T.D Chapitre 3

(Surfaces Paramétrées)

Exercice 1: Soit (Σ, M) la surface paramétrée définie par :

$$M(u,v) = (x(u,v), y(u,v), z(u,v)) = (u+v^2, u^2+v, u.v), (u,v) \in \mathbb{R}^2.$$

- 1) Déterminer les lignes coordonnées passant par le point M(1,1).
- 2) Montrer que le point M(1,1) est un point régulier de (Σ, M) .
- 3) Trouver l'équation cartésienne du plan tangent $\Pi_{M(1,1)}\Sigma$.
- 4) Déterminer le vecteur normal unitaire $\overline{K_M(1,1)}$ à Σ au point M(1,1).

Solution:

1) Par définition (voir le cours), les lignes coordonnées passant par le point $M(u_0, v_0)$ sont des courbes tracées sur Σ , images des applications $M \circ \gamma_{v_0} : u \in I \longrightarrow M \circ \gamma_{v_0}(u) = M(u, v_0) \in \mathbb{R}^3$, et $M \circ \gamma_{u_0} : v \in J \longrightarrow M \circ \gamma_{u_0}(v) = M(u_0, v) \in \mathbb{R}^3$.

Les lignes coordonnées passant par le point M(1,1) sont donc les courbes $M \circ \gamma_1(\mathbb{R})$ et $M \circ \gamma_1(\mathbb{R})$ respectivement paramétrisées par les applications suivantes :

$$M \circ \gamma_1(u) = M(u, 1) = (u + 1, u^2 + 1, u),$$

$$M \circ \gamma_1(v) = M(1, v) = (1 + v^2, 1 + v, v).$$

2) Si
$$\frac{\overrightarrow{\partial M}}{\partial u}(u_0, v_0) = \left(\frac{\overrightarrow{d(M \circ \gamma_{v_0})}}{du}(u_0)\right)$$
 et $\frac{\overrightarrow{\partial M}}{\partial v}(u_0, v_0) = \left(\frac{\overrightarrow{d(M \circ \gamma_{u_0})}}{dv}(v_0)\right)$ sont

linéairement indépendants, le point $M(u_0, v_0)$ est dit point régulier de (Σ, M) . Dans notre cas :

$$\frac{\overrightarrow{\partial M}}{\partial u}(u,v) = (1,2u,v)$$
 et $\frac{\overrightarrow{\partial M}}{\partial v}(u,v) = (2v,1,u)$.

Ceci implique

$$\frac{\overrightarrow{\partial M}}{\partial u}(1,1) = (1,2,1)$$
 et $\frac{\overrightarrow{\partial M}}{\partial v}(1,1) = (2,1,1)$.

Ces deux derniers vecteurs sont linéairement indépendants ; par conséquent M(1,1) est un point régulier de (Σ, M) .

3) $\frac{\overrightarrow{\partial M}}{\partial u}(1,1)$ et $\frac{\overrightarrow{\partial M}}{\partial v}(1,1)$ sont linéairement indépendants, donc il existe un plan tangent à Σ au point M(1,1) de direction l'espace vectoriel engendré par $\left\{\frac{\overrightarrow{\partial M}}{\partial u}(1,1), \frac{\overrightarrow{\partial M}}{\partial v}(1,1)\right\}$. Déterminons l'équation cartésienne du plan tangent $\Pi_{M(1,1)}\Sigma$ à Σ au point M(1,1)=(2,2,1).

