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The existence of multiple cylindrically symmetric solutions for a class of non-autonomous
elliptic Neumann problems in a strip-like domain of the Euclidean space is investigated.
The proof combines a recent compactness resuit and the Palais symmetric critically
principle. A concrete application illustrates the ‘main abstract result of this Note.
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1. Introduction

Let O CR™ be a bounded domain with smooth boundary and set 2 := © x R". Define the space of cylindrically sym-

metric functions by
wlP(2):= {u e WP (2): ux, ) is radially symmetric for all x e o}.

The aim of this Note is to establish the existence of multiple cylindrically symmetric weak solutions for the following

non-autonomous elliptic Neumann problem:

{ —Apu+uP2u=ra(x, y)f(u) in
du/dv=0 onas.

(P)

Here v denotes the outward unit normal to 32, p>m+n is a real number, and Apu =div(|Vu|P~2Vu). We assume that

f:R— R is a contihuous function, « is a nonnegative cylindrically symmetric function,
In the present Note, just requiring a suitable oscillating behaviour of the potential F(

and A is a positive real parameter.
£) == [ f() dt, we are able to find

a precise interval of values of the parameter A for which problem (P) admits at least three cylindrically symmetric weak

solutions.

Assume ¢ € L1(£2) is a nonnegative cylindrically symmetric function such that for some t > 0.

essinf(y, y)eoxBa(0,2/2) ¢ (X, ¥) > 0,
where B,(0, 7/2) denotes the open ball in R” centred in zero and radius /2.
We say that u € W1-P(£2) is a weak solution of problem (P) if for all ve WP(Q),
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