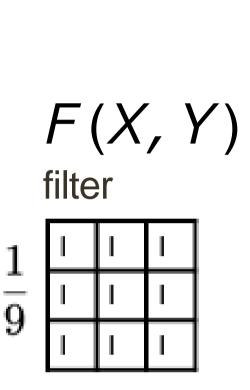
$$I^{0}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie
$$j = -k \ i = -k$$
filtre image (signal)

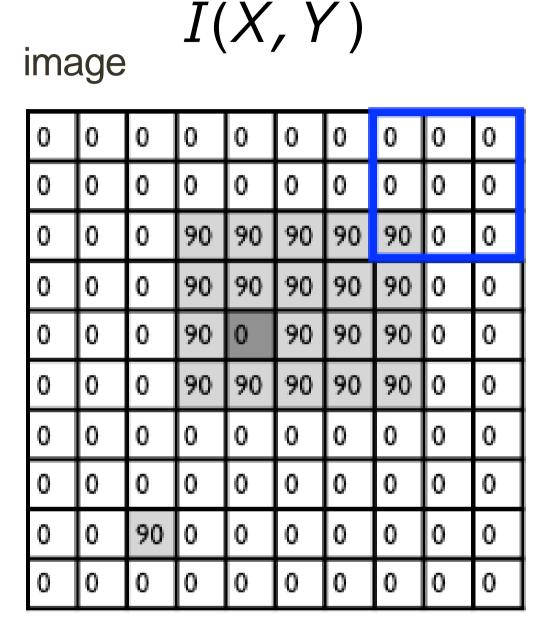


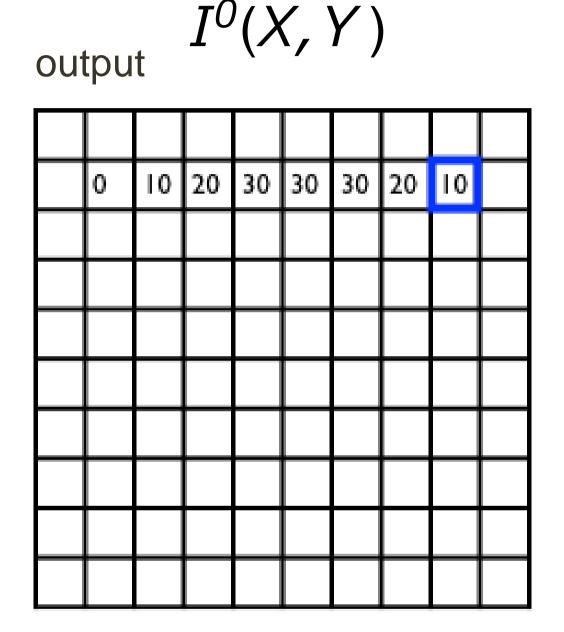
$$I^{O}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

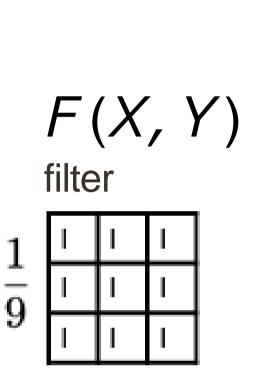
filtre image (signal)







$$I^{0}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie
$$j = -k \ i = -k$$
filtre image (signal)

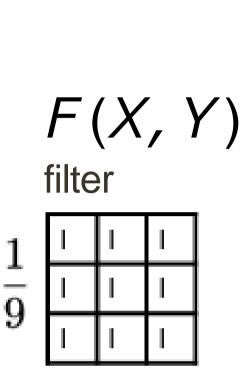


$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre

image (signal)

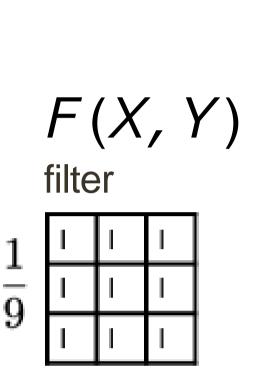


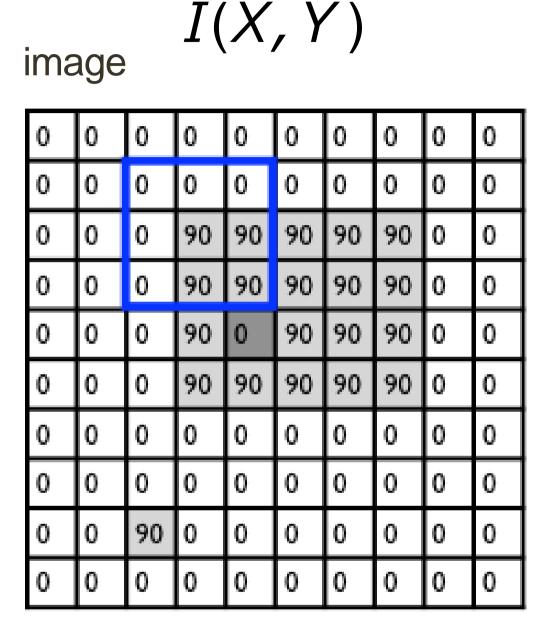
ıma	age	!							
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

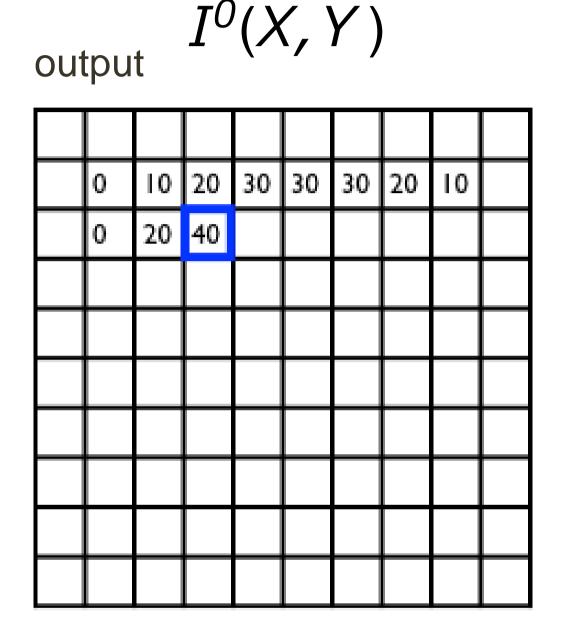
$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

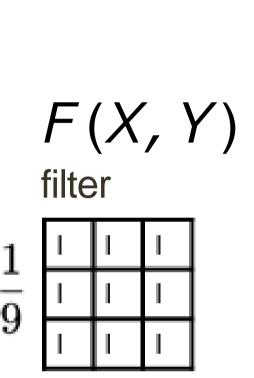
image (signal)

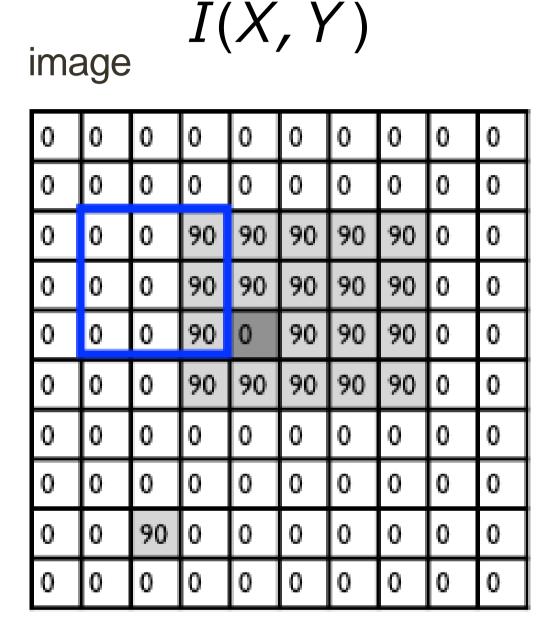


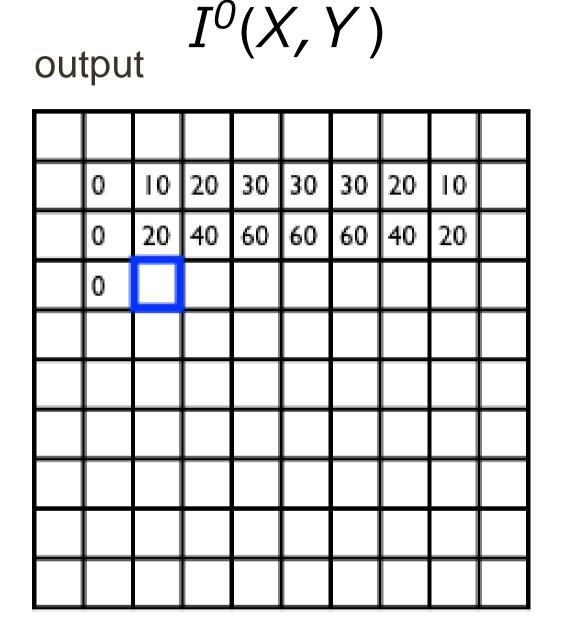




$$I^{0}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie
$$j = -k \ i = -k$$
filtre image (signal)



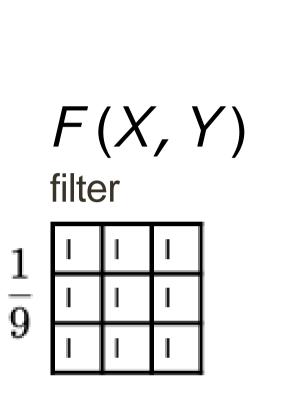


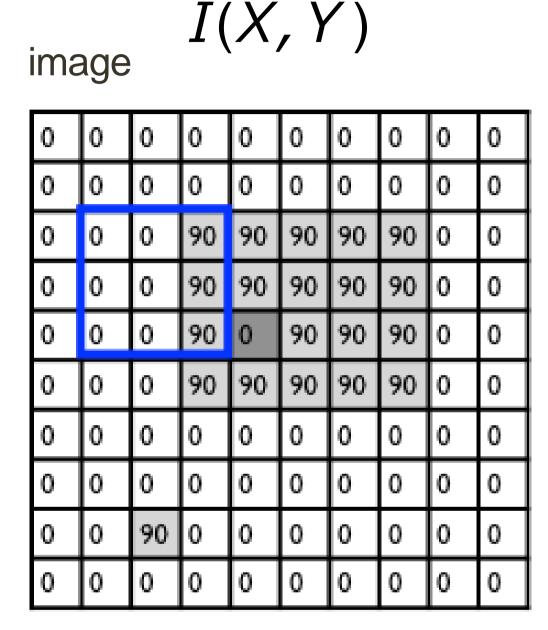


$$I^{O}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre image (signal)