Le point $P = (x, y, z) \in \Pi_{M(1,1)}\Sigma$ équivaut à $\overline{M(1,1)P} = \alpha \frac{\overline{\partial M}}{\partial u}(1,1) + \beta \frac{\overline{\partial M}}{\partial v}(1,1)$, c'està-dire que les vecteurs $\overline{M(1,1)P}$, $\frac{\overline{\partial M}}{\partial v}(1,1)$ et $\frac{\overline{\partial M}}{\partial v}(1,1)$ sont liés. Ceci équivaut à :

$$det\left(\overline{M(1,1)P}, \begin{array}{c} \overline{\partial M} \\ \overline{\partial u} \end{array} (1,1), \begin{array}{c} \overline{\partial M} \\ \overline{\partial v} \end{array} (1,1)\right) = 0 \quad \Leftrightarrow$$

$$\Leftrightarrow \quad \begin{vmatrix} x-2 & y-2 & z-1 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{vmatrix} = (x-2) + (y-2) - 3(z-1) = 0.$$

Par conséquent l'équation du plan tangent $\Pi_{M(1,1)}\Sigma$ est :

$$x + y - 3z - 1 = 0.$$

4) Par définition, le vecteur normal unitaire $\overline{K_M(u_0, v_0)}$ à Σ au point $M(u_0, v_0)$ est égale à:

$$\overline{K_{M}(u_{0}, v_{0})} = \frac{\overline{M'_{u}(u_{0}, v_{0})} \wedge \overline{M'_{v}(u_{0}, v_{0})}}{\|\overline{M'_{u}(u_{0}, v_{0})} \wedge \overline{M'_{v}(u_{0}, v_{0})}\|} \cdot$$

$$\overline{M'_u(1,1)} \wedge \overline{M'_v(1,1)} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{vmatrix} = \vec{\iota} + \vec{j} - 3\vec{k}, \quad \text{donc} \quad \left\| \overline{M'_u(1,1)} \wedge \overline{M'_v(1,1)} \right\| = \vec{\iota} + \vec{j} - 3\vec{k},$$

 $\sqrt{1+1+9} = \sqrt{11} \; .$

Par conséquent

$$\overrightarrow{K_M(1,1)} = \frac{1}{\sqrt{11}} (\vec{i} + \vec{j} - 3\vec{k}).$$

Exercice 2: Soit (Σ, M) la surface paramétrée définie par :

$$M(u,v) = (x(u,v), y(u,v), z(u,v)) = (v\cos u, v\sin u, a.v), a \neq 0 \text{ et } (u,v) \in \mathbb{R}^2.$$

- 1) Déterminer les lignes coordonnées passant par le point M(0,1).
- 2) Montrer que le point M(0,1) est un point régulier de (Σ, M) .
- 3) Déterminer l'ensemble des points singuliers de (Σ, M) .
- 4) Trouver l'équation cartésienne du plan tangent $\Pi_{M(0,1)}\Sigma$.
- 5) Déterminer le vecteur normal unitaire $\overline{K_M(0,1)}$ à Σ au point M(0,1).

Solution:

1) Les lignes coordonnées passant par le point M(0,1)=(1,0,a) sont les courbes $M\circ\gamma_1(\mathbb{R})$ et $M\circ\gamma_0(\mathbb{R})$, tracées sur Σ , respectivement paramétrisées par les applications suivantes :

$$M \circ \gamma_1(u) = M(u, 1) = (\cos u, \sin u, a),$$

 $M \circ \gamma_0(v) = M(0, v) = (v, 0, a. v).$

La ligne coordonnée paramétrisée par l'application $M \circ \gamma_1$ est le cercle horizontal centré sur l'axe Oz, de rayon 1 et dans le plan horizontal z = a.

La ligne coordonnée paramétrisée par l'application $M \circ \gamma_0$ est la droite située dans le plan vertical $\gamma = 0$ et passant par les points M(0,1) = (1,0,a) et M(0,0) = (0,0,0).

 Σ est donc un cône de révolution d'axe Oz (voir figure ci-dessous).

2) Montrons que M(0,1) est un point régulier de (Σ, M) .

$$\frac{\overrightarrow{\partial M}}{\partial u}(u,v) = (-v\sin u, v\cos u, 0)$$
 et $\frac{\overrightarrow{\partial M}}{\partial v}(u,v) = (\cos u, \sin u, a)$.

