3.3 L'additionneur binaire

Il s'agit d'un circuit logique qui fait une opération arithmétique. Tout comme une addition en décimale, l'addition du premier rang c.-à-d. de 2⁰ ne nécessite pas de connaître la retenue du rang précédent puisqu'il y en pas.

Soient deux nombres A et B sur trois bits chacun : $A=a_2a_1a_0$ et $B=b_2b_1b_0$:

3.3.1 Le demi-additionneur

L'addition entre a_0 et b_0 se fait avec un circuit combinatoire logique qui a deux entrées uniquement et deux sorties : s_0 la somme et r_0 la retenue. Une fois ce circuit défini, par ses entrées et leurs nombre et ses sorties et leurs nombre, on établie la TdV.

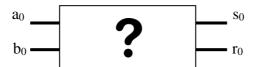


Fig. 3.1 Circuit demi-additionneur

a_0	b_0	S ₀	r_0
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tab.1 TdV du demi-additionneur

Sur la colonne de la somme, s_0 prend 1 quand il y a 0+1=1 ou bien 1+0=1.

Sur la colonne de la retenue, r_0 prend 1 quand il y a $1+1=2_{10}=(10)_2$. Le zéro correspond à la somme s_0 et le 1 à la retenue r_0 .

Cette TdV possède deux sorties, donc fonctions différentes. L'expression algébrique de ces deux fonctions sont tirées de la TdV sans avoir à les simplifier par TK car il n y a pas de <u>1</u> adjacents.

$$s_0 = \overline{a}_0 \cdot b_0 + a_0 \cdot \overline{b}_0 = a_0 \oplus b_0$$

$$r_0 = a_0 \cdot b_0$$

Fig 3.2 Circuit demi-additionneur

3.3.2 L'additionneur complet

Il s'agit maintenant d'additionner a_1 à b_1 mais avec une information supplémentaire qui est r_0 . Le circuit combinatoire possède toujours 2 sorties la somme s_1 et la retenue r_1 , mais trois entrées a_1 , b_1 et r_0 : c'est l'additionneur du 2^{ieme} rang (2^1). C'est l'additionneur du 2^{ieme} rang (2^1). Il est complet car par rapport au demi-additionneur, celui-ci tient compte de la retenue provoquée à l'étage (rang) précédent.

Traçons la TdV de ces 2 sorties :

a_1	b_1	\mathbf{r}_0	s_1	\mathbf{r}_1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

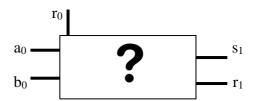
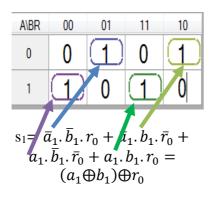
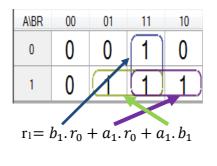


Fig. 3.3 Circuit additionneur Complet

Sur le TK de s_1 , il n'y a aucun $\underline{1}$ adjacent. L'expression de s_1 conduit donc à une forme canonique, avec $A=a_1$, $B=b_1$ et $R=r_0$. Pour r_1 , il existe trois groupes de deux $\underline{1}$ adjacents.





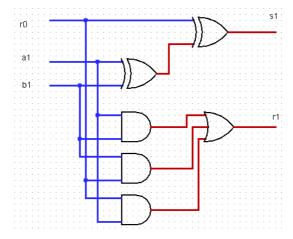


Fig 3.4 Circuit Additionneur Complet

3.3.3 L'additionneur 3bits

Ce circuit doit donc effectuer une addition de deux nombres sur trois bits chacun comme suit :

2^3	2^{2}	2^{1}	2^{0}
r ₂	\mathbf{r}_1	r ₀	
+	a_2	a_1	a_0
+	b ₂	b ₁	b_0
=s ₃	S2	S ₁	S ₀

2^3	2^2	2^{1}	2^{0}
1	1	1	
+	1	1	1
+	1	1	1
=1	1	1	0

2^3	2^2	21	2^{0}
0	0	0	
+	0	1	1
+	1	0	0
=1	1	1	1

L'opération se fait sur quatre étages ou rangs, les trois premiers sont ceux des opérandes et le dernier, né de la retenue.

Le tableau du milieu et de droite montrent deux exemples d'addition binaire. Le premier $(7)_{10} + (7)_{10} = (14)_{10}$ et le second $(3)_{10} + (4)_{10} = (7)_{10}$

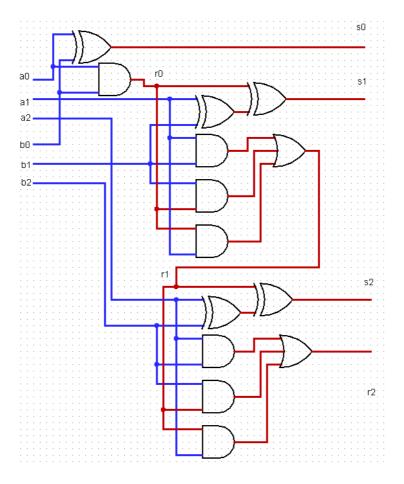


Fig 3.5 Circuit Additionneur 3bits

On voit bien que pour le premier rang : 2^0 , le circuit ne doit avoir que deux entrées a_0 et b_0 pour ne donner que d_0 et r_0 c'est le demi-additionneur. Pour tous les rangs supérieurs $2^1, 2^2$...etc. l'opération se fait avec le même circuit logique, il suffit juste de modifier les entrées. Cela se fait avec l'additionneur complet.