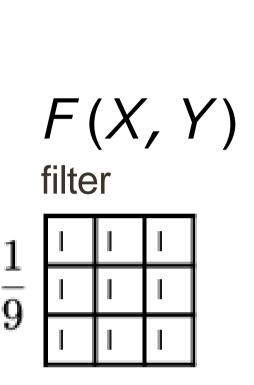


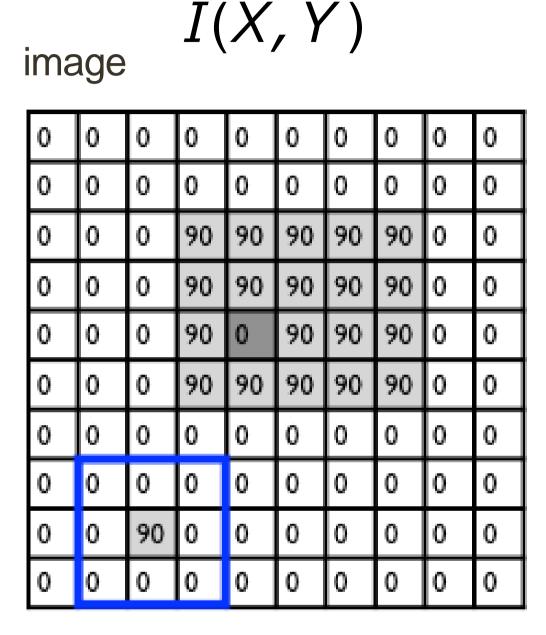
$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre

image (signal)



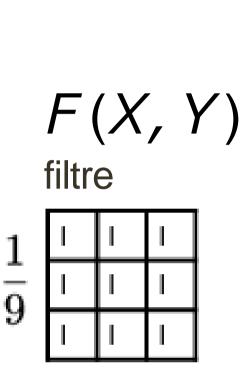


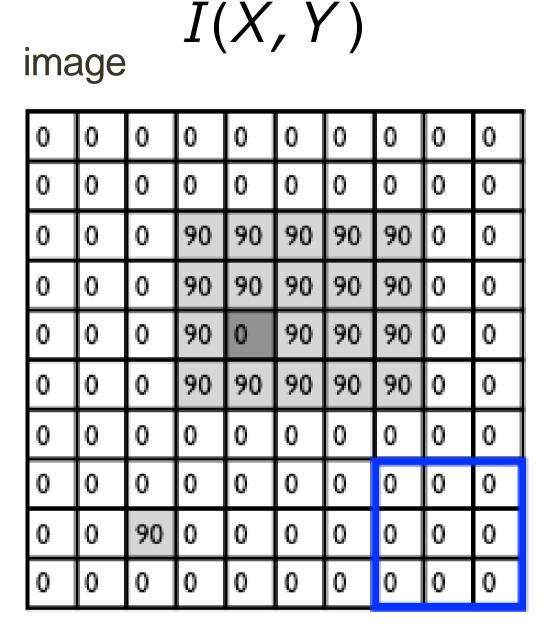
$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

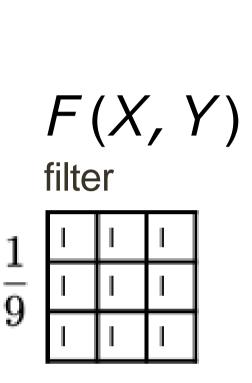
filtre

image (signal)





$$I^{0}(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J)I(X+i,Y+j)$$
sortie
$$j = -k \ i = -k$$
filtre image (signal)



$$I^{0}(X, Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I, J) I(X + i, Y + j)$$
sortie

sortie

filtre

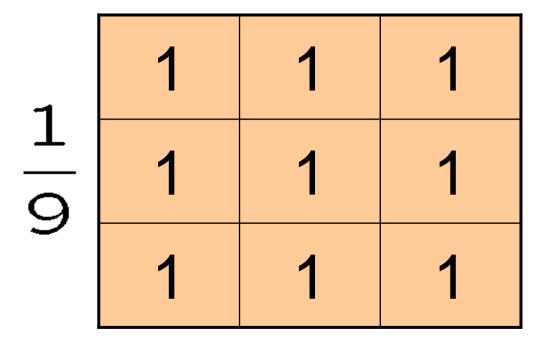
image (signal)

Motivation: débruitage d'image

Comment peut-on réduire le bruit dans une photo?

Moyenne mobile

- remplace chaque pixel par une moyenne pondérée de son voisinage
- Les poids sont appelés : noyau du filtre
- Quels sont les poids pour la moyenne d'un voisinage 3x3?



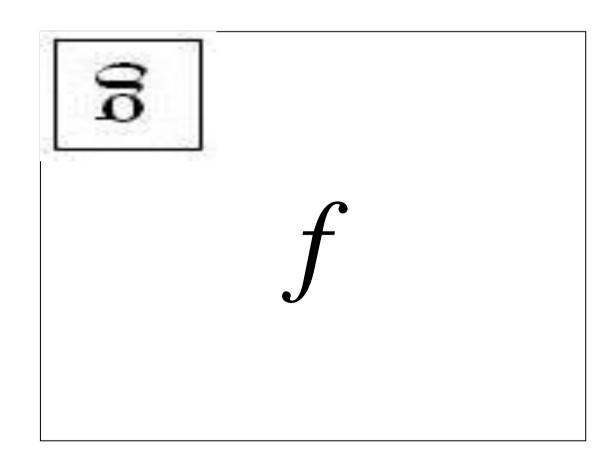
"box filter"

Définir la convolution

 Soit f une image et g un noyau. La sortie de f convoluée avec g est notée f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: noyau est "inversée"



MATLAB functions: conv2, filter2, imfilter

Principales propriétés

- Linéarité: filter $(f_1 + f_2)$ = filter (f_1) + filter (f_2)
- Invariance spatiale: ne dépend pas de la position du pixel : filter(shift(f)) = shift(filter(f))
- Résultat théorique : tout opérateur linéaire invariant peut être représentée par une convolution

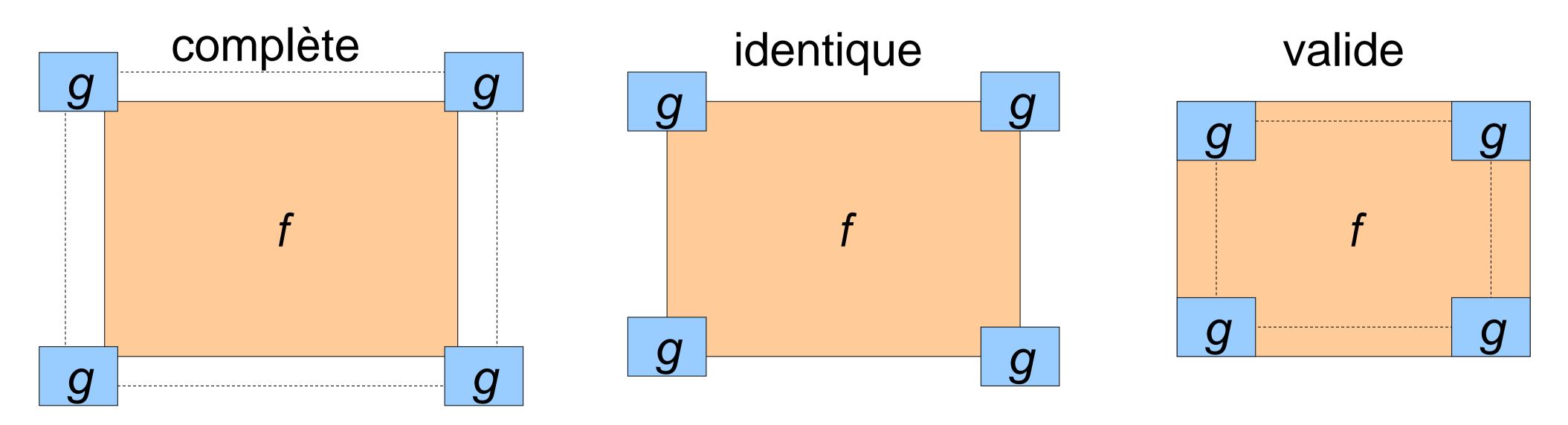
Propriétés

- Commutative: a * b = b * a
 - Pas de différence entre le filtre et le signal du point de vue concept
- Associative: $a^*(b^*c) = (a^*b)^*c$
 - Souvent plusieurs filtres appliqués l'un après l'autre: (((a * b₁) * b₂) * b₃)
 - Ceci équivalent à appliquer un seul filtre: a * (b₁ * b₂ * b₃)
- Distributive avec addition: $a^*(b+c) = (a^*b) + (a^*c)$
- Multiplication par Scalaires : ka * b = a * kb = k (a * b)
- Identité: impulsion de Dirac e = [..., 0, 0, 1, 0, 0, ...]
 a * e = a

Détails de l'effet de bord

Quelle est la taille de l'image de sortie?