Ceci implique

$$\frac{\overrightarrow{\partial M}}{\partial u}(0,1) = (0,1,0)$$
 et $\frac{\overrightarrow{\partial M}}{\partial v}(0,1) = (1,0,a)$.

Ces deux derniers vecteurs sont linéairement indépendants ; par conséquent M(0,1) est un point régulier de (Σ, M) .

3) Un point $M(u_0, v_0)$ est un point singulier de (Σ, M) si $\overline{M'_u(u_0, v_0)}$ et $\overline{M'_v(u_0, v_0)}$ sont liés.

Pour $v_0 \neq 0$, les vecteurs $\overline{M'_u(u_0, v_0)}$ et $\overline{M'_v(u_0, v_0)}$ sont linéairement indépendants, puisque la troisième coordonnée du premier vecteur est nulle et la troisième coordonnée du

second vecteur est non nulle. Pour $v_0 = 0$, les vecteurs $\overline{M'_u(u_0,0)} = \overrightarrow{0}$ et $\overline{M'_v(u_0,v_0)}$ sont liés. Par conséquent, le seul point singulier de (Σ,M) est le point M(u,0) = (0,0,0), qui est le sommet du cône. En ce point le plan tangent n'est pas défini; en effet, le point M(u,0) est un point régulier pour les droites paramétrées (tracées sur Σ) suivantes :

$$M(0,v) = (v,0,a.v),$$

$$M(\pi/2,v) = (0,v,a.v),$$

$$M(\pi,v) = (-v,0,a.v),$$

mais ces droites n'engendrent pas un plan. Par conséquent, il n'existe pas de plan tangent à Σ au point M(u, 0) = (0, 0, 0).

4) Comme $\frac{\overrightarrow{\partial M}}{\partial u}(0,1)$ et $\frac{\overrightarrow{\partial M}}{\partial v}(0,1)$ sont linéairement indépendants, donc il existe un plan tangent à Σ au point M(0,1) de direction l'espace vectoriel engendré par $\left\{\frac{\overrightarrow{\partial M}}{\partial u}(0,1), \frac{\overrightarrow{\partial M}}{\partial v}(0,1)\right\}$. Déterminons l'équation cartésienne du plan tangent $\Pi_{M(0,1)}\Sigma$ à Σ au point M(0,1)=(1,0,a).

Le point $P = (x, y, z) \in \Pi_{M(0,1)}\Sigma$ équivaut à $\overline{M(0,1)P} = \alpha \frac{\overline{\partial M}}{\partial u}(0,1) + \beta \frac{\overline{\partial M}}{\partial v}(0,1)$, c'està-dire que les vecteurs $\overline{M(0,1)P}$, $\frac{\overline{\partial M}}{\partial v}(0,1)$ et $\frac{\overline{\partial M}}{\partial v}(0,1)$ sont liés. Ceci équivaut à :

$$\det\left(\overline{M(0,1)P}, \ \frac{\overline{\partial M}}{\partial u}(0,1), \ \frac{\overline{\partial M}}{\partial v}(0,1)\right) = 0 \quad \Leftrightarrow$$

$$\Leftrightarrow \quad \begin{vmatrix} x-1 & y & z-a \\ 0 & 1 & 0 \\ 1 & 0 & a \end{vmatrix} = \begin{vmatrix} x-1 & z-a \\ 1 & a \end{vmatrix} = a(x-1) - (z-a) = ax - z = 0.$$

Par conséquent l'équation du plan tangent $\Pi_{M(0,1)}\Sigma$ est z=ax. Ce qui est équivalent à :

$$\Pi_{M(0,1)}\Sigma = \{(x,y,z) = (x,y,ax), \ (x,y) \in \mathbb{R}^2\}.$$

5) Le vecteur normal unitaire $\overline{K_M(0,1)}$ à Σ au point M(0,1) est égale à:

$$\overrightarrow{K_M(0,1)} = \frac{\overrightarrow{M'_u(0,1)} \wedge \overrightarrow{M'_v(0,1)}}{\left\| \overrightarrow{M'_u(0,1)} \wedge \overrightarrow{M'_v(0,1)} \right\|} \cdot$$

$$\overline{M'_u(0,1)} \wedge \overline{M'_v(0,1)} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 1 & 0 & a \end{vmatrix} = a\vec{i} - \vec{k}, \text{ donc } \left\| \overline{M'_u(0,1)} \wedge \overline{M'_v(0,1)} \right\| = \sqrt{a^2 + 1}.$$

