3.4 Le soustracteur binaire

Il s'agit d'un circuit logique qui fait une opération arithmétique. Tout comme une soustraction en décimale, la soustraction du premier rang c.-à-d. de 10⁰ ne nécessite pas de connaître l'emprunt du rang précédent puisqu'il y en pas.

Soient deux nombres A et B sur trois bits chacun : A=a₂a₁a₀ et B=b₂b₁b₀:

3.3.1 Le demi-soustracteur

La soustraction entre a_0 et b_0 se fait avec un circuit combinatoire logique qui a deux entrées uniquement et deux sorties : d_0 la différence et e_0 l'emprunt. Une fois ce circuit défini, par ses entrées et leurs nombre et ses sorties et leurs nombre, on établie la TdV.

Fig. 3.1 Circuit demi-soustracteur

Comme on l'a vu au premier chapitre, la soustraction binaire est résumée sur une table, mais en considérant un seul rang a la fois. La Tdv du premier rang, 2⁰ est comme suit :

a_0	b_0	d_0	e_0
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Tab.1 TdV du demi-soustracteur

Sur la colonne de la différence, d_0 prend 1 quand il y a 0-1=1 ou bien 1-0=1.

Sur la colonne de l'emprunt, e_0 prend 1 quand il y a 0-1. Le un correspond à la différence d_0 et le 1 à l'emprunt e_0 .

Cette TdV possède deux sorties, donc fonctions différentes. L'expression algébrique de ces deux fonctions sont tirées de la TdV sans avoir à les simplifier par TK car il n y a pas de <u>1</u> adjacents.

$$d_0 = \bar{a}_0 \cdot b_0 + a_0 \cdot \bar{b}_0 = a_0 \oplus b_0$$

 $e_0 = \bar{a}_0 \cdot b_0$

D'après l'expression de e_0 , on voit bien qu'il y a emprunt quant a_0 est inferieur a b_0 .

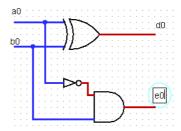


Fig 3.2 Circuit demi-soustracteur

3.3.2 Le soustracteur complet

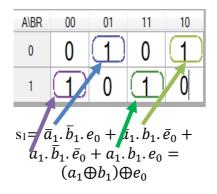
Il s'agit maintenant de passer au rang suivant c.-à-d. 2^1 , soustraire b_1 de a_1 mais avec une information supplémentaire qui est e_0 . Le circuit combinatoire possède toujours 2 sorties la différence d_1 et l'emprunt e_1 , mais trois entrées a_1 , b_1 et e_0 : c'est le soustracteur du 2^{ieme} rang (2^1). Il est complet car par rapport au demi-soustracteur, celui-ci tient compte de l'emprunt fait à l'étage (rang) précédent.

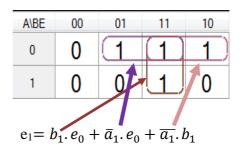
Traçons la TdV de ces 2 sorties

a_1	b_1	e_0	d_1	e_1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Fig. 3.3 Circuit Soustracteur complet

Sur le TK de s_1 , il n' y a aucun $\underline{\mathbf{1}}$ adjacent. L'expression de d_1 conduit donc à une forme canonique, avec $A=a_1$, $B=b_1$ et $E=e_0$. Pour e_1 , il existe trois groupes de deux $\underline{\mathbf{1}}$ adjacents.





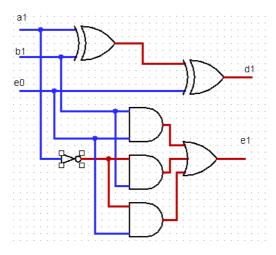


Fig 3.4 Soustracteur Complet

3.3.3 Le soustracteur 3bits

Ce circuit doit donc effectuer une soustraction de deux nombres sur trois bits chacun comme suit :

2^3	2^{2}	2^{1}	2^{0}
0	a_2	a_1	a_0
e_2^{+0}	$e_1^{+b}_2$	$e_0^{+b}_{1}$	\mathbf{b}_0
$=d_3$	d_2	d_1	d_0

2^3	2^2	2^{1}	2^{0}
0	1	1	1
0+0	0 ⁺¹	0+0	1
=0	0	1	0

2^3	2^2	2^{1}	2^{0}
0	1	0	0
1 ⁺⁰	1 ⁺¹	0 ⁺¹	0
=1	1	1	0

Le tableau du milieu et de droite montrent deux exemples de soustraction binaire. Le premier $(7)_{10}$ - $(5)_{10}$ = $(2)_{10}$ et le second $(4)_{10}$ - $(6)_{10}$ =- $(2)_{10}$. Le code (1110) est le complément a deux de -2, c.-à-d. : $-1x2^3+1x2^2+1x2^1+0x2^0$

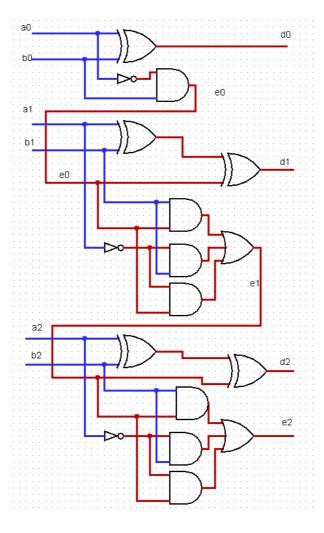


Fig 3.5 Circuit soustracteur 3bits

On voit bien que pour le premier rang : 2^0 , le circuit ne doit avoir que deux entrées a_0 et b_0 . C'est le demi-soustracteur. Pour tous les rangs supérieurs $2^1, 2^2, 2^3, \dots$ etc. l'opération se fait avec le même circuit logique, il suffit juste de modifier les entrées. C'est le soustracteur complet.