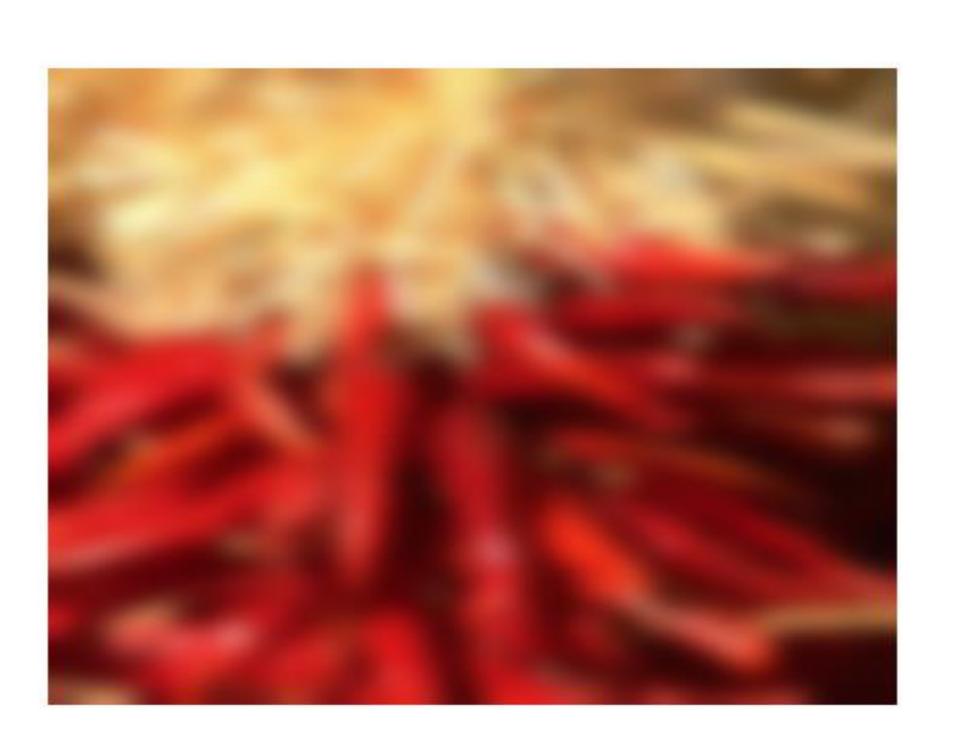
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g



Détails Ennuyeux

Les éffets de bordure?

- La fenêtre du filtre dépasse le bord de l'image
- besoin d'extrapoler
- méthodes:
 - couper les bords (clip filter)
 - replier les deux bords
 - copier le bord
 - réflexion du bord



Effets de bord sous Matlab

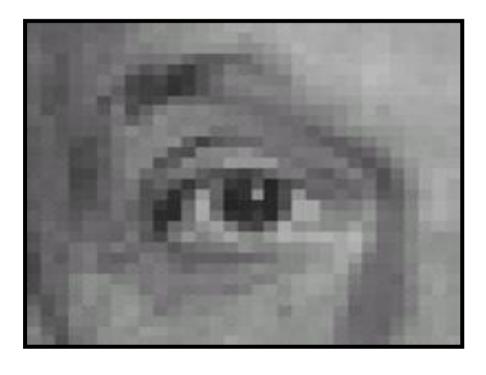
Les effets de bord?

- La fenêtre du filtre dépasse le bord de l'image
- besoin d'extrapoler
- méthodes:
 - clip filter (black): imfilter(f, g, 0)
 - replier les deux bords: imfilter(f, g, 'circular')
 - copier le bord: imfilter(f, g, 'replicate')
 - réflexion du bord: imfilter(f, g, 'symmetric')



Originale

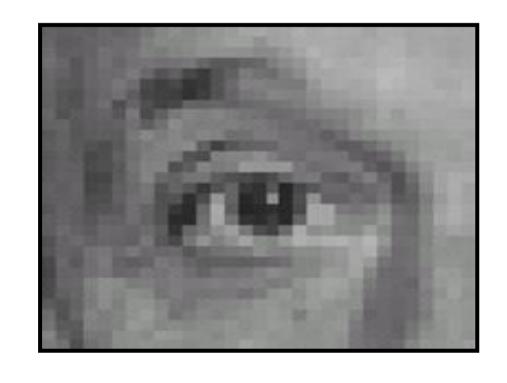
0	0	0
0	1	0
0	0	0



Originale

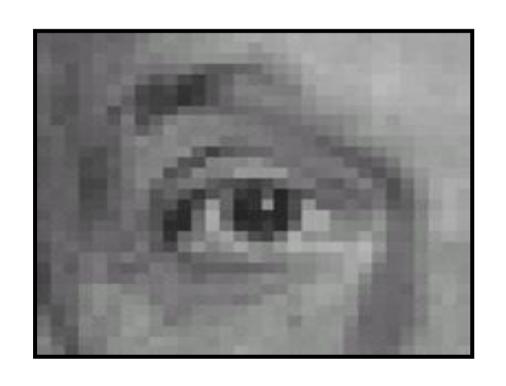
0	0	0
0	1	0
0	0	0

Filtrée (pas de changement)



Originale

0	0	0
0	0	1
0	0	0



Originale

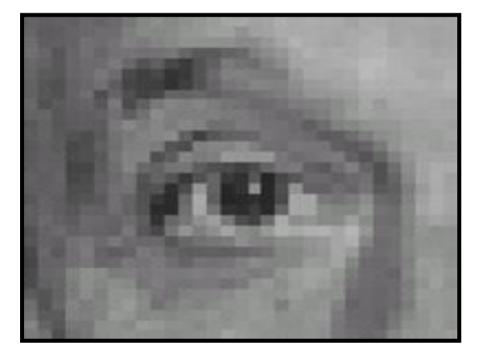
0	0	0
0	0	1
0	0	0

Décalée vers la gauche par 1 pixel

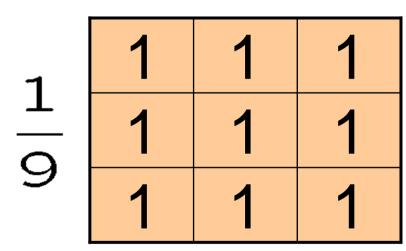


Originale

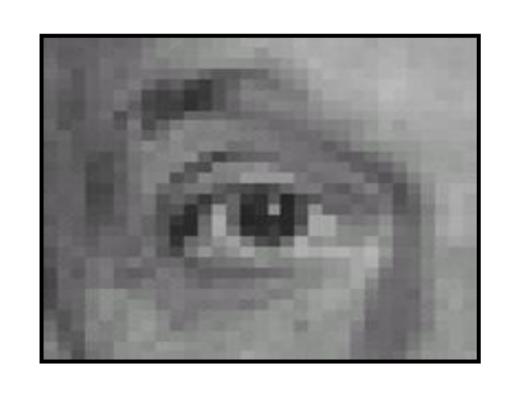
1	1	1	1
<u></u>	1	1	1
9	1	1	1



Originale



Floue (avec un box filtre)



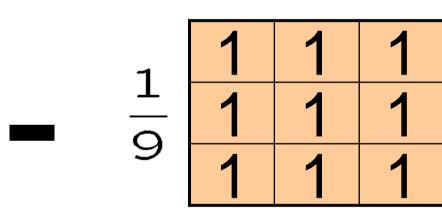
Originale

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Noter que la somme des poids vaut 1)

Originale

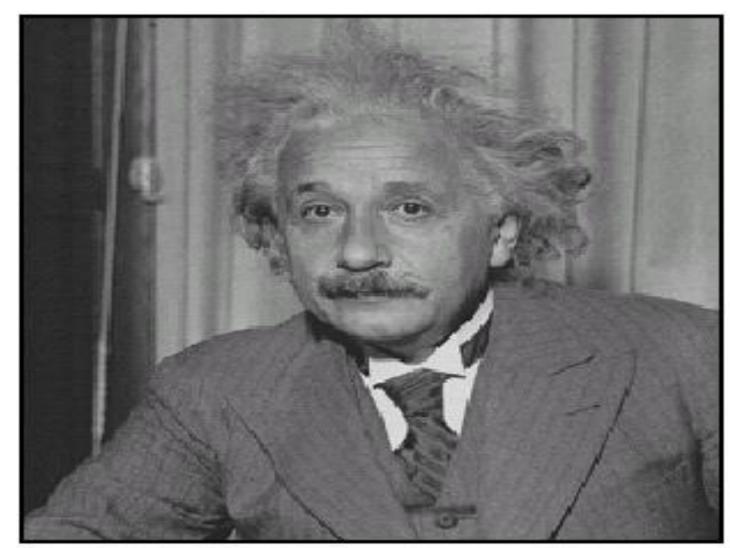
0	0	0
0	2	0
0	0	0



Filtre d'accentuation

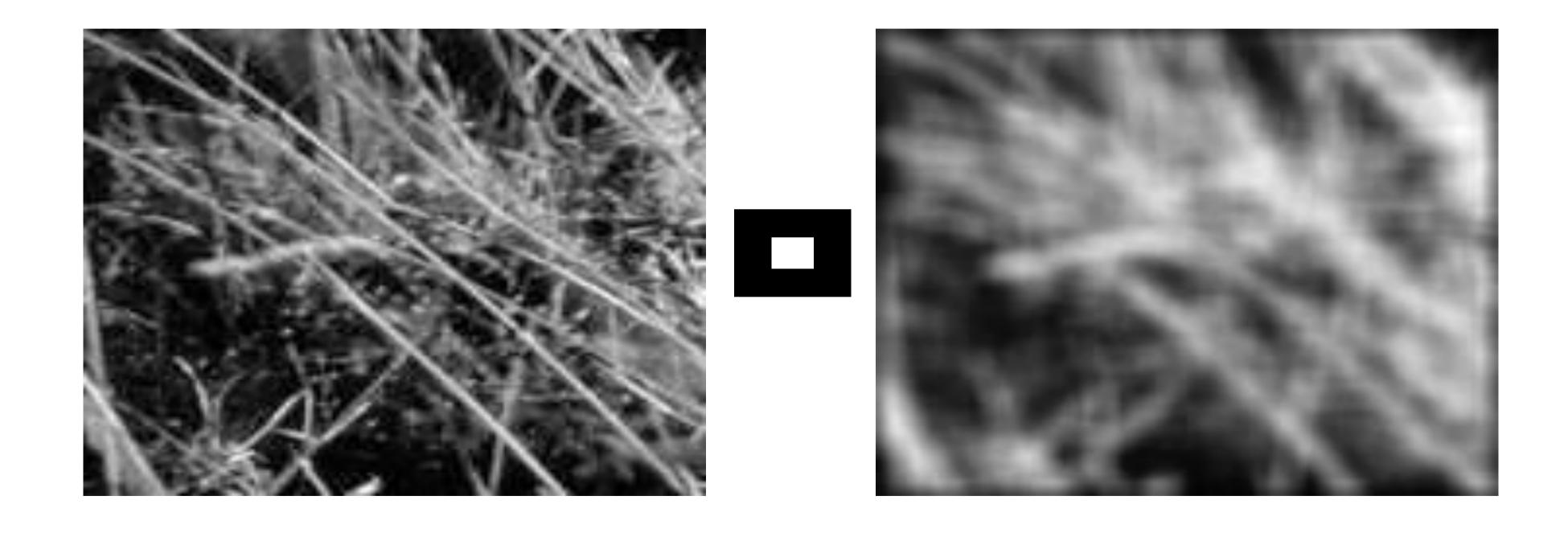
- Accentuer les différences avec la moyenne locale

Accentuation (Sharpening)



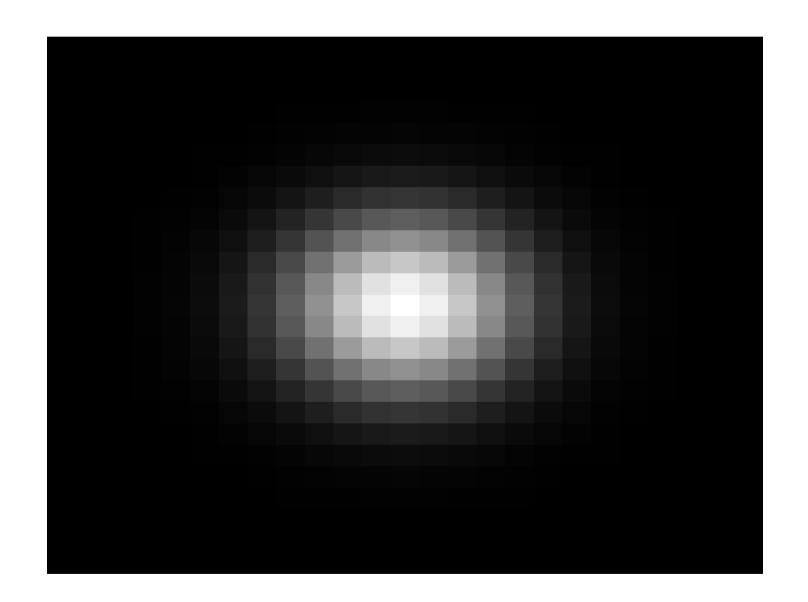
Lissage avec le filtre boite (box filter)

- Effet de bord dans cette photo?
- Quelle est la solution?



Lissage avec le filtre boite (box filter)

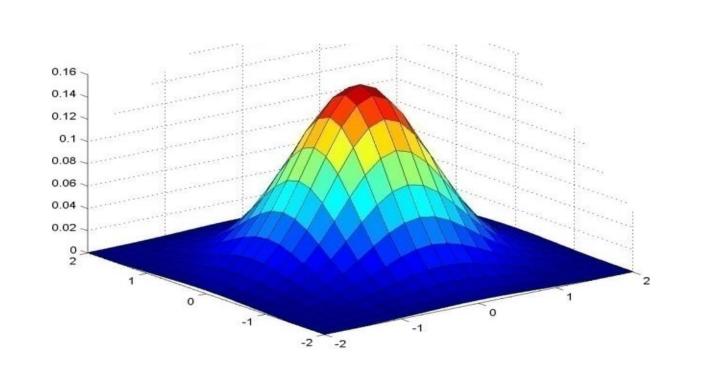
 Pour éliminer les effets du bord, pondérer la contribution des pixels voisins selon leur approximité du pixel central

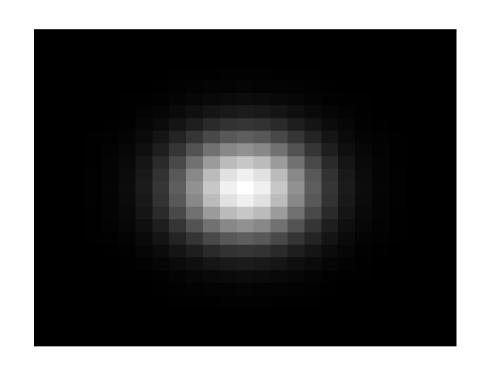


"bosse flou"

Filtre ou Noyau Gaussien

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$





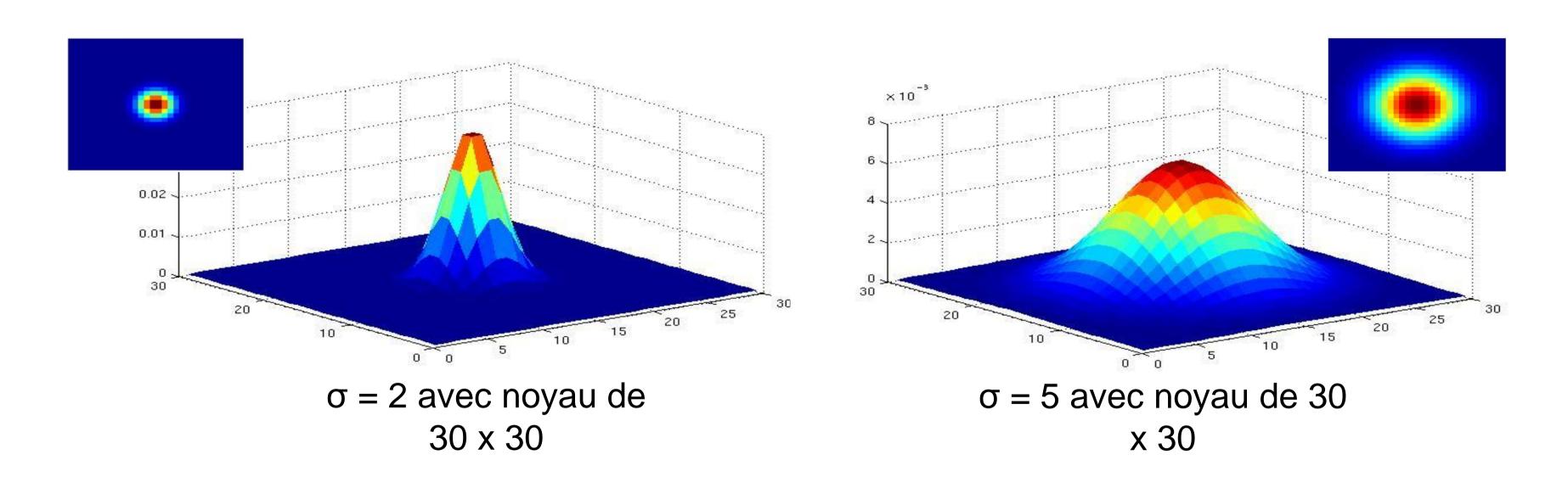
0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

 5×5 , $\sigma = 1$

 Facteur constant fait que le volume vaut 1 (à ignorer lors du calcul des valeurs du filtre, puisque il faut renormaliser les poids de façon que leur somme vaut 1)

Filtre ou Noyau Gaussien

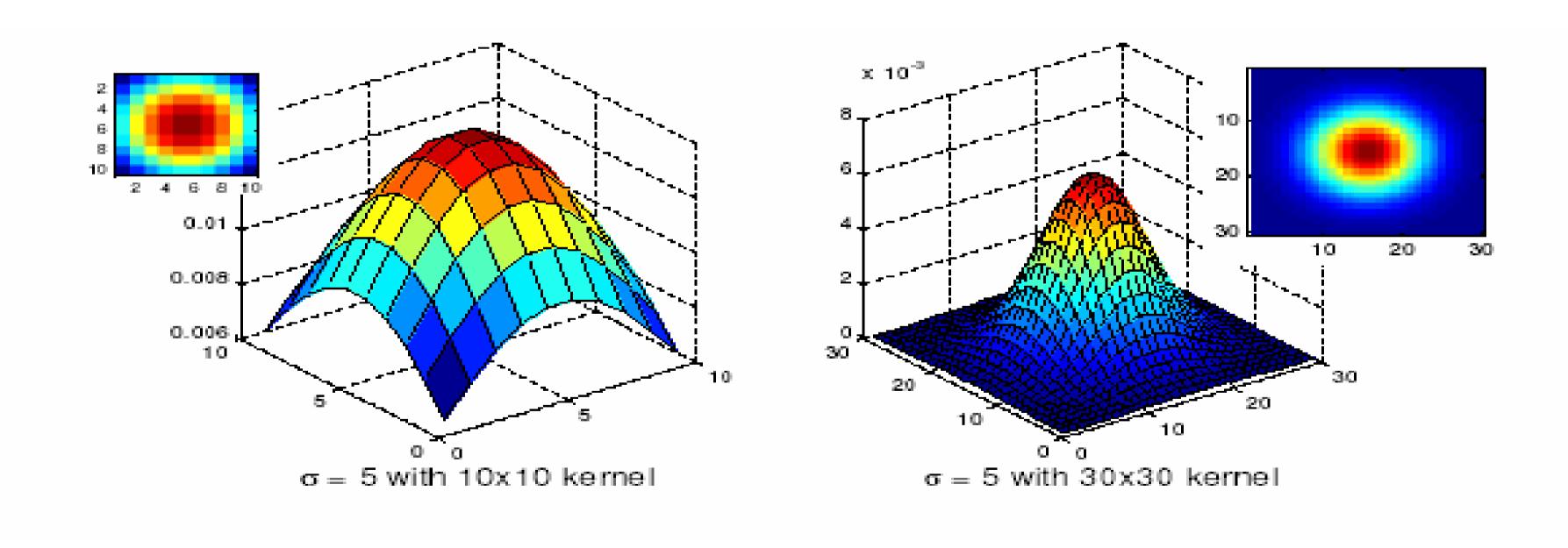
$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}}$$



Ecart-type σ: determine l'étendue du lissage

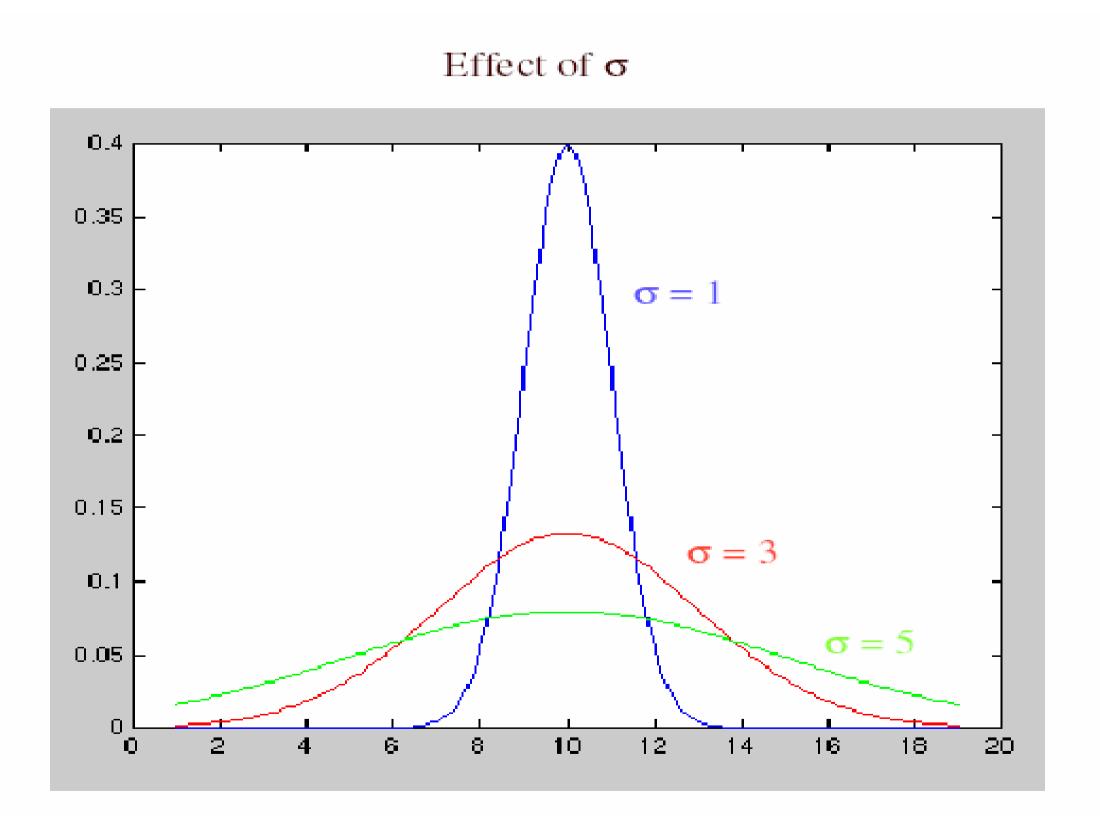
Choix de la taille du noyau

 La fonction Gaussienne est à support infini, mais les filtres discrets utilise des noyaux finis

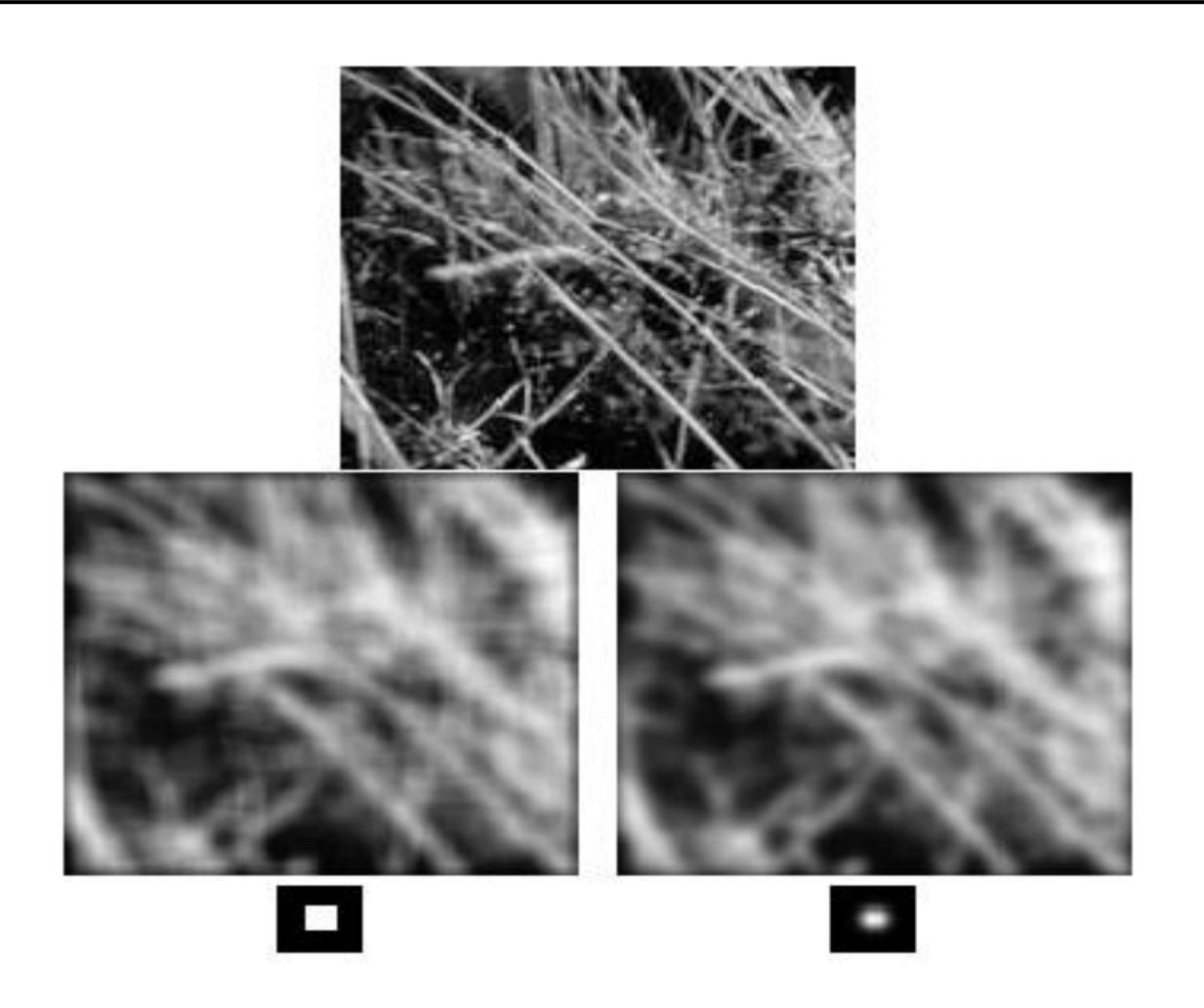


Choix de la taille du noyau

• Régle: mettre la demi-largeur du filtre égale à 3σ



Gaussien vs. filtrage par 'box'



Filtres Gaussiens

- Elimine les composantes "hautes-fréquences" de l'image (filtre passe-bas)
- Convoluer avec lui-même est un autre Gaussien
 - Ainsi on peut lisser avec des noyaux à petit- σ , répéter, et obtenir le même résultat d'un noyau à large- σ ,
 - Convoluer 2 fois avec un noyau Gaussien avec ecart-type. σ est équivalent à convoluer avec 1 noyau avec ecart-type $\sigma\sqrt{2}$
- Noyau Separable : Equivalent à un produit de 2 Gaussiens 1D

Séparabilité du filtre Gaussien

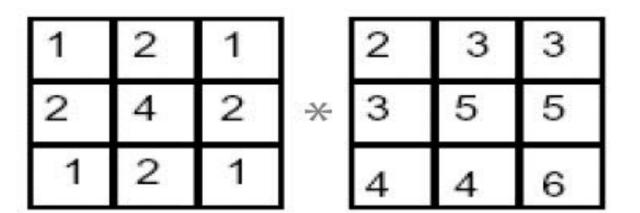
$$G_{\sigma}(x,y) = rac{1}{2\pi\sigma^2} \exp^{-rac{x^2+y^2}{2\sigma^2}}$$

$$= \left(rac{1}{\sqrt{2\pi}\sigma} \exp^{-rac{x^2}{2\sigma^2}}
ight) \left(rac{1}{\sqrt{2\pi}\sigma} \exp^{-rac{y^2}{2\sigma^2}}
ight)$$

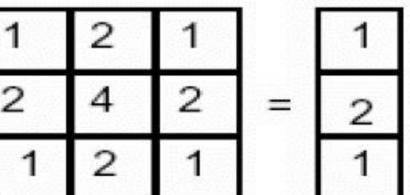
Gaussien 2D est exprimé sous forme de produit de 2 Gaussiens 1D, une fonction de x et l'autre de y

Exemple de Séparabilité

convolution 2D (pixel central)

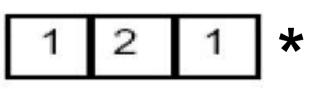


Le filtre factorisé en produit de filters 1D:



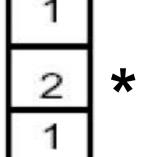
x 1 2 1

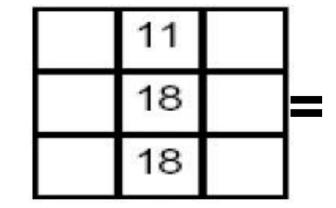
Appliquer convolution suivant les lignes:



3 5 5 = 18	2	3	3		3	11	
4 4 6 18	3	5	5	 =		18	
4 4 6	4	4	6			18	

suivi par une convolution selon la colonne:





2		
	65	

Pourquoi la séparabilité est utile?

- Quelle est la compléxité pour filtrer une image n×n avec un noyau m×m?
 - $O(n^2 m^2)$
 - Par contre si le noyau est séparable?
 - O(n² m)

Bruit

Original

Impulse noise

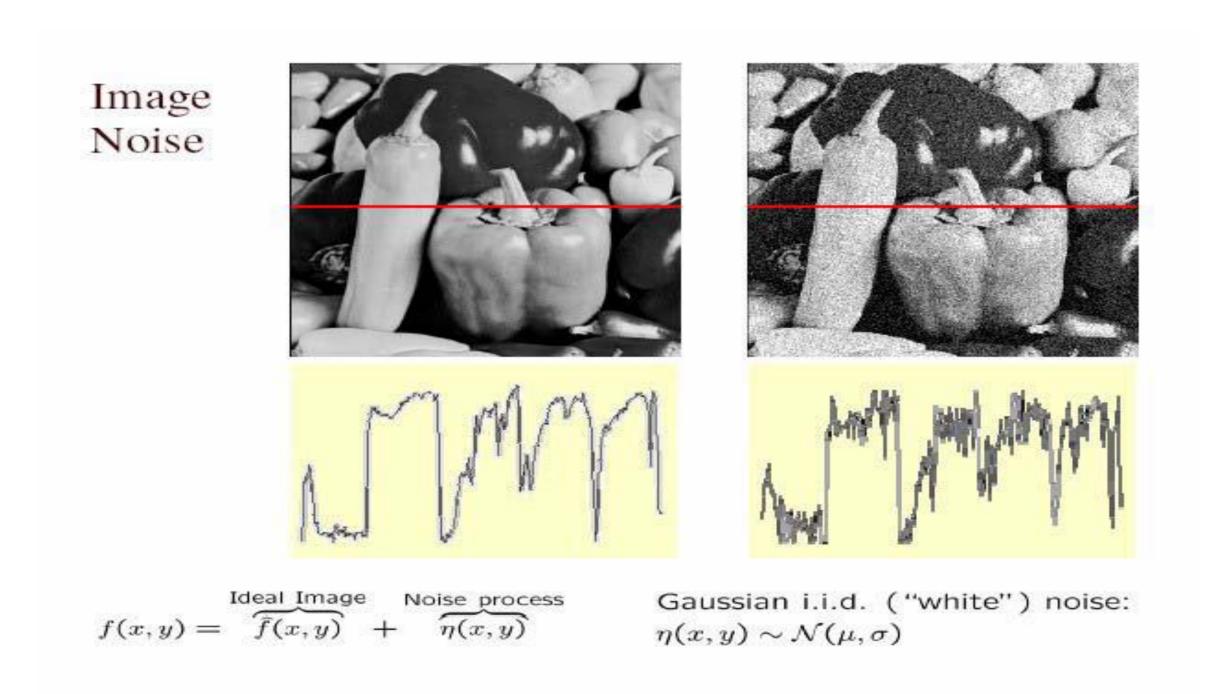
Salt and pepper noise

Gaussian noise

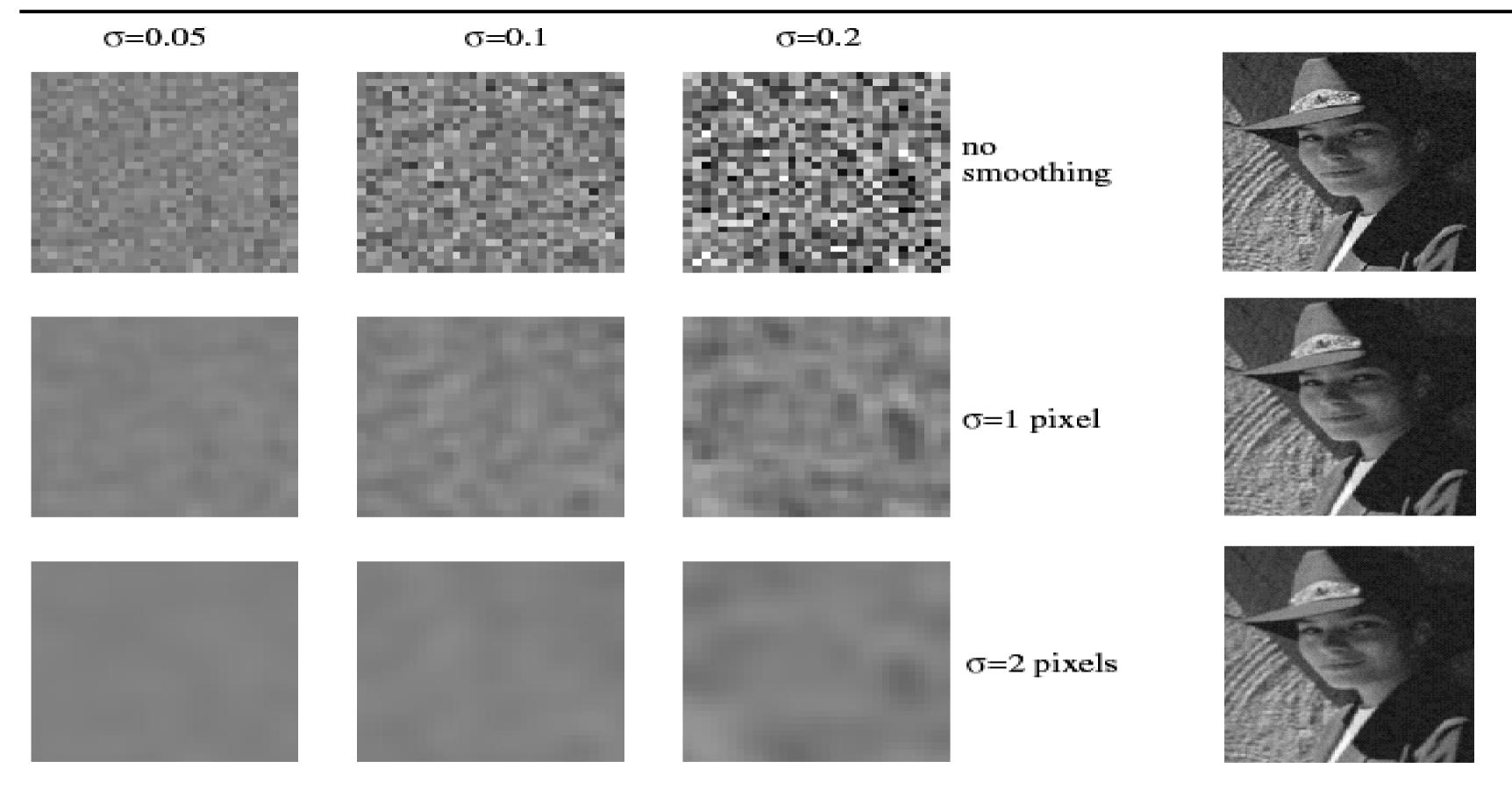
- Bruit Salt and pepper: contient des pixels blancs et noirs
- Bruit Impulsion: contient des pixels blancs aléatoires
- Bruit Gaussien: variations de l'intensité selon une distribution Gaussienne normale

Bruit Gaussien

- Modèle Mathématique : somme de plusieurs facteurs indépendants
- Bon pour des écart-types faibles
- Hypothèse: indépendant, bruit moyenne nulle

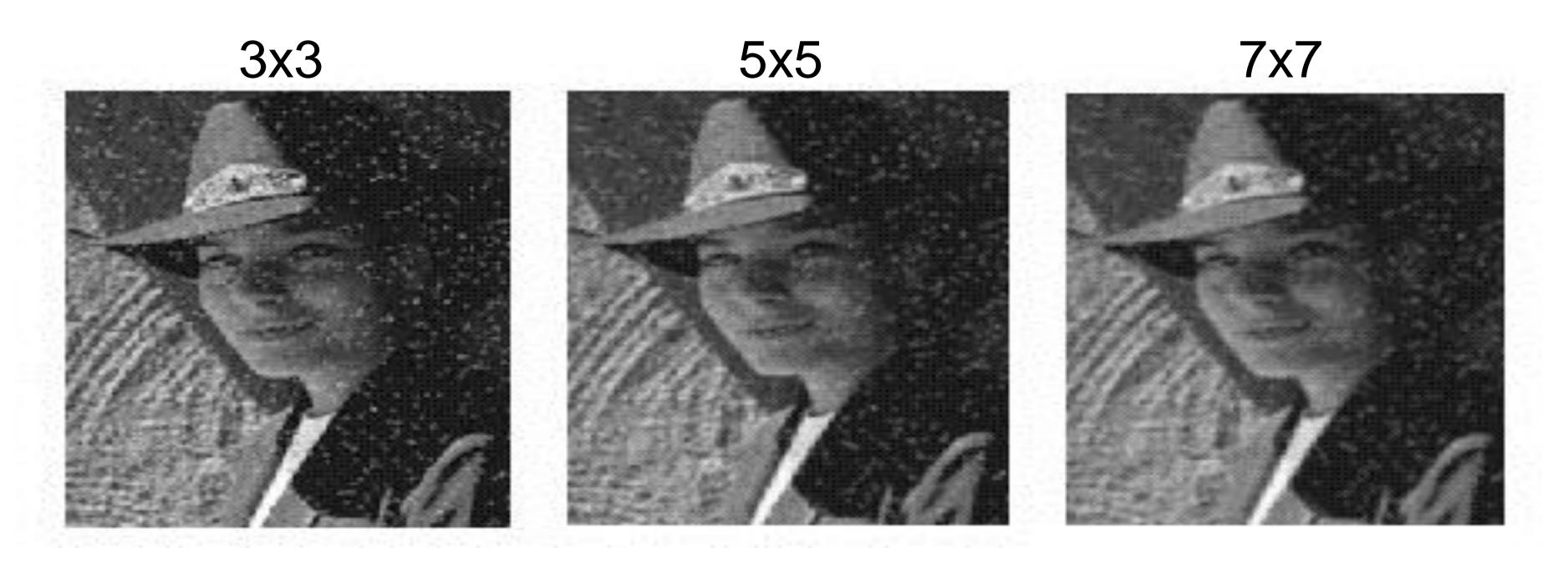


Réduire le bruit Gaussien



Lissage avec des écart-types plus larges supprime le bruit, mais aussi rend l'image plus floue

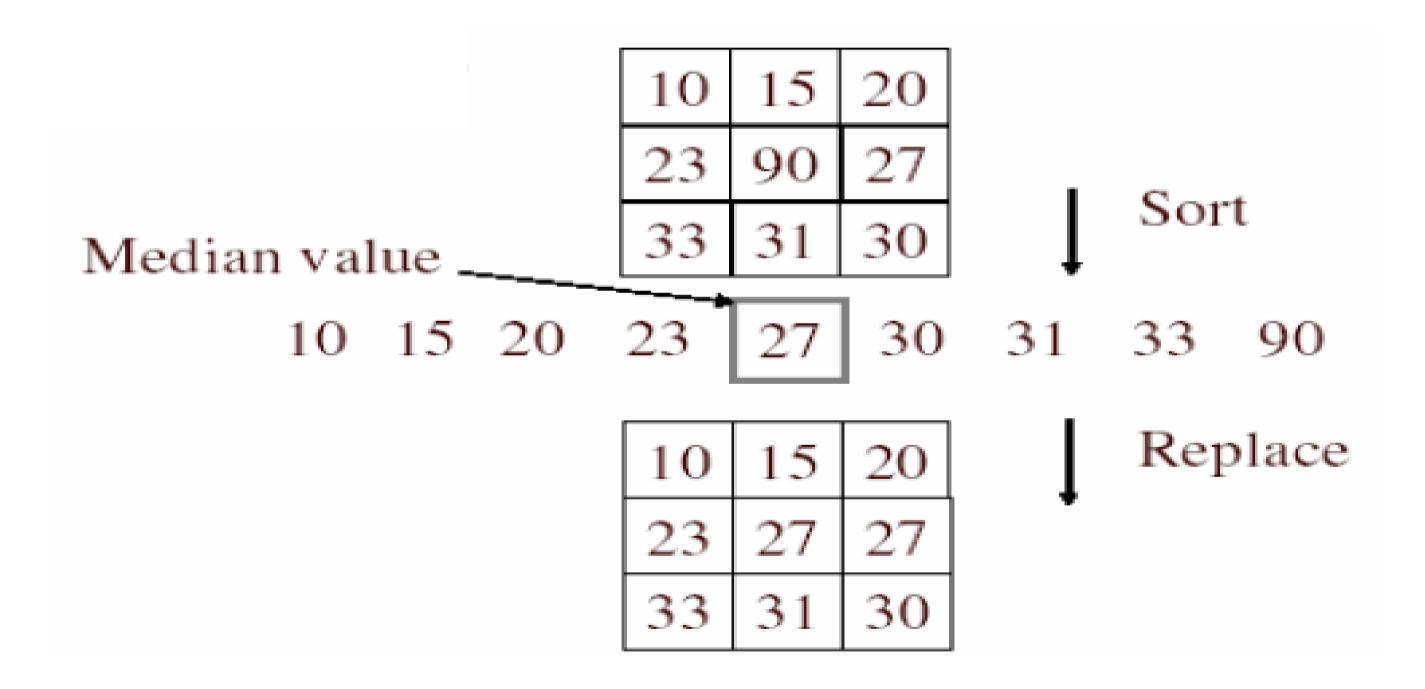
Réduire le bruit salt-and-pepper



Comparer les résultats?

Une solution alternative : filtrage Médian

 Un filtre median opère sur une fenêtre en selectionant l'intensité médiane dans la fenêtre



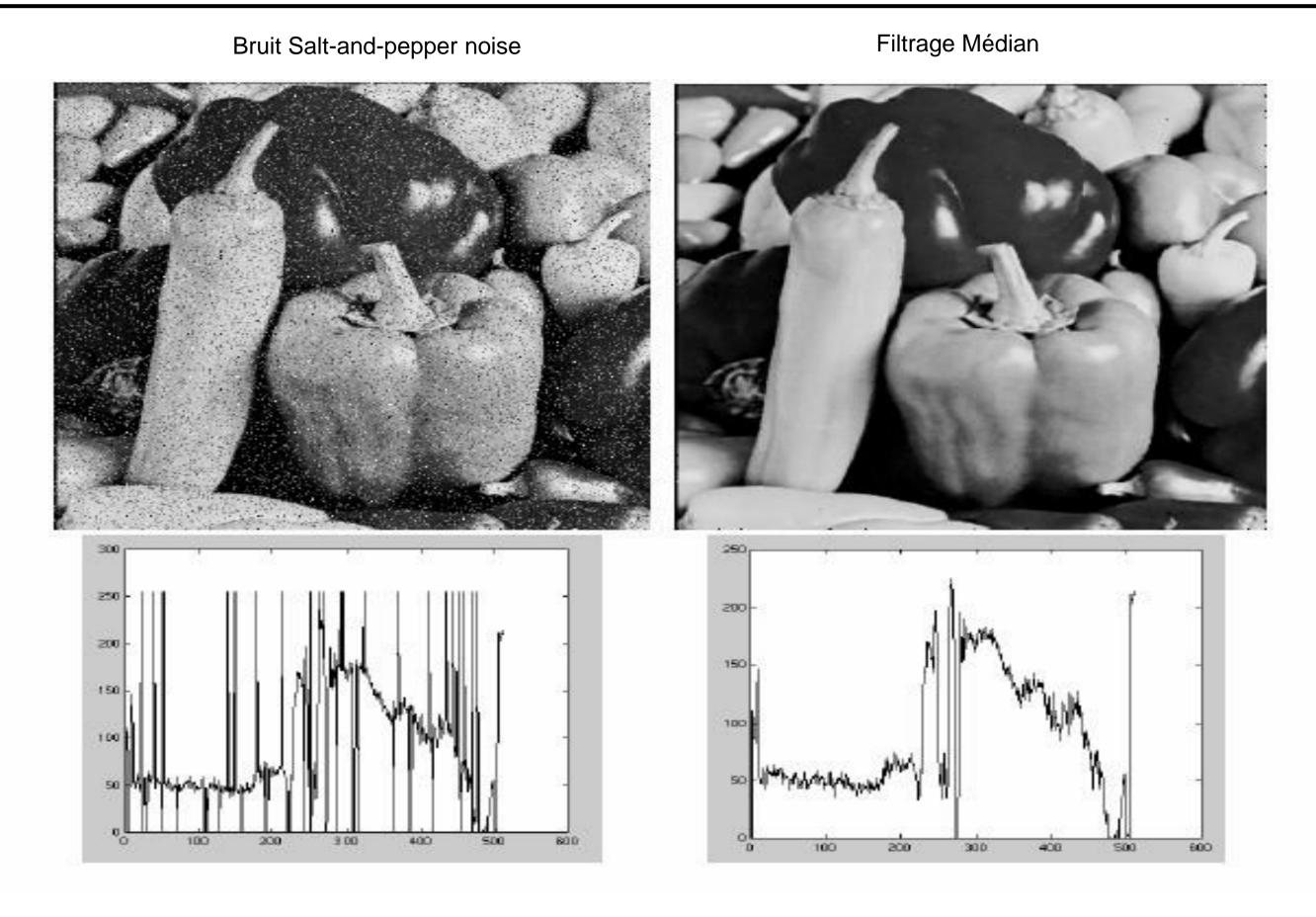
le filtre médian est-il linéaire?

Filtre Médian

- Quel est l'advantage du filtrage médian sur le filtrage Gaussian ?
 - Robustesse au bruit d'impulsion (outliers)

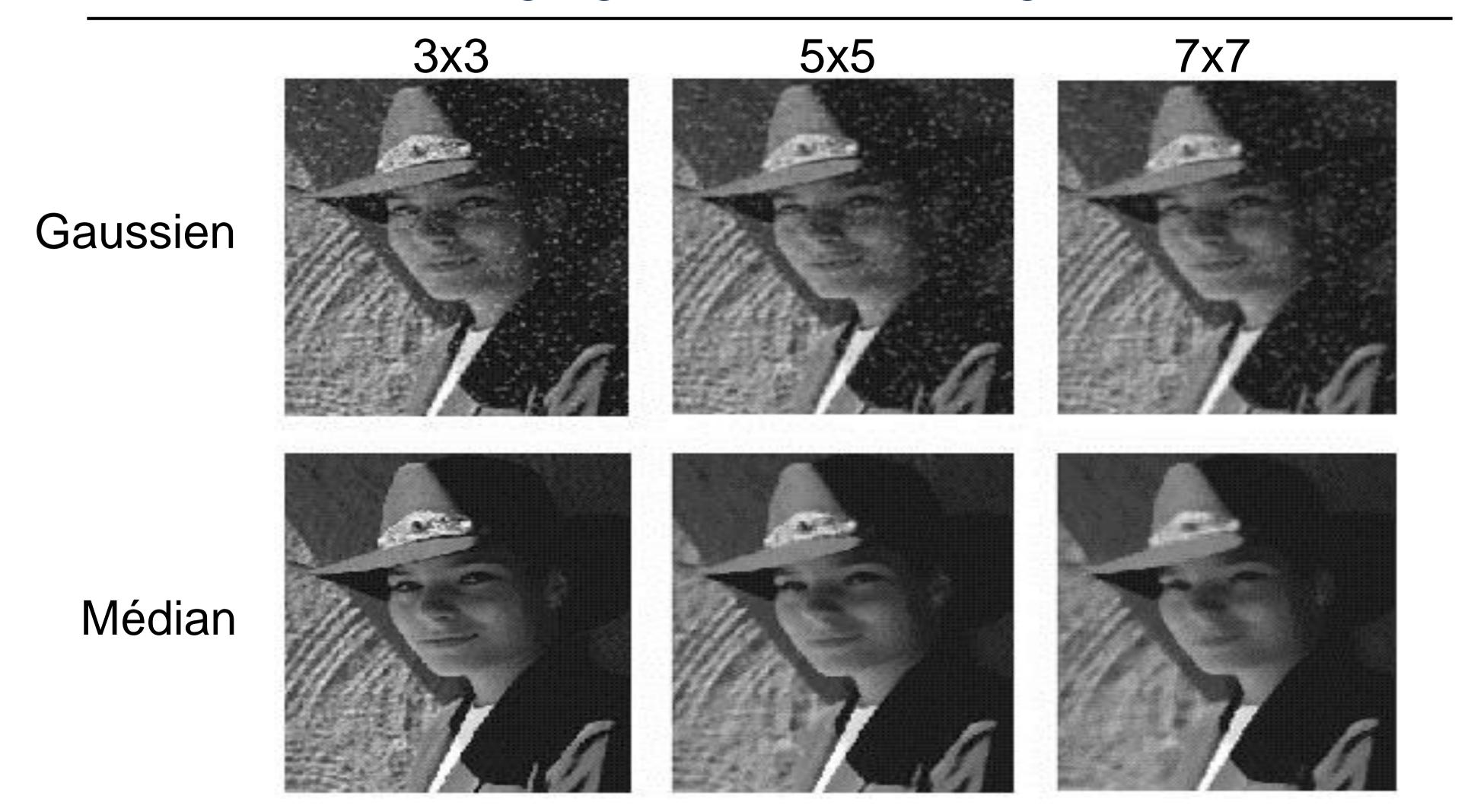
filters have width 5: INPUT MEDIAN MEAN

Filtre Médian

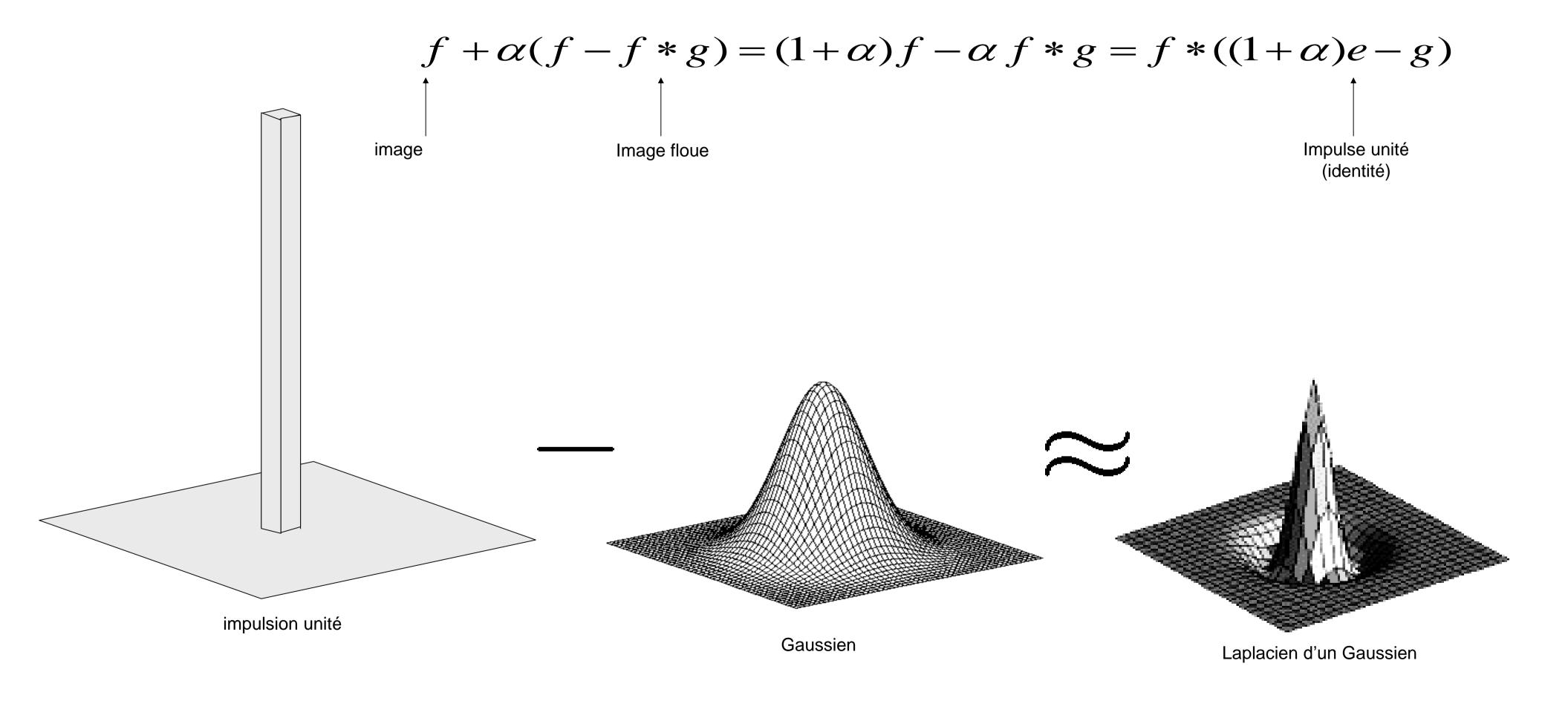


MATLAB: medfilt2(image, [h w])

Filtrage gaussien vs. filtrage médian

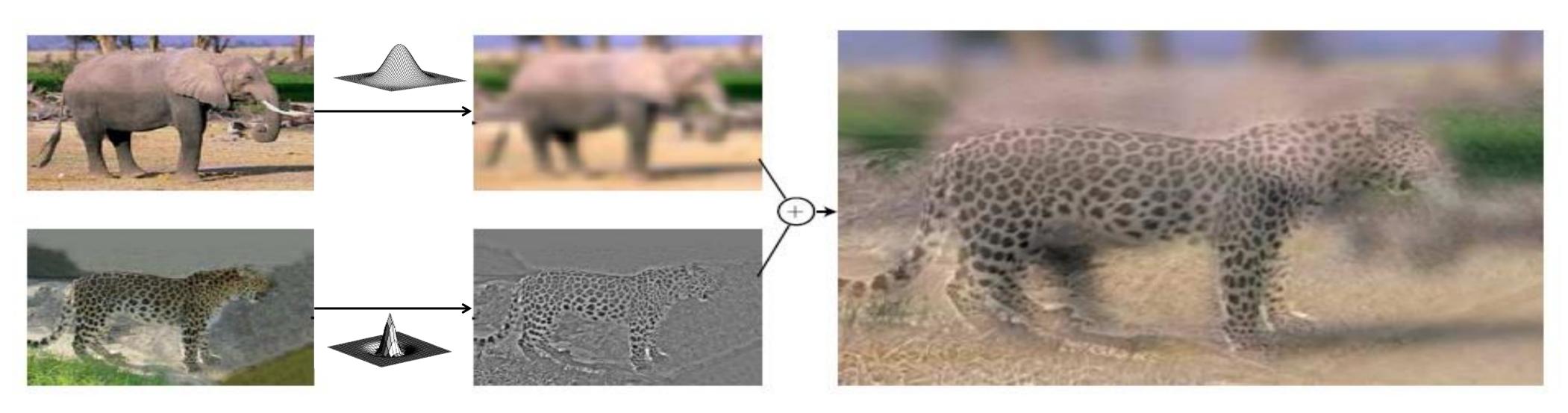


Filtre dé-accentuateur



Application: Images Hybrides

Filtre Gaussien



Filtre Laplacien

Voir : A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006 Exercices ...

Exemple 1: pour s'échauffer

0	0	0
0	1	0
0	0	0

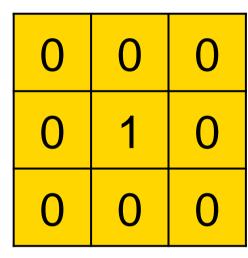
Original

Filtre1

Résultat

Exemple 1: résultat

Original



Filtre

Résultat (pas de changement)

Exemple 2:

0	0	0
0	0	1
0	0	0

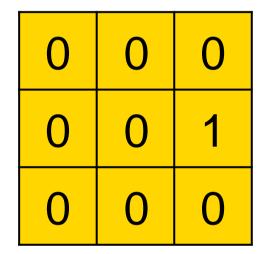
Original

Filtre

Résultat

Exemple 2:

Original



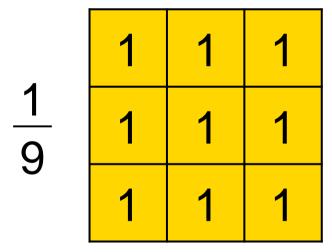
Filtre

Résultat
(décalage à gauche
d'1 pixel)

Exemple 3:



Original

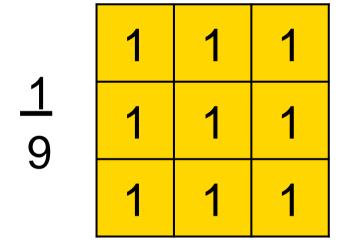


Filtre (total=1)

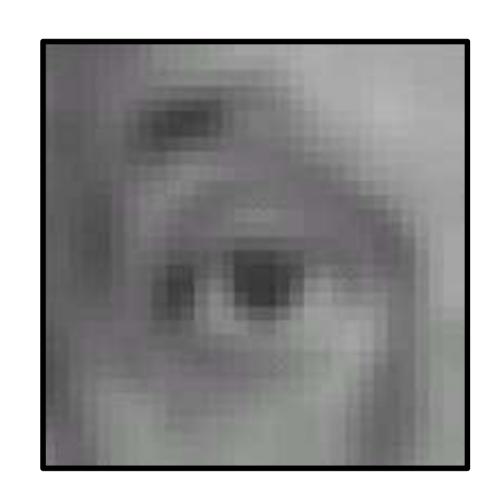
Résultat

Exemple 3:

Original



Filtre
(somme des poids = 1)



Résultat
(flou dû au filtre box)

Exemple 4:

0	0	0	
0	2	0	-
0	0	0	

$$- \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Résultat

Exemple 4:

0	0	0
0	2	0
0	0	0

$$- \frac{1}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1}$$

Original

Filtre (total=1)

Résultat (accentuer)

Exemple 5: Lissage avec un Filtre Box

Exemple 5: Filtres Gaussiens