Par conséquent

$$\overrightarrow{K_M(0,1)} = \frac{1}{\sqrt{a^2+1}} (a\vec{\imath} - \vec{k}).$$

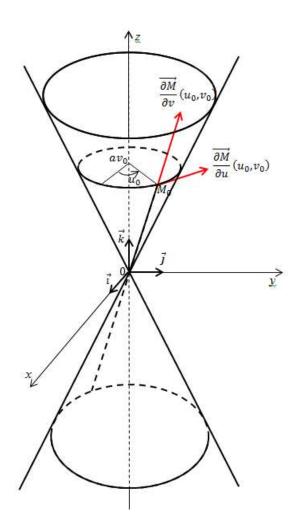


Figure 1:

Exercice 3: Soit $f:(x,y) \in \mathbb{R}^2 \to z = f(x,y) \in \mathbb{R}$ une fonction de classe C^k $(k \ge 1)$ et soit (Σ, M) la surface paramétrée définie par :

$$M(x,y) = (x, y, f(x,y)), (x,y) \in \mathbb{R}^2.$$

- 1) Préciser dans quelle partie de l'espace (autre que Σ) sont situées les lignes coordonnées passant par un point $M(x_0, y_0)$.
- 2) Montrer que les surfaces paramétrées, définies comme ci-dessus, admettent un plan tangent en chaque point $(x, y) \in \mathbb{R}^2$.
- 3) Pour la surface paramétrée (Σ, M) définie par :

$$M(x,y) = (x, y, f(x,y)) = (x, y, x.y), (x,y) \in \mathbb{R}^2,$$

déterminer les lignes coordonnées passant par un point quelconque $M(x_0, y_0)$ et trouver l'équation cartésienne des plans tangents $\Pi_{M(x_0, y_0)}\Sigma$.

Solution:

1) Les lignes coordonnées passant par un point $M(x_0, y_0)$ sont les courbes $M \circ \gamma_{x_0}(\mathbb{R})$ et $M \circ \gamma_{y_0}(\mathbb{R})$, tracées sur Σ , respectivement paramétrisées par les applications suivantes :

$$M \circ \gamma_{x_0}(y) = M(x_0, y) = (x_0, y, f(x_0, y)),$$

$$M \circ \gamma_{y_0}(x) = M(x, y_0) = (x, y_0, f(x, y_0)).$$

 $M \circ \gamma_{x_0}(\mathbb{R})$ est située dans le plan vertical d'équation $x = x_0$.

 $M \circ \gamma_{y_0}(\mathbb{R})$ est située dans le plan vertical d'équation $y = y_0$.

2)
$$\frac{\overrightarrow{\partial M}}{\partial x}(x,y) = \left(1,0,\frac{\partial f}{\partial x}(x,y)\right)$$
 et $\frac{\overrightarrow{\partial M}}{\partial y}(x,y) = \left(0,1,\frac{\partial f}{\partial y}(x,y)\right)$.

Pour tout point $(x,y) \in \mathbb{R}^2$, les vecteurs $\frac{\overrightarrow{\partial M}}{\partial x}(x,y)$ et $\frac{\overrightarrow{\partial M}}{\partial y}(x,y)$ sont linéairement indépendants. Par conséquent, la surface paramétrée (Σ,M) admet un plan tangent en tout point $(x,y) \in \mathbb{R}^2$. Autrement dit, une surface paramétrée définie par une fonction $z = f(x,y), f \in C^k$ $(k \ge 1)$, admet un plan tangent en tout point $(x,y) \in \mathbb{R}^2$.

3) i) Les lignes coordonnées passant par un point $M(x_0, y_0) = (x_0, y_0, z_0) = (x_0, y_0, x_0, y_0)$ sont les images des applications suivantes :

$$M \circ \gamma_{x_0}(y) = M(x_0, y) = (x_0, y, x_0, y),$$

$$M \circ \gamma_{y_0}(x) = M(x, y_0) = (x, y_0, x, y_0).$$

La ligne coordonnée $M \circ \gamma_{x_0}(\mathbb{R}) \equiv Im(M \circ \gamma_{x_0})$ est la droite d'équation $z = x_0$. y située dans le plan vertical d'équation $x = x_0$.

La ligne coordonnée $M \circ \gamma_{y_0}(\mathbb{R}) \equiv Im(M \circ \gamma_{y_0})$ est la droite d'équation $z = x. y_0$ située dans le plan vertical d'équation $y = y_0$.

Il en résulte que par tout point de cette surface paramétrée passent deux droites tracées sur elle (voir figure ci-dessus).

Les vecteurs directeurs des droites $M \circ \gamma_{x_0}(\mathbb{R})$ et $M \circ \gamma_{y_0}(\mathbb{R})$ sont respectivement les vecteurs

$$\frac{\overrightarrow{\partial M}}{\partial y}(x_0, y_0) = \frac{\overrightarrow{d(M \circ \gamma_{x_0})}}{dy}(y_0) = (0, 1, x_0) \text{ et } \frac{\overrightarrow{\partial M}}{\partial x}(x_0, y_0) = \frac{\overrightarrow{d(M \circ \gamma_{y_0})}}{dx}(x_0) = (1, 0, y_0).$$

Cette surface passe par l'origine (0,0,0) et en ce point les lignes coordonnées sont les axes Oy et Ox.

ii) On a déjà vu (exercices précédents) que l'équation cartésienne du plan tangent $\Pi_{M(x_0,y_0)}\Sigma$ est donnée par :

$$det\left(\overline{M(x_0,y_0)P},\ \frac{\overline{\partial M}}{\partial x}(x_0,y_0),\ \frac{\overline{\partial M}}{\partial y}(x_0,y_0)\right)=0,$$

οù P = (x, y, z) est un point quelconque de $\Pi_{M(x_0, y_0)} \Sigma$.

$$\begin{split} \det\left(\overline{M(x_0,y_0)P},\ \frac{\overrightarrow{\partial M}}{\partial x}(x_0,y_0),\ \frac{\overrightarrow{\partial M}}{\partial y}(x_0,y_0)\right) &= 0 \iff \begin{vmatrix} x-x_0 & y-y_0 & z-z_0\\ 1 & 0 & y_0\\ 0 & 1 & x_0 \end{vmatrix} = \\ &-y_0(x-x_0)-x_0(y-y_0)+z-z_0 = 0. \end{split}$$

Par conséquent l'équation du plan tangent $\Pi_{M(x_0,y_0)}\Sigma$ est

$$z - z_0 = y_0(x - x_0) + x_0(y - y_0).$$

Remarque: $z - z_0 = y_0(x - x_0) + x_0(y - y_0) = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$. C'est l'équation du plan tangent au point $(x_0, y_0, f(x_0, y_0))$ à une surface paramétrée définie par une fonction de deux variables $f \in C^k$ $(k \ge 1)$.

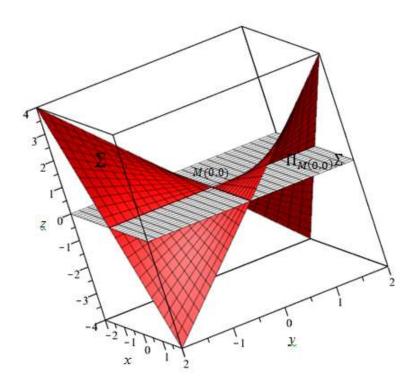


Figure 2: