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PREFACE 

Much app l i ed  and t h e o r e t i c a l  r e sea rch  i n  n a t u r a l  s c i ences  l e a d s  t o  

boundary-value problems s t a t e d  i n  terms of d i f f e r e n t i a l  equa t ions .  So as 

t o  s o l v e  these  problems on e l e c t r o n i c  computers t h e  d i f f e r e n t i a l  problems 

a r e  rep laced  approximate ly  by d i f f e r e n c e  schemes. 
This  book is in tended  to s e r v e  as a f i r s t  i n t r o d u c t i o n  t o  t h e  theo ry  

of d i f f e r e n c e  schemes; i t  is w r i t t e n  as a textbook f o r  s t u d e n t s  of 

t e c h n i c a l  u n i v e r s i t i e s ,  of t h e  Moscow Physico-Technical and Moscow 
Engineering-Physics I n s t i t u t e s ,  and f o r  s t u d e n t s  i n  u n i v e r s i t y  phys ics  and 

mathematics departments.  I n  a d d i t i o n ,  some s e c t i o n s  of t he  book w i l l  

probably be of i n t e r e s t  t o  computations s p e c i a l i s t s .  D i f f e rences  i n  t h e  

i n t e r e s t s  of r eade r s  i n  the  above-named c a t e g o r i e s  have been r e f l e c t e d  i n  

the  s t r u c t u r e  of t h i s  book. 
Th i s  hook c o n s i s t s  of f i v e  P a r t s  and a smal l  Appendix. Any d e s i r e d  

number (two o r  more) of t h e  f i r s t  P a r t s  may be taken  a s  a s o r t  of s e l f -  

conta ined  i n t r o d u c t i o n  t o  t h e  s u b j e c t .  In a d d i t i o n  t h e  volume of m a t e r i a l  

s t u d i e d  may be c o n t r o l l e d  by inc lud ing  more o r  less of t h e  m a t e r i a l  i n  

smal l  p r i n t , *  and by t h e  s e l e c t i o n  of problems t o  be so lved .  A t  t h e  end of 

the  book we have sugges ted  l i t e r a t u r e  f o r  a deeper s tudy  of many q u e s t i o n s  

r e l a t i n g  t o  the  theory  and a p p l i c a t i o n  of d i f f e r e n c e  schemes, and f o r  

b i b l i o g r a p h i c a l  i n v e s t i g a t i o n s .  A s h o r t e r  i n t r o d u c t i o n  t o  t h e  theo ry  of 

d i f f e r e n c e  schemes can be found i n  t h e  book l i s t e d  a s  Ref. [ l l ] .  
I n  t he  t e x t ,  below, d i r e c t  r e fe rences  t o  o r i g i n a l  work w i l l  appear  

Contemporary computa t iona l  techniques  and accumulated expe r i ence  a l low 

u s ,  w i th  the  a i d  of d i f f e r e n c e  schemes, t o  compute approximate s o l u t i o n s  of 

problems which a r e  very compl ica ted ,  and a r e  not amenable t o  s tudy  by o t h e r  

methods. Assurance t h a t  t he  s o l u t i o n  is  computed c o r r e c t l y  i s  a t t a i n e d :  

by apply ing  t h e  same computa t iona l  schemes t o  the  s o l u t i o n  of those  few 

problems f o r  which exac t  s o l u t i o n s  a r e  a v a i l a b l e ;  by comparing computa- 

t i o n a l  r e s u l t s  with t h e  r e s u l t s  of phys i ca l  exper iments  i n  t h e  range of 

*A s e c t i o n  i n  small p r i n t ,  i n  t h e  o r i g i n a l  Russian appea r s ,  he re  i n  t r ans -  

l a t i o n ,  a s  a s e c t i o n  set  off by h o r i z o n t a l  rows of a s t e r i s k s .  Each such 
s e c t i o n  i s  preceded by a row of s i x  a s t e r i s k s ,  and followed by a row of 

th ree .  

on ly  i n  those  few cases  where a u x i l i a r y  r e s u l t s  a r e  c i t e d  wi thout  proof .  



v i  Preface 

parameters for which experiments are possible; and through the aid of other 

methods which cannot be considered mathematically rigorous. But an 
understanding of essentials, necessary for the construction of appropriate 

difference schemes, is achieved by consideration of a series of properly 

chosen model problems; problems simple enough for detailed study on some 

accepted level of mathematical rigor, but nevertheless capturing one or 
another of those features of the original problem which interest us,  while 

this original problem is unaccessible to rigorous study either because of 

its complexity, or for lack of time. 

have tried at the same time to give the reader a correct picture of the 

relation between theory, on the one hand and, on the other, computational 
experiments on electronic computers, using difference schemes created for 

practical computations. 

authors on [ l o ] ,  and also by the work of one of them on lecture courses 
which he presented for several years at the Moscow Physico-Technical 

Institute. The set-up of these courses was strongly influenced by many 

fruitful discussions with 0. M. Bielotserkovskii (through whose initiative 

these courses were started), V. F. Dyachenko, 0. V. Lokutsievskii, R. P. 
Fedorenko, L. A. Chudov and E .  E .  Schnol. Many useful comments were made 

by N. S. Bakhvalov and B. L.  Rozhdestvenskii after reading the book in 
manuscript. 

Stressing a mathematically rigorous treatment of model problems, we 

The appearance of this book was made possible by earlier work by the 

We are sincerely grateful to all of them. 

The authors 

PREFACE M TAE SECOND EDITION 

The second edition differs from the first in: the inclusion of 

Chapter 12 on variational-difference schemes; of 647 on the stability of 

iterative processes for the solution of non-selfadjoint difference 
equations; and of Sect. 10 of the Appendix containing some considerations 
on the computational use of the method of internal boundary conditions. In 
addition some typographical errors and inaccuracies have been eliminated 

and the bibliography has been brought up to date. 

The authors 
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It should be noted that, in the text below, and in the section 

entitled “Bihliographical Commentaries”, citations in Russian journals have 

been changed, wherever possible, to corresponding Citations in English 

translations of these journals. In particular, references to the Russian 

journals 

Akademiia Nauk SSR, Doklady; 

Uspekhi Matematicheskhikh Nauk; and 
Zhurnal Vychislitelnoi Matematiki I Matematicheskoi Fiziki 

have been replaced by corresponding references to their translations 

Soviet Mathematics, Doklady; 

Russian Mathematics Surveys; and 
U.S.S.R Computational Mathematics and Mathematical Physics, 

respectively. 

Translator 
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INTRODUCTION 

Consideration of the problems, both applied and theoretical, of 

contemporary natural sciences often leads to differential equations, and 

the study of such problems can be considered finished only after these 

equations have been solved. In some cases it is possible to write their 
solutions in terms of well-known elementary functions. A s  a rule, however, 

this is in principle impossible, so that the construction of a solution in 

terms of an explicit closed-form expression cannot be considered a standard 

method for solving differential equations. One cannot say that this 

analytic approach has completely lost its value. It remains a necessary 

and very powerful instrument for the study of simplified, so-called 
"model", problems. The study of carefully selected model problems allows 
one to draw some conclusions as to the nature of the benavfor of the 

unsimplified, original, problem. 

But, together with this analytic approach, various numerical methods 

are being more and more widely used for the solution of differential 

equations. Widespread use of these methods has been made possible by the 

appearance of fast computers which can store large arrays of numbers, upon 
which.they can perform arithmetic operations in accordance with some given 

program. So as to take advantage of the capabilities of these machines the 
computational method makes a transition, from the required solution, to a 

certain numerical table one needs t o  construct, and to a sequence of 

arithmetic operations for the computation of the numbers in this table. 

One might, for example, set out to find some of the leading coefficients in 

an expansion of the solution in a power series, or a trigonometric 

series. Here we develop the theory of differential equation solution- 
methods based on finite differences. The essence of this most versatile 

numerical method consists in that one puts, in the role of the desired set 

of numbers, a table of values of the solution at the points of a certain 

set, ordinarily called a '.net,'. For computation of the required table one 
makes use of algebraic equations which approximate, and take the place of, 

the differential equation. 



2 Introduction 

For the sake of clarity, consider the simplest example of a difference 

scheme for the numerical solution of the equation 

u’(x) + Au(x) = 0 ,  

with the initial condition u(0) = 1. We choose an h > 0 ,  and set out to 

obtain, in place of the function u(x), a table of its values 

u(O), u(h), u(2h). ..., u(nh), ... 
We now replace the derivative by the difference approximation 

U(X + h) - U(X) 
h 9 

which is permissible if the step-width in the table is taken sufficient 
small. After introduction of this difference approximation we get, in 
place of the differential equation, the difference equation 

which approximates it, and which can be used for an approximate computation 

of the required table. To implement this computation we rewrite the 
difference equation in the form of a recursion relation 

Sequentially taking x = 0, h, 2h, ..., we find that 
u(h) = (1 - Ah), 
u(2h) = (1 - Ah)’, 

N 
. . .  . . . . .  

u(Nh) = (1 - Ah) . . . . . . . . . 
Setting h = 1/N we get 

in place of the exact solution 

-A 
u(1) = e . 

But, as is well known from a standard courae in mathematical analysis, for 
h sufficiently small or, correspondingly, for N large enough, (1 - A/N)N 
differs very little from e-A. Thus we see that the approximate solution 
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gotten via this difference scheme and depending on the step-size, h, 

converges, as this step-size decreases, to the exact solution of the 

differential equation. 

Another example of a difference equation approximating the same 

differential equation 

u’(x) + Au(x) = 0, 

is obtained by replacing the derivative with the 

U(X + h) - U(X - h) 
2h 

This equation takes the form 

U(X + h) - U(X - h) 
2h + Au(x) 

difference expression 

= 0 .  

For the differential equation 

u”(x) + Au’(x) + Bu(x) = f(x) 

one can construct a difference analog by replacing u”(x), for example, 

with the following approximate expression: 

U(X + h) - U(X) U(X) - U(X - h) 
- h - U(X + h) - ~u(x) + U(X - h) 
h 

h 

h2 

The first derivative may be replaced by one of the difference expressions 
already used. After such substitutions, and using the centered expression 

for the first derivative, we get the difference equation 

U(X + h) - 2u(x) + U(X - h) + A U(X + h) - U(X - h) + Bu(x) = f(x). 
2h h2 

The construction of difference equations is no more difficult in the 
case of differential equations with variable coefficients. If, for 

example, one wants to compute the solution of the equation 

u’(x) + A(x)u(x) = 0, 

where the coefficient, A, is a function of x, this can be done with the aid 

of the difference equation 

U(X + h) - U(X) 
h + A(x)u(x) = 0. 
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Difference schemes can treat non-linear equations just as easily. For 

example, the equation 

can be solved approximately via the scheme 

From the above examples one may form the impression that the construction 
of difference schemes, and the solution of differential equations through 

use of such schemes, are matters presenting no difficulties. This is a 
deceptive impression. 

constant coefficients, it happens frequently that a seemingly plausible 

difference scheme has a solution which does not converge, as the net is 

refined, to the desired solution of the differential equation. Of  course, 

with such a scheme one cannot compute the desired function with unlimited 

precision. 

compute the solution of the resulting system of algebraic equations for a 

large number of values of the unknown function at the knots of the net. 

This, in many important cases, is not at all easy. Sometimes it is 

possible to circumvent this difficulty by choosing a convergent difference 
scheme of different construction, such that the resulting system of linear 

equations is easy to solve exactly; in certain other cases methods have 

been developed for the approximate computation of the solution of 

difference problems to any prescribed level of accuracy. 

Everyone who is engaged in the numerical solution of differential 

equations should be aware of the difficulties involved in the construction 

and use of difference schemes, and should know how to overcome these 

difficulties. 

Already in the simplest cases, even in solving linear equations with 

Further, after a convergent scheme is constructed, it is necessary to 
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Part 1 

ORDINARY DIFFERENCE EQUATIONS 

Chapter 1 
Mfference Equations of First 

and Second Order. 
Fkamples of Difference Schemes 

5 1. Simplest difference equations 

1. Difference equations. For differential equations of first order 

u’(x) + Au(x) = f(x) 

we constructed, in the Introduction, two difference schemes: 

U(X + h) - U(X - h)  + Au(x) = f(x), 2h 

which may be written, respectively, as 

1 - Ah 1 -(F) U(X) + - U(X + h) = f(x), 
h 

1 1 - _  2h U(X - h) + Au(x) + m  U(X + h) = f(x). 

For the differential equation of second order 

u”(x) f Au’(x) + Bu(x) = f(x) 

we constructed the difference equation 

U(X + h)  - 2u(x) + U(X - h) + A U(X + h) - U(X - h)  + Bu(x) = f(x), 
2h 

h2 

which one can rewrite in the form 

1 1 1 - (I - p)u(x - h) - - (2 - Bh2)u(x) + - ( 1  + $)u(x + h) = f(x). 
h2 h2 h2 

( 3 )  

The above examples of difference equations, approximating the simplest 
differential equations, each belong to one of the two classes: 
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au (x )  + bu(x + h) = f ( x ) ,  (1') 

au(x  - h) + bu(x) + cu(x  + h) = f ( x ) .  ( 2 ' )  

I f  t h e  sequence of p o i n t s ,  d i v i d i n g  the  x a x i s  i n t o  i n t e r v a l s  of 

l eng th  h ,  i s  numbered from l e f t  t o  r i g h t  s o  t h a t  xn = xn-l + h,  and w e  

d e f i n e  un = u(xn) ,  f n  = f ( x n ) ,  then our  d i f f e r e n c e  scheme can be r e w r i t t e n  
i n  t h e  form 

au + bun+1 = f n ,  ( 4 )  

au + bu + cu = f n .  ( 5 )  
n-1 n n f l  

In  sS1-4 w e  w l l l  be engaged i n  t h e  s tudy  of d i f f e r e n c e  equa t ions  of forms 

( 4 )  and (5), but  w i l l  no t  a sk  whether t hese  equa t ions  c o n s t i t u t e  d i f f e r e n c e  

schemes f o r  any d i f f e r e n t i a l  equa t ions .  

In  equa t ions  ( 4 )  and ( 5 )  t h e  unknowns, un, form a sequence t u n } :  

W e  w i l l  o f t e n  put  t h i s  sequence i n t o  one-to-one correspondence wi th  t h e  se- 

quence of p o i n t s  numbered by t h e  i n t e g e r s  

..., -3, -2, -1, 0 ,  1, 2, 3 ,  ..., 

a set of p o i n t s  sometimes r e f e r r e d  t o  as a "ne t" .  

The sequence tun} may be regarded as a f u n c t i o n ,  u,  given  a t  t h e  

p o i n t s  of t he  n e t .  I n  t h i s  ca se  uk i s  the  va lue  of t h e  n e t  f u n c t i o n ,  u ,  a t  
t h e  poin t  numbered k. In F ig .  1 we have drawn the  graph  of a n e t  f u n c t i o n ,  

u .  This  graph c o n s i s t s  of t h e  

t o t a l i t y  of p o i n t s  (Xk, uk) on t h e  
p lane  Oxu. 

cons ide r  t he  connec t ion  between 

d i f f e r e n c e  and d i f f e r e n t i a l  equa- 

t i o n s ,  we are in no way ob l iged  t o  

t ake  the  d i s t a n c e  between neighbor- 

F ig .  1 ing  p o i n t s  t o  be equal  t o  h. We may 

choose t h i s  d i s t a n c e  as we l i k e  and, 

f o r  example, could set it equa l  t o  
t o  u n i t y ,  t ak ing  xo t o  be a t  t h e  

S ince  we have chosen n o t  t o  
~ ,,+ =?:; ~ 

-. /' 0. / -.*/ 
2 

0 2.- 

o r i g i n .  Then the  n e t  func t ion ,  u ,  w i l l  be de f ined  a t  t h e  p o i n t s  w i th  

coord ina te s  xk = k .  
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We will assume for simplicity, that the coefficients a, b and c in 
Eqs. ( 4 )  and (5)  are constant. In saying that the equations in question 

are equations with constant coefficients we mean that the coefficients are 

independent of the index, n; for example, the equation 

u + 5 & u  + u  = o  
n-1 n n+l 

is not an equation with constant coefficients. 

different from zero. In (5) a and c will be assumed to be different from 
zero. 
equations. 

If we postulate that the sequence {un} is defined at all. whole- 

numbered points n, - m < n < m ,  and put no further restrictions on this se- 

quence, then it is easy to see that Eqs. ( 4 )  and (5) have many solutions. 

Thus, for example, the equation qu, - un+l = 0 has, as a solution, un 
as well as the solution un = qn. 

We will consider only such equations ( 4 )  for which a and b are 

The sequence {fn} will be called the "right-hand side" of these 

0 ,  

In order to single out a unique solution of Eq. ( 4 )  

aun + bun+1 = fn, 

it is sufficient to fix the value of this solution at any single whole- 

numbered point m, that is to fix um. 
recursion relation 

In fact Eq. ( 4 )  can be written as a 

from which, for n = m, m + 1, ..., one can sequentially define 
..., i.e., all U, for n > m. 
form 

Writing the equation in the other recursive 

1 
= $ fn - bun), 

we can, in just the same way, define un for n < m. 
To single out a unique solution of Eq. (5)  

au + bu + cu - 
n- 1 n n+l - fn 

it is sufficient to assign, arbitrarily, values of u at any two adjacent 
whole-numbered points, i.e., for example, to fix the values of and 

urn. That this is true immediately follows from the fact that the cited 
equation can be rewritten in the following two recursive forms: 

1 
un+l = --(fn - bu - au 

n n-1)' 
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2. Order of difference equations. We will repeat once more the 

results obtained above, and then formulate the concept of order for 

difference equations (4) and ( 5 ) .  
I n  order to single out a unique solution of Eq. ( 4 )  

aun + bun+l = fn 

it is sufficient to fix the value of u at one point. Such an equation is 

called an "equation of first order". To single out a unique solution of 

Eq. (5) 

au + bu + cu 
n-1 n n+l= fn 

it suffices to assign values to the solution at two adjacent points. For 

this reason such an equation is called an "equation of second order". 
One might, in fact, apply the same considerations to the simplest 

equation, 

au = fn, a # 0 ,  
n 

the solution of which is uniquely defined without the imposition of any 

auxiliary restrictions on the sequence [u,}. 
equation an "equation of zeroeth order". 

first order, u' + Au = f, is a difference equation of first order. The 
scheme ( 3 )  for the second-order differential equation, uc' + Au' + Bu = f, 

is of second order. 

Scheme (2) 

It is natural to call such an 

The simplest difference scheme (1) for the differential equation of 

1 1 - _  2h u(x - h) + Au(x) + U(X + h) = f(x) 

for the equation uc + Au = f shows that the order of the difference scheme 

may be greater than the order of the differential equation. 

example the differential equation is first order, the corresponding 
differential equation -- second. 

the structure of the solutions of the above difference equations. First we 

consider the homogeneous equation 

In this 

3. General solution of difference equations. We will now describe 

- - sun + bun+l - 0. 
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Let Yn be the solution of Eq. (6) satisfying the initial condition YO = 
1. Clearly = aYn will also be a solution of the homogeneous equations 

for any choice of the constant, a. It isn't difficult to show that any 
solution of the homogeneous equation (6) can be represented in this form. 
In fact each solution is uniquely determined by it's value at n = 0.  But 

the solution, 

expression u 

taking on the given value i0, may be obtained from the - n' 
0' 

= aYn if we take the factor a to be equal to 

Consider, now, the inhomogeneous equation ( 4 )  

au + bun+1 = fn. 

Let {in} and [u*} be any two of it's solutions. Subtracting one of the 

equations 

- N 

aun + bun+l = fn* 

fn* aun + bun+l = 
* * 

- * -  
from the other we see that the difference u - u = u satisfies the homo- 

geneous equation (6 )  aun + b;n+l = 0 .  

written in the form 

n n n  
Therefore any solution } may be 

- * -  * 
u = u  + u  = u  +aYn n n n n  

with an appropriate choice of the constant, a .  It can easily be verified 
that, on the other hand, for any arbitrary choice of a the expression un = 

u: + ayn represents one solution of the inhomogeneous equation: 

= (au: + bu:+l) + a(aYn + = fn + a 0 = fn. 

Thus we have shown that the general solution of the homogeneous 

equation (6) 

- - sun + bun+l = 0 

takes the form 

- 
u + aYn, 

where Y 

condition Yo = 1, and a is an arbitrary constant. 
the inhomogeneous equation ( 4 )  

is a particular solution of this equation satisfying the initial 

The general solution of 
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au + bu - 
n n+l - fn 

can be represented in the form 

u = u + a Y n ,  
n n  

where u: is any particular solution of this inhomogeneous equation, and a 

is again an arbitrary constant. 
By analogous arguments one can prove an analogous assertion also for 

difference equations of second order. We will not carry through these 

arguments (the reader can construct them without difficulty), but only 

formulate the final result. 

The general solution of the homogeneous difference equation 

a; + b; + c; = 0 
n-1 n n+l (7) 

may be represented in the form 

- 
u = a Y n  + BZ,, 

where Yn and 2, are particular solutions of Eq. (7), satisfying the initial 
conditions 

Y = 1 , Y  = o ,  
0 1 

2 = 0 ,  z = 1 ,  
0 1 

while a and i3 are arbitrary constants. 

The general solution of the inhomogeneous equation (5) 

au + bu + cu = f 
n- 1 n n+l n 

can be represented in the form 

* 
u = u + a Y n  + @2,, n n  

where uz is any particular solution of this inhomogeneous equation. 

All of the results of this section could be repeated verbatim for dif- 
ference equations with variable coefficients, but we w i l l  not do this so as 

not to encumber our presentation with unessential details. 
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PROBLEMS 

1. Prove that the general solution of the homogeneous difference 
equation 

a u  
n n + bnun+l = O 

with variable coefficients an f 0, bn f 0, can be written in the form un = 

cryn, where yn is any particular solution not identically zero for all n, 

and a is an arbitrary constant. 

equation of second order 

2. Prove that the general solution of the homogeneous difference 

a u  + b u  + c u  = O  
n n-1 n n n n+l 

with variable coefficients an f 0, cn f 0, may be written in the form 

u = ayn + 62,’ 

where y,, and z, are any two particular solutions of this equation for which 
the determinant 

is not equal to zero. 

3 .  Let yn and zn be any two particular solutions of the second-order 
difference equation of problem 2. Prove that the determinant 

either vanishes for each n ,  or is different from zero for all n. 

solution of the difference equation 
4 .  At how many consecutive points must one specify values of the 

au + bu + cu + du - 
n n+l n+2 n+3 - fn’ 

a f 0, d f 0, so that there will exist one and only one solution, {un} 

taking on the specified values at these points? What must we take as the 
order of this equation? 
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s 2. Difference equation of first order 

In this section we will derive expressions for the general solution of 
the difference equation of first order with constant coefficients 

aun + bu,+l = fn 

imposing fairly weak restrictions on f,. 
As shown in Sl, the general solution can be represented in the form 

u n n  = u* + aYn = u; + a(- t)”, 
where u i  is any particular solution, and a is an arbitrary constant. 

problem of finding any one particular solution u:. 

one particular special form of the given right-hand side 

Thus the problem of finding the general solution has reduced to the 

1. Fundamental solution. First we will construct the solution for 

f = (  0 ,  n # 0 ,  
n 1 n = O .  

To designate such a function one normally uses the Kronecker symbol 

0 ,  n # k, 
1, n = k. 

Then fn = 6:. 
The solution of the equation 

aun + bu,l = 6: 

we designate as G,: 

aG + bGnfl = 6:. 

The solution Gn is called a fundamentaZ 8OZUtiOn of the equation 

aun + bun+l = fn, 

because, as we will see on page 14 ,  in terms of Gn one can write particular 
solutions of this equation for different, fairly arbitrary, right-hand 

sides f,. 

equations: 

Thus, we want to find any solution of the following three groups of 
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I. aGn + = 0 for n 5 -1. 

11. aGo + bGl = I .  

111. aGn + bGn+l = 0 for n 2 1. 

Let Gn = 0 for n ( 0 .  Then all equations of Group I will be satisfied. 
From Eq. I1 we find that G1 = l/b. 

rewritten as a recursion equation, Gn+l = -(a/b)Gn, from which we find, 

sequentially, 

The equations of Group I11 may be 

. . . . . . . . . . . . . . .  

We now write out a summary of equations determining G,: 

for n 0, 

- :(- ~r for n > 1. 

T h i s  is one solution of Eq. (1). Adding to it the general solution 

A(-a/b)" of the corresponding homogeneous equation au, + bun+l = 0, we get 
the general solution of Eq. (1): 

The fundamental solution ( 2 )  falls out of the general Eq. ( 3 )  when A = 0. 
Conditions governing the boundednees of the fundamental 

solution. If (a/b( = 1 then, for any value of the constant A,  we get a 

fundamental solution, G,, bounded in absolute value both as n + + - and 
n + - -. Let u s  extract, from the general expression ( 3 ) ,  a bounded 
fundamental solution, G,, in the case la/bl # 1. If la/bl < 1 ,  I-a/b(" 
grows without bound as n + - -. 
for A = 0 (Fig. 2 ,  a). It i s  given by Eq. (2).  

2. 

Therefore one gets a bounded solution only 
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--& . ai ___I-:, 
Fig. 2. 

If 1a/bl > 1, a bounded solution is obtained only f o r  A = l/a (Fig. 2, 
b) : 

3. Particular solution. A particular solution of the equation 

aun + bun+* = fn (5) 

with arbitrary right-hand side may be written in the form of the series 

where Gn is any fundamental solution,  so long as the series converges. 
Let us show this using the equation 

aGn-k + bGn-k+l = 6:-k(= 6 ; ) ,  

which is obtained from Eq. (1) if, in (1), we everywhere replace n by 

n-k. Substituting the convergent series ( 6 )  in the left-hand side of Eq. 
(5 )  we get 

m m 
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S e r i e s  ( 6 )  may t u r n  out  t o  be d ive rgen t  i f  we make no assumptions as 

t o  t h e  behavior  of t h e  right-hand s i d e ,  f k ,  of t h e  d i f f e r e n c e  equat ion .  I n  

f a c t ,  i f  f k  = (-a/b)k,  then 

and series ( 6 )  f o r  f i x e d  n c o n t a i n s  an  i n f i n i t e  number of i d e n t i c a l  terms, 

all d i f f e r e n t  from zero .  
Theorem. Let la/bl $ I, 7.et Gn be a bounded f u n h e n t a j !  sobution and 

fk bounded i n  modutus, i.e., ifk! < F .  Then tize ser ies  

m 

certainty converges. 

Proof.  We s h a l l  on ly  d e a l  w i th  t h e  case l a / b (  > 1. Afterwards t h e  

Under our assumptions each term of t h e  series 
reade r  can, wi thout  d i f f i c u l t y ,  cons ide r  t h e  oppos i t e  case .  

U n 

can be bounded above, 

geometr ic  p rogres s ion  

From t h i s  fo l lows  t h e  

i n  a b s o l u t e  va lue ,  by a term of t h e  convergent 

convergence of series ( 6 ) ,  as w e l l  as t h e  estimate 

which shows t h a t  t h e  s o l u t i o n  ( 6 )  is bounded. 

Other  bounded s o l u t i o n s  of t h e  equa t ion  

aun  + bun+1 = f n  
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do not exist, since any solution may be obtained from ( 6 )  through the 
addition of a solution, Gn = a(-a/b)", of the corresponding homogeneous 

equation. 
two bounded solutions; but this is possible only for a = 0. 

The solution {un} must be bounded, since it is the difference of 

PROBLEMS 

1. Find the general solution of the equation 

2un - u = gn. n+l 

Solution. The general solution of the corresponding homogeneous 

equation 2; - = 0 has the form = a2". We will look for a 

particular solution, u,, of the form u: = C5" with undetermined 

coefficient. 

n n+l * 

Substituting u: = C5" into the equation we get 

(2 gn - 5"'l)C = Sn; C = -1/3. 

Thus 

gn u = - - -+  a2". 
n 3  

(Note that, to write the particular solution uz in the form of series ( 6 )  
is impossible, since its general term does not tend to zero, and the series 

diverges.) 
2. Find a particular solution u: of the equation 

2un - un+l = 2n* 

Hint. 

3 .  
Look for a solution of the form u* = Cn 

Find particular solutions u: of the equation 
2n. 

2u - 
n Un+l = fn 

in the case where the right-hand side has the following special form: 

a) fn = 1, b) fn = n, c) fn = n2, d) f = 1 + 2n - n'. 

4 .  Find particular solutions u: of the equation 

un - un+l = fn' 

if the right-hand side has the following special form: 
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a) fn = 1, b) fn = n, c) fn = n2. 

17 

E 3. Difference equation of second order. 

In this section we will derive expressions for the general solution of 

the inhomogeneous equation with constant coefficients 

au + b u + c u  i f .  (1) n-1 n n+l n 

In $1 it was shown that the general solution has the form 

* -  
u = u  + u  
n n n' 

where u: is some particular solution of the given inhomogeneous equation, 

and 

- 
u = aYn + BZn 

is the general solution of the corresponding homogeneous equation 

au + bu + cu = 0. 
n-1 n n+l ( 3 )  

First we will find an expression for the general solution of the 

homogeneous equation ( 3 ) ,  and then a fundamental and particular solution of 
the inhomogeneous equation. 

1. General solution of the homogeneous equation. Recalling that in 
the case of the first-order difference equation there exists a solution of 

the form un = qn, let us try here also to find a particular solution in the 

form of a geometric progression. Substituting the expression un = qn into 
the difference equation, we convince ourselves that it really will be a 

solution if q is a root of the quadratic 

a + bq f cq2 = 0, ( 4 )  

called the churucte?&tic equation. The roots of this equation may be 

distinct or multiple. Let us consider these two cases consecutively. If 

the roots 91 and 42 of the characteristic equation are different, we can 
find, in the form of a geometric progression, not one, but two independent 

particular solutions: 
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The linear combination 

of these two solutions with arbitrary coefficients a and B also w i l l  be a 
solution of the homogeneous equation. Let us show that it is the general 
solution. - 

In fact any arbitrary particular solution, u , of the homogeneous 
equation, taking on at n = 0 and n = 1 any prescribed values uo and ul, may 
be written in this form. To accomplish this it is sufficient t o  define a 

and B via the equations 

- - 

i.e., t o  set 

In particular, Yn and Z,, defined in $1 as the solutions of the 
homogeneous equation satisfying the conditions 

Y = 1 ,  Y = o  
0 1 

zo = 0 ,  z1 = 1, 

have the form 

1 
'n=-- 

From Eqs. (6 )  we see that these equations are inapplicable in the case 

of multiple roots q1 = q2. 

u =  E. To find a second, let us make, in Eq. ( 3 ) ,  the substitution 
= ynql, after which we get for yn the equation 

Let us now consider this case. 

When q1 = q one particular solution can again be written in the form 
2 
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A s  is well known, a/c is equal to the product, and b/c the sum with 
reversed sign, of the roots of the characteristic equation ( 4 ) .  Since both 

of these roots are equal to 41, 

5 = q;, - b = -2q1. 

as a consequence of which the difference equation may be rewritten thus: 

or more simply: 

Yn-l - 2Yn + Yn+l = 0. 

Rewriting this equation in the form 

- -  
'n-1 'n - 'n - ',+I' 

we see that the difference yn-l - yn does not change with n. 
arbitrary arithmetic progression is a solution. For us it is sufficient to 

find any single solution, and we take, as this solution, the arithmetic 

progression yn = n. Recalling that we were seeking a un in the form un = 
ynqy we find that, among the solutions of the equation aun-l + bun + cun+l 
= 0, there is a solution 

Thus any 

Thus, in the case of multiple roots q1 = q2, supplementing the 

particular solution u(l) = qn we have found another, independent, 

particular solution ,121 = nqy. 
The linear combination 

with arbitrary constant coefficients is also a solution of the homogeneous 
equation, and i n  fact any arbitrary particular solution may be obtained 

from this equation, appropriately selecting a and 8 .  In particular, the 

solutions Yn and Z,, in the case of multiple roots, take the form 
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It is interesting to note that Eqs.  (7) can be gotten from Eqs. ( 6 1 ,  
the expressions for Yn and Zn when the characteristic equation has unequal 

roots. In that case we had, for Yn and Zn, the equations 

q;-l - q;-l 
'1 n 

92 - 41 ' 
9; - ~ 4.2 = 4192 

92 y =- 
n 42 - 41 42 - 41 

Let us now make q1 approach q2. Then the expressions 

tend to certain limits, i.e., respectively, to (n - 1)qT-2 and nqT-l. 

we see that, in the case of multiple roots, Yn and Zn take the form ( 7 ) .  
We have, then, constructed the solutions, Yn and Zn, in all cases 

which may arise when a and c differ from zero. In the process we have 

shown that it is always possible to write out, in explicit form, any 
solution of the homogeneous second-order difference equation in question. 

It's interesting to consider in more detail the case where, for real 

Thus 

coefficients a, 

conjugate roots 
solution of the 

following form 

b, and c, the equation a + bq + cq2 = 0 has complex 

q1 and 42. We will show that, in this case, the general 
homogeneous difference equation ( 3 )  may be written in the 

where $ is determined by the equation 

b 
cos $ =  - ~ ,  

2 G  

and y1 and y2 are arbitrary constants. 
We get, for q1 and 42, the explicit expressions 
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= $  [- A?- - 
2 J a c  92 

In our case of complex roots, a/c > 0 ,  Ib/(Zd=)l < 1. 
may write 

For this reason we 

after which q1 and q2 take the form: 

q2 =$ (cos 0 - i s i n  0). 

We now substitute these values of q1 and 42 in Eq. (5). 
For a = B = 1/2 we get the particular solution 

and, for a = 1/(2i), 6 = -1/(2i), the particular solution 

A linear combination of these particular solutions, with arbitrary 

constant coefficients y1 and y p ,  gives the general solution, ( S ) ,  above. 

(The fact that it is possible to write, in this form, the particular 

solution taking on, for n = 0 and n = 1, any prescribed values can easily 
be verified by the reader independently.) 

2. General solution of the inhomogeneous equation. Fundamental 

solution. Now let us study the inhomogeneous difference equation 

au 4- bu + C U ~ + ~  = fn, 
n-1 n 

limiting ourselves to the case (important below) where, among the roots of 

the characteristic equation ( 4 ) ,  there are none equal to unity in modulus: 

lql( # 1, )q21 # 1. 
equation ( 9 )  with right-hand side fn of the special form 

First we will look for a solution of the inhomogeneous 
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This solution will be designated as Gn and called “fundamental“. 
look for a bounded fundamental solution, i.e., a bounded solution of the 

following group of equations: 

We will 

I. aG + bG + cG = 0 for n 5 -1. 
n-1 n n+l 

-1 0 1 

n-1 n n+l 

11. aG + bG + cG = 1. 

111. aG + bG + cG = 0 for n L 1. 

Consider, first the case of non-multiple roots, q1 f 92. 

the general solution of the homogeneous equation ( 3 )  has the form 
In this case 

u = aqy + Bq;. 

For this reason each particular solution of the homogeneous equation I can 

be written in the form 

where a’ and B’ are appropriately chosen constants. So also the particular 

solution Gn, n > - 0 ,  of the homogeneous equation 111 may be writen in the 

form 

with corresponding constants a” and B” . 
are possible: 

In the above case q1 # q2, lq,l # 1, l q 2 )  # 1 the following variants 

We now construct the bounded fundamental solution Gn in case a). From 

the boundedness condition on G, for n + -(o it will be seen that a‘ = 0 ,  and 
from the boundedness condition on Gn for n + m it follows that B” = 0. 

Theref ore 

~ ~ q i  for n 0, 

a”q? for n 2 0 .  

G =  
n 
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For n = 0 both of the last equations must give one and the same value GO. 
Hence B’ = a*’. We choose B’ so as to satisfy 11: 

+ bB’ + cB’ql = 1, 

aqil+ b + cql * 

-1 
aB’q2 

1 6’ = -___ 

The denominator of this fraction is different from zero: 

-1 -1 
aq2 + b + cql = (aqz + b + cqz) + c(ql - qz) = c(ql - s2) P 0.  

Thus, 

1 
-1 q;, n 5 0 ,  

-1 q;, n L 0. 

aq* + b + cql 

Gn = I 
1 

aq + b + cql 

We have constructed the bounded fundamental solution in case a) (Fig. 3,a). 

a) 

Fig. 3. 

It should be noted for future reference 

where B > 0 and 8 > 0 are certain prescribed 

t“ 

that, under the conditions 

B > 0 ,  

1 - -  
e 
2 ’  

numbers, we have the bound 
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* * * * * *  
To derive bound (11) we note that, by virtue of the first condition 

( l o ) ,  it must be true that either (a\ > B/4, 1.1 > B/4 or Jb2 - 4ac 2 
JB2 - B2/4 > B/2. Clearly also 

-1 -1 -1 
aq2 + b + cql = c(ql - q2) = a(q2 - q1 ) = Jb2_4ac, 

From these relations one gets the bound 

and Eq. (11). 
* * *  

In case b) it follows from the boundedness condition on Gn, for n + 

4, that a‘ = 6‘ = 0 ,  so that 

The condition Go = 0 implies that a” = -6”. 
a” so as to satisfy equation 11: 

We choose the coefficient 

1 
a” = * 

The bounded fundamental solution (Fig. 3,b) in case b) thus has the form 

In case c ) ,  by analogy with case a) the bounded fundamental solution 

has the form 

q; for n 5 0 ,  
1 

( aq;’ + b + cq2 
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Case d) is analogous to case b). 

bounded fundamental solution, instead of the equation 
If the roots are multiple, 91 = 92, then, in the construction of the 

one uses the equation 

u = aq;l + Bnq;. 

In the case 1q,1 < 1 we get, for G,, 

for n 5 0 ,  

for n 2 0, 

and in the case lqll > 1 we get 

for n 0 ,  

for n 2 0 .  

Thus we have treated all the variants one may encounter in the 

case Iq,l f 1, Iq21 f 1, a f 0 ,  c f 0 ,  and have found that a bounded 

fundamental solution exists. From the expression exhibited above one sees 
that this solution decreases exponentially for n + +m: 

where G > 0 and 0 < P < 1 are constants. The constant P may be assigned 
any value satisfying the inequality. 

We have examined the question of the existence and form of the 
fundamental solution, i.e., the solution of the inhomogeneous equation 

(9 ) .  
written as the sum of a series, 

For an arbitrary right-hand side {f } a particular solution u: may be 

m 

Gn-kfk’ 
u* = 1 

k=-m 

so long as 
way as the 

bound (12) 

hand side 

the series converges. This can be verified exactly in the same 
analogous fact for first-order difference equations in 92. From 

it follows that series (13) certainly converges if the right- 

fk} is bounded, lfkl < F. In this case 
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< GF - 

For Eq. (9), where Is,\ f 1 and Is2\ f 1, the solution {u*,}, given by Eq. 

(13), is the only bounded solution for the given right-hand side. If this 
were not the case any second bounded solution would be obtained by the 

addition of some bounded solution, {in}, of the homogeneous equation ( 3 ) .  
But, from the expression for the general solution of this equation, one 
sees that for lqll j :  1, 1421 f 1, the unique solution bounded for - < n 
< is E 0 .  In particular, the bounded fundamental solution Gn for 141) 

* 1, lq2T # 1 is also unique. 

from (13) it is easy to derive 

We note that, if condition (10) is satisfied then, ustng bound (ll), 

3. Estimate of the fundamental solution in terms of the coefficients 

of the difference equation. Tn Sect. 2 we have seen that the character of 
the behavior of the fundamental solution Gn of Eq. (9) depends crucially on 
the location, in the complex plane, of the roots, q1 and q 

characteristic equation 

of the 
2' 

P(q) 5 a + bq + cq2 = 0 . ( 4 )  

Especially important in practice is the case where a ,  b and c are real 
while one of the roots, q1 or q2, is greater than, and the other less than 

one in modulus: 

(16)  

Here we will point out a convenient necessary and sufficient criterion for 

such a disposition of the roots, applicable without their explicit computa- 
tion. 

Theorem. 
coef f ic ien ts ,  one is greater than, and the  other l e s s  than one i n  modulus 
i f  and onty if 

O f  the  two roots,ql and q2, O f  E q .  ( 4 )  d t h  real 
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f o r  some 6; and further f o r  any such that (171 i s  sa t i s f ied  

Proof.  We no te  t h a t  

P (1 )  P(-1) = ( a  + c + b) (a  + c - b) = la + cI2  - b2 = 

I f  (17)  i s  not  s a t i s f i e d  €o r  any 8 > 0, t hen  t h e  numerator of the  f r a c t i o n  

(17)  i s  e i t h e r  equal  t o  ze ro  o r  nega t ive .  

( 4 ) ,  and (16)  i s  not  s a t i s f i e d .  

t he  polynomial P(q)  t akes  on v a l u e s  of t h e  same s ign .  Thus t h e  polynomial 

P(q)  cannot have, on t h e  i n t e r v a l  -1 5 q 5 1 ,  j u s t  one roo t ;  t h e r e  must be 
e i t h e r  two o r  none. 

I f  t h e r e  a r e  two, then  both  a r e  less than  one i n  modulus, and (16)  is  

not s a t i s f i e d -  I f ,  on the  i n t e r v a l  [-1, 11, t h e r e  are no r o o t s ,  t hen  

e i t h e r  t h e r e  are no r e a l  r o o t s  a t  a l l ,  but only complex conjugate  r o o t s  of 

equal  modulus, o r  e l s e  both r e a l  r o o t s  have modulus g r e a t e r  than  one, and 

(16)  i s  aga in  not f u l f i l l e d .  
I f ,  €o r  some 8 > 0,  c o n d i t i o n  (17)  i s  s a t i s f i e d ,  then  P ( - l ) P ( l )  < 0, 

and t h e  va lues  of P (q )  a t  t h e  ends of t h e  i n t e r v a l  [ -1 ,  11 have d i f f e r e n t  

s i g n s  so  t h a t ,  on t h i s  i n t e r v a l ,  t h e r e  is  p r e c i s e l y  one root .  Then t h e  

o t h e r  r o o t ,  a l s o  real ,  l i e s  o u t s i d e  t h i s  i n t e r v a l ,  so t h a t  f o r  some p < 1 

(16)  i s  s a t i s f i e d .  We w i l l  now sharpen  t h i s  l a s t  r e s u l t  and, i n  f a c t ,  w i l l  

g e t  j u s t  the  c i t e d  bound (18). 

From (17)  i t  fo l lows  t h a t  

I n  t h e  f i r s t  case P( I )P ( - l )  = 0, i .e. ,  e i t h e r  1 o r  -1 i s  a r o o t  of Eq. 

I n  t h e  second case  P ( l ) P ( - I )  > 0,  i.e., a t  t h e  po in t s  q = -1 and q = 1 

e 8 2  
Ibl - la + C I  0 ( lb l  + la1 + 1 . 1 )  > Tlb l  + 0 la1 + [ B  - (7) ] I c I .  

Theref o r e  

Thus i t  i s  c l e a r  t h a t  t h e  expres s ions  

e e 2  e 
P ( l  - 7) = a + c ( l  - 7 )  + b ( l  - 7) 9 
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have different signs so that the polynomial P(q), on the interval 
-(1 - 8/2)  - -  < q < 1 - 8 / 2 ,  has a root ql, lqll < 1 - 0 / 2 .  

quantities 

Clearly the 

inverses of the roots of Eq. (4), obey the equation 

a’ + b’q’ + c’(q’)2 = 0 

with coefficients a’ = c, b’ = b, C’ = a, satisfying the same condition 

(17): 

Therefore one of the roots q;, q; satisfies the inequality 1q-l < 1 - e/z .  
This root can only be q; = l/qz, which completes the proof of bound (18). 

For equations with real coefficients subject to condition (17), 
condition (10) and thus also bound (15) are automatically satisfied for the 

bounded particular  solution,^:, of the inhomogeneous difference equation 
( 9 ) .  

PROBLEMS 

1. Write the general solutions of equations 

u - 5 u  + 6 u  = 0 ,  n = O , + l , . . . ,  
n-1 n n+l 

n = 0, +1, ..., 
n-1 

9u + 3u + u = 0 ,  n = 0, 21, ... 

- 

5 
u - -  2 un + un+l a ‘ 9  

n-1 n n+l 

2. Find a solution of the equation 

5 
u - -  n-1 2 un + un+l = ‘a 

which is bounded for n + -14s and takes on the value uo = 1. 

first two terms of which are equal to one, uo = 1, u1 = 1, while the 
following terms are defined by the recurrence relation 

3 .  Write out the thousandth term of the sequence u o’ ul, U2’  Y the 
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u = u  + u  n = 1, 2, ... 
n+l n-1 n' 

4 .  Find the necessary and sufficient conditions which one must impose 

on the roots of the characteristic equation so that the difference equation 

au + bu + C U ~ + ~  = 0, n = 0 ,  21, 22, ..., 
n-1 n 

will have at least one nontrivial bounded solution. 

is called "trivial".) 

(The solution un : 0 

5. Find the conditions which must be satisfied by the roots of the 
characteristic equation, necessary and sufficient to guarantee that all 

solutions of the equation 

au + bu + C U ~ + ~  = 0 ,  n = 0 ,  +1, ..., - n- 1 

will be bounded. 

6 .  What must be true of the roots of the characteristic equation if 

all solutions of the equation aun-l + bun + cun+l = 0 are to tend to zero 
as n + m? 

7 .  Find any particular solution of the inhomogeneous difference 

equation 

if the right hand side has the following special form: 

a) fn = 1. Hint. Look for a solution of the form u: = A .  

b) 

c) 

d) 

fn = n. 

fn = 3". 

fn = cos n. Hint. 
+ B cos n. 

Hint. Look for a solution of the firm 4 = A + Bn. 
Hint. Look for a solution of the form u: = A * 3". 

Look for a solution of the form u: = A sin n 

8. Construct any bounded fundamental solution of the equation 

u + u  + u  - 
n-1 n n+l - fn. 

Do there exist unbounded fundamental solutions of this equation? 

9. Construct any fundamental solution of the equation 

u - 2u + u = fn. 
n-1 n n+l 

Is there any bounded fundamental solution? 

does the difference equation 
10. Under what conditions on the roots of the characteristic equation 
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au + bu + cu - 
n-1 n n+l - fn 

not have bounded fundamental solutions? 

11. Using the bounded fundamental solution, write out that solution 

(UO, u1, ..., uN), of the equation 

n = 1, 2,  ..., N -1, 
5 

u - -  n-1 2 "n + u n + ~  = fn* 

which satisfies the condition uo = $,  un = P, where $ and Y are given 
numbers. 

= {Ym}, m = 0, 1, ..., M, of the operator Am, 
12. Find all the eigenvalues, p, and the corresponding eigenvectors Y 

where hxx is the operator which maps each n e t  function, u = {urn}, into the 

net function v = {vm}, via the relations 

) o < ~ < M ,  1 
v - -  m - h2 (um+1 - 2um + um-1 

vo = VM = 0, Mh = 1. 

Answer : 

4 n k  kn m 

h2 
pk = - - sin' - (k) = sin M , k= 1, 2, ..., M-1. 2M ' 'm 



31 

Chapter 2 

Boundary-Value Problems for Equations of Second Order 

Boundary-value problems of the form considered here arise when 

difference schemes are used for the numerical solution of ordinary and 

partial differential equations. 

54. Formulation of the problem. Good-conditioning criteria. 

1. Formulation of the problem. The simplest boundary-value problem 

consists in the construction of a net function {un}, n = 0 ,  1, -.., N, 
satisfying the difference equation 

a u  + b u  + c u  - n = l ,  2, ..., N - 1 ,  (1) n n-1 n n n n+l - fn' 

at the 

on the 

on its 

internal points 0 < n < N of the net interval 0 I n  i N ,  and taking 
given values 

boundaries. A boundary-value problem for systems of difference 

equations will be formulated in Section 7.  

remarked that, for any arbitrary choice of values of pun} at any two 
adjacent points, for example for an arbitrary choice of uo and ul, a 

solution { u  } is determined and, moreover, a unique solution. 
It's interesting to consider whether one can uniquely define a 

solution if its values are given at two, not necessarily adjacent, points 

as in the boundary-value problem (l), (2). The following example shows 

that problem (l), (2) may turn out to be unsolveable. 

Studying the equation a u + b u + c u = f , an # 0 ,  cn # 0 ,  we 
n n-1 n n n n+l 

Consider the boundary-value problem 

u - u + u  = O ,  n = l , 2  ,..., 299, ( 3 )  

u = 1  ( 4 )  

n-1 n n+l 

300 
uo = 0, 

The general solution of Eq. ( 3 ) ,  as shown in $ 3 ,  can be written in the form 

nn nrr 
3 3 u = Yl cos - + y 2  sin - . 
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From the 

u300 = 

But this 
equal to 

If, 

Boundary-Value Problem for 2'nd Order Equation Chapter 2 

condition uo = 0 it follows that y1 = 0 .  

one must fix y2 via the equation 

To satisfy the condition 

300n 
3 u300 = y 2  sin - = 

equation is unsolveable since, for any y2, the left hand side 1 s  

zero, not one. 

instead of the condition u300 = 1 we were to set 11300 = 0 

(leaving, as before, uo = 0), then again we would have to take y 1  = 0 ,  
while Y2 in this case would be arbitrary: 

300n 
Y2 sin - 3 = y2 * 0 = 0 .  

We see that the boundary-value problem (l), (2)  may, in general, not have 
any solution, or the solution may turn out not to he unique. But, be that 

as it may, boundary-value problems are often encountered. 

It turns out that there is a rather wide class of difference equations 

for which the boundary-value problem (l), (Z), not only has always one and 
only one solution, but is also only weakly sensitive to rounding errors for 

given right-hand sides $, J, and {fn], i.e., the problem is "well- 
conditioned". 

2. Definition of a well-conditioned problem. Ordinarily in studying 
difference schemes for the approximate solutions of differential boundary- 

value problems one considers not a single, isolated problem, but a whole 

family of such problems, arising for smaller and smaller net step-sizes. 

The number, N, can then be considered a parameter upon which this family 

depends. Refinement of the net corresponds to an increase in N. 

coefficients a,, b,, c,, bounded in totality, (an(, lbnl, lcnl < K, is 
well-conditioned if for all large enough N it has one and only one 

solution, {q,], for arbitrary right-hand sides $, J, and {fn}, and if the 

numbers uo, u1, ..., UN, constituting the solution, satisfy the bound 

We will say that the difference boundary-value problem (l), (2)  with 

where M is a number not depending on N. 

* * * * * *  
Sometimes one adjoins to the class of well-conditioned problems also 

those problems for which M cannot be taken to be constant, but is allowed 
to increase no faster than some given power of N, e.g., M = CN or M = CN2. 

Our definition of good conditioning is equivalent to one which is 
customary in the theory of systems of linear equations, where the measure 

of conditioning of a system of equations Ax = g with matrix A is taken to 
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be the quantity IIAII IIA-ll), the product of the norms of the matrices A 
and A-I. 

* * *  

Fulfillment of inequality (5)  indicates that the sensitivity of the 

solution [un] to errors (for example measurement or rounding errors) 

occurring in the given right-hand sides 6 ,  $ or [fn}, does not grow with 
increasing N. In fact if, instead of $, $ and {fn], one were given, 

respectively, $ + A$, $ + A$ and Ifn + Af,}, then the solution would change 

by [Aun}. T h i s  change, because of the linearity of problem (l), (2), is 
the solution of the problem 

I a A u  n n-1 + b A u + c A u  n n n n+l = Afn, O < n < N ,  

Au = A$, Au = A$ 
0 N 

and by virtue of (5)  satisfies the bound 

By far not every boundary-value problem ( 1 )  possessing a unique solution is 

well-conditioned. For example if, to the right-hand-side of the equations 

u - 5u + 6un-l = fn, O < n < N ,  
n+l n 

uo = 4 ,  UN = $ 

one adds the increments 

Af 5 0 ,  A$ = 0 ,  A$ = E, 

the solution tun} will change by the increment 

A$, n = O , l ,  ..., N. = 2n 1 - (2/3)N-n 
A un 1 - (2/3)N 

Hence 

The perturbation € for given $ has induced, in the solution, a perturbation 

which grows rapidly with increasing N. The quantity M in inequality (5 )  
clearly cannot be taken to grow more slowly than the exponential 

(1/3) 2N-1. 



34 Boundary-Value Problem for 2'nd Order Equation Chapter 2 

3. Sufficient condition for a well-conditioned problem. 

Theorem. If the coefficients an, bn and satisfy the condition 

lbnl 2 lan\ + IcnI + 6 ,  6 > 0 ,  ( 6 )  

the problem ( 1 1 ,  (2) is well-conditioned and, moreover, the solution {%I 
satisfies the bound 

( 7 )  
1 

Junl <max { [ + I ,  161, g m a x  lfmll - 
m 

Proof. We first assume that, for given $, J, and {fn}, problem (l), 

(2 )  has a solution {un}, and establish that this solution satisfies ( 7 ) .  
Suppose that the largest of the quantities IunI, n = 0 ,  1 ,  . . . , N is 
Ink/. 
It remains to consider the case 0 < k < N, 11. 1 ~ 1  2 (un(. 
taking account of ( 6 ) ,  we may write 

If k = 0 or k = N inequality (7) is obvious, since uo = $, UN = $I. 
In this case, 

and here also (7) is satisfied. 

{un} for any given right-hand sides $, J, and If,}. 

for precisely the same number of unknown quantities uo, u1, ..., UN. 
Therefore it is necessary to establish that the determinant of this system 

is different from zero. A s  we know from algebra, the determinant of a 
sy'tem is different from zero if and only if the corresponding homogeneous 

system has only an identically vanishing solution. Rut for the system (l), 
( 2 )  the homogeneous system is obtained by setting $ = J, = f, E 0. 

bound (7 ) ,  which has been proven for every solution {un}, it will be seen 

It remains to show that problem (l), (2)  has one and only one solution 

Problem (l), (2 )  may be regarded as a system of N + 1 linear equations 

From 

that in this case there exists only the trival so 

The following condition, also, is sufficient 

(l), (2 )  is well-conditioned: 

ution un : 0.  

to guarantee that problem 
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where e and B are constants not depending on N or n. 
get ( 6 )  with the constant 

In fact from (8) we 

For this reason (7) takes the form 

4. Criterion for a well-conditioned boundary-value problem with 
constant coefficients. 

Theorem. In order that the boundary-value problem 

with constant coefficients be well-conditioned it is necessary and 
sufficient that one of the roots, q1 and q2, of the characteristic equation 

a + bq + cq2 = 0 (11) 

should be greater than, and the other smaller than one in modulus, i.e., 
that they should satisfy an inequality of the form 

(12) 
E -1 E Iq1l 5 1 - 7 9 Is2 1 5 1 - 7 9 

where e is some positive constant. 

conditioning, Eq. (2) ,  by virtue of what has been shown in 353, can be put 
into the convenient form: 

If the coefficients a, b and c are real the criterion for good 

M*’” > 0.  

The convenience of criterion (13) consists in that fulfillment of this 

criterion can be checked without computing the roots q1 and q 
2’ 

Criterion (12 )  will be derived in 4 5 6 ,  below. 
5 .  Criterion for a well-conditioned problem with variable 

coefficients. Criterion (12), which guarantees a well-conditioned 

boundary-value problem for difference equations with constant coefficients, 
the criterion formulated in the preceding section, can be generalized to 

cover the problem 

a u  + h u  + c u  - o < n < N ,  n n-1 n n n n+l - fn’ 
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with variable coefficients so long as these coefficients vary sufficiently 

"smoothly". We will formulate this generalization exactly assuming that 

the coefficients of (1) are  bounded in totality, lan\ < M, lbnl < M, 
Icn[ < M, and that its coefficients a,, bn and cn do not become small, 
simultaneously, for any n: 

dn = max tlan[, bnI, IcnD 2 B > 0. 

The constants M and B , above, are not to depend on N or n. 
Theorem. Suppose that the coefficients of problem (I), (2) satisfy 

the conditions 

lak - 

lCk - 

Then, to guarantee that problem 111, (2) is well-conditioned, it is 
necessary and sufficient that the roots, q and q of the quadratic 

1 2' 

a + b q + c q 2 = 0 ,  O < n < N ,  (15) n n  

satisfy a condition of the form 

where 0 > 0 is some number not depending on N or n. 

smooth. They are fulfilled, for example, if 
Conditions (14) express the requirement that the coefficients be 

a = a(n/N), b = b(n/N), c = c(n/N), 

where a(x), b(x) and c(x) are any functions defined on the interval 
0 (x & 1, and satisfying the Holder conditions: 
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Equation (15) is the characteristic equation constructed for the 
difference equation 

au + bu + cu = 0 
s-1 s s+l 

with constant coefficients a, b and c, coinciding in value with the 

variable coefficients an, bn and cn for some fixed n, i.e., a = an, b = bn, 

n' 
If an, bn and cn are real coefficients then, by virtue of 353, 

c = c  

condition (16) may be replaced by the easily verifiable condition 

where 8 does not depend on N or n. 
The validity of criterion ( 1 4 ) ,  (16) or ( 1 4 ) ,  (17) will be proven in 

$6. There also it will be shown that smoothness conditions ( 1 4 )  must not 
be ignored. 

the same as condition (8) and guarantees good conditioning even without the 

assumed smoothness and reality of the coefficients. 

value problem with constant coefficients. 

of the criterion, derived in part 4 ,  for good conditioning of the boundary- 
value problem 

Note that if Ian + cnl = Ian\ + fcnl, condition (17) is identically 

6. Justification of the criterion for a well-conditioned boundary- 

We will now prove the validity 

i.e., more specifically we prove the following assertion. In order that 

problem (10) be well-conditioned it is necessary and sufficient that the 

roots of the characteristic equation 

a + bq + cq2 = 0 

satisfy inequalities of the form 

where 8 is some positive constant. 

Sufficiency. We represent the solution of problem (1) as the sum of 
two net functions, writing 

u =;  +'; 
n n n' 
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where {un} is the solution of the problem 

- - - 

- - 

au + bu + C U ~ + ~  = fn, O < n < N ,  n-1 n 

uo = 9, "N = $, 

and {G ] the solution of 
w % * 
au + bu + cunS1 = fn, O < n < N ,  n-1 n 

N w 

Llo = 0 ,  "N = 0. 

The solution of problem (19) has the form 

- - 
where A and B are determined via the conditions uo = 9, uN = $: 

Defining p = 1 - 8/2 we get, from (211, 

(19) 

Therefore for all N 2 2  and n = 0 ,  1, ..., N, 

If n and N - n are taken large enough the coefficients in inequality 
For example for n > 6/8,  N - n > 6/8 (22) can be made arbitrarily small. 

Here we have used the well known inequality" 

'x 
A simple proof of the inequality (1 - a-l)a(l + b-'Ib < 1, a ,  b, > 1, 
may be outlined as follows: 
< a (-a)-' = -1, (1 - a-'Ia < e-'. 
(Translator's note. ) 

h[(l - a-l)"] = a kn(1  - a-') 
Similarly (1 + b-l)b < e.  
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1 Lnl < 7 max ( ( 0 1 ,  ltJl1. 
We now bound t h e  s o l u t i o n  } of problem ( 2 ) .  F i r s t  we 

N 

r e p r e s e n t  u as the  sum 

Y * 
un = un + u;, O S n L N ,  

of t h e  s o l u t i o n s  of two problems - t h e  problem 

and the  problem 

au’ + bu’ + cuc = 0, 0 < n < N ,  

* * 1 ( 2 6 )  
n-1 n n+l 

u;, = -uo, u; = -UN. 

A bounded s o l u t i o n  [u*} of problem (25)  e x i s t s ,  i s  unique ,  and i s  s u b j e c t  

t o  bound (15) s 3 :  

(27)  
16 

1u:I 5 2 mp I f  m I *  
where B = m a x ( ) a ) ,  l b l ,  I = / ) .  

I n  p a r t i c u l a r  

For a bound on t h e  s o l u t i o n  {uk} of problem ( 2 6 ) ,  a problem of t h e  same 
form as (19), we use  Eq. ( 2 1 )  and bound ( 2 3 ) ,  simply s u b s t i t u t i n g  

-u i  and -uN f o r  4 and $: 
* 

Now in a d d i t i o n  t ak ing  no te  of (27’): 
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64 
IuJ - Be3 I fml < ~ max . 

Combining bounds ( 2 7 )  and ( 2 8 ) ,  taking into account that e < 2 ,  we get 

1 2 8  < - max f . /"I - Be3 I m l  

Consequently, for the solution tun/ of the original problem, combining 

bounds ( 2 3 )  and (291 ,  we get 

Bound (30) guarantees good conditioning, (unl 5 M max( 101, 
where one may take for M 

I$I, maxl fml ), 

In the case n > 6/8, N - n > 6/8,  one can sharpen 
place of inequality ( 2 3 ) ,  inequality (24 ) :  

bound (30) using, in 

OK 

(31') 
1 lunl < M~ max If,( +~max(I+I, I J , ~ ) ,  

m 

where M1 depends only on 0 and B, not on N. 
56. 

Estimate ( 3 1 )  will be used in 

Necessity. We note, first, that if condition ( 1 2 )  is not fulfilled 

for any positive 0, than the roots of the characteristic equation 

p(q) z a + bq - cq2 = 0 

are, in modulus, either both less than one, or both greater than one, OK at 

least one of them is equal to one: 

We will show that, in all three cases, good conditioning is absent. 

* * * * * *  
For this purpose in all three cases we construct functions, {un}, 

which solve a problem of the form 
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au + bu + CU+~ = fn, O < n < N ,  
n-1 n 

uo = UN = 0 

and satisfy the inequalities 

max lunl > M~ max 
n m 

where MN is a quantity growing without bound as N + a. 

postulate that 

In case ( 3 2 ) ,  assuming for the sake of definiteness t 

Then 

The right-hand side {fn} of problem (35) is 

0 ,  

c(ql - q2), 

for n # N - 1. 

for n = N - 1. = I  N N n n-1 n n+l 
f = au + bu + cu 

Hence 

N 
max(fm( = If. - 1) 5 2 1 c l p  * 
m 

Comparing ( 3 7 )  and ( 3 8 ) ,  we see that in ( 3 6 )  we must take 

( 3 5 )  

so that MN grows exponentially with increasing N. 

to ( 3 2 ) .  
Case ( 3 3 )  is analogous 

* 
The case q1 = q2 = q can be treated by setting un = nqn, 0 5 n 5 
uN = 0 ,  with corresponding modifications in the following steps. 
(Translator's note.) 

N - 1, 
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If ( 3 4 )  is satisfied we set 

O(n(N 
n ' nlr 

u = q1 sin , 

Then, clearly, 

max)unl 2, 1 . 
n 

For lfnl we get the bound 

( 3 9 )  

nrr 
N BN N N 

From ( 3 9 )  and ( 4 0 )  it follows that inequality ( 3 6 )  is satisfied if 

Thus good conditioning is absent, if we require of a well-conditioned 

problem that M be independent of N in inequality (5) .  
General boundary-value problem for a system of difference 

equations. Problem (l), (2)  is only the simplest boundary-value problem 
for an equation of second order. We now state without proof necessary and 

sufficient conditions for a well-conditioned general boundary-value problem 

involving systems of difference equations on a net interval (V. S.  Ryahen'kii, 
Computational Mathematics and Mathematical Physics 4, 2, p. 43  ( 1 9 6 4 ) ) .  

{un}, n = 0 ,  1, 2, 3 ,  ..., N, satisfying the conditions 

7. 

A boundary value problem is, basically, a search for a vector-function 
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Here Ak 
this same dimensionality; the ai are matrices, each with m columns and 

r 2 0 rows; the Bi are matrices with m columns and s 2 0  rows; 0 is a given 
r-dimensional vector; $ is a given s-dimensional vector. 

arbitrary {fn}, 0 and $, with 

is  a square matrix of some order m 2 1; % and fn are vectors of 

Problem (l'), (2') is well-conditioned if it has a solution for 

where M does not depend on N. 
With respect to coefficients A k , n ,  we will postulate that 

where Ak(x) is a matrix, defined on the interval 0 (x 5 1, and satisfying 
on this interval the smoothness condition 

Further, we will assume that 

Given these restrictions then, to guarantee that problem (I,), (2') is 
well-conditioned it is necessary and sufficient that each of the following 

conditions, 1"-3", should be satisfied: 

1" Among the roots IJ and v of the equations 

kg ko+k 
det Ak(x)v = 0 

0 k = -k 

kg ko-k 
det Ak(X)'J = 

0 k = -k 

none are equal to one in modulus, while each of the roots IJ and V of these 
equations satisfies one of the following four inequalities: 

where 9 > 0 does not depend on x. 
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2' The dimensionality, r, of the matrices air is equal to the number 
of roots p the moduli of which are less than unity, and the dimensionality, 

s ,  of matrices Bi is equal to the number of roots v the moduli of which are 
less than unity. 

3" Among the solutions [un}, n L 0 ,  of the problem 

2k0 
aiui = o 

i=o 

and among the solutions {un}, n 0,  of the problem 

2k0 c BiUN-i = 0 
i=o 

I 

kg 

none are bounded except the trivial solution. 

This last condition, 3', can be put into the form of a requirement 
that certain determinants, with elements independent of N, must not vanish. 

We illustrate the above criteria by studying their application to the 

problem 

0 u - 2u + Un+l = fn, O < n < N ,  
n-1 n 

u1 - auo = c b ,  
UN - = $, 

where a and 6 are given; here m = 1, r = 1, s = 1, ko = 1. 
the equations 

The roots of 

O - 2 p + p 2 - 0  and O * V 2 - 2 V + 1 = 0  

are equal to 

Irl = 0 ,  p2 = 2, v = 1/2 (v2 = m).  
1 

None are equal to unity in modulus, and condition 1" is satisfied. 
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Condition 2" is also satisfied, since the number of scalar boundary 
conditions on the left- and right-hand boundaries are equal, r = s = 1, and 

equal to the number of roots u and v which are less than one in modulus. 
Let us now determine for what values of a the problem 

0 . u  - 2 u  + u  n+l = 0 ,  n 2 1, ) 
n- 1 

auo - u1 = 0 ,  

has no nontrivial, bounded solution. The general form of the solution of 

the problem 

0 - u  - 2 u  + u  =0, n > O  
n-1 n n+l 

is 

From the boundedness condition we find that c2 = 0 .  Therefore 

for n > 0.  un = clul - 

Taking account of the condition auo - u1 = 0 ,  we see that for a f 0 there 
are no nontrivial solutions. while nontrivial solutions do exist for a = 0 .  

Now we determine for which B the problem 

0 . u  - 2 u  + u  =0, n < N ,  
n-1 n n+l 

UN - = 0 

has no bounded nontrivial solutions as n + - m .  The general solution of 

o * u - 2u + un+l = 0 ,  n < N, is 

is bounded for n + - m. 

un = clv-" = c1(1/2)-" = c12". It 
n- 1 

From the boundary condition UN -  BUN-^ = 0 we see 

that 

c12 N - Bc12 N- 1 = c12 N- 1 (2 - 8) = 0 

and a nontrivial solution, c1 f 0 ,  exists only for 8 = 2. 

a f 0 and B f 2. If a = 0 or B = 2 the problem is not well-conditioned. 
Thus the above boundary-value problem is well-conditioned for any 

* * *  
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PROBLEMS 

The difference boundary-value problem 

Chapter 2 

au + bu + cu 
n-1 n n+l 

uo - aul = Q, 

will be called "well-conditioned" if it has one and only solution for any 

N, and if the quantities UO, u1, ..., UN, constituting the solution tun}, 
satisfy the inequality Iu I < M max ( ( $ 1 ,  ( $ 1 ,  max Ifm\), where M does not 
depend on N. 

1. If both roots, q1 and q2, of the characteristic equation a + bq + 
cq2 = 0 are less than (greater than) unity in modulus the difference 
boundary-value problem (*) cannot be well-conditioned. For simplicity take 

q1 + q2. Prove. 

equation is equal to one in modulus, then the difference boundary-value 

problem (*) cannot be well conditioned. Prove. 

m n 

2. If at least one of the roots, 91, 92, of the characteristic 

3 .  If Is,l < 1, 19,l > 1, but 

1 - aq = 0 or 1 - Bq2 = 0, 
1 

then problem (*) cannot be well-conditioned. Prove. 

4 .  To guarantee that the difference boundary-value problem (*) is 
well-conditioned it is necessary and sufficient that one root of the 

characteristic equation be smaller than one in modulus, (ql( < 1, while the 
second is greater than one, and that 1 - uq # 0, 1 - Bq2 # 0. Prove. 

1 
5. The problem with constant (complex) coefficients 

n = 0, + 1, ... - au + bu + cu - 
n-I n n+l - fn' 

with arbitrary periodic right-hand side 

fn+N = fn 

has, for all sufficiently large N, the periodic solution {%},  u,,+~ = s, 
satisfying the hound 

where M does not depend on N or {fn}, if neither of the roots of the 
characteristic equation, a + bq + cq2, is equal to one in modulus. Prove. 
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SS. Algorithm for the solution of boundary-value 
problems - forward elimination, back substitution (FEBS). 

1. Description of forward elimination, back substitution (FEBS).* We 

now describe a simple, convenient method for the solution of the difference 

boundary-value problem of the form considered in 9 4 :  

a u  + b u  O < n < N ,  
n n-1 n n + 'nUn+1 = fn' 

It is one variant of Gauss elimination and is called "forward elimination, 

back substitution (FEBS)". 
Let us write the equation u0 = $ of system (1) in the form 

a u  + b u  + c u  1 0  1 1  1 2 = f l '  

corresponding to the system (1) equation with n = 1, we eliminate un with 

the aid of the equation u 

the form solved for ul, 
= LlI2u1 + KlI2.  

We then write the result in 

312 '  
ul = L3/2~2 + K 

introducing the notation 

-c 1 a10 - fl 
-b * 1 

L3/2 = ' %/2 - 

The relation u 

equation 
= L3/2u2 + K3/2  

can now be used to eliminate uL from the 

a u  + b u  + c u  
2 1  2 2  2 3 = f 2 '  

~ ~ ~ 

* 
This method is often referred to, alternatively, as "Cholesky 
factorization". However, because of the way the method is presented 

here, this name seems inappropriate. One is then forced back to the 
akward name "forward elimination, back substitution'' which, because it 

will be used so frequently below, it seems adviseable to abbreviate. 

(Translator's note.) 
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corresponding to n = 2. 

form explicit with respect to u2, 

We again write the result of this elimination in a 

u2 = L5/2'3 + %/2* 

The above elimination process can be continued for n = 3,  4 ,  ... 
Substituting 

u =  + K  
n-1 Ln-1/2un n-1/2 

in the equation 

a u + b u + cnurrtl = fn, n n-1 n n 

we get 

Hence it is clear that the coefficients obtained in the course of the 

elimination process 

un = Ln+~/2un+~ + K n + ~ / ~  

can be computed via the recurrence relations 

-C 

The last of the relations obtained in this way has the form 

UN-l = 'N-l/ZUN %1/2' 

Since % = JI, it is now possible to compute u ' 
N-1. 

u =  N-1 LN-1/2J" KN-1/2' 

The other unknowns s-~, s -~ ,  etc., are determined, respectively, from the 
equations 
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u =  
N-2 ‘N-3/ZUN-l + KN-3/2’ 

N-3 LN-5/2UN-2 + %5/2’ 
u =  

and so on, until u1 is determined. 

described. First one calculates the coefficients L 
of increasing n (forward elimination) via the recurrence relation (2), with 

L = 0 and K = Q given. Then the computation of the unknowns, u is 
1 /2 112 n’ 

carried out, also recurrently, in order of decreasing n (back substitu- 

tion), through use of the equations 

Let us review, briefly, the basic features of the process just 

n+i/2’ Kn+1/2 in order 

”N = $ 3  

un = Ln+l12unfl + Kn+l,,2, 
n = N -1, N - 2, ..., 1. 

Note that to compute, via FEBS, the solution uo,  ul, ..., uN of system 
(11, consisting of N+1 equations, one must execute arithmetic operations 
whose number is larger only by a finite factor than the number of 

unknowns. To solve an arbitrary linear system of N equations with N 
unknowns by Gauss elimination ordinarily requires a number of arithmetic 

operations of order N3. 
operations, through solution of ( 1 )  via FEBS, has been attained by 

successful exploitation of the detailed structure of this system. 

problem (1) satisfying one of the good-conditioning criteria 

Such a reduction in the number of arithmetic 

In 17 it will be shown that when solving, via FEBS, a boundary-value 

or 

or 
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discussed in $ 4 ,  the expression bn + anLn-1/2, which must be used as a 
divisor, cannot vanish; and, further, the computational errors don’t 

accumulate and don’t produce errors increasing with increasing N in the 
computed solution. 

operations required and the weak sensitivity to computational errors, make 

FEBS a very useful computational algorithm. 

of a well-conditioned difference boundary-value problem (1) various 

algorithms could be used. We have described the FEBS algorithm, which has 
the advantages that it requires a small number of arithmetic operations and 

is computationally stable. We now describe another, still simpler, 

algorithm which, however, is computationally unstable and practically 

unuseable for large N .  

Given U ( l )  = +, U:’)= 0 ,  we find the solution U(’) = {U;”), 
n = 0,  1, ..., N ,  of difference equation (1). Naturally, in general 
Uk1) f $. Given UL2) = 4 ,  Ui2) = 1, we compute the solution U(2) = {ui2)}. 
This solution also does not satisfy the right-hand boundary condition. Now 

we postulate that 

These two noteable properties of FEBS - the small number of arithmetic 

2. Example of a computationally unstable algorithm. For the solution 

0 

Clearly for any 
satisfied. We now choose u such as to satisfy the condition 

the condition uo = 0 is obeyed and Eq. (1) is 

UN = u u p  + (1 - U ) q )  = (I, 

that is we set 

and get the required solution of (1) from Eq. (5). 

imaginary) machine exactly, then this would be a good algorithm. But we 
now show that it’s sensitivity to rounding errors for a well-conditioned 

problem (1) grows rapidly as N + a. For this purpose we take as an example 

If the calculation were carried out on an ideal (necessarily 

an 1, bn 5 -2615, C, 5 1, fn 3 0 .  
Condition ( 4 )  for a well-conditioned problem i s  satisfied. In this 

case the exact solution of the difference boundary-value problem is given 

by the expression 
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For Ui') and U i 2 ) ,  by virtue of (5) §3,  we have 

Note that the values of max lU,(l)I and m r  lUi2)) grow like gN. For this 

reason, for large N, in the computation of U i l )  and Ui2) the calculated 
n 

numbers will go out of the allowed range. But suppose this didn't happen, 

and that we have computed {Ui')} and 
the only rounding error is an error, E, incurred in computing 1 - u. Then 

via E q .  ( 5 )  we get, in place of  {un} 

and 0 exactly. Suppose that 

where AU, = cUA2). 
The error {Aun} for n - N will have the form 

and for a fixed relative error E ,  committed in the computation of 1 - 0, 
will quickly grow and "swamp" the exact solution {un} which, according to 

E q .  ( 6 ) ,  remains bounded. 

situations (see $20) it may turn out to be stable and completely effective. 
The method just described is called the "shooting method".* In other 

PROBLEMS 

1. How must one change the FEBS algorithm so as to use it for 
computation of the solution tun}, 0 5 n < N, of the difference equation - 

a u  + b u  + c u  - O < n < N ,  
n n-1 n n n n+l - f n '  

with boundary conditions of the form 

u0 - aul = +, UN - = $, 

* 
The same method is often referred to as "marching". (Translators 
note .) 
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if a and B are different from zero? 
2. In computing the solution of the problem 

a u  + b u  + c u  
n n-1 n n n n+l = fn’ 

it would have been possible to carry out the elimination in the direction 

of decreasing n. Write out the recursion relations for the computation of 
the coefficients 

substitution relations 

N 

n+1/2, Ln+l12 of the corresponding elimination- 

N - 
n = N - 1, N - 2, ..., 0. %+I = Ln+1/2‘n + Kn+1/2’ 

3.  Subjecting the coefficients an, bn and cn of the difference 
equation to the constraints an > 0 ,  cn > 0, -bn > an + cn + 6 ,  show that 
the FEBS coefficient Ln-1/2, occurring in the solution of the problem 

u = a u  + + ,  O < a < l ,  

a u  + b u  + c u  - O < n < N ,  

0 1 

n n-1 n n n n+l - fn’ 

u = BUN + $, N-1 

satisfies the inequality 0 5 Ln-1/2 5 1. 
error-accumulation in the back substitution? Is it possible, here, that a 

denominator in the forward elimination recursion relations will vanish? 

How does this fact influence 

4 .  Which variant of FEBS should one choose for the computation of the 
solution of the preceding problem if a = 10, B = -0.5? In answering, 
consider the danger of dividing by zero in the recursive computation of the 
coefficiedts in the FEBS equations. 
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Chapter 3 

Basis of the PEBS Method* 

§ 6 .  Properties of well-conditioned boundary-value problems. 

Here we prove the criterion, formulated in 564, for good conditioning 
of a difference boundary-value problem of the form 

a u  + b u  + c u  - O < n < N ,  
n n-1 n n n n+l - fn* 

u = $  
N uo = $, 

and establish several properties of well-conditioned difference boundary- 

value problems, so as to use these properties in §7 to provide a foundation 
for the FEBS algorithm. 

coefficients. Consider a problem of form (1) 
1. Bound for the solution of a boundary-value problem with perturbed 

a u + b u + ~ ~ u ~ + ~  = fn, p < n < q, 
n n-1 n n 

u = $ ,  
q 

u = $, 
P 

where p and q L p  + 2 are integers. 
of the solution from p t o  q, and not  0 to N, is not essential, but turns 
out to be’convenient later. A s  regards the coefficients, we assume that 

they are bounded in totality: 
depend on N or n. 

The fact that we number the components 

lan[, Ibnl, (cnl < MI, and MI does not 

Suppose that problem (1’) is solveable for arbitrary $, $ and {fn}, 
while the quantities up, uel, ..., uq, constituting the solution, satisfy 
the inequality 

where M1 and M2 are positive constants, Mi L M 2 ,  M1 21. 

* 
The material of Chapter 

may be omitted on first 
3 is not used in the following chapters, and 
reading. 
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Consider the problem 

Basis of the FEBS Method Chapter 3 

N W  

a u  + i ' U + Z u "  - 
n n-1 n n n n+l - fn* P < < 9, 

N N 

u = $. 
q 

u = 4, 
P 

Y 

If we postulate that the perturbations in the coefficients, a - a - N n n '  
bn - bn, cn - cn, are not too great, or more precisely 

then the perturbed system ( 3 )  will have the following four properties: 
1" 

2"  

Problem ( 3 )  will have a solution I." } f o r  any right-hand side. 

The solution I." } will satisfy a bokd of form (21, but with 2M1 
and 2M2, respectively, in place of MI and M2: 

< 2M1 max I f m [  + 2M2 max (101, 1111). ( 5 )  

N N  w 

3" The coefficients a b and cn will satisfy the bounds 
n' n 

1 < lCnl + - . 1 1 

6M 1 
< lanl + -, ("1 < lbnl + -, 

6M1 6M1 

4' The solutions tun} and I." } will differ only slightly from each 
other, and more precisely 

(6) 
N 2 
lun - un\ < c[6M1 max l f m l  + 6M1M2 max(l41, 1 + 1 ) ] .  

m 

Property 3" is obvious. We will prove 2' and, from it, derive 1". 

Suppose that system ( 3 )  is solvable for some right-hand sides. For these 
given right-hand sides we will deEine 

and will get, for p, the inequality 

For this purpose we rewrite ( 3 )  as follows: 
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From this expression, and from bounds (2) and ( 4 ) ,  comes the inequality 

Solving this latter inequality with respect to p ,  we get (7) and, hence, 

15). 
From inequality (5) it follows that the homogeneous system 

corresponding to problem ( 3 ) ,  and obtained from it by setting 0 = J, = fn 2 

0, has o n l y  the vanishing solution u : 0. Thus the determinant of 
coefficients of ( 3 )  is different fro: zero, and problem ( 3 )  has one and 
only one solution for any arbitrary right-hand sides. Properties 1" and 2" 

Y 

are proven. It remains only to prove property 4 " ,  i.e. inequality (6). 

Subtracting, term by term, Eq. (1) from'Eq. (81, we get 

Y - w 

an(un-l - Un-J + bnbn - ",I + Cn(Unfl - un+J = 

- -  Y -  *.-. 
= (a, - an)un-l + (bn - bn)un + (cn - ~ ~ ) u ~ + ~ ,  0 < n < N, 

Y N 

uo - uo = 0 ,  UN - UN = 0. 

Applying (2) 

* Y Y Y - * 
lun - Unl I M1 max I (a, - amIum-l + (bm - bmbm + (c, - Cm)u"mtl( 9 

m 

from which, now applying ( 4 )  and (5) ,  we derive 

1" - un) 5 M1"[3 2M1 maxlfml + 3 2~~ max(l+l, I J I I )~ ,  
m 

i.e., inequality (6). 
Now consider the problem obtained from (1') by perturbing, not only 

the coefficients, but also the right-hand-sides 

I 
- -  - *  - -  - 
a u + b u + cncnfl = fn, p < n < q, 
n n-1 n n 
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One can show that 

We will only sketch an outline of the proof, which can easily be carried 
out following this outline. 

First changing only the right-hand sides and leaving the coefficients 

unaltered we see, with the aid of (Z), that each u, changes by no more than 

Then changing the coefficients in the equation system with the altered 
right-hand sides we find that, by virtue of property 4 " ,  the components un 
change by an additional amount not exceeding 

which, indeed, leads to bound (10). 

already been discussed, one further consequence. Suppose that for the 

solution of system (1') we have, for some X > 0 ,  p + X < n < q - X, the 
bound 

We now derive, from those consequences of inequality (2 )  which have 

Then the solution of the perturbed system 

subject to the conditions 

satisfies, also for p + A < n < q - X ,  the inequality 

To convince ourselves of this we define the auxiliary net function {vn} as 
the solution of the system 
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For p + A  < n < q - A 

Next we use, for a bound on 1;. - vnl, inequality ( l o ) ,  from which it 
follows, taking account of ( l), tha 

Now, through use of (13), we immediately get inequality ( 1 2 ) .  

defining the limits within which one can perturb the coefficients without 

violating solveability, and also the coefficients in bound ( 5 )  on the 

solution of the perturbed problem, and in bounds (6) and (10) on the 
deviation between the solutions of the perturbed and unperturbed problems - 
all these quantities depend only on the coefficients M i  and M2 in bound 
(2) .  The specific values of the coefficients of the difference equation, 

and the number of points q - p + 1,  in themselves play no role: their 

influence acts only through the agency of the constants M1 and M2 which 
render bound (2 )  valid. 

2. Proof of the criterion for good-conditioning. In 594 we 

formulated criteria for a well-conditioned problem (1)  with coefficients 

satisfying the smoothness conditions 

Note. It is important to stress that the quantity E in bound ( 4 ) ,  
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To guarantee that problem (1) is well-conditioned, given (14) and (14'), it 

is necessary and sufficient that the roots of the quadratic 

a + b q + c q 2 = 0  
n n  

satisfy the inequalities 

where 9 > 0 does not depend on N or n. 

methods as were used, in 4 5 4 ,  when dealing with the case of constant 
coefficients, and we will not stop to consider this question further. 

a well-conditioned difference boundary-value problem 

The necessity of this criterion can be proven by roughly the same 

To prove sufficiency we will use the criterion, discussed in 664, for 

with constant coefficients, where p and q, q , p  + 2, are arbitrary 
integers. In contrast to what was done in $!t we number the components of 

the solution un}, not with n = 0,  1, ..., N, but with the numbers n = p, 
p + 1, ..., q which changes nothing essential. Problem (16) always has a 

solution and, moreover, for all n such that p (n (4, bound (30) 54 is 
valid, i.e. - 

Iunl 5 M~ maxlfm/ + M* ,ax( 141, ( ~ l l l ,  P 5 n I 4, (17) 
m 

and, for n such that p + 6/8 < n < q - 6/%, we have bound (31)  54: 

where 

We will choose E such that 

1 

24Mi 
E =-  

and take N large enough so that the inequality 
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is satisfied. 

Consider a boundary-value problem of the form 
We proceed, now, to prove that problem (1) is well-conditioned. 

a u + b u + ~ ~ u ~ + ~  = fn, p < n < q, 
n n-1 n n 

u = J I ,  
4 

= $ ,  
P 

where p and q are arbitrary, given, integers such that 0 L p, q 5 N, 
q ,p + 2. 
with problem (l), and in general it is obtained from problem (1) by 
"truncation" -- i.e. by discarding the equations for n( p and n,q, and 

fixing u and u . We will show that, given any N obeying condition ( 2 0 ) ,  

problem (21) has one and only one solution for any arbitrary right-hand 
sides, and further that the quantities {un}, p 5 n 5 q, satisfy a bound of 
the form 

In the special case p = 0, q = N this problem becomes identical 

P 4 

where M is some constant depending on B and 8, but not on N, p or q. 
We consider separately the case q - p(24fO and the case 

If q - p 2418, then the coefficients of problem (21), for any k and 
- > w e .  

9. such that p c k ,  R 5 q, will (by virtue of the smoothness conditions, 
(14), and the fact that N obeys (20)) satisfy the bounds 

These coefficients are "almost" constant, and differ by no more than E from 

the coefficients of problem (16) choosing, as a, b and c in (16), the 

coefficients ap+l, bp+l and cp+l. 
bound ( 1 7 ) .  Here E is chosen according to E q .  (19), satisfying requirement 

(4). Therefore to bound the solution of problem (21) one can use 
inequality (5): 

The solution of problem (16) satisfies 

We consider now the case q - p > 2410 for example for p = 0 ,  q = N. 

Suppose that, for some fixed 8, Jl and Ifn], there exists a solution tun], 

p 5 n 5 q. 
that the inequality 

Choose a sequence of integers, p = No < N~ < . . . < N~ = q, such 

6 12 
< Nk+l - Nk < 



60 Basis of the FEBS Method Chapter 3 

will be satisfied. The solution of the problem with constant coefficients 

av + bv + C V ~ + ~  = fn, Nk-l < n < Nk+l, 
n-1 n 

= Q, = $, 
VNk-l vNk+l 

where 

a = a  , b = b  , 
Nk Nk 

for n = Nk, by virtue of the inequality 

c = c  , 
Nk 

where 

1 
2 5  

, M’=--. 
128 M = _  
Be3 

The problem 

a u  + b u  + c u  
n n-1 n n n n+l = fn’ Nk-l < < Nk+ly 

U = 0, - J I  1 
Nk-l uNk+l 

can be considered a perturbed version of problem (25), while the coef- 
ficients of (26), by virtue of the inequality N - < 2418 ,  differ by 
no more than E from the coefficients of problem (25). Bound (12) can now 
be used for the solution of the perturbed problem. 

k+l Nk-l - 

For n = Nk one gets 

1 

(UNk-l(’ IUNk+l!) 
< 2M1 max lfml + (5 + z) max( 

IUNkl - m 

1 < 2~~ max If I + ?  max ( u 
- m m  1 Nk-ll’ )uNk+l! )*  

Consequently 
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Hence 

Now, for any arbitrary n, we find Nk-l and Nk+l between which it l i es  and 

use bound (23): 

Bound (27), obtained for q - p > 24/8, by virtue of (23) remains valid also 
for q - p 5 24/8. 
sides since, as can be seen from bound (27), for + = JI = fm I 0 there 
exists only the trivial solution. 

and conditions (14-), condition (15) is a criterion for good conditioning 

of problem (1). The following example shows that the smoothness condition 
(14) cannot be ignored. 

Problem (21) is solveable for any arbitrary right-hand 

We have completed the proof that, given the smoothness conditions (14) 

It's easy to verify that the difference boundary-value problem 

! a u  + b u  + c u  S O ,  O < n < N ,  
n n-1 n n n n+l 

uo = 0 ,  UN = 0 ,  

where an I 1, bn : (-l)n, cn 2 1 and N = 6N1 has, for any positive integer 

N1, the nontrivial solution 

nn 
6 

nn 
6 

sin - , if n is even, 

un = I 
-cos - , if n is odd. 

Consequently this boundary-value problem is not well-conditioned, despite 

the fact that 

i.e. 
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3. Properties of a well-conditioned problem. We now formulate the 
results obtained in 54 and in section 2 above, on good conditioning of 
problem (l), in a form convenient for use in the investigation of FEBS in 

In order that the difference boundary-value problem (1) be well- 
57 .  

conditioned it is sufficient that one of the following three criteria be 

satisfied: 

f i r s t  criterion: 

third criterion: 

where it is assumed that the coefficients are real and satisfy the 

smoothness conditions (14) 

If either of the first two criteria is satisfied problem ( 1 )  is 

solveable for N 2 2 and for arbitrary right-hand sides, and if the third is 
satisfied then problem (1)  is solveable for all large enough N and 
arbitrary right-hand sides. Also ,  for these same large N, in addition to 
problem (1) all truncated boundary-value problems of form (21) are also 

solevable. 

The solution {un} of the original problem and the solutions {un] of 
all truncated problems satisfy the bound 

where M does not depend on N, p, or q. 
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57. Basis for the PEBS method in well-conditioned 

boundary-value problems. 

Now we are ready for the study of the FEBS method, described in 55. 
Suppose one is required to calculate the solution of the difference 

boundary-value problem 

With respect t o  this problem we postulate that it itself, and all problems 

derived from it through truncation 

a u + b u + cnunfl = fn, p < n < q ,  
n n-1 n n 

u = + ,  = s, 
P 4 

have a solution for any arbitrary right-hand sides, and moreover 

In studying the FEBS algorithm we will use the fact that, by virtue of 

the bounds ( 4 )  and ( 5 )  of 156 the difference problem with perturbed 

coefficients 

M Y  Y -  - -  
a u + b u + ~ ~ u ~ + ~  = fn, 0 < n < N, n n-1 n n - N 

uo = +, UN = $, 

1 

as well as all problems derived from ( 3 )  by truncation, have solutions 

for arbitrary right-hand sides, and further 
1 

1. Bounds on the FEBS coefficients. Here we show that, in computing 
the FEBS coefficients, one never is led t o  divide by zero, and we arrive at 

bounds on the FEBS coefficients, bounds valid for the original problem (l), 
as well as the perturbed problem ( 3 ) .  For this purpose it is sufficient to 

consider only the perturbed problem, since the original problem is a 
special case of the perturbed problem (for E = 0 ) .  
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Consider the following truncated system 

N U  - N  w -  

N 

O < n < L ,  fn , anunml + b u + c ~ u ~ + ~  = n n  

ua = JI.  
- - 
uo = $, 

From Kramer’s rule for the 
11-1 - It is solveable. From it we deduce 

solution of a system of linear algebraic equations it follows that ua-l may 
be written in the form 

- -  N 

where L and h i  depend only on an, bn and cn. 
(valid for any 9, J, and If,}, and therefore for + = 0 ,  fi I 0 ,  J, = 1) it 
follows that 

As a consequence of bound ( 4 )  

- 
and taking ua = JI = 0 it follows that 

1 
2 It is convenient to assign to L and K the index a - - and to write the 

above relations and inequalities in the form 

A relation of this form was obtained in the development of FEBS in 
From Kramer‘s rule (5)  it will be seen that L i - 1 l 2  is uniquely $5. 

determined by an, bn and cn, while K2-112 is uniquely determined by Q, f,, 
a 
and Ka-1/2 coincide with the FEBS coefficients obtained in 45 where we 
wrote out, for these coefficients, the recursion relations 

N N  N 

N N  

bn and cn ( 0  < n < a ) .  Hence it follows that the coefficients La-112 n’ 

-‘: * ! La+1/2 - ’ Ka+1/2 - ga + 

ba + aaLa-1/2 a a-112 

Of course this last assertion is valid only if the recurrence formulae are 
meaningful, i.e. only if none of the denominators in these expressions 
vanishes. 
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We now show that, in fact, none of the denominators does vanish. 
Suppose that we have shown that it is possible, via Eqs. (7). to 

compute 

a+1/2 and Ka+1/2' 
we now verify the validity of these equations also for L 

For this purpose it is sufficient to show that 

Consider the system of equations 

N 

uo = 0 ,  1 

N 

ua+l = 0.  I 
A s  concerns the solution of this system, we know that it exists. From the 

first 2 (homogeneous) equations it follows that u a-1 - - La-1/2~R. From ( 4 )  
it follows that From the only inhomogeneous equation contained 
in s y s t e m  (9 )  it follows that 

N N 

5 2M. 

For this reason 

which indeed proves bound (8), together with the fact that recurrence 
relations (8) and bound ( 6 )  are meaningful. 

errors comdtted in the course of the calculation. We will now solve 

problem (1) by the FEBS method. In real computations at each step of the 
computational process one commits computational errors induced by 
roundoff. For this reason the real computational process is governed by 
the equations 

2. Estimate of the influence on computational results of rounding 
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K1/2 = + 5 / 2 3  7 L = 0 ,  
112 

Suppose that all computational errors are subject to the bounds 

with sufficiently small 6 so that 

1 

6M2 (2M + 1) 
6 <  

I 

We will show that in this case in the FEBS equations (10) none of the 
denominators will vanish, and will estimate to what extent these errors 

will distort the computational results. 

We introduce the notation 

- Y 

K 1 / 2  = 5 1 2 ;  Ka+l/2 + v a  = K a + 1 / 2 ,  a > 0 .  

Clearly the collection of equations (10) may be rewritten thus: 
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= -  , 9. = 1, 2 ,  ..., N-1, 
L9.+1/2 ax%-112 + ba 

I - f R  - aa(K"a - 1/2 - v  11-1 1 
+ K ! M J 2  + v9. = 

I 2  a2-9.-1/2 + b9. 

9. = 1, 2, ..., N-1, 

u = J, + V N ,  
N - 

R = N-1, N-2, -.*,  1, 
u9. = L9.+1/2U9.+1 + %+1/2 '  

and t h e s e  equat ions may be regarded as the b a s i s  f o r  a computat ional  

process  designed f o r  t h e  s o l u t i o n  of t h e  d i f f e r e n c e  boundary-value problem 

I - -  - -  - 
a u  + G u  + c u  - O < n < N ,  
n n-1 n n n n+l - f n '  

with the  fol lowing per turbed right-hand s i d e s  and c o e f f i c i e n t s :  

- 
$ = @ + K1/2, I 

We w i l l  show t h a t  

The proof i s  by induc t ion  on 9.. For R = 1 
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1 < M(2M + l)6 < a . 
Suppose that for k = 1, 2 

proven. In the computation of 

ai = ai, b = bi, and ci for i 

by virtue of (6), that )La-1,2 

w - .., 
i 

..., a-1 inequality (12) has already been 

L1/2, L3/2, ..., L9,-1/2 one uses only 
= 1, 2 ,  ..., a-1. Therefore we can affirm, 

< 2M and that, consequently, 

This completes the induction. 

inequalities 
Thus it has been shown that, if 6 - < 1/[6M2(2M+1)], then the 

are satisfied and, thus, bounds (6) and (II), 

are valid. We see that, in executing the computational process implied by 

( l o ) ,  we are never called upon to divide by zero. 
Now from Eq. (11) for T ,  ye, i, and from bound (13), it follows that 

I?, - fa[ 5 M6 + (M 2M + M)26 = M(4M + 3)6. 

Thus, committing at each step of the computational process an error no 
larger than 6 ,  6 < 1/[6M2(2M + l)], we can, by the process described, solve 
the problem with perturbed coefficients and right-hand sides. 

These perturbations do not exceed M*6, where 

M* 5 max{2, (4M + 3)M} 

depends only on M while, in addition, the perturbations in the coefficients 
don't exceed 1/(6M). 

is shown by bound (10) of 66, to errors in un not exceeding M**6. 
once again depends only on M. 
that the error in the solution will be N3r6.) 

Such perturbations of the coefficients and right-hand sides lead, as 
Here M** 

(If M Nr, then M* - N2r, M** N3r, so 
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If M, and thus also M**, is independent of N then making, in the 
course of the FEBS computations, an error of order 6 at each step (the 
number of such steps being proportional to N) we get in the final solution 

an error no greater than const - 6. 
step of the calculation does not grow with increasing N. Further even the 

cumulative influence of all errors committed during all steps of the 

computation also does not grow. 

wide use. 

Thus the influence, on the result, of an error committed in any single 

This noteable property of FEBS has, indeed, been a main reason for its 
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Part 2 
DIFFERBNCE SCHEMES FOR ORDINARY DIFFERENTIAL EQUATIONS 

Part 2 of this book is devoted to the construction and the study of 

difference schemes for ordinary differential equations. In the course of 
this study we introduce the concepts of convergence, approximation and 

stability, basic in the theory of difference schemes and general in 

character. Familiarity with these concepts, acquired in connection with 

ordinary differential equations, will permit us later, in the study of 

difference schemes for partial differential equations, to concentrate on 
the numerous peculiarities and difficulties characteristic of this most 

variegated class of problems. 

Chapter 4 
Elementary Examples of Difference Schemes 

In this chapter we consider introductory examples of difference 

schemes, intended only to give the reader a preliminary acquaintance with 

the basic concepts of the theory. 

SS. The concept of order of accuracy and of approximation 

1. Order of accuracy of a difference scheme. This section is devoted 

to the question of the convergence of solutions of difference equations, 
with refinement of the net, to the solutions of the differential equations 

which they approximate. We limit ourselves, here, to the study of two 

difference schemes for the numerical solution of the problem 

du 
- + a u = O ,  O(x(1, dx 

u ( 0 )  = b. 

Let us begin with the simplest difference scheme, based on the use of the 

difference equation 

We now subdivide the 

convenient to take h 

interval [0, 11 into steps of length h. It is 
= 1/N, where N is an integer. The points of 
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subdivision will be numbered from left to right, so that x, = nh, n = 0 ,  1, 
..., N. 
will be denoted as un. We fix an initial value, uo. 

From difference equation (2) one gets the relation 

The value of u obtained, via the difference scheme, at point xn 
Suppose that uo = b. 

u = (1 - Ah)u 
n-1' 

from which we find the solution of Eq. (2) subject to the initial condition 

uo = b: 

(xn/h) 
u = ( 1  - Ah)n b = (1 - Ah) b.  ( 3 )  

The ezuct solution of problem (1) has the form u(x) = b exp (-Ax). It 

takes on, at point xn, the value 

u(xn) = be -Axn . 
( 4 )  

We now estimate the error in the approximate solution ( 3 ) .  
this error is 

At point xn 

-hn] b. - e  
bnh) 

S(xn) = [ ( l  - Ah) (5)  

We are interested in the rate at which 6(x ) decreases as the number o f  

subdivision points increases or, equivalently, as one decreases the step- 
width, h(;,f[T, of the difference net. To bring this out we represent 

(1 - Ah) in the form 

X X X 
n n A2 h2 - i;- ln(1 - Ah) f [-Ah + -y-+ O(h3)] 

(1-fijh = e  = e  - 

+ O(h2) [l + O(h2)] = 1 
A2x -Ax 

= e + h+e " +  O(h2). 

Thus Eq. (3) takes the form 

-Ax A2xn 
u = b e  " + h b r  e-Axn + O(h2), 

so that 

A2xn -Axn 
6(xn) = hb 7 e + O(h2) = O(h), 
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i.e. the error (5 )  tends to zero as h + 0, and the magnitude of the error 
is of the order of the first power of the step-size. 

On this basis one says that the difference scheme has first-order 
accuracy (which is not to be confused with the order of the difference 
equation, defined in 81). 

Let us now solve problem (1) with the aid of the difference equation 

This is not as simple as it may seem to be at first glance. The problem is 
that the above scheme is a difference equation of second-order, i .e. it 

requires the assignment of two initial conditions (u(xo) = 0 and u(x,) = 

u(h)); while the equation to be integrated, Eq. ( I ) ,  is an equation of 
first order, and for it we need only the condition u(0) = b. It is 

natural, also in the difference scheme, to set uo = b. 

on this question we use the explicit form of the solution of Eq. (7 )  (see 

83 Eq. ( 6 ) ) :  

It isn't clear, however, how one should choose ul. To shed some light 

where 

A2h2 
= f i  - Ah = 1 - Ah -I--+ O(h4), 91 2 

(9 1 
q2 = (-1)(1 + Ah + 1) A2h2 + O(h4). 

The Taylor expansions, (91, of the roots of the characteristic equation 
allow one to develop an approximate representation of qn and 9;. 
out a detailed derivation of such a representation for in: We carry 

1 

Since Ln(1 + z )  = z - z2/2 + z3/3 + O(z4 ) ,  

+ O(h4). A2h2 A3h3 
1 - Ah + T +  O(h4)]= -Ah +- 6 

Therefore 
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X 
A3 x A3 h3 

[-Ah + 7 + O(h4)] -AX, 
q;1 = e = e  [ 1 + h2 +] + O(h3). (10) 

We will not carry out the completely analogous computation for q;, hut 

go directly to the result: 

qn 2 = (-l)”ekun + O(h2) (11 )  

Putting the approximate expressions for q y  and q; into E q .  ( 8 )  we get 

qlu0 - u1 ( - l ) n  [ekn + O(h2)]. 
42 - 91 

All further conclusions will be obtained through study of this expression. 

finite limit b as h + 0 then the first term, (q2u0 - ul )q l / (q2  - q l ) ,  on 
the right-hand side of E q .  (12)  tends to the desired solution of problem 

We note that if the coefficient (q2uo - u , ) / ( q 2  - q ) tends to the 
1, 

(I)., 
Since 

i . e .  does’not converge to a dePinite limit, then to guarantee convergence 

to a limit, as h -f 0 ,  of the second tern on the right-hand side of (12), 

‘lUo - u1 (-l)n[ehn + O(h2)], 
42 - 41 

it is necessary to require that the expression (qluo - u,)/(q2 - q l )  tend 

to zero as h + 0. 
Let us, then summarize what has been said. 

So that the solution of the difference equation 

U ( X  + h) - U(X - h) 
2h + Au(x) = 0 

should converge to the solution u = b exp (-Ax) of the boundary-value 
problem (l), it is necessary that the conditions 
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42u0 - u1 + b. 
+ 0 ,  

4 l U 0  - u1 
42 - ql 42 - 41 

be satisfied. Recall, further, that we chose to set uo equal to b. 

Condition (14)  gives us a hint as to how we can assign u l .  

that it is sufficient that u1 + uo as h + 0 .  

as h + 0 and, therefore, as h + 0 

It turns out 

In fact q1 + +l,  and q2 + -1 

q2uo - 
+ b. 

q1u0 - 1 

42 - 9 1  
+ 0 ,  

42 - 91 

2. Speed of convergence of the solution of the difference equation. 

We now go on to a study of the speed of convergence for different specific 

choices of u J u f h ) .  

To determine u(h) it is natural to make use of the Taylor series 
expansion of the solution of the differential equation u' + Au = 0.  Using 

the fact that u' = -Au, we rewrite the Taylor series expression thus: 

1 

u(x,) = u(0 )  - hAu(0) + O(h2) = u(O)(1 - Ah) + O(h2). 

This equation is satisfied by the exact solution of the differential 

equation. In the approximate solution, limiting ourselves to two terms of 
this expansion, we can set 

u = u (1 - Ah). 
1 0  

If we have decided to take only one term we let 

In the first case we commit, in the initial value u l ,  an error of order h2, 

in the second -- an error of order h. 
Let use examine the speed of convergence in each of these two cases, 

Assume 

for each of these assignments of initial values. 

uo = b, u1 = (1 - Ah)b. (15) 

Then (see Eq. ( 9 ) )  

0(h21 I 
' l U O  - u1 - [l - Ah + O(h2)]b - ( 1  - Ah)b = 

42 - 41 -2 + O(h2) 

A' h2 
q2uo - [-I - Ah - + O(h4)]b - (1 - Ah)b 

1 -  = b + O(h2). (16)  
42 - 91 -2 + ~(h') 
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Returning t o  Eq. (12), we e a s i l y  come t o  t h e  conc lus ion  which has  been ou r  

g o a l  

un = be-AXn + O( h2) . 
This  conc lus ion  may be s t a t e d  as fo l lows .  If 

g iven  c o r r e c t l y  t o  o rde r  h2 ,  then  t h e  e r r o r  i n  t h e  

h2 ,  i . e .  t h e  d i f f e r e n c e  scheme w i l l  be a c c u r a t e  to  

t h e  i n i t i a l  va lue  u1 is 

s o l u t i o n  w i l l  be o r d e r  

second o rde r .  

It can be shown t h a t ,  even i f  we t ake ,  f o r  u1, i t s  exac t  v a l u e  
b exp (-Axl), accuracy  g r e a t e r  than  o rde r  h2 cannot  be a t t a i n e d  i n  t h e  
s o l u t i o n .  We a d v i s e  t h e  r eade r  t o  prove t h i s  a s s e r t i o n  as an e x e r c i s e .  It 

is easy t o  show a l s o  t h a t  i f ,  f o r  UO, we t ake  no t  p r e c i s e l y  b ,  bu t  any 

q u a n t i t y  of t h e  form b + O(h2) ,  t h e  speed of convergence w i l l  s t i l l  be 

second o rde r .  

We now proceed t o  cons ide r  t h e  second fo rmula t ion  of i n i t i a l  
cond i t ions  we have set ou t  t o  s tudy .  Suppose 

u1 = uo = b. 

Now 

q l u O  - ul - [ l  - Ah + O(h2) lb  - b 
1 Ahb + o ( h 2 ) ,  = 2  

q2 - 91 -2 + O(h2) 

and, consequent ly ,  

q2uo - u -Ax q1u0 - u 

n 92 - 9 1  92 - 41  
u =  1 [e + O(h2)] - (-l)"[ehn + O(h2)]  = 

-Ax 
= [ b  + +  Ahb + O(h2)] [e  + O(h2)] - 

- (-1)"[i Ahb + O(h2)][ehn + O(h2)] = 

- (-1p e AXn 
h + O(h2).  2 

Thus i f  t h e  e r r o r  i n  i n i t i a l  v a l u e s  is of o rde r  h ,  then  the  e r r o r  i n  t h e  
s o l u t i o n  w i l l  a l s o  be of o r d e r  h. 
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Let us now summarize what has been said. We have seen that the 

difference scheme examined earlier, 

U(X + h) - U(X - h) 
2h + Au(x) = 0, 

as compared to the scheme 

u(x) + Au(x) = 0 ,  
U(X + h) - 

h 

can give faster convergence, and more precisely convergence with remainder 
terms of order h2, rather than order h as in the second of these schemes. 

In order to attain second order accuracy one must, having taken an exact 

uo, choose a u 

equation at point x = xo + h by a quantity of order h2. It can be shown 
that uo also need not be given exactly, but also may contain an error of 

order h2. The speed of convergence i s  not thereby diminished. Refining 

the initial values up to order h3 and higher does not result in an increase 

in the accuracy of the solution. 

solution will contain an error of this same order. 

differing from the exact solution of the differential 
1 

If the initial values are given with errors of order h, then the 

3. Order of approximation. It is interesting to consider just what 
it is that renders the scheme 

U(X + h) - U(X) 
h + Au(x) = 0 

less accurate than the scheme 

U(X + h) - U(X - h) 
2h + Au(x) = 0 .  

These schemes differ in the approximate expressions 

u(x + h) - u(x) 
h and 

U(X + h) - U(X - h) 
2h 

used for the derivative, du/dx, at point X. It is natural to assume that 
in the first scheme the derivative has been replaced by a less accurate 

expression than in the second. And this is, in fact, true. Let us 

substitute, for u(x + h) and u(x - h), their Taylor series expansions 

h2 h3 
u(x + h) = u(x) + u’(x)h + u”(x) F +  u”’(x) r +  O(h4], 

h2 h3 
u(x - h) = u(x) - u’(x)h + u”(x) - u”’(x) + O(h4). 

Using these expressions we get 
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u(x + h, - u(x) = u’(x) + u”(~) h + O(h2). 
h 

u(x + h) - U(X - h) h2 
= u’(x) + u”-(x) + 0(h4), 2h 

i.e. in the first case we have an approximation to the derivative of only 

first-order accuracy, and in the second -- of second order. 

of convergence of solutions of difference equations can be taken to be 

equal to the order of approximation of the derivatives in the differential 

equation. It turns out, however, that in such a very general form, this 
hypothesis is untrue. 

On those difference schemes for which it’s validity will be proven it 

will be necessary to impose an essential restriction -- the requirement of 
stability. The necessity of this requirement will become clear as we 
consider the examples in the following section. 

The examples we have considered might lead one to think that the order 

s 9. Unstable difference 6chemes 

consider difference schemes for the approximate integration of the simplest 

differential equation u‘ + Au = 0. A s  we have already seen, to construct a 

difference scheme approximating this equation it suffices to replace the 

derivative, u’, by some sort of approximating difference expression. Thus 

we have examined schemes in which the derivative u’ was replaced by 

1. Techniques for approximating the derivative. We now again 

u(x + h) - u(x> 
or 

u(x + h) - U(X - h) 
h 2h 

It is clear than any expression of the form 

u(x + h) - U(X - h) U(X + h) - u(x) 
h + (1 - v )  2h !J 

will also approximate u’(x). In fact let us substitute into this 

expression the Taylor series for u(x + h) and u(x - h): 

u(x + h) = U(X) + u’(x)h + O(h2) , 

U(X - h) = U(X) - u’(x)h + O(h2). 

We then get 

u(x + h) - u(x - h) + - ,,) u(x + h) - U(X) 
2h h v 

[u(x) + u’(x)h + O(h2)] - [u(x) - u’(x)h + O(h2) ]  + 

2h =!J 
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Using this sort of approximation for the derivative one can derive a whole 

family of difference schemes depending on a numerical parameter. 

These schemes will have the form 

To each value of the parameter p corresponds one such scheme. It was the 

study of those particular schemes for which P = 0 and v = 1 to which $8 was 

devoted. 

2. Example of an unstable difference scheme. We now consider one 
more scheme of this form, obtained from (1) with v = 4 :  

U ( X  + h) - U(X - h) U(X + h) - U(X) 
4 - 3  + Au(x) = 0.  (2) 

2h h 

This scheme may be rewritten thus: 

-2u(x - h) + ( 3  + Ah)u(x) - U(X + h) = 0.  (2’ ) 

As in the examples considered earlier, we compute the solution on the 

interval [0,1], subdivided by the points of the difference net into N equal 
steps, each of length h = 1/N. The coordinate, x of a point of the net 

is defined a s  x = nh = n/N. 
n’ 

The solution of the difference equation may be written in the explicit 
form 

2 where q1 and q are roots of the characteristic equation 

-2 + ( 3  + Ah) q - q2 = 0.  

Let us compute q1 and q2: 

+ Ah - + 6Ah + 
= 1 - Ah + 2A2h2 + O(h3), 

q1 = 2 

+ Ah + + 6Ah + 
= 2 ( 1  + Ah) + o(h2). 2 42 = 

We will use, for qy and qi, the approximate expressions 

( 4 )  
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(5 )  

(xn/h) -Ax 
= [l - Ah + 0(h2)]" = [l - Ah + O(h2)] = e + O(h), 

91 

(xn/h) 
q; = [2(1 + Ah) + 0(h2)]" = [2(1 + Ah) + O(h2)] 

(Xn/h) Axn 
= 2  1. + O(h)l. 

Substituting Eq. (5) into (3 )  we get 

Before considering what limit u will tend to as h + 0 we must indicate how 

we will fix the initial values, uo and ul, of the difference solution. 

Just as in 58 we will look for a solution satisfying the condition 
u(0) = b, 2nd take as difference starting values uo = b and u 

We substitute these starting values into Eq. ( 6 )  and simplify each term 
separately. 

n 

= b(1 - Ah). 
1 

The first and second terms, respectively, take the forms 

92uo - u1 -Axn 

92 - 41 
[e + O(h)] = 

-Ax -Ax 
[2 + O(h)]b - (1 - Ah)b [e 
[2 + O(h)] - [ 1  - Wh)] + O(h)] = be + O(h), 

[I - Ah + 2A2h2 + O(h3)lb - b(1 - Ah) teAxn + O(h)] (Xn/h) 

- [l + O(h)] - [2 + O(h)] - 

(xn/h) 
= - 2A2h2b[eAxn + O(h)] 2 

Thus we get 

For x = x = const, as h * 0 the first term of this expression tends 
n 

to b exp(-Ax), i.e. to the desired solution. Therefore if the whole 

expression for un is t o  converge to this solution it i s  necessary that the 
second term should go to zero: but as h + 0 this term tends, not to zero, 

but to infinity. In fact -2A2b exp ( A x  ) + O(h) tends to the finite, 
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( xn/h) 
nonvanishing, limit -2A2b exp(Ax) , and h2 2 
than any positive power of lfh. 

equation can have a solution not converging, as h + 0 ,  to the solution-of 
the differential equation. One might think that the fault lies, here, in 

an insufficiently accurate choice of ul. But we will now show that there 
will be no convergence even if we take u1 to be exactly equal to the 

solution of the differential equation at x1 = xo + h, that is if we set 
u1 = uo exp(-Ah) = b exp (-Ah). 

sions occurring in Eq. ( 6 ) :  

tends to infinity faster 

We have shown that a difference scheme approximating the differential 

Let us begin by simplifying the expres- 

qzu0 - u1 - [2 + O(h) b - be-Ah 
[Z + O(h)J -][1 + O(h)] = + o(h)9 

92 - 41 

91 - 92 
Substituting these expressions into ( 6 )  we get 

(Xn/h) 
(7 )  

un = [be -Axn + O(h)] - [S A2behn + O(h)]h2 2 

The second term on the right-hand side of this equation again tends to 

infinity, while the first remains bounded. Therefore the whole solution of 
the difference equation also tends to infinity. 

The reason that difference scheme (2) doesn't converge as h + 0, as we 
have seen, is the fact that it can have solutions which grow quickly as the 

step-size h decreases, even if the starting values are completely 
reasonable. 

Such difference schemes are called "unstable". Naturally, they are 
unsuitable for the numerical solution of differential equations. 



This Page Intentionally Left Blank



83 

Chapter 5 

Convergence of the Solutions of Difference Equations as a 

Consequence of Approximation and Stability 

In Chapter 4 we showed by example what is meant by the approximation 
of a differential problem by a difference problem, and what constitutes 

convergence, thanks to which the solution of the differential equation can 

be calculated approximately through use of the difference scheme. We 

became familiar with the phenomenon of instability, which can render the 

difference scheme divergent and useless for computation. Analysis of the 

hehavior of the solutions in these elementary introductory examples, 

intended only to give the reader a preliminary acquaintance with 
fundamental concepts, was based on explicit expressions for the so lu -  

tions. Such a display of explicit solutions was made possible only by a 

special choice of examples. 

I n  this chapter we give rigorous definitions of convergence, 

approximation and stability. We show that proofs of convergence need not 

be based on the analysis of explicit expressions for solutions. Such 

proofs can be split into the verification of approximation of the 

differential problem by the difference problem, and verification of the 

stability of the difference problem. 

s 10. Convergence of a difference scheme 

1. Concept of a net and a net function. Suppose that a differential 

boundary-value problem is given on some interval, D. This means that one 
is given a differential equation ( o r  system of equations) which the 
solution must satisfy in the interval, D, and auxiliary conditions on u at 

one or both ends of this interval. The differential boundary-value problem 

will be written in the symbolic form 

Lu = f, (1) 

Where L is a given differential operator, and f is a given right-hand 

side. Thus, for example, to write the problem 

u(0)  = 3 ,  J 
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in form (1) we need only take 

cos x, O A X x ( 1 ,  

f =  1 
3 .  

The problem 

- 

I 
~ - ( I  + x2)u = Jx, 0 < x < 1, d2u 

dx2 
- -  

u(0) = 2, 

- =  W O )  
dx 

can be written in form (1) i f  we set 

p - (1 + x2)u, 0 < x  5 1, 

Lu = 1 u(O), d2u 

(duo dx 

G, 0 5 x 5 1 ,  

f -  2 
11: 

To put into form (1) the problem 

u(0)  = 2, 
u(1) = 1, 

( 4 )  

with boundary conditions at both ends of the interval 0 (x ( 1 one must 
take if (1 + 2 ) u ,  0 5 x 5 1, 

Lu = u(O), 
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m, 0 5 x 5 1 ,  

f.1 2, 
1. 

The boundary-value problem for the system of differential equations 

(5 )  

dv 
dx 
- +  xvw = 2 - 3x + 1, 0 5 x 5  1, 

dw 
dx 
- +- I (v + w) = coszx, 

1 + x* 0 5 x 5 1, 

v(0) = 1, 

w ( 0 )  = -3 

can be written in form (1) if one takes u to be a vector function, 
u = (v,w)~,* and sets 

x2 - 3x + 1, 0 5 x 5 1, 
f f COSZX, 0 5 x 5 1, I -:: 

In all these examples we have considered problems formulated on the 

interval 0 < x 1, and not on some other interval, only for the sake of 
definiteness. 

- 

We will assume that the solution, u(x), of problem (1) on the interval 
0 < x '1, exists. 

finite differences, we must first of all choose, on the interval D, a 
finite set of points which, in totality, we will call a "net" and designate 

by the symbol %; then we set out to find, not the solution, u(x), of 
problem (l), but a table, [ujh of values of the solution at the points of 

the net Dh. It is assumed that the net Dh depends on a parameter, h > 0 ,  
which can take on positive values as small as desired. A s  the "step-size" 

In order to calculate this solution by the method of - 

*Here and below the superscript T designates the transpose of a vector. 
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h goes to zero the net becomes steadily "finer". For instance one might 

set h = 1/N, where N is some positive integer, and take, as the net Dh, the 
totality of points xo = 0, x1 = h, x2 = 2h, ..., x = 1. The desired net N 
function [u]h, in this case takes on, at the points 

the values u(nh) which, for brevity, we denote as un. 

values, in the case of problem (2), one could use, for example, the system 

of equations 

= nh of the net Dh, 

For the approximate computation of the table, [uIh, of solution- 

cos x n, n = O , l ,  ..., N-1, 
1 + u2 

uo = 3 ,  

obtained by substituting, for the derivative duldx at the points  of the 

net, the difference approximation 

du U(X + h) - U(X) 
dx h 
- E l  

(h) = ( (h) (h) 
uo , u1 , ..., u(~)), of system (6) is defined on 

N (h) (h) 
The solution, u 

the same net as the desired net function [u]h. It's values u1 , u2  , 
..., u;), at the points x 1, x2, ..., xN are consecutively calculated from 
( 6 )  for n = 0 ,  1, ..., N-1. For the sake of brevity, in Eq. (6) we omit 
the superscript h on u(~) and, as a rule, will also do this in analogous 

situations everywhere below. 
In the case of problem ( 4 ) ,  in order to determine a net function, 
approximating the table of solution values [u]h, one can use the 

difference scheme 

h2 

n = 1, 2, ..., N-1, 
uo = 2, u = 1. 

N 

(7) 

This scheme is obtained by substituting, at the net-points, for the 

derivative d2u/dx2 occurring in the differential equation, the difference 
approximation 

(8) 
d2u 

dx2 h2 

u(x + h) - 2u(x) + u(x - h) 
- c I  

To compute the solution uch) of problem (7) one may use the FEBS 

Still another difference scheme which might be used to compute the 

algorithm described in 55. 

solution of problem (5) takes the form 
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V 
n + l - V n + x v w  = x 2  - 3 x  + 1 ,  

h n n n  n 

1 
(vn + w ) = c ~ s * x ~ ,  n = 0 ,  1, ..., N-I, w - w  

n+l n 
h ’- 

1 + x; 
vo = 1, 

wo = -3. 

T 
Here u(”) = (.Ah), w:))~ = (1, -3)  

can determine u(~) = (v:~), w:~))~. 

is given. For n = 0 ,  from Eq. ( 9 )  one 

In general, knowing u(~) = (vr), w:))~, 
0 

1 k 

k = 0 ,  1, ..., n, one can, taking k = n, compute u(~) = n+l (vn+l’ wn+l 
(h) W)T. 

In the above examples the net, D h ,  consists of points separated from 

each other by a distance h. 
of the net D h E 1/N, on the interval [0,1] not uniformly, but in such a 

h’ 
way that xo = 0 ,  x1 = xo + ho x2 = x1 + hl, ..., xN = 1, where the h, 
n = 0, 1, ..., N-1, are not ail equal, but max h 

knots of Dh could be so distributed that the desired table, 
solution u(x) would be most detailed for fixed N (or h : 1/N) in those 
subintervals where u(x) varies most rapidly. These subintervals are 

sometimes known beforehand from physical considerations, or from 
preliminary crude calculations. Information on the rate of change of u(x) 

is also generated in the course of the sequential calculation of u 

u2 
the next net-point x 

tions of the concept of a net. and of an unknown net function (or vector- 

function) -- a table of values of the solution [u]h. In addition we note 
only that, in the role of the desired table, [uIh, of solution-values it 

isn’t necessary to consider a net-function coinciding with the solution, u, 

at the net-points. It is possible to establish a correspondence between 

the function and the function-table In other ways. For example one may 

take, as the required table of u(x), 0 < x < 1, the net function [u]h 
defined at the points x = h/2, 3h/2, ..., 1 - h/2, by the equation 

x+h/2 
1 

[ulh = x-h/2 

Clearly one could have disposed the N+1 points 

+ 0 as h = 1/N + 0 .  The 

[u],, of the 

(h) 
1 ’  (h) , ..., u‘”), and this information may be taken into account in choosing 

n+l. 
We confine ourselves to the examples already discussed as illustra- 

I u(Z)dS. 

This way to set up a correspondence is convenient in the case where 

u(x) is not a continuous function, but it is known that it’s integral over 

any interval exists. Such a situation may occur for example, if one is 

dealing with a generalized, discontinuous, solution for which the integral 

1 
1 u2(x)dx 
0 

exists . 
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Everywhere below, barring statements to the contrary, we will assume 

that u is a continuous function and take [u]h to be the net function 
coinciding with u at the net-points. 

We are concerned with the computation of the net function [u]h 
because, as the net is refined, i.e. as h + 0 ,  it becomes a more and more 

detailed table of the desired solution u, of which it gives us an 
increasingly more complete representation. Via interpolation it is 

possible, with increasing accuracy as h + 0 ,  to construct the solution 

everywhere within D. Clearly the accuracy with which this can be done, for 

a given number and distribution of points of the net Dh, depends on 

additional facts concerning the solution (like, for example, bounds on its 

derivatives), and also on the distribution of the points of net Dh. 

the function, u, from the table [u]h. 
construction of a function from tabular values constitutes the subject 

matter of the theory of interpolation. We will concern ourselves only with 

the construction of the table [uIh and, by convention, consider that 
problem (1) has been solved exactly if the net-function [ulh has been de- 
termined. But, of course, we will not succeed in computing [uIh exactly. 

Instead of the net function, [u]h, we will look for another net function 
uCh), which "converges" to [uIh as the net is refined. For this purpose 

one can make use of difference equations. 

for the constuction and study of convergent difference schemes throughout 

all of this chapter. But first of all we must give a precise meaning to 

the requirement that u(~) .+ [u],, the convergence requirement that we will 

impose on difference schemes. For this purpose we consider a linear normed 

space of functions defined on the net Dh- 

function uh in U 
the function uh from u : 0.  

be "normed" if each element, x, of this space is put into correspondence 
with a non-negative number 11x1 1 and, moreover, the following three norm- 
axioms are valid: 

We confine ourselves to such passing comments on the construction of 

More detailed consideration of the 

2. Convergent difference schemes. We will be concerned with methods 

The ?ZOmn I Iu I I Of a net 
'h 

is a non-negative number which measures the deviation of h 
We recall that the linear space, R, is said to 

1" 11x1 I 1. 0, x in R; 

2" 1 IXxl 1 = [ X  1 11x1 1 ,  where x is in R and X is an arbitrary number; 

The norm can be defined in various ways. One can, for example, take 

as the norm of a function the exact upper bound of the moduli of it's 
values at the net points, i.e. 
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If u(~) is a pair of functions, as in ( 9 ) ,  then as a norm, in analogy 

with ( l o ) ,  one can take the upper bound of the moduli of both functions on 

their respective nets. 

then one frequently uses a norm defined by the equation 
If u(~) consists of functions defined on the net x = 0, h, 2h, ..., 1, 

This norm is analagous to the norm 

for functions, u(x), square-integrable on the interval 0 i x  5 1. 

(10) - 
Everywhere below, if nothing is said to the contrary, we will use norm 

After the introduction of a normed space, Uh, the concept of a 

deviation between one function and another becomes meaningful. 

b(h) are two arbitrary net functions in Uh, then the measure of their 
deviat ion from each other is taken to be the norm of their difference, i.e. 
the quantity 

If a(h) and 

Now we can proceed to a rigorous definition of a convergent difference 

scheme. 

Suppose that, for the approximate computation of the solution of the 

differential boundary-value problem (l), i.e. for the approximation 

computation of the net function [uJh via Eq. (l), we have constructed a 
system of equations which we will write symbolically, by analogy with Eq. 

(l), in the form 

Difference schemes ( 6 ) ,  (7 )  and (9), for differential boundary-value 

problems ( Z ) ,  ( 4 )  and ( 5 )  respectively, may be taken as examples of this 
differencing process. 

To write scheme ( 6 )  in form (11) we may set 

n = 0 ,  1, ..., N-1, 
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Scheme (7) may be written in form (11) if we take 

u - 2 u  + u  
n = 1, 2 ,  ..., N-1,  n+l w1 + [l - (r~h)~]u~, 

h2 

Jl+llh, n = l , 2  ,..., N = l ,  

Finally we write (9)  in form (ll), taking 

1 
w - w  

n+l n + 

(vn + wn), 
h 1 + (nh)2 

V - 0’ 

0’ 

n = 0 ,  1, ..., N-1, 

n = 0 ,  1, ..., N-1, 

We see that system (11) depends on h, and must be treated separately 

h’ for each h corresponding to each of the nets, Dh, and net-functions [u] 

which are of interest to us. Thus a difference boundary-value problem is 
not a single system, but a family of systems depending on a parameter, h. 

solution, u(~), 

probZem (11) converges, as the net is refined, to the solution of boundary- 
value problem (11, if 

It will be assumed that, for each sufficiently small h, there exists a 

of problem (l l) ,  belonging to the space U , 
We will say that the eolution u(h) of the difference koundary-value 

ll[ulh - u(h))Iuh + 0 as h + 0.  
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If, in addition, the inequality 

is satisfied, where c > 0 and k > 0 are constants not depending on h, we 
will say that convergence is of order h k ,  or that the difference scheme has 
k 'th order accuracy. 

In $8 we considered two difference schemes for the problem 

du 
- - + A u = O ,  0 5 x 5 1 ,  dx 

u(0) = b.  

The estimates obtained there for the difference, 6(x) = u(xk) - up), 
between the exact ana approximate solutions show that the first of these 
schemes converges with order h, while for the second convergence is order 

h2 . 
The requirement that it be convergent is the fundamental requirement 

which will be imposed on difference scheme (11) for the numerical solution 
of the differential boundary-value problem (1). When this requirement is 
met then, with the aid of difference scheme (ll), the solution u can be 

computed to any prescribed accuracy, if h is taken small enough. We have 
rigorously formulated the concept of convergence and have come up to the 

central question: i.e., how does one construct a convergent difference 

scheme (11) for computation of the solution of differential boundary-value 
problem (l)? The above examples supplement the considerations of Chapter 

1, and give some idea as to the simplest method for the construction of 

such schemes: one must choose a net, and substitute difference expressions 
for the derivatives. However, as we have seen, for one and the same 

differential boundary-value problem one can get different difference 

schemes (ll), choosing different nets Dh, and replacing the derivatives by 

various difference approximations. 
example of the simplest ordinary differential equation, that a difference 

scheme may be unsuitable for computation. 

will not concern ourselves with the problem of constructing difference 

schemes, but will pose a slightly different problem. Suppose that a 

difference scheme L u(~) = f(h), which we have reason to hope is conver- 

gent, so that 

We have already seen in 5 9 ,  through the 

3. Proof of convergence of a difference scheme. For the moment we 

h 

has, somehow or another, already been 

whether it is, in fact, convergent or 

+ O  as h + O  

constructed. How can one test 

not? 
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(h) 

in Uh. 
place of u(~), into the left-hand side of (ll), it turns out that (11) is 
satisfied exactly then, in view of the uniqueness of the solution, we would 
have [u] = u(~), i.e. ideal convergence. 
difference problem L u(~) = f(h) would then, in other words, coincide with 

h 
the required net function [u],, which we have agreed to consider the exact 
solution. 

way as to be exactly satisfied by [u],. 
(11) some sort of residual will form: 

Let us assume that difference scheme (11) has a unique solution u 

If, on substituting the net function [u] ([u], in Uh), in h 

The solution, u(~), of the 
h 

However, as a rule one will not succeed in constructing (11) in such a 

When [u], is substituted into Eq. 

If this residual 6f(h) "tends to zero" as h + 0 ,  so that [u], satisfies Eq. 

(11) more and more closely, then we will say that the difference scheme 
= f(h) approximates the boundary-value problem Lu = f on the 

solution, u, of this latter problem. 

the boundary-value problem, one may suppose that Eq. (14), which is 
satisfied by [u],, is gotten from (11) through the addition of some (small 
for small h) increment, 6f(h), to the right-hand side f(h). Therefore, if 
the solution, u(~), of problem (11) is stable with respect t o  perturbations 
of the right-hand side f(h), i.e. chan es little for small changes of the 

right-hand side, then the solution u(~' of problem (11) and the solution 
[u], of problem (14) will differ little from each other, so that from 

approximation 

In case of approximation, i.e. if the difference scheme approximates 

&f(h) + 0 as h + 0 

follows convergence 

u(~) + [u], as h + 0. 

The approach we have indicated, by which to test the convergence of 
(12), consists in that one splits this difficult problem i n t o  two which are 

simpler: first, test whether problem (1) is approximated by (ll), and then 
determine whether problem (11) is stable. But here is, in fact, an indica- 
tion as to how one might construct a convergent difference scheme for the 
solution of problem (1): one must construct an approximating difference 
scheme; from among the many possible methods of approximation one must 
choose one such that the difference scheme turns out to be stable. 
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The above general plan for the study of convergence, naturally, 
assumes the introduction of rigorous concepts of approximation and 

stability, such that one can prove a theorem stating that, from approx- 
imation and stability, follows convergence. The above definitions of 

approximation and stability are not rigorous. To define a proximation one 
must first state more precisely what is the residual, 6f(hP, in the general 
case, and what is meant by its magnitude; and to define stability one must 

give a precise meaningto the assertion that “to a small perturbation of 

the right-hand side corresponds small perturbation of the solution of the 

difference problem Lhu(h) = f(h) , 

ciple topics of gll and 612, respectively. 
Strict definitions of approximation and stability will be the prin- 

PROBLEMS 

1. Divide the interval [0,1] into N parts, separated by the points 

xN = 1, in such a way that xo = 0 ,  X1’ X2’ ... x 

xn+l - xn 
n n-1 

4, .-= 
x - x  

and determine whether it is possible to use a sequence of such nets with 
N + - (where q is a constant not depending on N) for the approximate 

solution of the problem 

u ’ - u = o J  u(0) = 1 

with the aid of the difference scheme 

“‘h’(X0) = 1. 

Does the maximum of the step-sizes x - x tend to zero as N + m? 
n+l n 

Hint. It is simplest to consider the case q > 1, and to convince 
oneself that 
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511. Approximation of a differential boundary-value problem by a 

difference scheme 

1. The residual 6fCh). We now give a precise meaning to the concept 

of approximation of boundary value problem (1) $10 

on the solution u, by difference scheme (11) $10 

4nu(h) = f(h)* ( 2 )  

For this purpose one must state more precisely what is meant by the 

residual 6f (h) 

which forms when the net function [u],, the table of values of the required 

solution u, is substituted into Eq. (2); and one must make a precise 
statement as to its magnitude. 

as the definition of approximation. 

for the numerical solution of the differential boundary-value problem 

Convergence of the magnitude of 6f(h) to zero, as h + 0, we then take 

We start with the consideration of an example of a difference scheme 

I du 
dx 

- +  a(x) - +  b(x)u = cos x, 
d2 u 

dx2 
0 5 x 5 1, 

u(0) = 1, 
u’(0) = 2. 

( 4 )  

A s  our net Dh we take, as before, the set of points x 

N; h = 1/N. 

we use the equation-set 

= nh, n = 0 ,  1, ..., 
h As a difference scheme for the approximate computation of [u] 

u - 2 u  + u  u - u  

7 + b(xn)un = n+l n n-1 n+l n-1 
+ 2h 

h2 

= cos xn, n = 1, 2 ,  ..., N-1, 
uo = 1, 

u - u  
l h  O = 2 ,  

(5)  

1 
obtained by substituting, for the derivatives in ( 4 ) ,  the approximations 
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- u ( x . + . h )  - 2u(x) + u(x-h) ~ d2u(x) 

h2 dx2 ’ 

U(X + h) - U(X - h) ~ au(x) 
~ -- 

2h dx ’ 

The difference scheme (5) takes the form (2) if one defines 

cos nh, 

f(h) = I :: 
To compute and bound the magnitude of the residual, &fCh), which 

By Taylor’s formula we have 

u(x + h) = u(x) + hu’(x) + - u”(x) + 

arises when [u] is substituted into (2), we refine E q s .  (6). 
h 

h2 h3 
2 u * ~ , ( C l ) ,  

( 7 )  

h2 h3 
2 6 U(X - h) = U(X) - hu’(x) + - u”(x) - - u,**[ c2), 

h2 h3 h4 
u(x + h) = u(x) + hu’(x) + u”(x) + - u”’(x) + 26 u(~)(E~), 6 

h2 h3 h4 
2 U(X - h) = u(x) - hu’(x) + - u”(x) - u”’(x) + u‘~’(E,), 

h2 
u(x + h) = u(x) + hu’(x) + ~ ” ( 5 ~ ) .  

1, 5 , ,  C 3 ,  c4 and 5 Here 5 are certain points in the interval [x-h, x+h]. 
5 

Hence 
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u(x + h) - 2u(x) + U(X - h) 
h 

2. Computation of the residual. We will assume that the solution, 
u(x), of problem (4) has bounded derivatives up through the fourth. By 

virtue of (8) one can write 

+ U(X + h) - 2u(x) + U(X - h) U(X + h) - U(X - h) 
+ a(x> 2h 

h2 

Therefore the expression 

L h W h  = 

U(X, + h) - 2u(xn) + U(X, - h) 
+ 

h2 

U(X, + h) - U(X - h) 
2h + b(xn)u(xn), n = 1, 2, ..., N-1,  

L 
can be rewritten thus : 
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+ 
24 rcos xn + h2 

, n = 1, 2, ..., N-1, U”’(S1) + U”’(5J 

f ahn) 12 

~ ” k J  
1 + 0, 

2 + h -  I 2 

L h [ U I h  = 

or 

where 

It is convenient to regard f ( h )  and 6f(h), given by Eqs. (7) and (9), 

h’ 
as belonging to a linear normed space F which consists of elements of the 

f orm 

(n = 1, 2 ,  ..., N-1), 

, On-lZh~nd also $ and J, are arbitrary ordered sets of 
0 1 where 4 1’ 0 2 ,  ... 

numbers: one can take g 

2, ..., N-1, along with the ordered pairs of numbers $, and 9,. 
summation of two elements of the space Fh, and the multiplication of the 

elements of g(h) by a common factor, are carried out term by term. 
in the example under consideration F is an (N+l)-dimensional linear 

space. 

norm in Fh via the equation 

to be the totality of net functions on, n = 1, 

The 

Clearly 

h 
The norm of Fh can be introduced in many ways. I f  we introduce a 

i.e. take as a norm the maximum absolute value of all components of the 
vector g(h)  then, by virtue of (9), we get 
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(11) 

where C is some constant depending on u(x), but not on h. 

From this equation it follOW5 that 

In the equation ~ ~ u ( ~ )  = f(h) which we have taken as an example, (and 

f(h) tends to zero as h + 0. 

which is written out in detail in Eqs. (5)) Lh can be regarded as an 
operator. This operator maps each net function v (h) = vn , n = 0 ,  I, ..., 
N, in the linear space of functions defined on the net Dh, into an 
element g(h) of €om (lo), also in the linear space Fh, via the equation 

h2 

L z v 

v1 - vo i o  0 -  

h 

Also in the general difference 
convention that the right-hand 

boundary-value 

sides of these 

problem (2) we will adopt the 

scalar equations, which we 

have written collectively in the symbolic form 

are components of a vector f(h) in some linear normed space F 

can regard 4, as an operator mapping each net function, u(h) 
some element f(h) of Fh. In this case the symbol Lh[uIh is meaningful, and 
represents the result of the operation Lh on the net function [u] 

an operation yielding an element of the space F 

Then we 

lJh, into 

h' 
of U 

h 

h' 
The residual &f(h) = L [u ] - f(h) belongs to the space Fh, being the 

h h  
difference of two elements of this space. By the "magnitude of the 

residual" is meant I )6f(h)l 1 . 
Fh k 3. Approximation of order h . 

Definition. We will say that the difference scheme L u(h) = f (h) 

-f 0 as 
h 

upprorchutes the problem Lu = f on the solution u if I 16f(h)l I 
h + 0. If, moreover, the inequality Fh 

is satisfied, where c > 0 and k > 0 are constants, then we will say that 
the approximation is of order hk,  or order k with respect to the magnitude 
of h .  
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The fact that u is a solution of problem (1) gives information about 
the function u ,  information which one can use for the construction of 
system (2), and also to verify approximation. For this reason in the 
definition of approximation we refer to problem (1). We stress, however, 

that the above definition of approximation of the problem Lu = f on the 

solution u ,  by the difference equation 4111‘~) = f(h), does not rely on the 

equation, Lu = f, which determines the function U .  One might have said 
simply that the scheme 5~‘~) = f(h) 

making no mention of the origin of this function. In particular if the 

function u is, simultaneously, the solution of two completely different 

problems, L(l)u = f(’) and L(2)u = f(2), of form (l), then one and the same 

difference scheme, 5~‘~) = f(h) simultaneously either does or does not 

approximate each of these problems on their common solution U .  

agrees to order hk with function u, 

4. Examples. 

Example 1. Difference scheme ( 5 ) ,  in view of bound (ll), approximates 

( 4 )  to first order in h. Scheme ( 5 )  can easily be refined, however, so 

that the approximation becomes order h2. 

all components of 6f(h) except the last tend to zero like h2 (and the next 
to last is actually exactly equal to zero). 

Only the last component of the vector 6f(h) (i-e., the residual 

arising from the substitution of [u] into the last equation, 
h 

(u l  - uo)/h = 2, of system ( 5 ) )  tends to zero more slowly and is, in fact, 

first order in h. This annoying circumstance is easily eliminated. By 
Taylor’s formula 

To accomplish this we note that 

= 2 + h u”(0) + a h2 U ” ’ ( S ) ,  O < € , < h .  

But from differential equation ( 4 )  we find that 

u”(0) = -a(O)u’(O) - b(O)u(O) + cos 0 = -2a(0) - b(0) + 1 .  

Therefore, replacing the last equation of ( 5 )  by the equation 

- uo h 
h 

___ = 2 - 2 [2a(0) + b(0) - 1 1 ,  

we get for f(h), in place of ( 7 ) ,  the expression 

It then turns out that 
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and I I 6f(h) I I F  < Clh2, where C1 is some constant not depending on h. The 

approximation now becomes second-order in h. 
We stress that, for the construction of difference boundary condition 

(12), we used not only the boundary condition of problem ( 4 ) ,  but also the 
differential equation itself. One may say that we have, in effect, used 
the boundary condition 

h 

which is a consequence of the differential equation. 

scheme 

Example 2. We examine the order of approximation of the difference 

un+l - "n-1 + A U ~  = 1 + x:, n = 1, 2, ..., N-1, 
2h 

L u(~) z u0 = b, (13) I u1 = b 

h 

on the solution, u,  of the problem 

* +  Au = 1 + x2, 
dx 

u(0) = b. 

A similar scheme was considered in $8 even before the introduction of a 

rigorously-defined conce t of approximation. 
Here the role of f") is played by 

1 + x i ,  n = l , 2  ,..., N-1, 

Further 
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U(X, + h) - u(xn  - h) 
+ Au(x,), n = 1, ..., N-1, 

2h 

u(O),  

u (h )  

L h M h  

o r  

S ince  t h e  s o l u t i o n ,  u ,  s a t i s f i e s  t h e  equa t ion  

Xn) 
+ Au(x ) = 1 + x i ,  

dx 

t h e  r e s i d u a l  6 f ( h )  t akes  t h e  form 

The approximat ion  of problem (14) by scheme (13) is of f i r s t  o r d e r  i n  h. 
One immediately s e e s  t h a t  t h e  components of t h e  r e s i d u a l ,  a s  i n  example 1, 

are of d i f f e r e n t  o r d e r  in h. The d i f f e r e n c e  equa t ion  

+ A ~ ~ = I + < ,  n = l , 2 ,  ..., N-I, (15) 
un+l - un-l 

2h 

upon s u b s t i t u t i o n  of [u],, is s a t i s f i e d  wi th  r e s i d u a l  h2u”’(Sn)/6,  

of o rde r  h2. 

a term 

The f i r s t  boundary c o n d i t i o n  

on s u b s t i t u t i n g  [u],, is s a t i s f i e d  e x a c t l y ,  and t h e  second 

u = b  ( 1 7 )  1 

-- with  r e s i d u a l ,  hu’(SO), of f i r s t  o r d e r  i n  h .  

approximat ion  is es t ima ted  via 

The e r r o r  of t h e  
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max (u'(x)l = max 
O L X L l  O<x(l - 

Chapter 5 

Au(0)e-AX + 2x + A Ae-AX 

In the example under consideration the exact solution 

-Ax 
- A X + I + X ~ - ~  _ _  2x 

A2 
A u(x) = u(0)e 

allows us to estimate these maxima in terms of u(0) and A: 

In more complicated cases it is necessary to limit oneself to coarse 
bounds on these derivatives, based on the theory of differentiability of 

the solutions of ordinary differential equations with smooth right-hand 

sides. 

5. Splitting of difference schemes into subsystems. For a detailed 
description of the character of approximation it turned out to be con- 

venient to talk, not  about the whole difference scheme (13) of form (2), 

all at once, but separately about subsystems (15), (16), and (17). These 

subsystems (of which the latter two each consist of a single equation) can 
be put, respectively, into the following symbolic forms: 

In order to accomplish this one must take 
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u - u  
+ Au,, n = 1 ,  2, ..., N-1,  

0 (h) = n+l n-1 
‘hu 2h 

a;u(h) 

+(h) 

fih) = 1 + <, 

uO 

u1 

f(h) = b, 

f(h) = b. 

1 

2 

For convenience, also in the general case difference scheme (2) is often 

split into two or several subsystems 

so that 

It is convenient to consider the right-hand side, f(h), of each sub- 

system tru(h) = f(h), as an element of the normed space :(r). And it is 

a l s o  convenient tiat the norms in space F and in spaces F(’), FL2), ..., 
FLR) should be coordinated so that 

h h 

h h 

Splitting (2) into subsystems ( 2 1 ) ,  we will always assume that (22 )  is 

satisfied. 

The convenience of splitting L,,u(~) = f(h) into subsystems consists in 

the fact that one can then consider separately the order to which each 



104 Convergence, Approximation and Stability Chapter 5 

subsystem approximates the solution of problem l), Lu = f. This order is 

taken to be the order with which the norm, I 16fih)I IFkr), of the residual 

6f(h), 

decreases as h + 0 .  Thanks to the coordinated choice of norms (22 )  the 

order of approximation of the whole difference scheme, l j , ~ ‘ ~ )  = fCh’, on 

the solution u of the problem Lu = f, is equal to the order of decrease of 

the norm 

( h )  of the residual 6fr , ‘c 

slowly. 0 
ere ro is that r for z c the norm decreases mos 

In example 2,  when system ( 1 3 )  is split into subsystems (15)-(17), or  

(18)-(20), the space FLo) consists of the net function f(h) = {fn} with 

norm I Ifo = nh, n = 1, 2 ,  ..., 
N-1, while spaces F(’) and FL2) are one dimensional and consist of numbers 

with norm 11a11 = 1.1. 

0 
(h) 1 1  = max If I ,  defined at the points x 

n 

h 
Equation (18) 

agrees with roblem (14), on the solution u ,  to second order, the 

equation !2(1pu(h) = fh corresponds exactly to ( 1 4 )  while the equation 

9 . ? ) ~ ( ~ )  =“fh is correct to first order. To raise the order of 

approximation of difference scheme (13) from first to second order in h, it 
suffices to “improve” only the boundary condition !L(2)u(h) = b .  
that 

1 

2 

We note 
h 

h2 
1Y)[ulh = u(h) = u(0) + hu’(0) + u”(S). 

We now take into account that u(0) = b and that, by virtue of ( 1 4 ) ,  

Setting 

t2  u(~) = u1 = b - hAb + h, i.e. fp) = b - hAb + h, 
h 

we achieve satisfaction of the boundary condition 
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aL2)[u]h = u(h) = f(h) + O(h2), 2 

i.e. we attain agreement, to second order in h2, with the boundary 

condition 

of problem (14), on the solution U .  Thus the difference scheme (15) ,  (18), 
( 2 3 ) ,  approximates problem (14) to second order in h. 

The splitting of difference scheme (2)  into subsystems (21) is simply 
a convention, adopted solely to facilitate discussion. Thus, for example, 

system ( 1 3 )  could have been split into two subsystems with difference 
equation ( 1 5 )  assigned, as before, to the first, and both boundary 

conditions (16) and (17 ) ,  to the second. We would then write, symbolically 

where 

With this splitting, however, as opposed to the splitting (15)-(17), or 

(18)-(ZO), we would have lost the ability to refer concisely to the fact 

that the first boundary condition, upon substitution of [u],, is exactly 

satisfied, and the second -- only to first order in h. 
6. Replacement of derivatives by difference expressions. In  the 

above examples we constructed difference schemes by replacing derivatives, 

in the differential equation, with difference expressions. This is a 
perfectly general approach which allows one to construct, for any differ- 
ential boundary-value problem with a smooth enough solution u(x), a 

difference scheme with any prescribed order of approximation. 
* * * * i t  

k In fact, let us show that the derivative d /dxk, of any arbitrary 

order k, can be replaced by a difference expression such that the error 
induced by this replacement, for a smooth enough function u(x), will be of 
any prescribed order, p, in the step-width, h, of the difference net. For 

this purpose we will use the method of undetermined coefficients, 

We will write an equation of the form 

s 2  
k = h-k 1 asu(x + sh) + O(hp) 

dx s= -sl 
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C as = 0, ’ 
Csas = 0, 

. . . . .  
sk-’a = 0, 

1 s as = k!, 

sk+’as = 0, 

k 

. . . . . . .  
1 sk+P-l a = 0. 

J 

and try to choose the undetermined coefficients, a s ,  s = -sl, -sl + 1, 
..., s2 (independent of h) in such a way that the equation will be valid. 
The limits of summation, s1 2 0 and s2 2 0, can be chosen arbitrarily 
provided that the order, s + s of the difference expression 

h-k 1 asu(x + sh) satisfies the inequality s1 + s2 2 k + p - 1. By 

Taylor’s formula 

1 2 ’  

’ 

... du(x) (sh)2 d2u(x) + 

u(x + sh) = u(x) + sh - + - - 
dx 2! dx2 

... + (sh)k+~-l dk+p-l u(x) + (sh)k+p dk+’u(5) 
(k + p - l ) !  dxk+p-l (k + p ) !  dxk+p ’ 

Let us substitute this expression, in place of u(x + sh), into ( 2 4 )  and 
collect like terms. We then get 

dk+p-l hk+p-l 

sk+P-l “,I + 
u(x) ... + 

k+p-1 (k + p - l ) !  
dx 

Equating coefficients of like powers hs, s - -k, -k+l, ..., p-1, on 
the left- and right-hand sides of this equation, we get the following 

system of equations for the a : 



511 Approximation of a Difference Scheme 107 

1 1 ... 1 

s2 -sl + 1 ... -1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
k+p-1 
s2 ( -s  + 1 )k+p-l ... 

is the well-known Vandermonde determinant, and is different from zero. 
Thus there is a unique set of coefficients, as, satisfying system (25). 

s1 + s2 2 k + p then, clearly, there will be many such systems of 

coefficients, a . 
of the form 

If 

Thus, for example, there is a unique first-order difference expression 

approximating du/dx, accurate to first order in h. It is given by the 

relation 

+ O(h). - -  du u(x + h) - u(x) 
dx - h 

Likewise there is a unique first-order difference expression of the form 

approximating du/dx to first order in h: 

Among second-order difference expressions of the form 

-1 
h [a-lu(x - h) + aOu(x) + alu(x + h)] 

there are infinitely many which approximate du/dx to first order in h, but 
only one is of second order accuracy. Solving system (25) in this case we 

see that, for a = 1/2, a. = 0, a-l = -1 /2  
1 

+ O(h2). du u(x + h) - u(x - h)  
dx 2 11 
- =  

If we want to approximate d2u/dx2 to order h2, then k = 2, p = 2, and 
it is necessary that s1 + s2 2 3. 
of the form 

Therefore among difference expressions 

-2 
h (a-lu(x - h) + a u(x) + alu(x + h) + a2u(x + 2h)) (26) 0 
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there is only one that has the desired properties. Solving system (21) for 

the coefficients a-l, ao, al and a2 we find that 

a c -2, a2 = 0 ,  
0 

a = al = 1, 
-1 

i.e we get the equation (already often used above) 

d2u(x) U(X + h) - ~U(X) + U(X - h) + O ( h 2 ) .  -= 
dx2 h2 

* * *  

7.  Other methods for constructing difference schemes. The 

replacement of derivatives by difference expressions is not the only, and 
often not the best, method for constructing difference schemes. Later we 
will devote §I9 to some other methods, leading to the most widely-used 
difference schemes. Here we limit ourselves to a discussion of examples. 

The simplest difference scheme 

called "Euler's scheme," approximates the problem 

du 
dx G(x,u) = 0, 0 5 x 1, 

u(0) = a 
(27) I 

- -  

to first order in h. 

un+l = un + hg(xn, u,). The scheme 
For given un, u ~ + ~  is computed from the expression 

where Gn = u + hG(xn, u,) , is called the "predictor-corrector Euler 
scheme". It is in fact, one of the Runge-Kutta schemes, with second-order 
approximation, which will be discussed in detail in 519. If un is already 
computed then, in this scheme, by Euler's method we compute the value 

= u + hG(x,, un), 

and then carry out a refinement of this i, setting 
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PROBLEMS 

1. Verify that the predictor-corrector Euler scheme approximates 

problem (27 ) ,  on a smooth solution u(x), to second order in h. 

512. Definition of stability of a difference scheme. 

Convergence as a consequence of approximation and stability 

1. Definition of stability. Suppose that, for the approximate 
solution of the boundary-value problem 

we have constructed the difference scheme 

$,(h) = f(h) 

k 
which approximates problem (1) on the solution u t o  some order h . This 

means that the residual 6f (h) 

f(h) + sf(h) 
Lh[Ulh = 1 

which appears when the table, [u],, of values of the solution u, is 

substituted into Eq. (2 ) ,  satisfies a bound of the form 

where Cl is some constant not depending on h. 

the difference scheme 

It is easy to verify that 

u - u  
un+l - Un-l - 3 "+Ih + Aun = 0 ,  I 4  2h 

n = 1, 2, ..., N-1, 

approximates 
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on the solution u, to first order in h. 

solution uch), obtained via this difference scheme, does not tend to 
[u], as h + 0. 

Stability is needed in addition. 

However, as was shown in 49 ,  the 

Thus, generally, approximatLon is not sufficient for convergence. 

Definition 1. We will call difference scheme (2) stable if there 
exists numbers, h 

E(~) in Fh, l l ~ ( ~ ' l l ~ ~  < 6, the difference problem 
> 0 and 6 > 0 ,  such that for any h < ho and any 

obtained from problem (2) through the addition to the right-hand side of a 
perturbation E(~), has one and only one solution z(~); and moreover, this 
solution deviates from the solution, u(~), of the unperturbed problem (2) 
by a net function z (h) - u(~), satisfying the bound 

where C is some constant not depending on h. 

Inequality (5) signifies that a small perturbation, E ' ~ ) ,  of the 
(h) - U(h) right-hand side of difference scheme (2) evokes a perturbation, z 9 

in the solution which is uniformly small with respect to h. 

is linear. 

definition of stability is equivalent to the following: 

operator 4, stable if for any f(h) in F 

unique solution u") in Uh, and 

Suppose the operator mapping Uh into F 

Definition 2. We w i l l  call the difference scheme (Z), with linear 

Then the above 
h 

the equation L u(~) = f(h) has a 
h' h 

where C is some constant not depending on h. We now prove the equivalence 
of both definitions of stability for a linear operator L 

in the sense of definition 2, follows stability in the sense of defini- 
tion 1. Suppose the linear problem (2), for all h < ho* and arbitrary 
f(h) in Fh, has a unique solution satisfying bound ( 6 ) .  Subtracting Eq. 

(2) from Eq. ( 4 )  we get 

h' 
First we establish that, from the stability of difference scheme (2) 

*Apparently the requirement h < ho is implicitly assumed in definition 2. 
(Translator's note.) 
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from which (by virtue of (6)) ( 5 )  follows for any E ( ~ )  in Fh, and from ( 5 )  
follows stability in the sense of definition 1. 

Now we will show that stability in the sense of definition 1 implies 

stability in the sense of definition 2. By definition 1, for some 

h0 > 0 and 6 > 0, and for arbitrary h < hO,  with E ( ~ )  in F ( h )  such that 

I I E ( ~ ) ] ~ ~ ~  < 6 ,  there exist unique solutions of the equations 

(h) = f(h) + €(h> 
Lhz , 

LhU(h) = f(h). 

Set w (h) - = z ( ~ )  - u(~), and subtract the above equations term by term. 

then get 

We 

where, moreover, from ( 5 )  

It is clear that, if we change the notation for the solution and right hand 
side of the equation L w(~) = E ( ~ ) ,  this last result can be stated thus: 

for arbitrary h < h and f(h) in Fh, llf(h)l[Fh < 6, problem ( 2 )  has a 

unique solution u ( ~ ' .  This solution satisfies bound (6). But then it must 

be true that Eq. ( 2 )  has a unique solution u ( ~ ) ,  and that bound (6) is 

satisfied, not only for all f(h) such that llf(h)llFh < 6, but also in 
general for all f ( h )  in F(h), i.e. we have stability in the sense of defi- 
nition 2. 

h 

In fact let 1 I F  2 6 .  Let us  demonstrate existence and 

uniqueness of a solution, 2 s  well as the validity of ( 6 ) ,  in this case. 
Let 

6 6 

For G ( h )  we get the equation 

with 
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Therefore L z(h) = ?(h) has a unique solution, and moreover 
h 

( h )  By virtue of the equations establishing the relation between u 

L(h) ,  and between f ( h )  and ?(h) ,  it follows from the above inequa 

and 
ity t iat 

problem (2) has a unique solution, and that bound (6) is valid for 
arbitrary f(h) in Fh. 

show, now, that from approximation and stability follows convergence. 
2. Connection between approximation, stability and convergence. We 

Theorem. Suppose that the difference scheme L u(~) = f ( h )  approxi- 
h .  

k 
mates the problem Lu = f on the solution u to order h , and is stable. 
Then the solut ion,  u(~), of the difference problem L ~ U  ( h )  = f(h) converges 

to [u],, satisfying the bound 

where C and C1 are the numbers entering into bounds (31 and (5). 

form 

Proof. Define E ( ~ )  E 6f(h), [u], : z ( ~ ) .  Then bound (5) takes the 

Taking note of (3)  we easily get Eq. (7), which was to be demonstrated. 
As an illustrative example, we prove the stability of Euler's 

difference scheme 

x = nh, h = l / n ,  for the numerical solution of the differential boundary- 

value problem 

uo = $. 
(9) 

We will assume that the function, G(x, u), of two arguments, and the 
function $(x), are such that there exists a solution, u(x), with bounded 
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second derivative. In addition, we suppose that G(x,u) has a bounded 

u-derivative 

< M .  

We suggest that the reader verify that the difference scheme (8) 

approximates (9) on the solution u(x) to first order in h.  (The difference 

equation represents the differential equation to first order, and the 

boundary conditions uo = 4J is exact.) We define the norms 

and proceed to verify the stability of difference scheme (8). Let us write 

this scheme in form (2) ,  setting 

The problem 

(h) = f(h) + €(h) 
Lhz 

has the explicit form 

z - 2  

~(x, , zn) = +(x,) + E ~ ,  n = 0 ,  I, ..., N-I, n+l n - 
h 

z = $ + € ,  
0 

where 

Let us subtract, from Eqs. (ll), the corresponding Eqs. (8), term by 
term. We define 

2 - u  = w  
n n n  
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and note that 

where cn is some number between z 
system of equations determining w(~) = (wo, wl, ..., wn, .., wN): 

and u . We then get the following 

From the demonstrated inequality 

follows a bound of form ( 6 )  

signifying stability with constant C = 2 exp(M). By virtue of the above 
theorem, difference scheme ( 8 )  is convergent to ftrst order in h. 

Now let us study the convergence of difference scheme (7) § l o  
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u -  2un + U n - l  
- (1 + x;,un = 41 + xn , n+ 1 

h2 

n = 1 ,  2 ,  ..., N-1, 

(13) 
uo = 2 ,  

u = 1  
N 

f o r  t h e  d i f f e r e n t i a l  boundary-value problem ( 4 )  $10. That problem ( 1 3 )  
approximates (4 )  510 t o  second o rde r  i n  h is obvious,* s i n c e  

n(x + h)  - 2u(x) + U ( X  - h )  = u..(x) + Q u ( 4 ) ( c )  

h2 

Next w e  set ou t  t o  v e r i f y  s t a b i l i t y ,  The problem under c o n s i d e r a t i o n  is 

l i n e a r .  Therefore  proof of s t a b i l i t y  c o n s i s t s  i n  t h a t  one e s t a b l i s h e s  

e x i s t e n c e  of a unique s o l u t i o n  of t h e  problem 

u - 2 u  + u  
n n+l - (1  + x:)un = gn, n = 1 ,  2 ,  ..., N-1, n+ 1 

h2 

uo = a, 1 (14)  

UN = B 

f o r  any {gn}, a and 6, and d e r i v e s  t h e  bound 

max Iuni 5 C(max IgnI ,  IaI, I B I ) .  (15) 
n n 

A problem of form (14) was cons idered  i n  84 ( s e e  p ,  34). There,  f o r  t h e  

problem 

a u  + b u  + c u  = n n-1 n n n n+l gn’ 

uo = a, 

UN = B 

*We no te  t h a t ,  i f  w e  were d e a l i n g  wi th  the  s o l u t i o n  of the  equa t ion  

uO*  - (1 + x2)u = 

d i f f e r i n g  very l i t t l e  from t h e  one cons ide red  he re ,  then  w e  would not be 
a b l e  t o  deduce approximation, s i n c e  lu”’(x)l would, i n  t h e  g iven  case, be 

unbounded (prove ,  r i g o r o u s l y ,  that u”’(x> is  unbounded). 
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on the assumption that 

lbnl ? IanI + IcnI + 6 ,  6 > 0 

it was shown that a unique solution exists, and that 

L 

In the case of problem (14) 

1 
, c = -  * Ibn 

1 

h2 h2 
a = _  

Therefore bound (16) implies bound 
proven. 

We note one detail which can 

2 

h2 
= - + 1 + x; > 

(15) with C = 1. 

e useful in prov 

IanI + Ic,I + 1 -  

Stability has been 

ng convergence throukl 
verification of approximation and stability. Suppose difference scheme (2) 
is split into the two subsystems 

so that 

Assume, further, that difference scheme ( 2 )  approximates problem (1) to 
order hk, i.e. Eq. ( 3 )  is satisfied. Suppose that, in addition, subsystem 

(17’) agrees with problem (l), on the solution u ,  exactly, i.e. 6f(h) = 0 ,  

with 0 in Fh : 
(1) 1 

6f(h) = (18) 

In such a case, for convergence of the solution, u(~), of problem (2)  to 

the required net function [u], (i.e. for the validity of bound (7)), it is 

sufficient that ( 5 )  be satisfied, not for all arbitrary eCh)  in Fh, but 
only for all of the form 
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where 0 is in F(h). A proof of this conclusion coincides verbatim with the 

proof of the above convergence theorem. The reader can easily verify that, 
for a linear, o erator, Lh, the requirement that bound (5) be satisfied 

only for all E") of form 19) is equivalent to the requirement that bound 
( 6 )  be satisfied for all f'h) of the same special form 

1 

with 0 in Fh (1) . 
For example, in proving convergence of difference scheme (13 ) ,  

would have been possible to make use of the fact that both boundary 

conditions, 

upon substitution of the tabulated values, [u],, of the solution of 

( 4 )  $10, are satisfied exactly: 

it 

problem 

u ( 0 )  = 2, 1 u( 1) = 1.. 
p [u], = 

Therefore the proof of inequality (15), signifying the stability of 

difference scheme (13), could have been carried o u t ,  not for an arbitrary 
right-hand side 

but only €or a right-hand side of form 

where we have taken ci = 0 and B = 0 .  

In problem (13) we dealt with the proof of the stability-inequality 
even without taking account of this simplification. In more complicated 
problems (for equations with partial derivatives) tne above considerations 

will sometimes prove useful. 
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To end t h i s  s e c t i o n  we unde r l ine  t h e  f a c t  t h a t  t h e  o v e r a l l  l a n  of t h e  

proof of convergence of t he  s o l u t i o n  of t he  problem L u ( h )  = f(h’, t o  the  

s o l u t i o n  of Lu = f ,  v i a  v e r i f i c a t i o n  of approximation and s t a b i l i t y  i s  v e r y  
gene ra l  i n  c h a r a c t e r .  In  t h e  r o l e  of t he  equa t ion  Lu = f we can p u t  any 

f u n c t i o n a l  equa t ion ,  no t  on ly  a boundary va lue  problem f o r  an o r d i n a r y  

d i f f e r e n t i a l  equa t ion .  In i t s e l f  it is not impor tan t  what s o r t  of problem 

i s  solved by t h e  func t ion  u .  The equa t ion  Lu = f is used on ly  a s  a b a s i s  

f o r  t he  c o n s t r u c t i o n  of t he  d i f f e r e n c e  equa t ion  L u ( ~ )  = f ( h ) .  

cons ide ra t ions  w i l l  be c l a r i f i e d  below, i n  3 .  

h 

These 
h 

* * i t * *  

3. Convergent d i f f e r e n c e  scheme f o r  an  i n t e g r a l  equa t ion .  We now 

c o n s t r u c t  and s tudy  a d i f f e r e n c e  scheme f o r  computing t h e  s o l u t i o n  of t h e  

i n t e g r a l  equa t ion  

1 
Lu u (x )  - I K(x,y) u(y)  dy = f ( x ) .  

0 

We w i l l  assume t h a t  lK(x,y)l  < p < 1. 

t i o n ,  [u],, on t h e  n e t  x = nh, n = 0 ,  1, ..., N .  To a r r i v e  a t  a d i f -  

f e r ence  scheme we approximate the  i n t e g r a l  in t h e  equa t ion  

For a g iven  N we set h = 1 / N  and seek t o  o b t a i n  a t a b l e  of t he  solu-  

by a sum, us ing  t h e  t r a p e z o i d a l  i n t e g r a t i o n  formula.  We r e c a l l  t h e  
s t r u c t u r e  of t h i s  formula: f o r  any f u n c t i o n ,  $ ( y ) ,  twice d i f f e r e n t i a b l e  on 

t h e  i n t e r v a l  0 5 y 5 1, we may write 

$0 +N 1 
1 

‘$(y) dy h (r + $1 + 9, + . . . + $N-l + T ) ,  h = - 
N ’  0 

where t h e  e r r o r  is  O(h2). A f t e r  t he  above replacement of the  i n t e g r a l  w e  

g e t  

This  system of equa t ions  can be w r i t t e n  in t h e  form L u ( ~ )  = f ( h )  i f  w e  

d e f i n e  
h 
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80 

g l  

g N  

. . .  

where 

n = 0, 1, ..., N. 

T h i s  scheme L u ( ~ )  = f ( h )  a p p r o x i m a t e s  t h e  problem Lu = f ,  on  t h e  s o l u t i o n  

u ,  t o  second o r d e r  i n  t h e  s t e p - s i z e  h, since t h e  t r a p e z o i d a l  q u a d r a t u  e 

formula  is a c c u r a t e  t o  second o r d e r .  We now v e r i f y  s t a b i l i t y .  L e t  u = 

t h o s e  components of t h e  s o l u t i o n  whose modulus i s  no less t h a n  t h a t  of any 

o t h e r :  

h 

fh) 

(uo, u l ,  ..., u N )  be  any s o l u t i o n  of sys tem ( 2 0 )  and l e t  u he one of 

Iu I = max Iu I. 
m 

From t h e  e q u a t i o n  of sys tem ( 2 0 )  numbered n = s ,  it f o l l o w s  t h a t  

T h e r e f o r e  

From t h i s  i t  f o l l o w s ,  i n  t h e  s p e c i a l  case f ( x  ) 5 0 ,  t h a t  s y s t e m  ( 2 0 )  

h a s  no n o n t r i v i a l  s o l  t i o n ,  and t h e r e f o r e  h a s  one and only  one s o l u t i o n  f o r  

any r igh t -hand s i d e  fYh).  I n e q u a l i t y  (21)  s i g n i f i e s  s t a b i l i t y ,  s i n c e  i t  i s  
e q u i v a l e n t  t o  ( 6 )  with c o n s t a n t  C = 1 / ( 1  - p ) .  The s o l u t i o n ,  u ( ~ ) ,  of t h e  

problem L u ( ~ )  = f(h), by v i r t u e  of t h e  convergence  theorem, s a t i s f i e s  t h e  
h 

i n e q u a l i t y  

where A is  some c o n s t a n t .  
* * *  



120 Convergence, Approximation and Stability Chapter 5 

013. On the choice of a norm 

The concepts of convergence, approximation and stability, introduced 

in $510-12, are meaningful if, in one way or another, norms have been 
introduced i n  the spaces Uh and Fh, to which belong, respectively, the 
solution, u(~), and the right-hand side, f(h), of the difference scheme 

for the approximate computation of the solution, u, of the differential 

boundary-value problem Lu = f. 

We now discuss to what extent the choice of norms, in the spaces U 
and F,,, is arbitrary. 

sures the deviation of the approximate solution, u(~), hfrom the net 
function [u],, i.e. from the tabulated values of the solution U. 

by the equation 

h 
We begin with the norm 1 1  11, , whose value mea- 

In all the examples we have considered we have used the norm defined 

The maximum is taken over all points of the net, Dh, on which the net 

function z c h )  in U is defined. We could, of course, have taken 
h 

or  

or even 

This latter norm may seem to be useful since, using this norm, the scheme 

u - u  n+l n-1 " - - 3 rrtlh + Aun = 0, 2h 

n = 0, 1, ..., N-1, 

uo = 

-Ah 
u1 = ae 

for solving the problem 
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u ' + A u = O ,  O ( x 5 1 ,  

u(0)  = a, 

c i t e d  i n  19 a s  a n  example of an  unuseable scheme, is  now convergent.  I n  

f a c t  by v i r t u e  of t h e  equa t ion  

which fo l lows  from (7 )  19, t h e  q u a n t i t y  

t ends  t o  zero  as the  n e t  i s  r e f ined .  But i t  i s  c l e a r  t h a t  t h e  approach of 

t h i s  q u a n t i t y  to ero does n o t ,  b any r easonab le  i n t e r p r e t a t i o n ,  imply 

t h a t  t h e  e r r o r ,  z = 

epS;, u(nh) - un, i s  allowed t o  i n c r e a s e  very  r a p i d l y  (a lmost  l i k e  

2 ), as  i t  does,  i n  f a c t ,  i n  t h i s  example. Norms ( 2 )  and ( 3 )  a l s o  are 

bd - u(", t ends  t o  ze ro ,  i n s o f a r  as t h e  d i f f e r -  

no t  to  be recommended since they  a l so  inadequa te ly  c h a r a c t e r i z e  t h e  e r r o r  
( h )  

[ u l ,  - - 
I t  i s  customary t o  choose a norm i n  t h e  space U h  i n  such a way t h a t ,  

as h t ends  t o  zero ,  i t  w i l l  go over  i n t o  some norm f o r  f u n c t i o n s  g iven  on 

t h e  whole i n t e r v a l .  i.e. so t h a t  

l i m  I I[uI I t  = tIuIIu, 
h 4  "h 

( 4 )  

where I I - 1 I,, is a norm i n  t h a t  space  of f u n c t i o n s ,  on t h e  g iven  i n t e r v a l ,  

t o  which u(x) belongs. The norm 

s a t i s f i e s  t h i s  requi rement ,  i f  we t ake  as U t h e  space  of cont inuous  

€unc t ions  i n  which 

and l e t  t h e  n e t  func t ion  [u], c o i n c i d e  wi th  u (x )  a t  t h e  p o i n t s  of t h e  ne t .  

The norm 



122 Convergence, Approximation and Stability Chapter 5 

is also reasonable. It satisfies condition ( 4 )  if we take, as U, the space 
of continuous functions with norm 

and define the net function [u],, as before, to coincide with u(x) at net- 

points. 
In the case of a discontinuous solution u(x) which, however, is 

square-integrable, we may take as U the space of square-integrable 

functions with the norm 

but define the value, u 

u = u(nh) (which may not be meaningful), but by the expression 

of the net function [u],, not by the equation 
n' 

u(x)dx. 

Then also for the discontinuous function we will have 
r 3- 

It is clear that convergence 

in the sense of norm (l), i.e. uniform convergence, implies convergence in 

the sense of norm (5), i.e. convergence in the mean, but uniform conver- 
gence does not follow from convergence in the mean. Therefore, from among 

the various reasonable norms satisfying condition ( 4 ) ,  one chooses that one 
in which one can prove the convergence of the particular difference scheme 

under consideration. For this choice there is no general prescription. 

difference equations, which we are studying in this chapter, it is 
generally satisfactory to use norms (1) or (5), or a norm of the type 

In the case of ordinary differential equations and the corresponding 

which takes account of the change in the net function from point to 
point. Equation ( 4 )  is satisfied for this norm, if, as U, we take the 
space of continuous and differentiable functions with norm 
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In the case of partial differential equations and the corresponding 

difference schemes it is sometimes convenient to use quite contrived norms, 
designed for specific problems. 

(h? = h' which contains the right-hand side of the difference equation Lhu 
f(h). 

1 \fulh - (h) I lUh -t 0, for the selected norm 1 1  * \ I u h  does not depend on 

the choice of a norm I I * 1 IFh, nor is it even relevant whether any such 
norm has been chosen. It is necessary to consider Fh as a linear normed 

space only in order to reduce the convergence proof, and verification of 
the order of accuracy of the difference scheme, to a verification of some 

order of approximation, and verification of stability. 

We will discuss the choice of a norm in F assuming linearity of the 

difference scheme L u(~) = f(h). This will be done only to avoid unessen- 

tial complications. 

scheme L u(~) = f(h) approximates the problem Lu = f on the solution u to 

some order hk, and is stable. 
the difference scheme 41~'~) = f(h) is convergent, with order of accuracy 

hk: 

Let us proceed, now, to consider the choice of a norm in the s ace F 

We underscore that convergence of the difference scheme 

h 

h 

Suppose that, for some choice of norm, I - \ I ( ' ) ,  the difference 

h 
Then by virtue of the convergence theorem 

Recall that approximation means the satisfaction of an inequality of the 

form 

Stability means that the problem Lhu(h) = f(h 

any f(h) in Fh, and moreover 

If we choose another norm, 1 1  

then, obviously, inequalities (8) and 
the inequalities 

has a unique solution for 

p. 
Fh 

(9) are replaced, respectively, by 
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Thus approximation will no longer be of order k with respect to the step- 
size h, but of one higher order, k+l. Judging by these facts, one might 

mistakenly conclude that the order of accuracy of the difference scheme is 

not hk, but hk'l' 
stability which, for the new choice of norm, is generally lost. 

If instead of (10) we had introduced the norm 1 I I 
equation Fh 

The trouble is that inequality (9) no longer signifies 

via the 

then, in place of ( 8 )  and ( 9 ) ,  we would have gotten, respectively, 

Inequality (13) guarantees stability since C h can be replaced by a 

constant, C2, not depending on h, thereby only strengthening the 
inequality. Inequality (12)  indicates approximation of order k-1 with 
respect to the step-size h. 

2 

Thus, having chosen the norm 1 I 1 I (2), we would only be able, on the 

basis of the convergence theorem to guarantee k-l'st order accuracy for 
the difference scheme L,,u(~) = ffh), one order lower than is guaranteed by 

inequality (7). This loss of information on order of accuracy has occurred 
because of a poor choice of norm in the space F 

scheme one must choose the norm, 1 1  
approximation is as high as possible, while stability is still not lost. 
For this choice of norm there is no general rule." 
always possible to choose a norm in such a way as to give both 
approximation and stability; otherwise, contrary to what was shown via the 

example in 59, every difference scheme would be convergent. 

Fh 

h' 
So as to determine, correctly, the order of accuracy of a difference 

)IFh, in such a way that the order of 

Further, it is not 

*We have in mind, here, also the case of difference schemes for partial 

differential equations, 
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We will present, however, one general consideration which may help us 

choose a norm correctly in the linear space F In choosing the norm 

I I * I I Fh one must take account of the nature of the continuous dependence 
of the solution of the differential boundary-value problem, on which the 
difference scheme L u(~) = f(h) was based, on the right-hand side f. 

h’ 

h 
For example, in the case of the problem 

when one introduces the increments 6$(x )  and 6a, into the right-hand side 

and the boundary condition, respectively, the solution u(x) changes by an 

amount,&u(x), of the same order of magnitude. 

Now let us  consider the difference schemes 

such that 

The norm in U as usual, will be given by the equation 
h’ 

Stability can be expected only if the norm 

depends in some substantial way on both $(x ) and a. 
may have the form 

The norm, for example 

Stability in this norm was proven in 5 1 2 ,  where a more general, nonlinear, 

problem was considered. 

to the equation 

One cannot expect stability if a norm is chosen, let us say, according 
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where a enters more and more weakly as h decreases. 
Stability in the sense of this norm would signify that u(~) depends 

more weakly on a than does the solution, u ,  of the differential equation. 
On the other hand for small h, by virtue of convergence (and convergence 

would follow from stability, since we already have approximation) the 
solution of the difference equation differs little from the solution of the 

dffferential equation; it must change, therefore, when the initial value, 

a, changes, by about the same amount as the solution u(x). 

More concisely: for the given choice of norm the problem 

I n = 0, 1, ..., N - 1 ,  un+l - un 
h + Aun = +n, 

uo = 0 I 

approximates the problem 

du - + Au = +(x), u ( 0 )  = a 
dx 

he solution u(x) for any a. Thus, given stability, the function 

But u(~) cannot converge simultaneously to 
not depending on a, would have to converge to the solution u(x) 

whatever the value of a. 

diEferent functions u(x). 

In the case of the difference scheme 

for the problem 

fi + A d" + Bu = $(x), 
dx2 dx 

from these same considerations the norm 
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must depend, i n  some e s s e n t i a l  way, on $, a and h.  It may have the  form 

but  one cannot expec t  s t a b i l i t y  i f  one chooses ,  as a norm, L e t  us say ,  t h e  

q u a n t i t y  

L e t  us  now r e w r i t e  (15) in a somewhat d i f f e r e n t  form: 

n+l - Un-l 
u - 2 u  + u  

+ Bun = $(xn) 
n+l  n n-1 

+ A 2h 
h2 

( 1 7 )  

u1 = a + bh, 

so t h a t  

(h )  
I a + hh. 

The norm in F must now he in t roduced ,  f o r  any g iven  R , 
h 

by an equa t ion  of t h e  type  

where 18 - a1 e n t e r s  w i t h  i n c r e a s i n g  weight l / h  as h + 0. 

in a o r  B of o r d e r  h is equ iva len t  t o  a change i n  u 

then (ul - uo l /h  changes by a q u a n t i t y  of o r d e r  1. 

scheme is s t a b l e ,  imp l i e s  a change i n  the  s o l u t i o n  of t h e  equa t ion  

In f a c t  a change 
o r  u of o rde r  h; bu t  

1 
Such a change, i f  t h e  
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by a quantity of order 1; clearly an O(1) change in (ul - uol/h is 
analagous to a change in the right-hand side of the condition du(O)/dx = b, 

a boundary condition of the differential problem, by a quantity of order 1. 
One cannot expect stability if the norm is defined by 

i.e. as it was defined earlier when we used the space Fh in conjunction 

with difference scheme (15). The order of approxiamtion of schemes (15) 
and (17), with norms (16) and (lt?), respectively, is the same for both 

schemes -- first order i n  h. The stability of schemes (15) and (17), with 

norms (16) and (18), will be proven in 514 .  

s14. Sufficient condition for stability of difference schemes 

for the solution of the Cauchy problem 

Below we will show how to study the stability of difference 

schemes $,u(~) = f(h) for the solution of differential problems with 

initial conditions (Cauchy problems). We do this via consideration of 

typical examples of difference schemes approximating the problems 

du - +  AU = $(x), 0 2 x 5 1, 
Lu = 1 dx 

u ( 0 )  = a, 

* + Av + Bw = p(x), 0 5 x 5 1, 1 dx 

'w(0) = b ,  

eU + A*+ Bu = $(x ) ,  O'x 5 1, dx ( d x 2  

If the concept of stability of the difference scheme L u - - f(h) is t o  
h 

have any meaning one must define the linear normed spaces Uh and F 
first space contains the table [u], in Uh, which we are to calculate, i.e. 
the table of the function, u, which solves the differential problem; to the 

The 
h' 
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second space belongs the right hand side, f(h) in Fh, of the difference 

scheme . 
h 

operator Lh, is said to be "stable" if the problem L u") 5 f(h' has a 

unique solution u(~) in U for any f(h) in F 
h h 

We recall that the difference scheme L u(~) = f(h) with linear 

h 
and, moreover, the condition 

IIU(*)IIU 5 cllf(h)ll. 
h 

is satisfied. 

In solving the Cauchy problem the net function, u(~), is ordinarily 

computed in moving, sequentially, from one point of :he difference net to 

another, nei hborin point. If we can get a bound on the growth of the 
solution, LI") 

called, each "step" of the computational process), we will have at our 

disposal one of the most widely used methods for the study of stability. 
It is this method which we will develop here. 

{$'I}, after each such move (or, as it is commonly 

1. Introductory example. We begin with the simplest, and by now 

thoroughly familiar, difference scheme 

"+Ih + Aun = On, (" - u  

1, ..., N-1, (h = l/N), ( 4 )  

for the solution of problem (I). This scheme may be written in the 

recursive form 

u = (1 - Ah)un + hf, n = 0, 1, ..., N-1, 
uo = a, 

n+l 

from which it follows that 

( 6 )  I u1 = (1 - Ah)uo + h@o, 

u2 = (1 - Ah)'u0 + h[(l - Ah)@o + $,I, 
u3 = (1 - Ah)3u0 + h[(l - + (1 - Ah)$ + @,I, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
un = (1 -Ah)"u0 + h[(l - + (1 - + . . a  + $n-l]. 

We will define norms in the spaces Uh and Fh, respectively via the 
equations 
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= max[IaI, max IfI]. (8) 
O<m<N 

Ilf(h)lI = // ; I) 
Fh 

Fh 

Now we use the fact that the expression (1 - Ah)" is bounded for 

n 5 N = lfh, 

1(1 - Ah)"/ < C1. (9) 

From Eq. (6) for un, with the aid of inequality (9), we conclude that 

!unl 2 C 1 ~ u o ~  + hNCl max I@,,,! = 
m 

= c1 la1 + c1 max I $ m ~ 5 2cll lf(n)l I . 
m Fh 

Since n is arbitrary, n = 0 ,  1, ..., N, it follows from (10) that 

and stability is proven. 

2. Canonical form of a difference scheme. At this point we introduce 

new notation, setting 

un = Y,, Rh = (1 - Ah), P, = @n. (12 )  

Now inequality (5) may be rewritten in the form 

Yn+l = %Yn + hPn' 

y given. 0 

Using notation (12) we repeat all the above calculations. Equations (6) 
now take the form 

Y1 = \Yo + hP0' 

Y2 = <Yo + h[\Po + P1l' 

Yj = %Yo + h[RiPo + \PI + P 2 1 t  

. . . . . . . . . . . . . . . . . .  
"n = $yo + h[q-lp0 + <-'p1 + ... 4- P,-~]. 
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The norms 1 1  I l u h  and 1 1  1 1  a r e  g iven ,  now, by t h e  equa t ions  
Fh 

I I ~ ( ~ ) I I  = max I ~ ~ I ,  
'h n 

Thus, no t ing  t h a t  Nh = 1, one may w r i t e  

The proof of s t a b i l i t y  w i l l  be complete i f  one e s t a b l i s h e s  the  

boundedness, uniform i n  h, of the  t o t a l i t y  of numbers 

proves  t h a t  

But 

which completes t h e  p roof .  
Wri t ing  t h e  d i f f e r e n c e  scheme i n  form (13) made i t  p o s s i b l e  t o  reduce 

the  s t a b i l i t y  proof t o  the  computation of a bound f o r  . This is  

convenient .  Indeed w e  w i l l  put a l l  o t h e r  d i f f e r e n c e  schemes f o r  t h e  

s o l u t i o n  of i n i t i a l - v a l u e  problems i n t o  the  canon ica l  form (13), t ak ing  f o r  
y,, pn and R n  t he  d i f f e r e n t  expres s ion  a p p r o p r i a t e  t o  each problem. 

1% I 

For  example l e t  us w r i t e  in form (13) t h e  d i f f e r e n c e  scheme 

approximating Cauchy problem ( 2 )  f o r  t h e  g iven  set of d i f f e r e n t i a l  

equa t ions .  Here 
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pn, 
n = 0 ,  1, ..., N-1,  

n = 0, 1, ..., N-1, 

We w i l l  write the  d i f f e r e n c e  scheme (14)  i n  t h e  form 

where 

is a 2x2 ma t r ix .  We now c a s t  t h i s  vec to r  d i f f e r e n c e  equa t ion  i n t o  the  form 

of a r ecu r s ion  r e l a t i o n  

J 
I f  we d e f i n e  

then  t h e  above r ecu r s ion  r e l a t i o n  t akes  on t h e  r equ i r ed  form (13). 

3. S t a b i l i t y  viewed as t h e  boundedness of t h e  wms of p o w e r s  of t h e  

transition ope ra to r .  We f i r s t  make a remark which is  e q u a l l y  a p p l i c a b l e  t o  

a l l  equa t ions  of form (13),  r e g a r d l e s s  of t h e  d imens iona l i ty  of t h e  l i n e a r  

shace, Y ,  which con ta ins  t h e  v e c t o r s  y 

l i n e a r  ope ra to r  Rh: 

and p,, and of t h e  form of t h e  

I f ,  i n  t h e  space Y con ta in ing  pn and y,, one in t roduces  some norm 

Eq. (6’) fo l lows  from (13).  

1 1  /I,, t hen  Eq. (6’) imp l i e s  t he  bound 
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* * * * * *  

We r e c a l l  t h a t  t h e  norm, 1 IT1 I, of t h e  l i n e a r  ope ra to r  T, mapping some 

l i n e a r  normed space Y 

From t h e s e  r e l a t i o n s ,  
fo l lows  t h a t  

i n t o  i t s e l f ,  is def ined  by t h e  r e l a t i o n s  

and from t h e  p r o p e r t i e s  of t h e  norm of a v e c t o r ,  i t  

The f i r s t  two of t hese  equa t ions  have been used t o  ge t  bound (15). 

* * I  

From (15), c l e a r l y ,  i t  fo l lows  t h a t  

Suppose that the difference scheme Lhu ( h )  = f ( h )  has been cast in to  
the canonicaZ form (13Y, and assume that the norms introduced in  the 
spaces Uh,  Fh and Y are chosen such as t o  sa t i s fy  the inequazities 

I l Y o I  ly c21 I 

I lPnl  ly 5 CJ I . 

Fh ’ 

Fh 

Then f o r  s tab i l i t y  
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it i s  suff ic ient  t h a t  the nomi, ~ ~ R ~ ~ ~ y ,  of the  powers of the operator  

Rh ' be uniformly bounded with respect  to h, i . e .  t h a t  

Moreover, as the constant C entering into the definition of stability, Eq. 
(18). one can take the quantity 

c = 2c;c3. 

The proof of this assertion consists of the following chain of obvious 

inequalities, written so as to take into account conditions (17) and (18), 
as well as the fact that Nh = 1: 

< c c LC + c21 IIf(h)lI , 
Fh 

- 2 3  2 

or 

4. 
Example 1. 

Examples of investigations of stability. 
We turn now to an analysis of the stability of difference 

h 
scheme ( 1 4 )  for a system of differential equations. Norms in U and F 

will be introduced via the equations 
h 

= max[ 

Fh 
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llYnlly = 

A s  we have seen, after introduction of the notation 

[ 

this system of difference equations takes on the canonical form (13). 

We introduce a norm, in the two-dimensional space, Y, to which 

yn and p belong, setting 

Y 

The norms in Uh, F 
verify stability it is sufficient to show that 

and Y turn out to satisfy condition (1.7). Therefore to h 

l / R : / \ y ~ M ,  n = 1, 2 ,  ..., N ,  M = const. 

Note that, for the vector norms we have chosen in Y, the norm of any linear 

ope rat or 

is given by the equation 

since 

max I I T X I I ~  = I I T I I ~  
11x1 I=1 

is attained for at least one of the two vectors 

By virtue of E q .  (19) for IITI 1 we get 
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Consequently, 

and stability is demonstrated. 
Example 2. Consider the scheme 

n = 1, 2, ..., N-1, un+l - Un-l 
2h + Aun = $n, 

u0 = a, (20) 

u1 = B, 

which, for a = a, B = (1 - Ah)a + h+o, approximates the Cauchy problem (1) 
t o  second order in h. We introduce the norms 1 1  ' 1 1  and 1 1  1 I via 
the equations 'h Fh 

I n  order to study stability we will try to put the difference scheme 

into form (13) so as to reduce the stability proof to the derivation of a 

bound IIRnII 
form 

< C. Let us first rewrite difference equation (20) i n  the 
h Y -  

- 2Ahun + 2h+n. 
'ln+l a Un-I 

What prevents us from rewriting it in form (13) is the fact that it 

to overcome this difficulty we will set 

connects not two, but three successive values: u n-l, un. un+l. I n  order 
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Now t h e  p a i r  of equa t ions  

! un+l = un-l - fAhun + 2hOn, 

u = u  n n  

g ives  the  components of v e c t o r  yn i n  terms of the  components of v e c t o r  

yn-l: 

We have now w r i t t e n  (20)  i n  form (13), where 

L e t  us  i n t roduce  a norm i n  t h e  two-dimensional space  Y,  t o  which yn and pn 

be long ,  v i a  t h e  equa t ion  

Then the  norms 

I lLl(h)Il , 
'h 

I l f ( h ) l I  , I I P n l l y ,  I I Y o l l y ,  
Fh 

a s  can e a s i l y  be seen ,  s a t i s f y  c o n d i t i o n  (17). Therefore  t h e  bound 

n = 1. 2 ,  ..., N ,  2 l A I ,  - < (1 + 21Ahl)n - < e 

proves s t a b i l i t y .  
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Example 3 .  Let us study the stability of the difference scheme 

(22)  i 
u - 2 u  + u  
n+l n n-1 + A n+l - Un-l  + Bu - 

2h n - 'ns 
h2 

n = 1, 2, ..., N = 1. 

uo = a, 

-- - b ,  
u1 - uo 

h 

which, for a natural choice of norms approximates the Cauchy problem 

( 3 ) .  The norms I / u ( ~ ) ~ I  and Ilf(h'lI 
'h Fh 

will be defined by the equations 

So as to bring the scheme i n  question into the canonical form (13) we 

set, as i n  example 2, 

Then the components of the vector 

Y?l 

are uniquely determined by the components of y by virtue of the given 

difference scheme, through the relations 
n-1' 

Thus 

Yn+l = \Yn + hPn' 
n = 0 ,  1, ..., N - 2 ,  

where 

2 - Ah 
2 + Ah) , pn = [ - '1l+1] . (26 )  

-- 4 - 2Bh' 
2 + Ah 

% =  0 
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Through use of  t he  cond i t ion  uo = a ,  (ul - uo) /h  = b (see ( 2 2 ) )  w e  

c a l c u l a t e  t h e  vec to r  y 0 :  

Y o  =r; , 

and thus  complete r educ t ion  of t h e  g iven  d i f f e r e n c e  scheme t o  form (13) .  

It  is easy  t o  s e e  t h a t ,  i f  t h e  norm of t h e  vec to r  [ ; ] i s  def ined  a s  

max(la1, l s l ) ,  i t  w i l l  no t  be such a simple ma t t e r  t o  prove s t a b i l i t y  wi th  
t h i s  ope ra to r  Rh,  s i n c e  1 l R h l  I = 2 ,  and I l R h l  I n  -f =J- 
norm in space Y w i l l  not be def ined  as i n  example 2 .  I n  f a c t  we w i l l  t ake  

For t h i s  reason  t h e  

We have a t t ached  the  s u b s c r i p t  "h" t o  Y so as t o  s t r e s s  t h a t  

( h )  depends on h. For t h i s  choice  of norm t he  q u a n t i t i e s  1 Iu 

I l f ( h ) l l  , llpnI1 and 

show t h a t  t h e  c o n d i t i o n s  
Fh 'h 

a l r e a d y  f a m i l i a r  wi th  Eq. 

elements of i t s  ma t r ix  i f  

Iyo 1 l L , -  s a t i s f y  r e l a t i o n s  ( 1 7 ) .  I 

t h e  norm now 

I ,  
"h 
remains t o  

l R r l / y n <  C ,  n = 1, 2 ,  N ,  a r e  s a t i s f i e d .  We a r e  

(19), r e l a t i n g  the  norm of an ope ra to r  t o  t h e  

the  norm i n  Y is g iven  by 

h 

[ i ] l I  = m a x  f l a t ,  IPII. 
Y 

L e t  u s  now reduce the  computation of t h e  norm i n  Y h  t o  t he  computation i n  

Y :  

\I'F1lly = 11(1:h -1h) 0 = ~ ~ s ' ~ l ~ ~ y '  
h 

where 

= (lib -1:h) 

Next we show t h a t ,  f o r  any a r b i t r a r y  l i n e a r  t r ans fo rma t ion ,  T, a c t i n g  i n  

space Y ,  we have the  e q u a l i t y  ( I T 1 1  
'h 

= )ISTS-'Ily. I n  f a c t ,  

Fu r the r  
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Now we no te  t h a t  

I IRi 
Since  

I =  
'h 

then  

2B h 2 - A h h  

2B h -- sR$ = ( 
2 + Ah 2 + Ah 

Therefore  

where C is some cons tan t ,  independent of h, chosen t o  s a t i s f y  the  c o n d i t i o n  

I n  p a r t i c u l a r ,  f o r  smal l  enough h t h i s  cond i t ion  is  obvious ly  s a t i s f i e d  by 

t h e  q u a n t i t y  C = 1 + 2lAI + 2 l B I .  

Thus 

which gua ran tees  s t a b i l i t y  of t h e  g iven  d i f f e r e n c e  scheme. 
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* * * * * *  

5. 
The r educ t ion  of a d i f f e r e n c e  scheme t o  the  canon ica l  form (13) can be  

S e t t i n g  y i  = Tyn where T is  an a r b i t r a r y  l i n e a r  

Non-uniqueness of the canonical form. 

accomplished i n  many ways. 

t r ans fo rma t ion  i n  t h e  space ,  Y ,  t o  which y, and p 

t h e  new n o t a t i o n  

helong, we go over  t o  

Here R h  = T\T-’, p,’ = TPn,  y i  = Tyo 

I f ,  i n  example 3 ,  i n s t e a d  of t ak ing  yn = [ , w e  had defi-ned 

w e  would have a r r i v e d  a t  a v e r s i o n  of the  d i f f e r e n c e  scheme i n  form (13) 

with  

1 h 0 

2 - h A -  2h2B)’ ’ n =  [ 2 1 -  2 + h A  2 + M %tl 
Rh = ( 2hB 

2 + h A  

For the  choice  of norm i n  Y given by the  equa t ion  

Eq. (17)  would have been s a t i s f i e d .  The boundedness of \lRz\ly is  obvious: 

where C i s  chosen from t h e  c o n d i t i o n  

1 + Ch max (1 + h, 122YhAl - + l 2  - 2 hA + - hA 2 h 2 B l )  = 

2 ( I A I  + IBlh) .) . 
= max 1 + h ,  1 + 

There is a l s o  some freedom i n  t h e  choice  of t h e  d imens iona l i ty  of 

( 2 - lAlh 

space Y. I t  would have been p o s s i b l e ,  i n  p l ace  of yn  = [ , t o  t ake ,  

l e t  u s  say ,  
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but in the given example this would not have simplified the study of 

stability. 

* * *  

Let us now summarize the above considerations. From the examples we 

have considered one sees that, to investigate stability of the difference 

scheme L u(~) = f(h) for  the solution of the Cauchy problem with constant 

coefficients, it is convenient to put this scheme into form (13); 
h 

I Yn+l = RhYn + hPn’ n = 0 ,  1, ..., 
y given. 0 

I f ,  i n  the space t o  which Y, and P belong, one has introduced a norm 
such that the conditions 

I I~(~)I l U  5 c2 max I I~,I I, 
h n 

llPnII Ic211f(h)ll , (28) 
Fh 

Fh 
I Iyo l  I I c21 I , 

are sa t i s f ied ,  then it i s  s u f f i e i m t  f o r  s tab i l i t y  that the norms of the 

powers of the operator ~h be bounded uniformly i n  h, 

For this to be true it is sufficient, clearly, that the inequality 

IIRhlI < 1 + C’h, 

be satisfied with C’ independent of h. 
definition of stability 

I n  this case the constant C in the 

can be taken in the form 

2 c = 2c2c3. 
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PROBLEMS 

1. Prove the  s t a b i l i t y  of the  fo l lowing  d i f f e r e n c e  schemes f o r  t h e  

s o l u t i o n  of t h e  problem u ' +  Au = @(x), u(0)  = a. Find the  c o n s t a n t ,  C ,  i n  

t h e  d e f i n i t i o n  1 I U ( ~ ) I  1 "  2 Cl I of s t a b i l i t y .  
h Fh 

i f  lA(x)I 5 M = cons t ,  and norms a r e  in t roduced  v i a  the  equa t ions  

I I ~ ( ~ ) I I  = max I ~ ~ I ,  I l f ( h ) l I  = maxr la l ,  max I @ ~ I ] .  
'h n Fh n 

Norms - a s  i n  a. 

un+l - un 
+ AU,+~ = O n ,  

b )  

uo = a -  

1 u + u  
nfl = $[(n + T ) h ] ,  n = 0 ,  ..., N-1, u n + ~  - 'n 

h + A  2 C >  

2 .  Solve problem 1 under the  assumption t h a t  

un = [:.;:;I is a v e c t o r ;  

A = ('2; 2; j i s  a mat r ix ;  

@(I) 

a = [ ::] and On = [$:21] a r e  v e c t o r s .  

n 

Norms a r d  g iven  i n  t h e  form 
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3 .  Bring into the canonical form y = R y + hpn, yo given, the 
n+l h n 

difference equation 

u - 2un+l + 3u - 4u 
n = 1, 2 ,  ..., n+2 n n-1 - 

h 5un = $n, 

setting 

’n = [ ‘14. 
n 

sl5. Necessary spectral criterion for Stability 

In $14 we showed that the reduction of a difference scheme for the 

solution of the Cauchy problem with constant coefficients 

to the form 

Yn+l = \Yn + hPn’ 
n = 0 ,  1, ..., 

y given 
0 

can be used to prove stability: under certain conditions (conditions (17) 
$14) the bound 

(3) 

is sufficient for stability. 

Here we will show that this bound (3). under certain natural condi- 
tions, is necessary for stability. We will also show that, regardless of 

the choice of norm, for the validity of bound (3) it is necessary that the 
spectrum of the matrix Rh, i . e .  the set of all roots of the equations 

det(R h - XE) = 0 ,  ( 4 )  

lie in the circle 
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where C does not depend on h. 

We proceed now t o  c a r r y  out  t h e  i n d i c a t e d  program. 

1. Boundedness of the norms of the powers of the transition operator 

necessary for s tabi l i ty .  The methods we have descr ibed  f o r  r educ t ion  of 

d i f f e r e n c e  equa t ions  t o  t h e  canon ica l  form (2 )  a r e  such, t h a t  i f  t h e  r i g h t -  

hand s i d e s  of t he  d i f f e r e n c e  equa t ions  vanish ,  t hen  P is  also i d e n t i c a l l y  
e q u a l  t o  ze ro .  

Suppose the  c o n s t a n t s  M1 = Ml(h) > 0 and M2 = M ( h )  > 0 a r e  so chosen 

n 

2 
t h a t  

and, under t h e  c o n d i t i o n  t h a t  P E 0, 
n 

Then, f o r  vanish ing  right-hand s i d e s  of t he  d i f f e r e n c e  equa t ion  ( o r  system 

of d i f f e r e n c e  equa t ions )  Eq. (2)  t akes  the  form 

and t h e r e f o r e  

Yn = R;YO. 

Fu r the r ,  by v i r t u e  of (6 )  and (8)  

From t h e  d e f i n i t i o n  of t h e  norm of a l i n e a r  ope ra to r  i t  fo l lows  t h a t ,  

i n  a f in i t e -d imens iona l  space ,  one can always choose a v e c t o r ,  yo, so t h a t  

f o r  g iven  n 11.: y0l1 = I lR; l I  IIyo1I.  Therefore  f o r  some y 0 (depending 

on h ) ,  

For t h i s  choice  of yo by v i r t u e  of ( 9 )  and (10) w e  ge t  

From the  l a t t e r  bound it fo l lows  t h a t ,  i f  d i f f e r e n c e  scheme (1) is 

s t a b l e ,  t he  cons t an t  C’ i n  t h e  d e f i n i t i o n  of s t a b i l i t y  



146 Convergence, Approximation and Stability Chapter 5 

certainly must satisfy the bound 

C' M1M2 max IIRh"ll- 
( 6 " )  

Hence it is clear that, if the norms I ~u(~)l I 

60 coordinated that conditions ( 6 )  and (7) are satisfied, then condition 
( 3 )  is necessary f o r  6tabiZity. Condition (3) is equivalent to the 

statement that the solution, {y }, of the homogeneous equation y 
satisfies, for any yo, the inequality 

, I If(h)~ I and I ly,l~ are 
'h Fh 

n+l = RhYn 

In examples 1 and 2 of 514 it was possible to take the numbers 
M and M independent of h (in fact equal to l), as the reader can easily 

verify. This fact indicates the naturalness of the formulation chosen 
there. 

norms (23). the condition 

if M1 5 h/2. But if we change the choice o? norm I 

1 2 

In example 3 of $14 ,  for difference scheme ( 2 2 ) .  using Eq. ( 2 4 )  and 
I u  2 MI max IIynlI can be satisfied only 
h 

1 , defining 
'h 

then we can set M1 = 1 and M 
bility. With this change in norm condition (17) of 514 ,  under which bound 

( 3 )  suffices for stability, is still satisfied. 
2.  Spectral cr i t er ion  for s t a b i l i t y .  To bound IIRtlI it i s  possible 

= 1 ,  and bound ( 3 )  is necessary for sta- 2 

to use the eigenvalues of the matrix Rh, i.e. the roots, A, of the equation 

det)lRh - XElI = 0 .  

If X is an eigenvalue, then there exists an eigenvector, y, such that 

R y = Xy. Therefore 
h 

Thus if 1 IRlI 
of the eigenvalues 

this is to be true 

is to be bounded it is necessary that the powers 

I X I " ,  n = 1, 2 ,  ..., N, should be bounded. In turn if 
all the eigenvalues must lie in the circle 
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i n  t h e  complex p l ane ,  where c does not depend on h. I n  t h e  c o n t r a r y  case ,  

f o r  an a r b i t r a r y  c and some s u f f i c i e n t l y  sma l l  h 

I IR:l 1 > lX,N > (1 + c h ) l / h  = e ( l /h ) f in ( l+ch)  > e  c ( l - ( c h / 2 ) )  > e ~ / 2  - - 

Iia;lI: in 
The above c r i t e r i o n  f o r  the  boundedness of t he  norms of powers, 

terms of the  l o c a t i o n  of t h e  spectrum ( i . e .  t he  t o t a l i t y  of e igenva lues )  of 

t h e  ope ra to r  R,, c l e a r l y  does not depend on the  choice  of norm i n  the  space  

h Opera tes .  
on which R 

The s p e c t r a l  s t a b i l i t y  c r i t e r i o n  (13) 
means by which scheme (1) i s  put i n t o  form 

performed d i f f e r e n t l y ,  i . e . ,  = R'y' + 
where T is an a r b i t r a r y  nons ingular  l i n e a r  

of R and R' w i l l  co inc ide .  I n  f a c t  

'n+1 h n 

h h 

= d e t  T de t (R - 
h 

a l s o  does not  depend on t h e  

( 2 ) .  I f  t h i s  r educ t ion  is 

h P i  w i th  yc = Ty, R i  = TRhT 
o p e r a t o r ,  then  t h e  s p e c t r a  

-1 , 

- XE)T- l ]  = 

AE)det T-l = det (Rh - AE). 

Therefore  t h e  equa t ions  de t (R  

r o o t s  A .  

- AE) = 0 and det(R' - AE) = 0 have t h e  same 
h h 

* * * * * *  

3. Discussion of t h e  s p e c t r a l  s t a b i l i t y  criterion. Above i t  w a s  

shown t h a t ,  i f  norms a r e  chosen i n  accordance with cond i t ions  ( 6 )  and ( 7 ) ,  

the  l o c a t i o n  of t h e  spectrum of t h e  ope ra to r  Rh i n  t he  circle 

1x1 5 1 + ch, ( 1 3 )  

is necessary  f o r  t he  boundedness of 1 IR;! I and, moreover, a l s o  necessa ry  

f o r  s t a b i l i t y .  

smal l  h > 0 t h e r e  i s  an e igenvalue ,  1, s u b s t a n t i a l l y  g r e a t e r  than 1 i n  

modulus, l e t  us say  

Suppose cond i t ion  (13)  i s  g r o s s l y  v i o l a t e d  so t h a t  f o r  a s u f f i c i e n t l y  

where E > 0 does 

uns t ab le  f o r  any 

i f  one doesn ' t  1 

not depend on x. Then t h e  d i f f e r e n c e  scheme (1) i s  

reasonable  choice  of norm I ( I I ( ~ ) I  1 and 1 1 , even 
'h Fh 

i m i t  t he  freedom of choice  of t hese  norms v i a  cond i t ions  

( 6 )  and ( 7 ) .  

Th i s  a s s e r t i o n  cannot be c a l l e d  a theorem, i f  f o r  no o t h e r  reason  than  

the  f a c t  t h a t  it is based on the  term "reasonable" ,  which has  not been 

p r e c i s e l y  de f ined .  But w e  w i l l  now e x p l a i n  what w e  mean. 
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For any reasonable choice of norm, I I , one can choose a 
'h 

positive kl such that for all sufficiently small h 

In the contrary case it would not be possible to satisfy Eq.  ( 4 )  $13: 

Further, for any reasonable choice of norm 1 If(h)l 1 
k > 0 that, for all sufficiently small h, 

, one can so choose a 
Fh 

2 

where F denotes the maximum modulus of the components of element f(h) of 

space Fh. In the contrary case difference scheme (1) cannot approximate 

the problem Lu = f on the solution u: indeed we have seen that the 
components of the residual 6f(h), which develops when [u]  

into the left-hand side of the approximating difference scheme (l), tend to 

zero no faster than some power of the step-width, h. 

is substituted 
h 

We now bring difference scheme (1) into form (2) ,  defining for this 

purpose 

For the sake of definiteness we assume that the difference scheme under 

consideration connects three consecutive points, u 

is based, is taken to be equal to zero, then for some r > 0 we will have 

u and u 
n+l* n-1' n 

If the right-hand side of the difference equation, on which scheme (1) 

since the relation connecting u1 and uo, and entering into the difference 

scheme, has the form 

I uo = a* 

u1 = b, 
or 

uo = a* 

-- - b, u1 - uo 
h 

or something similar. 

valid by setting Ml(h) = hk', Mq(h) = hrtk2. In fact (see also ( 1 4 )  and 

It is now clear that we can always make the inequalities (6) and (7 )  

( 1 7 ) )  



$15 Necessary Spectral Criterion for Stability 

Thus inequality ( 6 ' )  takes the form 

This implies instability since, for any r, kl, k 

easily see, 

and E > 0, as one can 
2 

149 

With this we conclude our exposition of arguments showing that if, among 

the eigenvalues of the matrix Rh there are roots obeying the inequality 

1x1 > 1 + hl-€, then the difference scheme is unstable for any reasonable 
choice of norms. 

* * *  

Let us now use the necessary spectral criterion for stability (13) to 

show that the scheme considered in §9 is really unstable. In $9 a rigorous 

investigation of instability could not be carried out, if f o r  no other 
reason than the fact that there we still did not have at our disposal any 

precise definitions. 

The difference scheme under consideration approximates the problem 

I u c + A u = O ,  O(x<l, 

u(0) = a 

and has the form 
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u - u  u - u  
n = 1, 2, ..., N+1, n+l + Au = 0 ,  

h 
- 3  n+l n-1 

2h 

uo = a* 

u = [l - Ah)a. 
1 

setting yn = [::'I, we bring scheme (19) into form (2), where 

The eigenvalues of the matrix R are the KOOtS of the quadratic 
h 

equation det(R - XE) = 0 :  
h 

The first root 1 (h) tends to 2 as h + 0, so that for small h 
1 

Therefore it is impossible to expect stability for any reasonable choice of 

norm. 
In particular, if we introduce norms via the equations 

we satisfy both conditions ( 6 )  and ( 7 ) ,  thereby making (3) an inequality 

necessary for stability. But IIRElI > (3/2)n + - if n = l / h ,  h -f 0, and 

stability is absent. 

condition (13) 

As we have seen, gross violation of the necessary spectral stability 
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f o r  example t h e  p r e s e n c e  of a n  e i g e n v a l u e ,  A*,  of t h e  o p e r a t o r  R 

s a t i s f y i n g  t h e  bound 
h '  

t e s t i f i e s  t o  an i n s t a b i l i t y  which cannot  be  c o r r e c t e d  by any c h o i c e  of 

norms. 

We must s t r e s s ,  however, t h a t  l o c a t i o n  of t h e  spec t rum of t h e  

o p e r a t o r  R 

s t a b i l i t y .  S t a b i l i t y  i n  t h i s  c a s e  may depend on a s u c c e s s f u l  c h o i c e  of 

norms, a s  w e  see by t h e  example of t h e  f o l l o w i n g  d i f f e r e n c e  scheme, which 

w a s  a l r e a d y  c o n s i d e r e d  i n  $14 from a s l i g h t l y  d i f f e r e n t  p o i n t  of view. 
The d i f f e r e n c e  scheme f o r  t h e  s o l u t i o n  of t h e  problem ucc = $J (x ) ,  

u ( 0 )  = a ,  u ' (0)  = b w i l l  be w r i t t e n  as f o l l o w s  

i n  t h e  c i rc le  I A I  < 1 + ch s t i l l  does n o t  g u a r a n t e e  
h 

u - 2 u  i u  
n = 1, 2,  ..., N-1,  n+l n n-1 = 

+n * 
h' 

uo = 

S e t t i n g  yn = [,".+'I we put  t h i s  scheme i n t o  form (2) ,  where 
n 

Both e i g e n v a l u e s  of t h e  m a t r i x  Rh a r e  e q u a l  t o  one. 

t h e  s o l u t i o n ,  { u n } ,  of t h i s  problem has  t h e  form 

I n  t h e  case @ 0 
n 

u = uo + ( u l  - u o ) n ,  n = 0 ,  1, 2 ,  ..., N. 

We now u s e  two s e t s  of norms: 
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The r eade r  w i l l  e a s i l y  con i n c e  himself t h a t ,  i n  both cases ,  condi- 
t i o n s  ( 6 )  and ( 7 )  are s a t i s f i e d ,  as w e l l  as (28 )  5 1 4 ,  which has t h e  e f f e c t  

t h a t  s t a b i l i t y  is equ iva len t  t o  t h e  bound 

n = 1, 2, ..., N-1. 11.;111 5 c s  

If one chooses norms accord ing  t o  p r e s c r i p t i o n  1) t h i s  bound is  
0 

v io la t ed .  Thus, f o r  example, t ak ing  yo = [ , I ,  I lyol I = 1, we ge t  

f o r  n = I / h ,  h + 0. 

a r b i t r a r y  y = [l;] we have 

Choosing norms by p r e s c r i p t i o n  2 )  we do have s t a b i l i t y :  f o r  any 
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But n + 1' l/h, and therefore 

and 

In practice one often limits oneself to a check as to whether the 

necessary spectral stability criterion is satisfied. If it is satisfied, 
further tests of the utility of the scheme are carried out by running 

experimental computations using this scheme, not troubling oneself with the 

explicit construction of norms. More will be said about this approach in 
518. 

PROBLEMS 

1. Suppose that the second-order difference equation au + bu + 
n-1 + h@ via the substi- 

n+l = RhYn n 
cu = 0 has been reduced to the form y 

tution 
n+l n 

Show that the roots of the characteristic equation a + bx + cx' = 0 and the 
eigenvalues of the matrix Rh coincide. 

in the form y n+l = Rhyn + hPn with the aid of the substitution 
2. Write the second-order difference equation au + bu + cu 

n- I n n+l = Qn 

h are 
Is this reduction unique? Show that the eigenva1,ues of the matrix R 

the roots of the characteristic equation a + bx + cA2 = 0, plus the 
root = 0, so that satisfaction of the spectral stability criterion 

1x1 1 + ch does not depend on the choice 

3 .  Suppose the eigenvectors vc1) and vC2) of the 2x2 matrix R , ,  cor- 

responding to the eigenvalues I1 and respectively, 
2 
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tend as h + 0 t o  d i f f e r e n t ,  nonco l l inea r ,  o r i e n t a t i o n s .  Then t h e  

cond i t ions  

s u f f i c i e n t  f o r  a bound of t h e  form 1 1 ~ ~ 1 1  < c, n = 1, 2 ,  ..., N if 

I < 1 + ch, 11 I < 1 + ch are not only necessary ,  but a l s o  
1 2 

Prove. 

916. Roundoff errors 

1. Errors in  the coefficients. 

I f  t he  d i f f e r e n c e  scheme 

approximates the  problem Lu = f on t h e  s o l u t i o n  u and i s  s t a b l e ,  t hen  w e  

have convergence. But whatever d i f f e r e n c e  scheme w e  have i n  mind, no 

matter how c a r e f u l l y  it is des igned ,  it is  never implemented e x a c t l y  

because of roundoff e r r o r s  i n  the  g iven  c o e f f i c i e n t s  and the  r i g h t  hand 

s i d e s .  

Suppose, f o r  example, t h a t  one is requi red  t o  s o l v e  the  problem 

u’ + Au = cos x, 0 x 5 1, 

u ( 0 )  = a 

v i a  the  d i f f e r e n c e  scheme 

n ,  n = 0, 1, ..., N-1, + Aun = cos x 
Un+l - un 

Values of cos x a and A ,  and of t he  c o e f f i c i e n t  l / h ,  w i l l  be g iven  wi th  

roundoff e r r o r s  of one s o r t  o r  ano the r .  I n  t h e  gene ra l  ca se  we are 
dea l ing ,  no t  wi th  ( I ) ,  but wi th  the  d i f f e r e n c e  scheme 

n’ 

where A(h)L 

ope ra to r  L 
h 

t h e  ope ra to r  A(h)L 

and A(h)f (h)  a r e  e r r o r s  i n  the  ass igned  va lues  of t h e  
h 

and right-hand s i d e  f ( h ) ,  induced by roundoff.  For scheme ( 2 )  
has  the  form 

h 
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A(~)(;)(V~+~ - vn) + (A(~)A)~~, n = 0 ,  1,  ..., N - I ,  I 0 vo. 
(A(h)Lh)v(h) = 

The error A(h)f(h) is given by the expression 

Here A(h)M is the error committed in determining the quantity M. 

So as to avoid pure1 technical difficulties, we limit ourselves to 

the case where L and A(h'L are linear, and the space Uh is finite- 

dimensional, as i n  the above scheme (2). Under these assumptions we ask 

what sort of roundoff errors are permissable, and how the precision with 

which one specifies the difference scheme must increase as the net is 
refined, i.e. as h tends to zero. 

Lu = f on the solution u to some order hk: 

h h 

Theorem. If a stable difference scheme 111 approximates the problem 

then under the conditions 

difference scheme ( 3 )  also approximates the problem Lu = f to order hk, and 
is a h 0  stable. 

scheme ( 3 ) ,  by which the computation is actually carried out, is h and 
coincides with the accuracy of the intended scheme ( 1 ) .  

$13, i.e. so that 'h 

Thus, under conditions ( 4 ) ,  the order of accuracy of the difference 
k 

Assuming that the norm 1 1  1 1  is chosen according to condition ( 4 )  

lim I I [uh] I I 
h+O 'h 

= I l ~ l  I,,, 

the quantity 1 1  [u] 1 1  
We will define 'h 

remains bounded as h + 0 ,  1 1  [u],l Iu h  5 P < m. 



156 Convergence, Approximation and Stability Chapter 5 

and convince ourselves that the scheme L u(~) = F(h) is of order hk. 
fact we have 

In 
h 

< ch k + clPh k + c2h k 5 - k  ch . 
- 

To prove the above theorem, we will make use of the following well- 

known 
Lemma. Let A and B be two l inear operators mpping some f i n i t e -  

dimensional linear normed space X i n to  another l inear normed space G. 

Suppose, further,  that f o r  every g i n  G there ex i s t s  a solution x i n  X of 
the equation 

Ax = g, 

11x1 I, 5 el lgl I,, 

and also that f o r  any-x i n  x we have the inequality 

with some c and q, c > 0, 0 < q c 1 .  Then the equation 

- 
(A  + B)x = g 

has a unique solution fo r  any g i n  C, and 

Proof. Note that X and G have the same dimensionality, since 
otherwise Ax = g would not be solveable for every g in G. Further, 
if x is any solution of the equation 

0 

(A + B)xO = g, 

then 
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0'  
Ax = g - Bx 

-1 -1 

0 

xo = A g - A Bxo, 

-1 -1 
g and A where A Bxo are solutions of the equations Ax = g and Ax 

0' 
= Bx 

lxollx . 
Hence 

I Igl IG. 

From the latter inequality it follows, that if g = 0, the equation 

(A + B)x = g has only the trivial solution xo = 0; thus there exists a 
unique solution for arbitrary g in G, and bound ( 7 )  is valid. 

and B, respectively, L and A(h)Lh. The existence of a solution of the 

problem Ax = g, together with bound (5) ,  are equivalent to the stability of 

scheme (1). Bound ( 6 )  is valid, by virtue of ( 4 ) ,  for any positive q so 
long as h is small enough. 

with bound (7 ) ,  are exactly equivalent to the stability of difference 

scheme ( 3 ) .  
We note that the restriction ( 4 )  on roundoff errors is perfectly 

reasonable for a stable difference scheme: if, on decreasing h, we want to 

obtain a solution accurate to hk,'i.e. with a number of significant decimal 

digits of order fin(l/h), then also the coefficients of the difference 

scheme will have to be given more and more accurately, increasing the 
number of figures to which they are given also at a rate of order Ln(l/h). 

Such a rate of increase is ordinarily perfectly attainable, since Ln(l/h) 

is a slowly growing function. If one decreases the step-size, not 

increasing the number of significant figures with which the coefficients 

and right-hand sides are given, then there will be no improvement at all in 

the accuracy obtained. 

2. Computational errors. After the difference scheme is given it is 
still necessary to compute its solution, u(~). Suppose we can solve the 

difference equations exactly. Then, if the difference scheme we are using 

approximates the differential equation and is stable, we know that for a 

small enough step-size the solution u(~) will differ little from the 
desired exact solution [u],. Moreover it is completely immaterial by what 
sequence of actions (or "algorithm") the computation of u(~) is carried 

out, since the outcome of the computation does not depend on details of 

this sequence. 

Proof of the theorem. We will use the lemma and take as operators A 

h 

The solveability of the equation (A + B)x = g for any g in G, jointly 
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But, in reality, having chosen some algorithm for the computation of 

the solution u(~) we will, at each step of the implementation of this 

algorithm, commit roundoff errors which will influence the results of 

subsequent computational steps. For fixed h and a finite-dimensional 

space U the algorithm consists of a finite sequence of arithmetic 

operations, 
sum, difference, product or quotient) depends continuously on the quan- 

tities on which the operation is performed. Therefore, carrying out the 

computations with a "large enough" number of significant figures, we can 

calculate u(~) to any prescribed number of decimal places. 
"spare" figures which must be carried in the computation so as to get a 

prescribed number of figures in u(~) depends both on the algorithm chosen, 
and on h. Thus, for example, it was shown in 97 that, when solving a well- 
conditioned boundary-value problem by FEBS, the number of required extra 

significant figures does not increase at all as h + 0. Sometimes a 
seemingly reasonable algorithm for the solution of a stable problem may 

require a rapidly increasing number of spare figures, a number proportional 
to l/h. An example of such an algorithm was presented in 295. With 

decreasing h this number will, generally, have to grow. An algorithm in 
which it grows too rapidly is considered unstable and, from a practical 

point of view, unuseable for computation. The study of the stability of 
algorithms is complicated. An example of such a study is the establishment 

of a basis for the FEBS method in 9 7 .  But in the simplest cases one can 
manage to understand how many spare figures are required, relying only upon 

information on the stability of the difference scheme, and on the theorem 
proved in section 1, above, dealing with the possibility of specifying the 

difference scheme approximately. 

scheme 

h 
The result of each arithmetic operation (the computation of a 

The number of 

Suppose, for example, that we carry out a calculation according t o  the 

Determining u(~)(x + h) from the recurrence relation 

u(h)(~ + h) = u(~)(x)(~ - Ah) + hf(h)(x) 

and computing with a finite number of significant figures we may have 

allowed, into u(~)(x + h ) ,  some error 6. 
the error was introduced, not in the value of u(~)(x + h), but in the 
right-hand side, f(h), used in the computation; i.e. to consider that we 

calculated u(~)(x + h) exactly but used, in place of f(h)(x), the quantity 

f(h)(x) + 6/h. Since such errors are committed at each point x, the value 

of 6 must be taken to depend on x, so that 6 = 6(x). Thus in this example 

the computational roundoff error can be thought of as an error, &(x)/h, in 

the specification of the right-hand side. The difference scheme under 

It is convenient to suppose that 
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consideration is a first-order approximation and is stable. Therefore if 

we are not t o  spoil the order-h convergence, we must perform the 

computation with increasing accuracy and, in fact, in such a way that 

be of order h. 

Such an accuracy may be 

attained by computing u(~) with a number of extra significant figures 

increasing, as h + 0, like Bn(l/h). 

errors committed in computing u(~) to an accuracy proportional to h 
considered errors in specification of the right-hand side f(h). From the 

theorem proven above it follows that, for stable schemes, these errors do 

not prevent convergence, and convergence without loss of order of accuracy, 

if the number of significant figures carried in the computation slowly 
grows, like c Ln(l/h) where c is some constant. 

This requires that 6(x) be of order h'. 

Through this example we have shown that, in simple cases, roundoff 
m 
can be 

917. Quantitative aspects of stability 

We begin by considering the familiar example of difference scheme 

u "+Ih - u  
+ Aun = 0, 

for the differential boundary-value problem 

up + Au = 0 ,  u ( 0 )  = 1. 

Its solution has the form 

-Ax A'x -Ax 
u = e  "+h" + O(h') z e  

(see (3') of $8; we are taking b = 1). Expression (6) of 58 

A'x -Ax 
6(xn) = h 2 e + O(h2) 

2 

represents the remainder term, i.e. the error committed in replacing the 

value, exp (-Axn), of the exact solution of the differential equation 

by the solution, u(~), of the difference problem. 

to zero like the first power of h; this scheme is accurate to first 
order. The choice of a step-width, h, depends on the accuracy we want to 

attain. Clearly the modulus of the ratio of the error to the exact 
solution, 16(xn)/u(xn)I, must in any case be less than unity if the 

approximate solution is to be considered accurate at all. 

The remainder term tends 
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Let us consider for what values of h this condition is satisfied. In 

the expression for &(x ) we will neglect the term O(hz) and examine the 

ratio of the error, &($ ), at point x to the exact solution 
n’ 

A2x -Ax 
“(.,I h 9 e A2 x 

-Ax = 2 .  
n e 

We will take A = 20 and examine this ratio at the point x = 1. Then from 

the condition 16(l)/u(I)( < I we get 

h < 0.2 x 

Now we determine what step-sizes are required for the integration of this 

same problem, uc + Au = 0, using a scheme of second-order accuracy 

uo = 1, 

u = 1 - A h ,  
1 

if, again, A = 20 and we again set it as our goal to satisfy the condition 

1-1 ( 3 )  

The solution of this problem has the form (see Eq. (12) of §8 for b = 1) 

-Ax 2Axn - 3 -Ax 
u = e  ” + h 2  A‘e + (-l)n A’ 4 eAxn] + O(h3). 

The error, therefore, has the form 

2Axn - 3 -Ax 
A2e + (-l)n $ e”.] + O(h3). 

Let us neglect the term O(h3), write out the ratio of the error, 6(xn), to 

the exact solution u(xn) = exp(-Ax ),  and determine the step-size, h, from 
condition ( 3 ) .  This step-size will turn out to be so small that, if we 
arbitrarily take a second as a computing time for scheme (l), the required 

time for scheme (2) will be four days! 

that scheme for the solution of a given problem must be made, not solely on 

the basis of the power of h in the expression for the error, but also 
considering the coefficient of this power of h. 

The point is that an evaluation of the practical utility of this or 
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Now we will try to understand how one can judge the utility of some 

given difference scheme, L u(~) = f(h), from a study of its stability. 

the sake of brevity we will take the operator Lh to be linear. 

(see $12) that a difference scheme is called "stable" if, for any 

f(h) in Fh, it has a unique solution u(~) in Uh, satisfying the bound 

For 
h 

We recall 

I dh)l lu CI I . 
h Fh 

Proving, in 912, a theorem stating that approximation and stability 

imply convergence we got, for the error = [u], - u(~), the inequality 

k in which C h represents a bound on the approximation error: 
1 

Suppose the approximation error C hk is small. 

one can see that, if II[u], - ~ ( ~ ' 1 1  
'h 'h 

From the bound for 

is to be small, it is 

still necessary that the coefficient C, characterizing stability, should 

not be too large. 

Therefore, if we wish to determine the utility of this or that 

difference scheme for the solution of some particular problem it does not 

suffice to know that the scheme is stable. We must also know the 

approximate value of the coefficient C, of which one can form some idea 
either by the methods indicated in $914 and 15, or by experimental 
computations, or by some indirect approach. 

difference schemes (1) and ( 2 )  for the solution of the problem 

u* + Au = '(x), u(0) = 1, a problem which we discussed at the beginning of 

1 

Let us calculate, for example, the coefficient C implicit i n  

this section. First we consider 

with norms 

II~(~)II = max ~u I ,  
'h n 

the scheme 

n = 0, 1, ..., N-1, 
'n 9 

uo = a 

We reduce this scheme to the form 
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= R y  + h P  
'n+l h n 

Y given, 0 

setting y = u 
tion (17) of $14 is satisfied: 

Rh = (1 - Ah), Pn = $n. Let llynlI = lynl. Then condi- 
n n' 

I lYol I I c21 I , 
Fh 

where, in fact, we can let C = 1. 

Further, obviously 1 lR;]l = (1 - Ah)n. For this reason we can set 

C = 2 mail, (1 - Ah)nj. Hence 

2, i f  A > 0, 

=12(l - Ah)N, if A 5 0. 

We now show that the quantity C cannot be taken substantially 

smaller. The norms have been chosen such, as to satisfy conditions (6) and 
(7 )  of 5 15: 

and for $ = 0 ( P  = 0) also 

where we can set M = M = 1. Therefore the constant C must, as was 
1 2  

established in $15, satisfy the bound C ,M 

i 1 ,  if A > 0, 

Now we evaluate the constant C ,  in the definition of stability 

I lu(h)l I u  
this scheme in the form 

C (  If(h)l I , for difference scheme (2). Let us first write 
h Fh 
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Yn+l = RhYn + hPn’ n = 0, 1, ..., 
Y 0 given, 

setting, for this purpose, 

We choose the norms 

II~(~)II = max I~,I, 
“h n 

Conditions (5 )  - (7) are then satisfied, with C2 = M 

by virtue of what has been said in section 3 s 1 4  we may take, as the 

constant C, the quantity C = 2C max IIRtlI = 2 max IIRtII but, by (6”) of 

515, we cannot decrease this value of C by more than a factor of 2: 
certainly it must be true that 

= M2 = 1. Therefore 
1 

2 n  n 

A n  upper bound on the value of max IIR:lI was obtained in 514: 

Thus we may set 

C = 2e2IA’ - > 2(1 + 21Alh)1’h. 
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A lower bound for max IIRtII can be gotten from the condition 

where X is the larger (in modulus) of the two eigenvalues of the matrix 

Rh. Solving the equation det(E$, - XE) = 0 we find the eigenvalues 

A2$ 
A1 = 1 - Ah + - + o(h'] = 1 - Ah + O(hZ), 

2 

so that 

max IIRtII 2 (1 +-tAlh)l'h + O(h). 
n 

Therefore the above constant C = 2e2IA1 certainly cannot be replaced by a 

number smaller than (1 + IAlh)l'h - elA1' i.e. it cannot be decreased 
substantially. 

For A = 20 we see that, for the first scheme, C = 2, but for the 
second C 2 e2" 2 10'. 

For A 1 or A < 0 the two schemes do not differ fundamentally in 
their stability properties; the constant C is approximately the same for 
both schemes. It is easy to understand the mechanism by which, for A >> 1, 
the constant C for the second scheme 

whereas for the first C = 2. 
The general solution of 

the homogeneous equation 
u - (1 - Ah)un = 0 ,  

corresponding to scheme (l), 
is 

q - [l - Ah) 
(Fig. 4 ) .  The general solution of 
the homogeneous equation 

becomes much larger than unity, A 9" 
4 

n+l 

= aqn, where q is the root of 
r n  the characteristic equation ff 

0 ,  q = 1 - Ah Fig. 4 

u + 2Ahun - u ~ - ~  = 0 ,  
n+l 

corresponding to scheme (2), is 

where q1 and q 2  are the roots of the characteristic equation 
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qz + 2Ahq - 1 = det(R - qE) = 0 ,  h 

A* h2 
q1 = 1 - Ah + y+ o(h'), 

A2h' 
q2 = -1 - Ah - - + o(h2). 

2 

The root q is "similar" to the root 1 - Ah, and to it corresponds the 
1 

solution qy, similar to the solution qn of the first equation. But the 

"parasitic" root, 
q2 = -1 - Ah + O(h2), produces a 

quickly-growing "parasitic" 

solution q; (Fig. 5), which gives 

rise to a large value of C. 

n 

Fig. 5. Fig. 6 

For negative A we have q > 1, q1 > 1, 1q,1 < 1. The solutions 

qn and qn, corresponding to the roots q and ql, grow about equally fast, 
while the parasitic solution qn is damped, not influencing the stability 

properties of the second scheme (Fig. 6). 
We note that, €or A << 0 ,  a large value of C is unavoidable in any 

difference scheme approximating the problem uc + Au = 0 ,  u(0)  = a. In 
fact, for small h the solution of a stable difference problem is similar to 

the solution of the differential problem to which it converges as h + 0.  

But the solution of the differential problem, u = uo exp(-Ax), is such that 

maxlu(x) I = luol exp (-Ax), i.e. max lu(x) I exceeds the modulus, luo I , of 
the starting value uo, by the very large factor exp (-A). 

We must also note that a large coefficient C not only makes it 
necessary to compute with a small step-size, but also to carry out the 

calculation with a large number of significant figures. 
In fact we showed, in $16, that roundoff errors may be treated as 

errors in the specification of the right-hand sides, errors whose magnitude 

1 

2 
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k 
is given by terms of the form Clh . 
increase in the coefficient C1, which for large C can (by virtue of ( 4 ) )  

have a catastrophic effect on the accuracy of the result. 

Before concluding this section we would like to warn the reader 

against any misleading impressions about difference schemes of second-order 

accuracy, misleading impressions which may have been generated through 

consideration of the above example. It was not at all our intention to 

condemn all such schemes in describing the inadequacies of one of them. 

The reader will find it very useful to study, independently, the scheme of 

second order accuracy 

An increase in these errors induces an 

uo = 1. 

If one attempts, for A = 1, to achieve an accuracy such that the error, 
6(1), is smaller than u(1) = exp(-A), one will find that this scheme puts 

much weaker restrictions on the step-size, h, than the first-order-accurate 
scheme (1). 

In addition we suggest that the reader calculate what step-size is 

required to integrate the problem u- + u = 0 ,  u(0)  = 1, so as to compute 

u(1) with an error no greater than If one carries out this 

calculation for schemes ( 1 )  and (2), considered at the beginning of this 

section, it will be seen that the first-order-accurate scheme (1) requires 

a significantly smaller step-size than second-order-accurate scheme ( 2 ) .  

Thus the effectiveness or ineffectiveness of this or that scheme will 

depend, not only on the scheme itself, but also on the problem to which it 

is applied. 

s18- Uethod for studying stability of nonlinear problems. 

The methods developed above, in 9914 and 15, for the study of 
stability, were specifically designed for difference schemes with constant 
coefficients. Therefore it may seem that it is impossible to use the 

material presented in these preceding sections for the analysis of schemes 
to integrate even the simple equation du/dx = G(x,u), for a fairly general 

function G. This is, however, not true. 

Suppose the desired integral curve of the equation 

passes through the point with 
we have 

G(x,u) = aG(at*u) (. - UO 

coordinates x = xo, u = uo. Near these points 

aG(x u, (x - xo) + G( xo, u,] , +ax 
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and therefore Eq. (l), to a certain accuracy, may be replaced by the 

simpler 

where 

It is plausible that schemes which we propose to use to solve Eq. (1) 

should satisfactorily integrate Eq. ( 3 ) ,  approximating Eq. (1) close to 
some point which lies on the integral curve. Of course for different 

points of this curve the values of the coefficient A ,  obtained from the 
original equation by the linearization methods just described, will differ 

from each other. Therefore, after choosing one difference scheme or 

another, we must test it on E q .  ( 3 ) ,  not with only one value of A ,  but with 

a whole set of such values, adequately sampling the range of variation 
of a G / h  along the integral curve. 

encountered in practice, such an investigation turns out to be good enough 

to bring out all the scheme's weaknesses and strengths, having some bearing 

on the character of the convergence of the approximate solutions which it 

produces. 

Precisely the same method of constructing model problems can be 

applied also to systems of equations, and to equations of higher order. 

In practice the solution of the Cauchy problem, for ordinary 
differential equations with no special peculiarities, is accomplished by 

one or two, fairly general, well-tested schemes for which, on present-day 
computers, there are standard programs. If it becomes necessary to solve, 

with very high precision, a problem of a special type, then one uses one of 

the many special schemes adapted specifically for such special problems, 
resorting to the more general schemes when one is concerned with a 

different problem area. 

In the overwhelming majority of cases 
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Chapter 6 
Widely-Used Difference Schemes 

$19. Bunga-Kutta and Adas Schemes 

Here we present some widely-used difference schemes for the solution 

of the Cauchy problem defined by the first-order differential equation 

I 
du - -  G(x, u) = 0 ,  
dx 0 < x 5 1, 

u ( 0 )  = a. 

Below in section 4 these schemes will be generalized to systems of first- 

order equations, to which one can reduce the general case of equations and 

systems of any order. 
We will take, on the segment 0 ( x( 1, the net of points 

O = x  < x  < x  < . . . < x ~ - ~ < x ~ = ~ ,  x = n h ,  h = l / N ,  
0 1 2  

and construct difference schemes for the approximate determination of the 

table, [ u J h .  of the solution-values on this net. 
The simplest scheme in widespread use 

This is the Euler scheme 

is one we have already met. 

n = 0 ,  1, ..., N - 1 ,  
(2)  

possessing first-order approximation (and accuracy). Computation via this 

scheme has a simple geometric interpretation. If u has already been com- 

puted, then the computation 

u = u + hG(xn, u,) 
n+l n 

is equivalent to a shift from point (x 

plane Oxu, along the tangent to the integral curve, u = u(x), of the 
u ) to point ( x ~ + ~ ,  u ~ + ~ ) ,  in n’ n 

differential equation u’ = G(x, u ) ,  passing through the point (x n’ Un). 
Among the schemes with higher-order approximation, the most widely 

used are the different variants of the Runga-Kutta and Adams schemes, which 

we describe and compare. 
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1. Runga-Kutta scheme. Suppose the value, u of the approximate 

solution at point x has already been found, and one i s  required to compute 

un+l 
expressions 

n’ 

at point x n+l = xn + h. We choose an integer II and write the 

kl = G(x,, un), 

k2 = G(x + ah, u + ahkl), 

k3 = G(x + Bh, un + Bhk2), 
. . . . . . . . . . . . . .  

kII = G(x + Y h ,  un + YhkII-l). 

Then we set 

The coefficients a, 6, ..., Y ,  pl, p2, ..., p 
give, for the given X, approximation of the highest possible order. Know- 

ing u 

w i l l  be chosen such as to a 

one can compute kl, ..., kX, and then 
u ~ + ~  = un + h(plkl + . . . + pXkfi). 

The simplest Runga-Kutta scheme is the Euler scheme (E = 1). The 

Runga-Kutta scheme 

un+l - un - 1. (k + 2k2 + 2k3 + k4) = 0 ,  
h 6 1  

(3) n = 0 ,  1, ..., N - 1 ,  1 uo = as 

L = 
h 

where 
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has fourth-order approximation. 

The Runga-Kutta scheme 

where 

kl = G[x,, un), kz = G(xn + ah, u - ahkl), 

for any given a has second-order approximation. 

assertion about scheme ( 3 )  is analogous, but more complicated. 

We prove only the assertion about scheme ( 4 ) .  The proof of the 

* * * * * *  

The solution, u(x), of the equation u, = G(x, u) satisfies the 

identities 

3 E G(x, u(x)), 
dx 

Therefore it follows from the Taylor formula 

f o r  the solution u(x), that 

u=u(x ) 

B u t ,  expanding the functions of two variables i n  powers of h by Taylor’s 

formula, and retaining only terms of first order, we get 
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2a - 1 2a - 1 1 - 
= - G + - G(x + ah, u + ahG]l 

x=x 
2a 2a 

U'U(X ) u=u(x ) 

u=u(x ) 

+ O(h2). 
n 

u=u(x ) 

Therefore if one puts into the left-hand side of ( 4 ) ,  in place of u and 

u ~ + ~ ,  respectively, the values u(x ) and u(x ) of the solution u(z), one 

gets an expression which agrees with the left side of Eq. ( 5 )  up to terms 
O(h2). Therefore this expression, ( 4 ) ,  is of second order with respect to 
h. 

scheme ( 4 )  has second-order approximation. 

n+l 

Since the initial value uo = a is given exactly we have now proven that 

* * *  

To obtain u by the Runga-Kutta scheme, with u given, one must 

evaluate the function C(x, u) !2 times. The computed values are then not 

used any further. 

2. Adams schemes. In the Adams schemes, one variant of which we will 
now describe, computation of the next value, unfl, requires the evaluation 
of G(x, U) only at one point, regardless of the order of approximation. In 
addition it is necessary to carry out a small number of subtractions and 

additions which require much less time than one evaluation of even a 

slightly complicated function G(x,u). 

n+l 

We adopt the notation 

and write G = G(x,, u,). 
difference equations used in Adams schemes for the computation of u 
if u u ... have already been computed: 

Let us write out explicitly some of the 

n+l ' 
n' n-1' 
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n = 0, 1, ..., N - 1 ,  

n = 1, 2 ,  ..., N - 1 ,  

4 Un+l - un - - 1 vGn - - v2G = a, n = 2, 3, ..., N - 1 ,  
h Gn 2 1 2  n 
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(7) 

n = 3, 4 ,  ..., N - 1 .  

The f i r s t  of t hese  equa t ions  is t h e  d i f f e r e n c e  equa t ion  of Euler .  I f  one 

s u b s t i t u t e s  i n t o  t h e  le f t -hand  s i d e s  of Eqs. (7)-(10), i n  p l ace  of 

t hen  r e s i d u a l s  w i l l  appear ,  i n  Eqs. (7)-(lo), of o r d e r  h ,  h’, h3 and hq 
r e s p e c t i v e l y .  

u ~ + ~ ,  un, unel,  ... t he  va lues  u ( ( n + l ) h ) ,  u (nh ) ,  ... of t h e  exac t  s o l u t i o n  

* t i * * *  

The Adams formulae may be obta ined  as fo l lows .  Suppose u (x )  is t h e  

s o l u t i o n  of t h e  equa t ion  

Def ine  

G(x, u ( x ) )  5 F ( x ) .  

Then 

x +h x +h 
n 

u(xn  + h) - U(X,) = U. dx = j F(x) dx. 
X X n n 

From t h e  theory  of i n t e r p o l a t i o n  i t  is known t h a t  t h e r e  i s  one and on ly  one 

polynomial,  P (x, F ) ,  of o rde r  no h ighe r  than  k ,  t a k i n g  on a t  t h e  k+l 

p o i n t s  xn, x ~ - ~ ,  ..., x ~ - ~  t h e  g iven  va lues  F (xn)?  F ( X ~ - ~ ) ,  ..., F(xnmk) 
r e s p e c t i v e l y .  

F(x) ,  d e v i a t e s  from F(x) on t h e  i n t e r v a l  xn 
o rde r  hk+’, so t h a t  

k 

Th i s  polynomial Pk(x, F ) ,  f o r  a s u f f i c i e n t l y  smooth f u n c t i o n  

x x ~ + ~  by a q u a n t i t y  of 
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x +h 

h x  
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maxlP k ( x ,  F) - F(x) l  = 0(hk+l ) .  

The Adam d i f f e r e n c e  formula has t h e  form 

Chapter 6 

(11) 

I n s e r t i n g  i n t o  t h e  le f t -hand  s i d e ,  i n  p lace  of 

- < 0 + max)F(x) - Pk(x, F)I  = 0(hk+') 

For k = 0 t h e  i n t e r p o l a t i n g  polynomial 

P (x ,  F) = G(x,, u ) = cons t  
0 

and Eq. ( 1 2 )  t ransforms i n t o  ( 7 ) .  
For k = 1 

Fur the r  

xn+h ( x  - xnm1)2 lxn+h ( x  - Xn)Zl:"'h 

2 Gn-l  = Gn - - 
h2 

1 1 - 1 P1(x, F)dx = - 
h x  h2 

2 
X 

n 

1 4h2 h2 1 h2 Gn-l = Gn + 1 VG,. = - ( T -  T)G, - - - 
h2 h2 
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Thus Eq. (12) becomes (8). Analogously for k = 2 and k = 3 we get, from 
(12), Eqs. (9) and (10) respectively. 

i t *  

To use scheme (7) it suffices to know u = a. To start computing via 

scheme (8)  one must know, beforehand, not only uo = a, but also ul. 

( 9 )  requires the use of u o, u1 and u 2 ,  while for scheme (10) we need four 

values, i.e., uo, ul, u2 and u3. These values may be found by the Runga- 
Kutta method; or by Euler’s scheme with small step-sizes; or perhaps by 
expansion of the solution in a Taylor series about the point x = 0 .  The 

need for special starting procedures is one of the disadvantages of the 
Adams schemes, as compared with the Runga-Kutta schemes. The advantages of 

the Adams schemes, already noted earlier, is the fact that in the compu- 
tation of u VGs,  ..., VkG already found Ln the 

calculation of u u ..., one needs to compute only one value of the 
function G ,  i.e. G = G(xn, u,),  and to carry out a few subtractions in- 

volved in the evaluation of VG 

Scheme 

given the values of G 

n’ n-1’ 

n+l ’ 5’ 

k 

Thus the advantage of the Adams methods over the Runga-Kutta methods 

consists i n  the smaller computational effort required for each step. The 

basic disadvantages are: the need for special starting methods, and the 

fact that one cannot (without complicating the computational equations) 

change the step size h, xn+l = xn + h, in the course of the computation, 
starting from some point x . This latter fact is important in those cases 
where the solution and its derivatives on some parts of the interval change 
quickly, changlng slowly on other parts. 

subroutine, for example, might be brought into play to decrease the step- 

size automatically, or to increase the step-size over smooth parts of the 

solution-curve so as not to do unnecessary work. Evidently the most 

sensible approach is to use both the Runga-Kutta and Adams methods, 
automatically switching from one to the other during the computation. 

Using this approach one must start via the Runga-Kutta scheme. The 
computer program must contain provisions for automatic control of the step- 

size, which will be adjusted so as to maintain the required accuracy. 
Moreover a certain degree of conservatism must be incorporated into the 

step-size control mechanism; one must call for a change in step-size only 

when there is a very pressing need for such a change. If it turns out 

that, after computation of several successive values of un by the Runga- 

Kutta scheme, no step-size change occurs, then it is appropriate to switch 
automatically to the more economical Adams method. As soon as it again 

becomes necessary to change the step-size the computational program must 
again go over to the Runga-Kutta scheme, etc. 

So as to monitor the adequacy of the step-size one ordinarily carries 
out, in parallel, computations with some given step-size, and with another 

..., V Gn. 
n’ 

If such a situation develops during the computation a Runga-Kutta 
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half as large. Within the required accuracy limits the solutions must 

coincide. Otherwise the step-size must be decreased. It is also necessary 
to provide some sort of test which will determine whether it is possible to 
increase the step-size. 

constant coefficient A, the Runga-Kutta equations turn out, after elimi- 

nation of k 

3. Note on stability. For the problem u* + Au = 0 ,  linear and with 

k2, ..., to be first-order difference equations, 
u - a(h)un = 0. 
n+l 

The root of the characteristic equation - a(h) = 0 is A = a(h). 

exact solution u(xz + h) up to order h 
mation. Since 

In the case u = u(xn) one gets a value of u which agrees with the 
P+1, n+l 

where p is the order of approxi- 

-Ah A2 h2 
u(xn + h) = u(xn)e = u(xn](l - Ah + - 2 - ' S . 1 ,  

and 

u = a(h)un, 
n+l 

then 

1 = a(h) = + O(h@'). 

Thus 

The powers xn(h) behave "correctly": 

of the differential equation grows. They decrease if A > 0 and the 
solution exp(-Ax) decreases. 

they grow if A < 0 and the solution 

In the case of the Adams scheme ( 8 )  

un+~ - 'n A + Aun + T (u, - u ~ - ~ )  = 0 

the characteristic equation has the form 

3Ah Ah o. A - (1 - --)A - - = 
2 2 

Theref ore 

xl = 1 - Ah + O(h2), 
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Thus the solution u 
while the "parasitic solution" A;, which enters becau:e of the use of a 

second-order difference equation, tends to zero since Ix  1 = O(h), and thus 

does not affect stability. 

It will be useful for the reader to compare scheme ( 1 3 )  with the 
second-order scheme ( 2 )  of $17: 

= A n  behaves, as h + 0 ,  like u(x ) = exp(-Anh), 
n l  

2 

For it 

A' h' 
x 1 = 1  - A h + -  + O(h3>, 1 2 = -1 - Ah + O(h2). 

The "parasitic root", x 2 ,  for positive A is greater in modulus than the 
root xl, and it is just for this reason that a large constant appears i n  
the stability bound for this scheme, and that the scheme (as established in 

$17) is not applicable for large A. 

4. Generalization to systems of equations. All the above schemes for 

the numerical solution of the Cauchy problem for first order differential 

equations ( 1 )  automatically generalize to systems of first-order 

equations. To see this, in the notation of (1) 

du - -  G(x, u) = 0, 
dx 

u(0) = a 

- - -  
we must interpret u(x) = U(X) and G(x, u)  = G(x,u) as vector functions, 

and a = a as a given vector. I n  this notation, then, the Runga-Kutta 
schemes ( 3 )  and ( 4 )  and the Adam schemes ( 7 ) - ( l o ) ,  preserve their meaning 
and applicability. 

- 

For example the system of equations 

I 
dv _ -  (x + vz + sin w) = 0 ,  
dx 

dw - dx + xvw = 0 ,  

may be written in the form 
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- 

i * - G(x, G) = 0, 
dx 

i(0) = ., 

if we t ake  

The equat ion  f o r  l i n  t h e  Eu le r  scheme 
n+l 

may be w r i t t e n  out  i n  d e t a i l  t hus :  

v = v + h(xn  + v: + s i n  wn) ,  

w = w + h(-x v w ). 
n+l n n n n  

n+l n 

All t h e  arguments about o rde r  of approximat ion ,  p re sen ted  between t h e  

a s t e r i s k s  on pp. 173-175, a l s o  preserve  t h e i r  v a l i d i t y .  In ( 6 ) ,  however, 

w e  must take ,  as the  d e r i v a t i v e  of t h e  vec to r  G(G1,  ..., G ] by t h e  vec to r  k 
u ( u ~ ,  ..., u,), 1.e. a G / a u ,  t h e  ma t r ix  

Any a r b i t r a r y  system of d i f f e r e n t i a l  equa t ions ,  so lved  f o r  t h e  l e a d i n g  

d e r i v a t i v e ,  may be reduced t o  t h e  system of f i r s t - o r d e r  equat ions  

d u  
dx - = q x ,  U) 

v i a  changes i n  t h e  dependent va r i ab le s .  

clear from t h e  fo l lowing  example. The system 

How t h i s  can be accomplished i s  
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I 2 + v2 + (V’p + w2 = 0 ,  

v ( 0 )  = a ,  

v’(0) = b ,  

w(0) = c 

w i l l  t ake  t h e  r equ i r ed  form i f  w e  set 

dv 
2 dx 

u ( x )  = - , 

u (x )  = w(x). 
3 

We then g e t  

2 
du 
- +  s in (xu2  + u2 + u 1 = 0 ,  

dx 1 3  

t dx 

u (0) = a ,  

u (0) = b ,  

u (0) = c .  

1 

2 

3 

* * * * * *  

Note. Runga-Kutta d i f f e r e n c e  schemes have been developed which can be  

app l i ed  d i r e c t l y  t o  second-order equa t ions ,  wi thout  p re l imina ry  r educ t ion  

of t hese  equa t ions  t o  systems of f i r s t  o rde r .  

* * *  

s 20. Methods of solution of boundary-value problems 

One example of a boundary-value problem is t h e  problem 
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with boundary cond i t ions  on both  s i d e s  of t he  i n t e r v a l  0 I x l l ,  t h e  

i n t e r v a l  on which w e  must determine t h e  s o l u t i o n  y = y(x) .  Using t h i s  

example we w i l l  s y s t e m a t i c a l l y  develop some methods f o r  t h e  numerical  

s o l u t i o n  of boundary-value problems. 

methods f o r  t h e  numerical  s o l u t i o n  of t h e  Cauchy problem, e.g. a problem of 

t h e  form 

1. The shooting method. In 519 we poin ted  ou t  some convenient 

I YC’ = f (x ,  Y, Y’), 0 x 1, 

where Y 

emerges, whi le  a is t h e  angle  which t h e  i n t e g r a l  curve  makes wi th  t h e  Ox 

a x i s  as i t  l eaves  t h e  poin t  (0, Y ) (F ig .  7 ,a ) .  

t akes  t h e  form y = y(x ,  a). A t  x = 1 t h e  s o l u t i o n  y (x ,  a )  depends only  on 

a: 

is t h e  o r d i n a t e  of t h e  po in t  (0,  Y ) from which the  i n t e g r a l  curve  
0 0 

For f i x e d  Y problem ( 2 )  
0 0 

Using what has  j u s t  been s a i d  about t h e  s o l u t i o n  of t he  Cauchy problem 

(2 ) ,  we can now reformula te  problem ( 2 )  as fo l lows:  f i n d  t h e  ang le ,  

a = a*, such t h a t  t h e  i n t e g r a l  curve  emerging from po in t  (0 ,  Yo), a t  an  
ang le  a from t h e  a b s c i s s a ,  w i l l  a r r i v e  a t  t h e  po in t  (1, Y1): 
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The s o l u t i o n  of problem ( 2 )  f o r  t h i s  a = a* co inc ides  wi th  the  d e s i r e d  

s o l u t i o n  of problem (1). The whole problem reduces ,  then ,  t o  the  s o l u t i o n  

of Eq. (3 )  (F ig .  7,b). Equat ion  ( 3 )  is an  equa t ion  of t h e  form F(a)  = 0,  

where F (a )  = y(1 ,  a )  - Y1. It d i f f e r s  from the  o rd ina ry  equa t ion  only  i n  

t h a t  t he  f u n c t i o n  F(a)  i s  g iven ,  no t  as an a n a l y t i c  expres s ion ,  bu t  v i a  an  

a lgo r i thm f o r  t h e  s o l u t i o n  of problem ( 2 ) .  

J u s t  t h i s  r educ t ion  of t h e  process  of s o l u t i o n  of boundary-value 

problem (1) t o  t h e  s o l u t i o n  of Cauchy problem ( 2 )  c o n s t i t u t e s  t h e  e s s e n t i a l  

f e a t u r e  of t h e  shoot ing  method. 

For t h e  s o l u t i o n  of ( 3 )  one may use t h e  method of i n t e r v a l - h a l v i n g ,  
the  chord method, t h e  tangent  method ( i . e .  Newton's method), etc. For 

example, u s ing  the  method of i n t e r v a l - h a l v i n g  w e  f i n d  va lues  of a. and a 
such t h a t  t h e  d i f f e r e n c e s  

1 

have oppos i t e  s igns .  We then  t ake  

a + a  
0 1  a =- 

2 2 '  

and compute y(1 ,  a 2 ) .  Next w e  c a l c u l a t e  a3 from one of t h e  expres s ions  

a + a  
0 2  

a + a  

3 2 a3 = - 2 o r  a =- 

depending on whether t he  d i f f e r e n c e s  

r e s p e c t i v e l y ,  have d i f f e r e n t  o r  i d e n t i c a l  s i g n s .  

Th i s  process  con t inues  u n t i l  t h e  r equ i r ed  accuracy ,  ly (1 ,  an) - Y1l < E ,  

has  been a t t a i n e d .  

Then w e  compute y ( 1 ,  a ).  
3 

Using t h e  chord method we would s tar t  with a. and al ,  computing 

success ive  a by t h e  r ecu r rence  r e l a t i o n  
i 

F k n 1  

a n+l = a  n - F(CL,J - F(an-l j (an - an-l) ,  
n = 1, 2 ,  ... 

The shoot ing  method, which reduces  t h e  process  of s o l u t i o n  of 

boundary-value problem (1) t o  the  computation of t h e  s o l u t i o n  of Cauchy 

problem (2), works w e l l  i n  cases where t h e  s o l u t i o n  y(x ,  a )  d o e s n ' t  depend 

" too  s t rong ly"  on a. In t h e  c o n t r a r y  case  i t  becomes computa t iona l ly  

uns t ab le ,  even i f  t h e  s o l u t i o n  of problem (1) depends on t h e  g iven  d a t a  

"reasonably" . 

example of t h e  fo l lowing  boundary-value problem: 

L e t  us  c l a r i f y  what i s  meant by t h e  words i n  q u o t a t i o n  marks v i a  t h e  
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(1’) 

with  cons t an t  a‘. Th i s  problem has  t h e  s o l u t i o n  

-ax- -a(2-x) - a ( l -x )  -a ( l+x)  
- e  

-2a yl. Yo + 
1 - e  -2a Y(X) = 

1 - e  

The c o e f f i c i e n t s  of Y and Y1, wi th  i n c r e a s i n g  a ,  remain bounded 
0 

func t ions  on t h e  i n t e r v a l  O L x ’  1; f o r  a l l  a > 0 they  a r e  never g r e a t e r  

than  one. Therefore  small e r r o r s  i n  t h e  assignments of Yo and Y1 l ead  t o  

e q u a l l y  smal l  e r r o r s  i n  the  s o l u t i o n .  Let us  now cons ide r  t h e  Cauchy 

problem 

(2’) I 
y” - a’y = 0 ,  o 5 x 1, 

Y(0) = yo, y’(0) = t a n  a.  

I ts  s o l u t i o n  has  t h e  form 

aYo + t a n  a 
Y(X) = 2a e i  

aYo - t a n  a 

2a 
-ax 

e .  
ax 

I f  i n  f i x i n g  t a n  a w e  make an  e r r o r  E ,  then t h e  va lue  of t he  s o l u t i o n  a t  
x = 1 w i l l  i nc rease  by 

For l a r g e  a t h e  sub t r ac t ed  term i n  Eq. ( 4 )  i s  n e g l i g i b l y  smal l ,  but 

t h e  c o e f f i c i e n t  of E i n  the  f i r s t  term, e x p ( a ) / ( 2 a ) ,  becomes l a r g e .  

Therefore  t h e  shoo t ing  method a s  app l i ed  t o  t h e  s o l u t i o n  of (la), a l though 

a formal ly  v a l i d  procedure,  f o r  l a r g e  a becomes p r a c t i c a l l y  unuseable.  

Th i s  br ings  t o  mind t h e  cons ide ra t ions  of 255, where we  p resented  an  

example of a computa t iona l ly  uns t ab le  a lgo r i thm f o r  t h e  s o l u t i o n  of a 

d i f f e r e n c e  boundary-value problem. 

2. The FEBS method. For t h e  s o l u t i o n  of t h e  boundary-value problem 

I y” - p(x)y  = f ( x ) ,  0 x 5 1, 

Y(0) = Yo,  Y(1) = y1 

when p(x) >> 1 one can use the  d i f f e r e n c e  scheme 

O < m < M ,  M h = l ,  

Yo = YO’ YM = y1 
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and so lve  t h e  d i f f e r e n c e  problem by FEBS. I f  p(x) > 0 t h e  cond i t ions  f o r  
a p p l i c a b i l i t y  of FEBS a r e  s a t i s f i e d ,  a s  t h e  r eade r  can e a s i l y  v e r i f y .  

we l l - se t  boundary-value problems may, a s  w e  have seen ,  t u r n  out  t o  be 
u n s u l t a b l e  because of numerical  i n s t a b i l i t y .  But t h e  FEBS method, even 

formal ly ,  can be used only f o r  t he  s o l u t i o n  of l i n e a r  problems. 

3. Newton’s method. The shoot ing  method, app l i ed  t o  t h e  s o l u t i o n s  of 

Newton’s method reduces the  s o l u t i o n  of a non l inea r  problem t o  t h a t  of 

a series of l i n e a r  problems, as fo l lows .  Suppose we know some f u n c t i o n  

y ( x ) ,  s a t i s f y i n g  boundary c o n d i t i o n  (1) and roughly equal  t o  t h e  des i r ed  

s o l u t i o n  y (x ) .  L e t  
0 

where v i s  a c o r r e c t i o n  t o  t h e  ze roe th  approximation y (x). We s u b s t i t u t e  

( 5 )  i n t o  Eq. (1) and l i n e a r i z e  t h e  problem, s e t t i n g  
0 

y”(x)  = y p x )  + v ” ( x ) ,  

Discard ing  t h e  remainder term O(v‘ + Iv’l‘), we  g e t  a l i n e a r  problem f o r  

t h e  c o r r e c t i o n  i ( x ) :  

ice  = p(x) i ’  + q ( x G  + @(XI, 
- 
v(0)  = v(1 )  = 0, 

where 

Solv ing  t h e  l i n e a r  problem ( 6 )  a n a l y t i c a l l y ,  o r  by some numerical  

method, w e  f i n d  an approximate c o r r e c t i o n  G, and t ake  

a s  t h e  next approximation. 

va lue  problem, genera ted  a s  an  approximat ion  t o  problem (1). 

The above procedure may be app l i ed  t o  a non l inea r  d i f f e r e n c e  boundary- 
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Part 3 
DIFFERENCE SCEFMES FOR PARTIAL DIFFERENTIAL EQUATIONS. 

BASIC CONCEPTS 

Above, in connection with difference schemes for ordinary differential 

equations, we defined the concepts of convergence, approximation and 
stability. We proved a theorem stating that, if the difference boundary- 

value problem approximates the differential problem and is stable then, as 

the net is refined, the solution of the difference problem converges to the 

solution of the differential problem. In this theorem we have an indica- 

tion as to how one can develop a convergent difference scheme for the 

numerical solution of a differential boundary-value problem: one must 
first construct approximating difference schemes and then, from among them, 

select those that are stable. 

The definition of convergence, approximation and stability, and the 

theorem connecting these concepts, are general in character. They are 

equally meaningful for any functional equations. We illustrated them via 
examples of difference schemes for ordinary differential equations and for 

an integral equation. Here we illustrate some basic methods for construct- 
ing difference schemes, and testing their stability, taking as examples 

difference schemes for partial differential equations. Study of these 
examples will reveal many important and basically new circumstances not 

encountered in the case of ordinary differential equations. Principle 
among these are: the great variety of possible difference nets and methods 

of approximatlon, the instability of most randomly-chosen approximating 
schemes, the complexity of stability investigations, and the difficulties 

involved in the computational solution of difference boundary-value 
problems, difficulties which can only be overcome by substantial special 

effort. 

Chapter 7 
Simplest Examples of the Construction and 

Study of Difference Schemes 

521. Review and Illustrations of Basic Definitions 

1. Definition of convergence. Suppose one is required to compute an 
approximate solution, u, of the differential boundary-value problem 
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posed in some domain D with boundary r .  One must then, for this purpose, 
choose a discrete set of points Dh (i.e. a net) contained in D + r ;  intro- 
duce a linear normed space, Uh, of functions defined on the net Dh; and, 

finally, establish a correspondence between the solution u and the func- 

tion [u] in U the required table of the solution U. For the approximate 

computation of the table [u],, which we have agreed to treat as the exact 
solution of problem (l), we must, on the basis of problem (l), construct a 
system of equations 

h h’ 

for the function u(~) of Uh, such that we will get convergence 

If the solution of the difference boundary-value problem (2)  satisfies the 
inequality 

then we say that convergence is of order k with respect to h. 

can be split into two parts: the construction of a difference-scheme (2)  

approximating problem (1) on the solution, u, of this latter problem, and 
the verification of stability of scheme (2) .  

2. Definition of approximation. Let us recall the definition of 

approximation. If this concept is to have meaning one must introduce a 

norm in the space, Fh, containing the right-hand side f(h) of Eq. (2 ) .  By 

definition, difference scheme (2)  approximates problem (1) on the solution 

u if, in the equation 

The problem of the construction of a convergent difference scheme (2 )  

the residual, 6f(h), which develops when [u] 

difference boundary-value problem ( 2 ) ,  tends to zero as h .+ 0 
is substituted into the 

h 

If 

where C does not depend on h, then the approximation is of order k with 

respect to h. 
Let us construct, for example, for the Cauchy problem 
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one poss ib l e  approximating d i f f e r e n c e  scheme. Problem ( 4 )  can be w r i t t e n  

i n  form (1) i f  w e  set  

- m < ~ < m ,  O l t ( T  ax  ' 
Lu 3 

A s  t he  n e t  D (F ig .  8 )  we t ake  the  set of i n t e r s e c t i o n  po in t s  of t h e  
h 

l i n e s  

x = mh, t = nT, m = 0, 2 1, ...; n = 0 ,  1, ..., [T/T], 

where h > 0 and T > 0 a r e  g iven  numbers, and [T/T] i s  the  i n t e g r a l  p a r t  of 

t he  f r a c t i o n  T / T .  We w i l l  assume t h a t  t h e  s t e p - s i z e  T is  connected t o  

h s t e p - s i z e  h v i a  t h e  r e l a t i o n  T = r h ,  where r = c o n s t ,  so t h a t  t h e  n e t  D 

depends only  on t h e  s i n g l e  parameter h. The d e s i r e d  ne t  f u n c t i o n  is t h e  

t a b l e  [ u ]  

a t  t he  p o i n t s  of t h e  ne t  D 

= {u(mh, nT)} of va lues  of t h e  s o l u t i o n  u(x ,  t )  of problem ( 4 )  
h 

h '  

Let  u s  now proceed t o  t h e  c o n s t r u c t i o n  of a d i f f e r e n c e  scheme (2 )  

approximating problem ( 4 ) .  
po in t  (x 
scheme ( 2 )  by approximating t h e  d e r i v a t i v e s  a d a t  and a d a x  by the  

d i f f e r e n c e  r e l a t i o n s  

The va lue  of t h e  ne t  f u n c t i o n  u ( ~ )  a t  t h e  

t ) = (mh, nT) of ne t  D w i l l  be denoted as u:. We arrive a t  a 
m' n h 
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n U ( X  + h, t )  - u(x, t )  
h S 

x , t  

Th i s  scheme has  t h e  form 

The ope ra to r  L 
h 

r e s p e c t i v e l y ,  by t h e  equa t ions  
and t h e  r igh t -hand s i d e  f(h) f o r  scheme (5) are g iven ,  

n+l n n n 

m m - m t ~  
- u - u  u 

T h , 
L U(h) 5 

h m = 0, 21, ...; n = 0, 1, ..., [T/T]- l ,  

0 
urn, m = 0, 21, ..., 

$(mh, nT), m = 0, +1, ...; n = 0, 1, .. . , [T/T]-1, I Jl(mh), m = 0, 21, ... 
f ( h )  = 

Thus f ( h )  c o n s i s t s  of the  p a i r  of n e t  func t ions  O(mh, nT) and Jl(mh), one of 
which is given  on t h e  two-dimensional n e t  

(xm, t,) = (mh, nT), m = 0, - +1, ...; n = 0, 1, . . ., [T/T]-1 

( s e e  Fig.  8), and t h e  o t h e r  on t h e  one-dimensional n e t  

(xm, 0) = (mh, 0 ) ,  m = 0, 1, ... 
n+I Di f f e rence  equa t ion  ( 4 )  can be so lved  f o r  urn , g iv ing  

Thus, knowing t h e  va lues  u:, m = 0, 21, ..., of t h e  s o l u t i o n  u(~) a t  t h e  

ne t -po in t s  f o r  which t = nT, one can  c a l c u l a t e  un+l a t  t h e  p o i n t s  f o r  which 
m 
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t = ( n  + 1)T. Since  t h e  va lues  u0 a t  t = 0 a r e  g iven  by t h e  equa t ion  

u 
t h e  ne t -po in t s  on t h e  l i n e s  t = T, t = ZT, etc. ,  1.e. everywhere on D 

W e  w i l l  now go on t o  f i n d  t h e  o r d e r  of approximation a t t a i n e d  by 

0 
m 

= $(mh) w e  can, s t e p  by s t e p ,  Eompute t h e  va lues  of t h e  s o l u t i o n  u ( ~ )  a t  

h '  

scheme ( 5 ) .  A s  F w e  can t a k e  t h e  l i n e a r  space  of a l l  p a i r s  of bounded 

f u n c t i o n s  g (h )  = )t'$: $m)T, d e f i n i n g  , 

A s  has  a l r e a d y  been noted in 513, t h e  norm used in t h e  t r ea tmen t  of 

approximation can be chosen i n  many ways, and t h e  cho ice  is not 

i nconsequen t i a l .  A t  t h i s  po in t  it w i l l  s u f f i c e  t o  t a k e  a s  a norm t h e  upper 
bound of t h e  modulus of each of t h e  components making up t h e  e lements  

g(h) ,  of t he  space  Fh. It is j u s t  t h i s  norm which w e  w i l l  use  everywhere 

below. 

Let  us assume t h a t  t h e  s o l u t i o n  u (x ,  t )  of problem ( 4 )  has  bounded 
second d e r i v a t i v e s .  Then by Tay lo r ' s  formula 

where 5 and rl are c e r t a i n  numbers, depending on m, n and h, and s a t i s f y i n g  

t h e  i n e q u a l i t i e s  0 < 5 < h, 0 < rl < T. 
With the  a i d  of Eq. ( 7 )  t h e  expres s ion  

u(xm tn + - u(x,, tn) u(xm + h, tn) - - ~ ~ ~ .  d x m ,  ~ tn) - -  
L h b I h  = T h - I  U b m S  0) 

can be r e w r i t t e n  in t h e  form 

~ 

*) I f  t h e  maxl$:l o r  maxI$,I is not a t t a i n e d ,  t hen  w e  t ake ,  he re ,  t h e  l e a s t  

upper bound supl$:) o r  s u p I $ ~ ~ l .  
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Lh[UIh = f(h) + 6f(h), 

where 

tn + ‘1) aL(X + 5, tn) 

a x2 
m - -  m’ 

2 
at2 

?jf(h) = T 

0 .  

Therefore 

Thus the above difference scheme (5) has first-order approximation with 

respect to h on a solution, u(x ,  t), with bounded second derivatives. 

nition of stability. Difference boundary-value problem ( 2 ) ,  by definition, 

is stable if there exists numbers 6 > 0 and ho > 0 such, that for any 

h < ho, and any 6f(h) in Fh satisfying the inequality I 16f(h)l I 
difference boundary-value problem Fh 

3. Definition of stability. We now review and illustrate the defi- 

< 6 ,  the 

has one and only one solution which, moreover, fulfills the condition 

where C is some constant, independent of h. 

that, for a linear operator Lh, the above definition is equivalent to the 

following: 

Definition. Difference boundard-value problem ( 2 )  i s  stable i f  there 
ex is t s  an hg > o such, that f o r  h c ho a d  any f‘h) i n  F ~ ,  it has a unique 
solution and, moreover 

In $ 1 2 ,  where the concept of stability was introduced, it was shown 

Ilu(h)ll 5 clIf(h)lI , 
“h Fh 

where C i s  some constant not on h or on ffh!. 

sensitivity of the solution of the difference boundary-value problem (2 )  to 
a perturbation ?jf(h) of the right hand side. 

We stress that in view of the above definition stability is an 
internal property of the difference boundary-value problem. The definition 

is formulated independently of any connection with a differential boundary- 

The property of stability may be regarded as a uniform-in-h 



521  Review of Basic D e f i n i t i o n s  191 

va lue  problem, and i n  p a r t i c u l a r ,  w i th  no r e f e r e n c e  t o  approximat ion  o r  

convergence. 

However, if the difference boundard-value problem approxtmates a 

differential boundary-value problem on the solution u, and the difference 
scheme is stable, then tle have convergence, i.e. 13) .  Further, the order 
in h of the rate of convergence coincides with the order of approximation. 

The proof of t h i s  impor tan t  theorem was presented  i n  $12.  

L e t  us now show t h a t  d i f f e r e n c e  scheme (5) ,  f o r  r < 1, is s t a b l e .  The 

norm I I I I w i l l  be def ined  by t h e  equa t ion  
"h 

I l u ( h ) l I  = 
'h 

m =  ( 'my 

sup I I ~ : I I  = max sup I~:I . 
m.n n m  

be i n t e r p r e t e d  a s  above: f o r  g (h )  in Fh, 

0, 21, ...; n = 0 ,  1, ..., [TIT I Y 

0, 21, ..., 
w e  t ake  

The d i f f e r e n c e  problem 

n+l n 
u - u  un - m m - m+l 'm n 

m = 0, +1, ...; 
n = 0, 1, ..., [T/T], 
m = 0, +1, ..., 

T h = Qm, - 
(5') 

- 

which d i f f e r s  from problem (5)  on ly  i n  t h a t  $n and $m a r e  a r b i t r a r y  r i g h t -  

hand s i d e s  which, g e n e r a l l y ,  do not  co inc ide  i i t h  $(mh, nT) and $(mh), w i l l  

now be r e w r i t t e n  i n  t h e  form 

Since  r 5 1, (1 - r) 2 0. I n  t h i s  ca se  we have t h e  bound 
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Using this bound we derive, from (6* ) ,  the inequality 

- < max 1.~1 + T max J+:J max lutl + T max Jm:J. (6") 
m m m m ,  n 

Note that, in the case $" 

increase with increasing n. This property of the difference scheme is 
conventionally called the "maximum principle". For the sake of brevity we 

will sometimes use this name for the whole inequality 

0, it follows from (6") that rnax IuZI does not 
m m 

The right-hand side of this inequality does not depend on m y  so that on the 

left-hand side one may write max Iu:+'l , in place of I u:" I , thus arriving 
at the inequality m 

Similarly we get the inequalities 

. . . . . . . . . . . . . . . . . .  

Adding these inequalities term by term, and finally combining like terns, 

we get 

from which immediately follows 

The inequality we have just derived 

is valid for all n, so that it remains valid if, in place of max 

we write max max = I I~(~)I I : 
m 

n m  "h 
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I lU(h) l l "  5 ( 1  t 
h 

Th i s  i n e q u a l i t y ,  ( 9 ) ,  imp l i e s  t h e  s t a b i l i t y  of l i n e a r  problem (5) ,  

s i n c e ,  obvious ly ,  t h e  s o l u t i o n  of ( 6 ' )  f o r  a r b i t r a r y  bounded $: and Jim, 
e x i s t s  and is unique. The r o l e  of t h e  cons t an t  C in i n e q u a l i t y  (8)  is  

taken  on, h e r e ,  by t h e  number 1 + T. 

boundary-value problem (1) by d i f f e r e n c e  boundary-value problem ( 2 )  guaran- 

tees t h e  s t a b i l i t y ,  and t h e r e f o r e  t h e  convergence, of ( 3 ) .  We convinced 
ou r se lves  of t h i s  in S9 with t h e  a i d  of a s p e c i a l l y  cons t ruc t ed  example of 

an  approximating, bu t  d ive rgen t ,  d i f f e r e n c e  scheme. 
In t he  case  of p a r t i a l  d i f f e r e n t i a l  equa t ions  f a i l u r e  of randomly 

chosen approximating d i f f e r e n c e  schemes is t h e  r u l e ,  and t h e  cho ice  of a 
s t a b l e  (and t h e r e f o r e  convergent )  d i f f e r e n c e  scheme is t h e  c o n s t a n t  concern  

of t h e  computations s p e c i a l i s t .  

scheme (5)  was c a r r i e d  ou t  under t h e  assumption t h a t  T/h r '1. I n  t h e  

case r > 1 t h e  d i f f e r e n c e  problem (5 )  s t i l l  approximates ( 4 ) ,  bu t  our 
s t a b i l i t y  proof f a i l s .  We now show t h a t  in t h i s  case t h e  s o l u t i o n ,  u , 
of t h e  d i f f e r e n c e  problem (5)  does not  converge t o  t h e  s o l u t i o n ,  u (x ,  t ) ,  

of t h e  d i f f e r e n t i a l  problem ( 4 ) ,  which means t h a t  t h e  d i f f e r e n c e  scheme 

cannot be s t a b l e  s i n c e  s t a b i l i t y  would imply convergence. 

Q(mh, nT) = 0;  f u r t h e r ,  let  T = 1. The s t e p - s i z e  h w i l l  be chosen such, 

t h a t  t h e  po in t  (0,  1) i n  t h e  p lane  Oxt belongs t o  t h e  n e t ,  i . e .  such t h a t  

t h e  number 

One must not t h ink  t h a t ,  in i t s e l f ,  approximation of t h e  d i f f e r e n t i a l  

We r e c a l l ,  f o r  example, t h a t  t h e  proof of t h e  s t a b i l i t y  of d i f f e r e n c e  

( h )  

Suppose, f o r  t h e  sake  of d e f i n i t e n e s s ,  t h a t  Q ( x ,  t )  0, so t h a t  a l s o  

w i l l  be an  i n t e g e r  (F ig .  9 ) .  From 

the  d i f f e r e n c e  equa t ion  we  g e t  

n+l - 
m 

u - (1 - r ) u i  + ruL1 .  

The va lue  un+l = u! of the  s o l u -  

t i o n  u ( ~ )  a t  t h e  po in t  (0, 1) of t h e  

n e t  is expressed ,  v i a  t h e  d i f f e r e n c e  

equa t ion ,  in terms of t he  va lues  

u: and u; of t h e  s o l u t i o n  a t  t h e  

p o i n t s  (0 ,  1-T) and (h ,  1-1) of t h e  

ne t .  The two va lues  u: and u;, a r e  F i g .  9 .  
expressed  in terms of t h e  va lues  

0 

n-1 n-1 and Un-l  of t h e  s o l u t i o n  uo ' u1 
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at the three net-points (0, l-ZT), (h, 1-2T) and (2h, 1-2T). The values of 

the solution uo , u1 
solution-values at the four points (0, 1-3T), (h, 1-3T), (2h, 1-3T) and 

(3h, 1-3T), etc. Finally the value u p 1  may be expressed in terms of the 

values, uo 
(h/T, 0) = (Nh, 0). All these points lie on the interval 

n-1 n-1 n-1 
and u2 , i n  turn, are given i n  terms of the 

of the solution at the net-points (0, 0), (h, 0), (Zh, 0), ..., 
m' 

of the line t = 0 (see Fig. 9) ,  where we are given the initial condition 

for the differential equation. Thus the solution of the difference 

equation at the point (0 ,  1) of the net does not depend on the values of 
the function $(x) at points, x, lying outside the interval 

1 
O'X',. 

Further, the solution of the problem 

a u  a u  
- - - =  0 ,  - - < x < - ,  t > O ,  at ax 

u(x, 0 )  = $(XI, - m < x < m ,  

as one can easily verify, is  the function 

u(x, t) E $(x + t). 

This function is constant on each characteristic x + t = const; and, in 

particular, on the line x -F t = 1, which passes through the points (0, 1) 
and (1, 0) (see Fig. 9). At the point (1, 0) it takes on the value 6(1). 

Thus it is clear that, i n  the case r > 1, convergence, generally, cannot 
occur. In fact in this case the segment of the axis  with abcissas 

1 
O'X',< 1 

does not contain the point (1, 0). If, for some value of the function 

$(x), convergence were to take place accidentally then, without changing 
the value of $(x) on the interval 

1 
O'XL, 

and, thus, not changing the solution of the difference equation at the 

point (0, l), we could eliminate convergence by altering $(x) at and near 



§ 2 1  Review of Basic Definitions 195 

the point x = 1, a change which would, in turn, change the value, u(0 ,  1) = 

$(1), of the solution of the differential equation. The change in $(x) at 

and near x = 1 could be managed i n  such a way as not to negate the 
existence of second derivatives of the function $(x), or of the solution 

u(x, t) = $(x + t), so that approximation on the solution u(x ,  t) remains 
in effect. Under these conditions stability of scheme (5) would imply 

convergence. But since for r > 1 we cannot have convergence, we cannot 
have stability either. 

indirect in character. It is interesting to examine directly how the 

instability of difference scheme ( 5 )  for r > 1 i s  reflected in the 
sensitivity of the solution, uch), to errors in the specification of f(h). 

After all, it is precisely the uniformity, with respect to h, of the 

sensitivity of the solution to errors in f(h) which was defined, above, as 
stability. 

that 

The proof we have given of the instability of difference scheme (5) is 

Suppose that, identically for all h, O(mh, nT) 5 0 and $(mh) 0, so 

1 Jh, 1 
and the solution u(~) = {un} of problem (5 )  is identically zero, un 3 0.  

Suppose, further, that, in specifying initial conditions an error has 
occurred so that, instead of 

and instead of 

m 

- 
= 0 ,  we are given $ = (-l)%, E = const, 

we have 

= o  
f(h) = I ri 1 

-n+l - “n -n 
u m+l’ - (1 - r)um + r u  

-0 
u = (-l)mE 

-1 
we get, for u 

m’ 

-1 -0 Q - 
u = (1 - r)u, + rudl - 
m 

We see that the error committed at n = 0 has been multiplied by (1 - 2r). 
On proceeding to u2 we get m 



196 

In general 

Methods for Construction of Difference Schemes 

-2 -1 -1 -1 2 -0 
U = (1 - K)U, + = ( 1  - 2K)Um = (1 - 2K) 

Um - m 

Chapter 7 

For r > 1 we have 1 - 2r < -1, so that the error 

;;o = E 
m 

on stepping from one level t = nT of the net t o  the next, is multiplied by 

a negative number exceeding one in modulus. For n = [T/T] 

so that 

‘h 

In a fixed time, T, an error (-l)% in initial values increases by the 
factor 1 1  - 21-1 [T’(rh)l, a factor which grows very rapidly as h + 0. 

chosen to evaluate the quality of approximation; i.e, a method based on a 
comparison of the norm of the residual I 16f(h)l I ,  with this or that power 
of h. A s  we know, for stable schemes the order of approximation coincides 
with the order of the error, [u], - u(~), in the solution. It is natural 
to judge the quality of a scheme by the amount of computational effort 
which is required for the attainment of a given accuracy. This amount of 
computational effort, generally speakiqg, is proportional to the number of 
points, N, used in the difference net. For ordinary differential equations 
N is inversely proportional to the step-width, h. Therefore, when we say 
that the error € fl hp we are, at the same time, asserting that E 
i .e. that halving the error will require that we increase the expended 
effort by a factor ’0. 
equations, the order of approximation with respect to h characterizes the 
volume of computational effort. 

above example of a problem in two variables, x and t, the net is specified 
by the two step-sizes T and h. The number, N, of net-points, located in a 
bounded region of the plane Oxt is of order l/(Th). This number also can 
be taken as a measure of the amount of work expended in solving the 

We pause now for a brief critique of the method by which we have 

l/Np, 

Thus, in the case of ordinary differential 

For partial differential equations the situation is different. In the 
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difference equations. Suppose T = rh. In this case N 1/h2 and the as- 

sertion that E = hp is equivalent to the statement that € = NPI2. IF T = 

rh’, then N = l/h3 and the assertion that E IJ hp is equivalent to E IJ l/NPI3. 

We see that, in the case of partial differential equations, it would 
be more natural to measure the order of the error, not in powers of h, but 

in powers of 1/N. We will, nevertheless, settle on the method described 
above, in which approximation is evaluated in powers of h, since this is 

more convenient for computational purposes. The reader should, however, in 
judging the quality of difference schemes, keep in mind the above 

considerations. 
We must note, further, that the assertion that the computational work 

is proportional to the number, N, of net-points is also not always true. 

One can cite examples of difference schemes whose use requires, i n  the 
solution process, ~1 IT1+‘ arithmetic operations, where q = 1/2 or even 2. 

One encounters such schemes in the solution of difference boundary-value 

problems approximating elliptic equations, or in solving problems in three 

or more independent variables (e.g., u = u(t, x, y)). In the multidimen- 
sional case the construction of difference schemes such that the solution 

process entails N arithmetic operations is a nontrivial problem, about 

which more will be said in OS31, 32. 

machine time as a measure of quality, for the purpose of comparing 

algorithms. Machine time is not necessarily proportional to the number of 
arithmetic operations. 

memory to another may also play a significant, sometimes even a predominant 

role. And the time expended on logical operations must also be considered. 

For real calculations on electronic computers it is common to take 

The time required to transfer information from one block of computer 

PROBLEMS 

1. For Cauchy problem ( 4 )  study the following difference scheme: 

n+l - un n n 
m m - m m - 1  

u - u  

T = 9(mh, nT>, h 

uo = Jl(mh), m = 0 ,  21, ..., m 

where T = rh, r = const. More precisely 

f ( h ) ,  which appear when this scheme is put into the form L u(~) = f 

values uCh) at these points are connected by the difference equation for 

fixed rn and n. 

a) 

b) Sketch the relative locations of three net-points, such that the 

Write out in detail the operator, Lh, and right-hand side 
(h) . 

h 
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c) Show that the difference scheme approximates the differential 

problem to first order in h on a solution, u(x, t), having bounded second 

derivatives. 

d) 

2 .  For the Cauchy problem u + u = $(x,t), u(x, 0 )  = $(XI, 

Determine whether the difference scheme in question is stable for 

some choice of r, T = rh. 

t x  - < x < m, 0 

problem 1, above, each of the following difference schemes: 

t 5 T, investigate, following the outline laid out in 

m = 0 ,  21, .. .; n = 0 ,  1, . . . , [T/T]-~, 
uo = $(mh), m = 0, 21, ... ; m 

n+l n n n 
m 

r + h  = +(mh, nr), 
m umfl - "m u - u  

$22. Simplest methods for the construction 

of approximating difference schemes 

1. Replacement of derivatives by difference relations. The simplest 
method for the construction of difference boundary-value problems, approxi- 

mating differential boundary-value problems, consists in the replacement of 
derivatives by corresponding difference relations. We will present several 

examples of difference schemes obtained in this way. In these examples we 
will use the approximate expressions 

df(z) f(z + Az) - f(z) - -  
dz Az . 
dfo f(z) - f(z - Az) 
dz Az , 

dffz) f(z + Az) - f(z - Az) 
dz 2Az 3 I 

d'f(z) f(z + Az) - 2f(z) + f(z + A z )  - =  
dz2 Az2 
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Assuming a f u n c t i o n  f ( z )  having  s u f f i c i e n t l y  many bounded d e r i v a t i v e s ,  

i t  i s  p o s s i b l e  t o  wri te  o u t  e x p r e s s i o n s  f o r  t h e  remainder  terms i n  t h e s e  

a p p r o x i m a t i o n s .  By T a y l o r ’ s  formula  

( A Z l 2  f ” ( z )  + f ( z  + A z )  = f ( z )  + Azf’(z) + - 
2 !  

Using e x p a n s i o n s  (2) ,  one can  g e t  e x p r e s s i o n s  f o r  t h e  remainder  terms i n  

t h e  approximate  Eqs. (1). S p e c i f i c a l l y ,  one f i n d s  t h a t  

The remainder  terms i n  t h e  a p p r o x i m a t i o n s  (1) enter i n t o  t h e  c o r r e s p o n d i n g  

E q s .  ( 3 )  i n  t h e  form of  t h e  e x p r e s s i o n s  i n  s q u a r e  b r a c k e t s .  

w r i t t e n  o u t  e x p l i c i t l y  i n  ( 3 ) ,  can a l s o  be used  t o  r e p l a c e  p a r t i a l  

d e r i v a t i v e s  by d i f f e r e n c e  r e l a t i o n s .  For  example 

C l e a r l y  E q s .  (l), as w e l l  as t h e  e x p r e s s i o n s  f o r  t h e  remainder  terms 

E q u a l l y  
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and, in t h i s  case, 

e t c .  

Example 1. We r e t u r n ,  he re ,  t o  Cauchy problem ( 4 )  of 521: 

To approximate t h i s  Cauchy problem w e  c o n s t r u c t  t h r e e  schemes. I n  a l l  

t hese  schemes w e  use  the  n e t ,  D h ,  formed by those  p o i n t s  of i n t e r s e c t i o n  of 

t h e  l i n e s  x = mh, t = nT, f a l l i n g  i n s i d e  t h e  s t r i p  O ( t ( T .  The va lues  

of and h we t ake  t o  be connected by the  r e l a t i o n  T = r h ,  where r is some 

p o s i t i v e  cons t an t .  The s imples t  of t hese  schemes has  t h e  form of (5) s21 :  

and is obta ined  by r ep lac ing  the  d e r i v a t i v e s  u 

t h e  approximate expres s ions  

= au /a t  and uX = a d a x  by 
t 

u (x  + h, t )  - u(x ,  t )  
ux(x, t )  - h 

We have s tud ied  t h i s  scheme i n  d e t a i l  in 521. I n  t h i s  ca se  t h e  

r e s i d u a l ,  6 f ( h ) ,  which develops when the  s o l u t i o n ,  [u],, of t h e  

d i f f e r e n t i a l  problem is s u b s t i t u t e d  i n t o  t h e  le f t -hand  s i d e  of t h e  
d i f f e r e n c e  problem 

Lh[u]h  = f ( h )  + s f ( h ) ,  

has t h e  form 
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I n  t h i s  s e c t i o n  we t ake ,  a s  t h e  norm of t h e  element f ( h )  of space F 

maximum of a l l  components of t h i s  element.  Then, obvious ly  

t h e  
h '  

I I s f ( h ) l l  = O ( T  + h)  = O(rh + h) = O(h), 
Fh 

and t h e  approximation t u r n s  ou t  t o  be of f i r s t  o rde r .  

The second scheme r e s u l t s  from t h e  s u b s t i t u t i o n  of ano the r  expres s ion  
f o r  a d a x :  

au(x ,  t )  IJ u ( ~ ,  t )  - u(x  - h,  t )  
ax  h s 

This  scheme has  the  form 

1 n+l n n n 

I , .  

Here 

and approximation aga in  t u r n s  ou t  t o  be f i r s t  o rde r .  

t h e  f i r s t .  Below w e  w i l l  see, however, t h a t  t h i s  second scheme is com- 

p l e t e l y  u n s u i t a b l e  f o r  computation: 

cons t .  

The second scheme, it would seem, d i f f e r s  only i n s i g n i f i c a n t l y  from 

i t  is  uns t ab le  f o r  any T/h = r = 

The t h i r d  scheme 

is obta ined  by replacement of t h e  d e r i v a t i v e s  by d i f f e r e n c e  r e l a t i o n s  v i a  

t h e  approximate expres s ions  



202 Methods for Construction of Difference Schemes Chapter 7 

With the aid of the Taylor expansions (2), for a sufficiently smooth 

solution, u(x, t), of problem (1) we get 

Theref ore 

+(mh, nh) + L -  - h u + u + O(h')], 
2r xx 2 tt I Lh[UIh = 

so that 6f(h) in the equation 

Lh[UIh = f(h) + 6 P )  

has the form 

- -  +: u + O(h2), 
2r uxx 2 tt 

sf(h) 

0.  

Thus I16f(h)(l = O(h) and we again have first order approximation, 
Fh as in the two first examples. 

r 2 . I - I  
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Let us  now cons ide r  t h e  case  where t h e  connec t ion  between t h e  mesh 

wid ths  is g iven ,  not by the  r e l a t i o n  T = r h  a s  above, but by t h e  equa t ion  

T = rh2 ,  r = c o n s t ,  

presupposing a more r ap id  re f inement  i n  T than  i n  h. I n  t h i s  ca se  

from which it is c l e a r  t h a t  t h e  above d i f f e r e n c e  scheme approximates t h e  

problem 

not  a t  a l l  t h e  same as t h e  Cauchy problem ( 4 )  which we s e t  ou t  t o  

approximate.  

scheme may, f o r  d i f f e r e n t  f u n c t i o n a l  r e l a t i o n s  T = T(h) ,  approximate 

d i f f e r e n t  d i f f e r e n t i a l  problem a s  h + 0. Such d i f f e r e n c e  schemes are 

c a l l e d  " r ig id" .  

with a ske tch  ( o r  " s t e n c i l " )  r e p r e s e n t i n g  t h e  r e l a t i v e  p o s i t i o n s  of t h e  n e t  

p o i n t s  a t  which ( f o r  some f ixed  m and n) s o l u t i o n  va lues  a r e  d i r e c t l y  

connected by t h e  d i f f e r e n c e  equa t ions .  For  t he  above t h r e e  schemes t h e s e  

ske tches  are d i sp layed  i n  Fig.  10. 

Cauchy problem f o r  t h e  hea t  equa t ion  

We have, t hus ,  stumbled onto  t h e  f a c t  t h a t  one and the  same d i f f e r e n c e  

For h e u r i s t i c  purposes i t  is common t o  a s s o c i a t e  a d i f f e r e n c e  scheme 

Example 2 .  We now p resen t  two d i f f e r e n c e  schemes approximating t h e  

The s imples t  of t hese  
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T = $(mh, nT) ,  
m m -  

h2 

Chapter 7 

is  obta ined  by replacement of t he  d e r i v a t i v e s  u and u by d i f f e r e n c e  

r e l a t i o n s  v i a  t h e  equa t ions  
t xx 

t )  I u(x, t + T )  - u(x ,  t> 
Ut(X, T , 

u(x  + h,  t )  - 2u(x, t )  + u(x  - h, t )  
uxx(x, t )  = 

h2 

I f ,  f o r  t h e  replacement of u ( x ,  t ) ,  one were t o  use another  express ion:  
xx 

u(X + h,  t + T )  - 2u(x, t + T) + u(x - h,  t + T) 
uxx(x, t )  - 

h2 
, 

one would a r r i v e  a t  a d i f f e r e n t  scheme f o r  t h e  same equat ion:  

To d i s t i n g u i s h  t h e  two o p e r a t o r s  L of t hese  t w o  schemes we  have numbered 

them, w r i t i n g  L ( ~ ) u ( ~ )  = f ( h )  and h,(2)u(h) = f ( h ) .  
h h 

ponding t o  both d i f f e r e n c e  schemes are shown in Fig .  11. 

The s t e n c i l s  c o r r e s -  

fm-/,n) 
Fig. 11. 

These schemes are b a s i c a l l y  d i f f e r e n t .  Computation of t h e  s o l u t i o n  by 

t h e  f i r s t  scheme p resen t s  no d i f f i c u l t i e s ,  and is c a r r i e d  out  by use of t h e  

e x p l i c i t  r e l a t i o n  

where r = T/h2. 

by so lv ing  f o r  u F 1 .  Knowing t h e  va lue  of t h e  s o l u t i o n ,  u:, m = 0, 2 1, 
..., a t  t h e  l e v e l  t = t (= n T )  of t h e  n e t ,  we can compute its va lue  un+' a t  

This  expres s ion  i s  obta ined  from t h e  d i f f e r e n c e  equa t ion  

m 
n+I ' 

t h e  next l e v e l  t = t 

In t h e  second scheme L!2)u(h) = f ( h )  t h i s  convenient proper ty  has been 
11 

l o s t .  For t h i s  reason t h e  scheme is s a i d  t o  be " impl i c i t " .  I n  t h i s  ca se  

t h e  d i f f e r e n c e  equat ion ,  w r i t t e n  f o r  f ixed  m and n, cannot be so lved  e x p l i -  

c i t l y  f o r  LIZ'', expres s ing  t h i s  q u a n t i t y  in terms of t h e  known va lues  

equa t ion  con ta ins  not only t h e  unknown un+', but  a l s o  t h e  o t h e r  unknowns 

from t h e  preceding  l e v e l .  The problem is t h a t  t h i s  n n  
of U L 1 s  urn, 

m 
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m+l 
m+1- m 

Therefore, to determine un+l, m = 0, 2 1, ..., it is n+l 
and u 

necessary to solve the difference equation for the whole net function, 

un+’, of the argument m. Nevertheless it will be shown below that the 

scheme LL2)u(h) = f(h) is, as a rule, more convenient than the scheme 

Lh 

with respect to h. 

of approximation of the second scheme. Using Eq. ( 3 )  one can write 

m 

(1),,(h) = f(h). 

For T = rh’, r = const, both schemes have second order approximation 

We calculate the residual 6f(h) and evaluate the order 

t = (n+l)T 

It follows, since T = rh’, that 

+ O(h‘), 
6f(h) = 

But 

‘b,. tMJ = ‘bm, tn) + CO(X,, tn+J - ‘(x,, trill = 

= @(x,, tn) + O ( T )  = O(xm, tn) + O(h2)- 

Theref ore 

I I 6 f l h ) (  I = O(h‘). 
Fh 

Example 3 .  We now consider the simplest difference scheme approxi- 

mating the Dirichlet problem for Poisson’s equation in the square D 
( 0  < x < 1, 0 < y < 1) with boundary I‘ (Fig. 12,a): 

u + u = N x ,  Y), (x, Y) in D, 
xx YY 

ulr = NX,Y), (x, Y) in l-. 

We construct the net, D assigning to it those points (x t ) = 

(mh, nh), which fall inside the square or on its boundary. The step-width, 
h’ m’ n 
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Fig. 12. 

h, we assume to be chosen such that l/h is an integer and the difference 

scheme, L u(~) = f(h) will be given by the equations 
h 

+ U  + u  Um+l,n - 2Umn m-1,n Um,n+l - 2Umn m,n-l  = + 
h2 h2 

L Jh) I = @(mh, nh), (mh, nh) in D, 

u = $(mh, nh), (mn, nh) in r - I  mn h 

By virtue of Eq. ( 3 )  the residual 6f(h), Lh[uIh = f(h) + 6f(h), has 

the form 

so that approximation is of second order. The five-point stencil, 

corresponding to the given difference equation, is pictured in Fig. 12,b. 

We have, above, constructed difference schemes by replacing each 
derivative in the differential equation by a difference relation of one 

sort or another. 
2. The method of undetermined coefficients. A more general method of 

constructing difference schemes is, not to replace each derivative 

separately, but to replace the whole differential operator at once. We 
explain this method by way of examples of difference schemes for the Cauchy 

problem ( 4 ) .  First we consider a first-order approximation, scheme ( 5 ) .  
This scheme connects the values of the required function at three points, 

as shown in the left-hand panel of Fig. 10. The difference equation 
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used in this scheme has the form 

A (h) auun+' + aou; + a l u L 1  = $(mh, nT). 
hU 

Let us forget, for the moment, that we already know about difference scheme 

(5), for which 

1 1  1 
a. = K - 7' a l =  - -  h' a0 = 1 

7' 

and, considering these coefficients undetermined, try to choose them in 

such a way that 

t=nT t=nT 

or 

where 

a u  au 
at ax - A u : - - -  

For this purpose we make use of Taylor's formula: 

u[mh, (n + l)T] = u(mh, nT) + Tu'(mh, 

u[(m + l)h, nT] = u(mh, nT) + hu'(mh, 

t 

X 

(7) 

nT) + O ( T ' )  , 

nT) + O(h2). 

Substituting this expression into the right-hand side of the equation 

5 auu[mh, (n + 1)T] + aou(mh, nT) + a u[(m + l)h, nT] A h b I  hlx=mh, 1 

t = nT 
we get 

= (aU + a. + a )u(mh, nT) + 
1 

Ahh[ulh( x=mh, 

Since it is our goal to choose the coefficients a", a. and al so as to 
fulfill the condition of approximation ( 6 ) ,  it is natural, preliminarily, 
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to group terms on the right-hand side of Eq. (8) in such a way as to 
separate out term ( 7 ) .  Then the remaining terms will constitute the 

remainder term of the approximation, a term which must be small. To single 

out the term Au one may replace, in the right-hand side of (8), the 

derivatives au/at or adax using, respectively, one of the two relations 

au - au au = au 
at ax ax at 'us 

- = A u + -  or - _ - -  

For the sake of definiteness we use the first of these. 

with some constant r .  After these manipulations Eq. (8) takes the 
following form: 

In addition we connect the step-widths T and h by the relation T = rh, 

+ (a"= + a 1 x  )hu (mh, n?) + O(a"r2h2, alh2). ( 9 )  

Among all smooth functions u(x, t) one can find a subset for which u ,  adax 

and au/at will take on, at any prescribed point, any mutually independent 
values. Therefore the quantities 

also may be considered mutually independent. In view of this fact, it 

follows from ( 9 )  that if, for any right hand $(x, t) side of problem ( 4 ) ,  
we are to fulfill the approximation condition 

it is necessary that 

a'rh = 1 + Ol(h), 

a' + a + al = 0 + 02(h), 

(aur + al)h = 0 + 03(h), 

0 

where Ol(h), 02(h) and 0 (h) are some arbitrary quantities of order h. 
Suppose that 0 (h) = 0 (h) = 03(h) = 0. 

3 
The resulting system 

1 2 
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aorh = 1, 

a' + a. + al = 0 ,  

a"r + a = o 
1 

has the unique solution 

1 1  a'J = - = -  
rh T a 

r - 1  1 1 
a o = 7 = T ; - T ,  

which takes us back to the already familiar scheme (5). 

f o m  

Now, however, we have learned that, among difference schemes of the 

this is the only one approximating the given Cauchy problem. In 
considering uniqueness we neglect the degree of arbitrariness resulting 

from the free choice of the functions Ol(h), 0 (h) and 03(h). 

where in the examples below we will 

also neglect a similar sort of 

obvious arbitrariness and, in fact, 
will not always introduce, expli- 

ogous to Ol(h), 02(h)  and 03(h), 

assuming from the start that they Fig. 13 
are zero. 

the introduction of these quantities would have lead to the following 
insignificant change in results 

Every- 
2 

z(h+,,n) 
citly, arbitrary quantities anal- /m - 1, nl /m,n) 

The reader will easily convince himself that, in the present example, 
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The situation will be much the same also in the other examples we will 

encounter. 

Let u s  now consider how one can construct, for problem ( 4 ) ,  the 
difference scheme 

of more general form, connecting the values of the unknown function at f o u r  

points, as shown in Fig. 13 .  

and introduce the notation Ah, defining 

Again we connect the step-widths by the equation T = rh, r = const, 

For every sufficiently smooth function u(x,t) we may write, with the 

aid of Taylor's formula, 

= (a' + a + a + aVl)u(mh, nT) + 
0 1  Ah[ul 

h'x=mh, 
t = n T  

1 + a'rhu (mh, nT) + (al - a-l)hux(mh, nT) + aor2h2utt(mh, n T )  t 
t 

( 1 2 )  
+ 7 1 (al + a-l)h2uxx(mh, nT) + O(a0r3h3, alh3, a-lh3). 

We now separate out, in the right-hand side of this equation, the term 
AU z (au/at) - (au/ax), using for this purpose the identity u = u + A . 
As a result we get 

t x u  

= aorhAul + (ao + a. + al + a-l)u(mh, nT) + 
x=mh , hh[ul 

hlx=mh, t=nT t=nT 

1 + (au, + al - a-l)hux(mh, nT) + aor2h2u 
tt 

1 + 7 (al + a-l)h2uxx(mh, nT) + O(aor3h3 

mh, nT) + 

alh3, a-lh3). 

If we assume that the quantity O(a0r3h3, alh3, a-lh3) is sufficiently 
small, an assumption which will later be confirmed, then in order to 

fulfill the approximation requirement 
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it is necessary that the four numbers, a', aoD al and a 

three equations: 
satisfy the 

-1 

aUrh = 1 + Ol(h), 

au + a + al + a = 0 + 02(h) ,  

)h = 0 + 03(h). 

0 -1 

(aur + al - a -1 

Suppose, according to our convention, that the arbitrary quantities O,(h), 

0 (h) and 0 (h) of order h, are equal to zero. We 
equations 

2 3 

aUrh = 1, 

a'+. + a  + a  = o ,  
0 1 -1 

aur + a - a-l = 0. 

If condition (13)  is fulfilled, then 

L 

then get the system of 

+ - 1 aor2h2utt(mh, tT) + 
Ah[UI x=mh , = Au'x=mh, 2 

t=n7 t=nT 
+ - 1 (a + a-l)h2uxx(mh, nT) + O(aur3h3, alh3, a-lh3). 

2 1  

System (13) has many solutions, in fact a family of solutions depending on 
one parameter. One of these solutions 

r - 1  1 
a-1 = 0 ,  rh ' a l =  - -  h '  a. = - a0 = L 

rh' 

leads to the above scheme (5). The solution 

corresponds to the scheme 

Having chosen some solution of system (13). one must substitute this 

solution into the remainder term and confirm that it is small. For the 
above two solutions substitution of the quantities a', ao, al and a-l gives 
the remainder terms 
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aur2h2 aZu + -2 ai + a-i h2 - aZu + O(aor3h3, alh3, a-lh3) 
-ats ax2 

of order O(h). 

which a2u/at2 and a2u/ax2 take on, at any given point, any arbitrary 
prescribed values. Moreover the term O(a r h , alh , a-lh ) containing the 
third derivatives of the polynomial u(x, t) will vanish. Therefore, if the 
remainder term is to be of order higher than h, it is necessary that the 
coefficients of a2,/at2 and a2u/ax2 should each, separately, be of higher 

order. 
coefficient of a2u/at2 is rh/2 and the remainder term is never of order 
higher than first. 

scheme of form (10) which approximates the problem 

Among the smooth functions u(x, t) are second-order polynomials for 

0 3 3  3 3 

Since, from the first of Eqs. (13), we have a' = l/(rh), the 

We have established that is is impossible to construct a difference 

to order h2. 
increase the number of net-points used in constructing the scheme. 

construction of a difference scheme with order h2 approximation, using the 
four indicated points of the difference net. The method of raising the 

order of approximation, which we now present by way of examples, is general 
in character. It turns out that one can choose the coefficients in such a 
way that the equation 

To raise the order of approximation it would be necessary to 

But we will now point out some methods which, nevertheless, permit the 

Ah[ulh auu(mh, (n + 1)T) + a-lu((m - l ) h ,  nr) + 
. .  

+ aou(mh, nT) + alu((m + l)h, nT) = 

will be satisfied, where 

and E is the identity 
difference scheme 

Ph=E+-(-+ rh a a 
2 at d 9 

operator. Then, since Au = ut - ux = $(x, t), the 
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w i l l  approximate t h e  given d i f f e r e n t i a l  problem, on t h e  s o l u t i o n  u (x ,  t ) ,  

t o  second o r d e r  i n  h. 

The c o e f f i c i e n t s  a', a a. and a l  a g a i n  may be chosen by t h e  method 

of undetermined c o e f f i c i e n t s .  They t u r n  ou t  t o  have t h e  fo l lowing  va lues :  
-1' 

1 K  1 - r  l + K  

a. = - x + x ,  -1 2h ' al = -- 2h . a =- 
1 
r h  ' 

a0 = - 

With these  va lues  t h e  ope ra to r  Ah t a k e s  t h e  form 

By the  method of undetermined c o e f f i c i e n t s  one can not only choose 

c o e f f i c i e n t s  a" ,  a-l,  a. and al f o r  which 

Ah[uIh = auu(x ,  t + T) + a-lu(x - h ,  t )  t 

+ a u(x ,  t )  + a lu(x  + h, t )  = P hu + O(h2) 
0 h 

wi th  the  above def ined  ope ra to r  Ph ,  but one can a l s o  Cons t ruc t  a l l  oper -  

a t o r s ,  P h ,  f o r  which the  above equa t ion  can be s a t i s f i e d .  

* * * * * *  

L e t  us  now show how t h i s  can  be done. 

Taking 

(h )  2 a'u*l + a 
*hU m &-1 + + ap:1' 

and us ing  Tay lo r ' s  formula,  we g e t  

= (a" + a + al + a )u(mh, nT) + 
0 -1 

x=mh , Ahh[ulhl 

t=nT 

+ a"rhut(mh, n T )  + (al + a-l)hux(mh, nT) + aur2h2u  (mh, nT) -!- 
2 t t  

1 + 7 (al + a-l)h2uxx(mh, nT) + O(aur3h3 ,  a lh3 ,  a-lh').  ( 1 4 )  

This  equa t ion  w i l l ,  n ex t ,  be put i n t o  a somewhat d i f f e r e n t  form. We s t a r t  

with a d e r i v a t i o n  of t h e  i d e n t i t y  
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which follows from the definition of hu: 

- = -  au a~ + hu. 
at ax 

The proof consists of a chain of obvious identities: 

- =  a'u a%, - a  (2 + A u ) ~  = =+ ( A U ) ~  = ut + ( A u ) ~  
at2 

- -  1 a (u, + A u )  + (Au)~ : u + (hu), + ( A U ) ~ .  ax xx 

Using these identities one can rewrite Eq. (14) i n  the following, 
equivalent, form 

t=nT 

+ (ao + ao 

1 + [y a",' 

rh(Au); + $ a"r2h21(h)t + ( A U ) ~ ] :  + 

+ a + aml)u(mh, nT) -t (aur + al - a )hux(mh, nT) + 
1 -1 

1 )]h2uxx(mh, nT) + O(aor3h3, a h3, a h3). (15) 
y(a1 + a-1 1 -1 

We now construct the operator satisfying the condition A u = P hu + O(h2). 
The terms containing A ( A U ) ~  and may be included in the expression 

P hu, since the definition of P hu is at our disposal. 

h h  

All the other terms 
U' 

h h 

(aO + a" + a-l + al)u(mh, nT), 

(a"r + a - a )hu (mh, nT), 
-1 x 

a"r2 + a + a-l 
h2um(mh, nT), 

1 
2 

O(a"r3h3, alh3, a h3), 
-1 

must be constituents of the remainder term of the equation 

Ah[uIh = P hu + remainder term, h 

no matter how we try to choose the operator Ph. 
assertion is proven by the fact that there exist functions, u(x, t), for 

which u, ux, urn, hu, and ( h u )  take on, at any given point 
(xo, t ) any mutually independent prescribed values u", u" 
(Au): and (A,):. One such function, for example, is the polynomial 

The validity of this 

t 
u" (Au)", 

0 x' xx' 
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1 
P(x, t) = uu + U;(X - x,) + [(Au)' + uz](t - to) + 7 U' (X - x0)' + 

xx 

In view of the independence of the values u, u xy uxxy Au, ( A d t  and (WX 
it is necessary, in order to achieve second-order approximation, that each 

term, individually, entering into the remainder should be of order h2. 

This requirement may be written in the form 

a +."+a + a  = o ,  
0 1 -1 

(aor + al - aml)h = 0 .  

(aO? + a + a )h2 = 0 .  
1 -1 

The solution of system (16) is determined to within an arbitrary 

factor. We will supplement this system by the equation 

a rh = 1, (17) 0 

which constitutes a natural, though not necessary, constraint on the choice 
of the operator Ph: i.e the coefficient of (Au) in the expression for 

P Au is taken to be unity. 
h 

On the right-hand side of equations (6) and (7) it would be possible 
to add arbitrary terms 0 (h2), 02(h2), 03(h2) and 04(h2) but we have, in 

conformance with our earlier conventions, set these terms to zero. 

a', a-l, a. and al, already given earlier: 

1 

Solving the system of equations (16), (17), we get the coefficients, 

1 r  1 - r  l + r  
a l = - -  2h a_l = - 2h ' a. = - ~ + j - ,  

1 
rh' 

a' = - 

With these values for the coefficients the remainder term in Eq. (15) 

rh rh 
2 Ah[uIh = Au + - + T- ( A U ) ~  + O(aur3h3, alh3, a-lh3) 

5 P Au + O(a"r3h3, alh3, a h3) h -1 

satisfies the bound 

)O(aUr3h3, a h3, a h3)I A(r2h2 + h2) 
1 -1 

where A is some constant depending only on the maximum absolute value of 
the third-order derivatives of the function u(x, t). Correspondingly we 

may also write 
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IAh[uIh - Ph$lE 5 A ( &  + 1)h2. 

Thus, we have established that, 
only one difference scheme 

Chapter 7 

ignoring insignificant variations, 

among all difference schemes of the form 

approximates differential boundary-value problem ( 4 )  on its solution 
u(x, t) to second order in h. 

* * *  

In all the examples of difference schemes, L u(~) = f(h), presented so 
h 

far in this chapter, the operator Lh, mapping the space U 
Fh, is given by explicit equations. 
schemes in which the operator L 

cated, way. 
evolve naturally. 

The above methods for con- 
structing difference schemes remain 

applicable also for problems with 
variable coefficients, for nonlinear 

problems and for nets with variable 
step-size. For example, in the case 
of the non-uniform net shown in Fig. 

14, one can construct a difference 
scheme for the equation u + u = = YY 
$(x, y) by substituting, for the 

derivatives in this equation, the 
difference relations Fig. 14. 

into space 
h 

But one often has use for difference 
is specified in some other, more compli- 

Below we will encounter problems for which such schemes will 
h 

A% 

D 4 0) 
X 

hi* 0, 4 
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discarding the remainder terms. The validity of the above equations may be 

confirmed with the aid of Taylor expansion (2). By the method of undeter- 

mined coefficients we may convince ourselves of the uniqueness of the equa- 
tions: t o  within unessential variations there is only one set of coeffi- 

cients a-l, ao, al, for which we may write, given any sufficiently smooth 
function u(x, t), the expression 

+ alu(X&l , Yn) + o[max(Axm-lD 

with a remainder term which is small to first order with respect to 
max[Ax Axm]. 

m-1' 
Equations of the form 

with remainder terms of second order, do not exist for Ax f AX . 
difference expressions it would be necessary to involve more than three 

net -points. 
3. Schemes with recomputation, or "predictor-corrector" schemes. To 

construct difference schemes approximating time-dependent problems one can 

use the same idea which underlies the construction of the Runge-Kutta 
scheme for ordinary differential equations, the idea of "recalculation". 

Recalculation allows one to raise the order of approximation attained, by 
use of the initial scheme, before recalculation. In addition, in the case 

of quasilinear differential equations recalculation allows us to construct 
so-called "divergence" schemes, about which more will be said in s30. 

m-1 m 
To achieve greater accuracy via the replacement of derivatives by 
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We recall the idea of recalculation via the example of the simplest 
Runge-Kutta scheme for the numerical solution of the Cauchy problem 

9 = f(t, y), y(0) = $, 0 < t < T. (18) 
dt 

If the value y at the point t = pT has already been calculated then, to 
P P 

compute y we determine an auxiliary quantity, yp+1,2, using the 
simplest uler scheme (the “predictor” scheme) 

- 
E+1’ 

and then carry out the corrective recalculation 

- 
computed by use of a scheme with first-order 

p+1/2’ 
The auxiliary quantity y 
accuracy, allows us to determine, approximately, the inclination of the 
integral Curve at the midpoint of the interval 1 tp, tp+l], and to get 

using Eq. (ZO), more accurately than by Euler’s scheme (19). 
Yp+l’ 

We have already noted, In 4s19 ,  that all our considerations remain 
% 

valid if y, y and y are finite-dimensional vectors and f is a vector - P 
function. But one can go still further, considering y, 
elements of a function space, and f an operator in this 

the Cauchy problem 

A = const, can be thought of as a problem of form (18) if we set y(t) = 

u(x, t) so that, for each t, y is taken to be a function of the argument x; 
the operation f is interpreted to mean the application of the operator 
-Aa/ax. Let us take as an example a difference scheme, with recalculation, 

for problem (21). 
Example. Suppose that the net function up = {u:}, in = 0, 21, ..., for 

a given p, has already been computed. We first determine the auxiliary net 

function P + ~ / ~  = {;::;;I, m = 0, - +I, ..., relating to time t 
( p  + 1/2)T and to point xm+112 = (m + 1/2)h, using the following (first- 
order accurate) scheme: 

- - 
P+l 12 

Then we perform the correction, and find up+’ using the scheme 
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Eliminating EPt1l2 

Difference Schemes 

0, m = 0, 21, ... 
from Eqs. (22) and (23), we get the scheme 

I = 0 ,  m 

h2 

up - up m+l m-1 
2h 2 

This latter scheme, for A = -1, coincides with scheme (17*), and the case 

A f -1 differs only insignificantly from the one already discussed. Scheme 

(24), and thus also the scheme with recalculation, i.e. (22), (23), has 
second-order approximation in h when T = rh, r = const. 

4. Or! other examples. We now mention, briefly two more extremely 
important and widely-used methods for the construction of difference 

schemes. The first of these is based on the formulation of the original 

differential equation, the equation which is to be differenced, as an 
"integral conservation law". The need for the use of this method arises 

naturally in the computation of so-called "generalized solutions," 
functions which do not have full sets of derivatives, or may even be 

discontinuous. Difference schemes developed in this way are called 
"divergence schemes" or "conservative schemes". Methods for constructing 

divergence schemes are described in Chapter 9. 
The second method is based on the use of some variational formulation 

of the differential boundary-value problem whose solution is to be 
computed. This method is often called the method of finite elements, and 

the corresponding difference schemes are referred to as "variational- 
difference" or "projective-difference'' schemes. This method allows the 

construction of difference schemes on irregular nets, finer in regions 
where the solution changes more quickly. Chapter 12 will be devoted to the 

discussion of such schemes. 

PROBLEMS 

u(x, 0 )  = *(XI, - m < x < m. 

use the net x = mh, t = n?, h = I, and construct a difference scheme of 

the form 
m 
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a',"+' + a un + a un 
= +: m m+l 0 m 1 m+l 

L Jh) = 
h 

u" = $(mh). 
m 

How must one define a', al, ao, al and $m so as to achieve order h2 
approximation? 

2. For the Cauchy problem 

use the net xm = mh, yn = nT, t 

difference scheme. 

= p?, and construct any approximating 
P 

3 .  For the heat conduction problem 

- m < x < m ,  O L t L T ,  au a% - = -  
at a,~' 

u(x, 0) = $(XI, - m < x < m  

consider the difference scheme 

where a is a parameter and un the value of the desired function at the 
point (x = mh, t = nT) of the net. 

a smooth solution u(x, t) to order O ( T  + h2). 

m 

m 
a. Show that, for any a, the differential equation is approximated on 

b. Choose a a such that approximation will be of order O(T2 + h2). 
c. Taking the step sizes to be connected by the relation ?/h2 3 r = 

For 0 = 0 choose the number r = ?/h2 so that approximation will be 

Is it possible, through the choice of (T for given r = T/h2, to 

const, choose 0 so as to get an approximation of order h4. 
d. 

of order h4. 
e. 

achieve approximation, on any smooth solution, of order higher than fourth? 
4 .  For the heat-conduction problem 

using the net x = mh, t = nr, construct an approximating difference 

scheme. 
m n 



923 Examples of Construction of Boundary Conditions 221 

5. For the nonlinear heat-conduction problem 

au 
- m < ~ < m ,  O < t < T ,  

aU a 
- at = la(.) XI, 

using the net x 

ference scheme. 
scheme. 

6 .  

unique bounded net function up+' = {up 
m 

= mh, tn = nT, construct an explicit approximating dif- 
Write out equations for the computation of u(~) by this 

m 

Prove that, for a bounded net function up = {up} ,  there exists a 
+1 m 

} defined by the difference scheme 

uP+l - P uP+l - uP+l 
m m - m+l m-1 

T 2h = 0 ,  m = 0, 21, ... 
7. Prove that the predictor-corrector scheme for problem (25), in 

which the solution-values at the intermediate level are given by 
m 

the implicit scheme with order of approximation O ( T  + h2) 

-P+1/2 - p / 2  l p t 1 / 2  -p+1/2 
"m m - m+l 

- 
+ Um-l 

= 0 ,  m = O , + 1 ,  ..., - 
h2 T I 2  

and the solution {upfl] is defined by the scheme 
m 

-p+1/2 - w 1 / 2  l p t 1 / 2  
upfl - up u 
m m - m+l + = 0 ,  = q(xm), m = 0 ,  21, ... 

T m 
h2 

has approximation of order O(T2  + h2) on a smooth solution u. 

S23. Examples of the formulation of boundary conditions 
in the construction of difference schemes 

The examples of $22 were so selected that questions relating to the 

construction of difference boundary conditions did not arise. These could 
easily be obtained from the differential boundary conditions and formulated 

in such a way that, upon substitution of [u],, they would be satisfied 
exactly. Here we consider examples which, as regards boundary conditions, 
are more complicated. 

Example 1 .  In the construction of a difference scheme for the problem 

we will use the difference equation 
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n+l n-1 n n 
"m+l Um-l m m -  = $(mh, nT), 

u - u  

2T 2h 

Chapter 7 

(2) 

n = 1, 2, ... ; m = 0, 21, ...; T = rh. 

To calculate the solution of Eq. (2) we must fix not only u" 
m' 

u" = $(mh), m = 0 ,  - +1, ..., ( 3 )  m 

but also u' 
2, ..., one can, next, compute u:, m = 0, 21, ..., then u3 

..., etc. 
m = 0 ,  - +I, ... Then from difference equation (2) for n = 1, 

m' 
m = 0 ,  21, m' 

The value assigned to u' must be close to 
m 

u(mh, T) = u(mh, 0) -t Tut(mh, 0) i- O(T2)- 

= ux + Au, Au 3 u - u = $(x, t), U(X, 0 )  = $(x), t x  Since u 

Thus, discarding the term O(?') we may write 

Clearly the difference scheme 

approximates the differential boundary-value problem (1) to order h2. 
complication in this scheme consists in the fact that difference equation 

(2) is second-order in t, while the differential equation is first-order. 
For this reason it was necessary to construct a second difference boundary 
condition ( 4 ) ,  not arising directly from the given boundary condition for 
the differential problem. 

difference boundary conditions is not trivial. 

The 

Let us now consider another example in which the construction of 
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Example 2. Consider t h e  d i f f e r e n t i a l  boundary-value problem 

ut - ux = $(x, t ) ,  0 < x < 1, 0 < t < T ,  

O < x < l ,  

O < t < T .  

Any s o l u t i o n  of t he  d i f f e r e n t i a l  equat ion of problem ( 6 )  is uniquely 

def ined i f  we know its values  a t  one point  on each of the l i n e s  x + t = 

const .  I n  f a c t  along such a l i n e  

so t h a t  u(x,  t) is t he  i n t e g r a l ,  a long the  l i n e  

x + t = const  

of $(x,  t ) .  The value of t he  i n t e g r a t i o n  cons t an t  is determined by the 

value of  u a t  the  given point .  

I n  Fig. 15 w e  d e p i c t  t he  r ec -  

t ang le ,  O l x l l ,  O l t ( T ,  in 

which we intend t o  look f o r  t h e  so- 

l u t i o n ,  and show two l i n e s  of t h e  
family of p a r a l l e l  l i n e s  x + t = 

const .  Each l i n e  of t h i s  family i n -  

tersects, a t  a s i n g l e  po in t ,  e i t h e r  

t he  segment 0 Ix(l of the  x-axis ,  

o r  t he  segment O ( t ( T  of the l i n e  

,z' x = 1, where u(x,  t )  is given. Thus 

Fig.  15 W e  now proceed t o  the cons t ruc -  

computation of t he  s o l u t i o n  of problem ( 6 ) .  
Mh = 1, and assume t h a t  T = r h ,  where M is a p o s i t i v e  i n t e g e r  and r = 

const .  As a n e t ,  D w e  use t h e  set of p o i n t s  (mh, nT), m = 0, 1, ..., M; 

n = 0, 1, ..., [T/T]. With each po in t  of D not l y i n g  on t h e  upper 

boundary o r  t he  s i d e s  of t he  r e c t a n g l e ,  we a s s o c i a t e  an equat ion 

sit =cons 

D 14 0) problem ( 6 )  has  a unique s o l u t i o n .  

t i o n  of a d i f f e r e n c e  scheme f o r  t he  

Suppose h is given such t h a t  

h' 
h 

(@'r)B 
where 
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The derivation of this equation was described in detail in 922. 
The values u" and 4 will be given by the equations 

m 

which are analogous to the boundary conditions of the given differential 
problem. But Eqs. (9)  do not suffice to determine the solution un every- 
where on D The value of u:', at the left hand boundary of the rec- 

h' 
tangle, is still undefined. For this reason we supplement the difference 
boundary conditions as follows: 

m 

This conditions results if we substitute for the derivatives i n  the 
equation 

which follows from Eq. ( 6 ) ,  appropriate difference relations. 
Thus we have constructed the difference scheme L u(~) = f(h): 

h 

m = 1, 2, ..., M-1; n = 0, 1 ,  ..., N-1, 

L uCh) = ui ,  m = 0, 1, ..., M-I, 

$, ~ = o , L  ,..., N ,  i h 

n+l n n n 

, n = 0, 1, ..., N-1, 

m = 0 ,  1 ,  ..., M-1, 
f(h) = 

$,(n% n = O ,  1 ,  ..., N,  

$(O, n7), n = 0, 1 ,  ..., N-1. 
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Let us now determine the order of approximation of this scheme. 
Taking account of the considerations of $22 it is clear that the residual 

6f(h), which develo s when u] 

scheme L [u] = f(h’ + 6f(hf, &suming a sufficiently smooth solution h h  
u(x, t), has the form 

is substituted into the difference 

Omn(h2) = O(h2), m = 1, 2, ..., M-1;  n = 0 ,  1, ..., N - 1 ,  

m = 0 ,  1, ..., M - 1 ,  

n = O ,  1, ..., N,  

7 utt(O, nT + El’) + T  h uxx(E2h, nT), n = 0 ,  1, ..., N - 1 ,  i‘ 0 < c 1 < 1 ,  0 < E 2 < 1 .  

If we introduce a norm in Fh, assuming that for any element g(h) in Fh 

then I 16f(h)l 1 
order in h. 

imation is first-order because of the residual (T/2)u  + (h/2)uxx = O(h), 
resulting from the substitution of [u], into the auxiliary boundary condi- 

tion which we have artificially constructed, and imposed at the left-hand 
boundary. 

= O(h), and approximation turns out to .be only of first 
Fh From the expression for 6f(h) it is clear that the approx- 

tt 

The magnitude of the remainder term, in the norm I I * I I F  which we 

are now using, is determined only by the second derivatives of the solu- 
tion; i.e. this norm does not allow us, in studying the boundary condi- 

tions, to take advantage of the same degree of smoothness which we had to 
assume in the solution to get second-order approximation at interior 

points. 

h 

We now introduce a norm 1 I I I for which the above difference 
Fh scheme has second order approximation on a sufficiently smooth solution 

u(x, t): 
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N I f 2  
+ h 1 lam)2 + max lbnl + max ( m=O ) n n 

For this scheme, as is easily seen, 

Further the constant A depends on derivatives up to and including the 

third. 
Smoothness is accounted for, in this norm, via the terms 

The reader has probably noticed that some of the terms in the formula 

defining the new norm in Fh differ from the corresponding terms in the old 
norm through the presence of a factor h. It is clear that if one 
arbitrarily multiplies terms by h, and by various powers of h, then one can 

achieve any desired order of approximation. 
discussed the question of the choice of norms in connection with ordinary 

differential equations and we know that only those norms are useful in 
which the difference scheme simultaneously approximates the differential 

boundary-value problem, and is stable. 

order approximation, will be proven in $42. 

in any reasonable sense, one must choose a norm correctly. In studying 
different possible schemes it is necessary to test many norms. In each 
norm one must try to carry out a study of stability which by itself, at 

least at present, often requires inventiveness and labor. 

concerns us, one investigates a simplified, so-called "model" problem, 
after which one carries out test calculations using the proposed difference 

scheme for the original, unsimplified problem. 

But in 513 we have already 

The stability of the above scheme, using norms in which it has second- 

Example 2 is very instructive. It shows that, to verify approximation 

In practice in most cases, instead of studying the real problem which 

PROBLEMS 

1. For the Cauchy problem 
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S idy the order of approximation, on a sufficiently smooth solut 

u ( x ,  t), of the difEerence scheme 

)n 

if ($2 )m = $2(mh). Take, as the norm 1 (f(h)l I F  
of all components of the element 

the maximum of the moduli 
h’ 

Show that the approximation is first-order i n  h; T = rh, r = const. 

@(x, t), $ (x) and 9 (x), so that approximation will be second-order? 

How must one assign the value of ( J I  ) 

2. For the heat-conduction problem on a line-interval, 

using the given functions 
2 m’ 

1 2 

consider the difference scheme 
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T 

n+l n 
m m - m - 1  m 
u - u un - 2un + un 

= $(mh, nT), 
h2 

I m = 1, 2, ..., M-1;  n = 0, 1, ..., [T/T]-1, 
M ,  u" = Jb(mh), m = 0, 1, ..., 

m 

As the norm 1 1  I I , take the maximum of the absolute values of the 
Fh right-hand sides of all equations which, collectively, make up the given 

difference scheme. Assume that the step-sizes, T and h, are connected by 
the relation T = rh2, r = const. Show that, setting ((J,)" = q1(nh), we get 
a scheme with first-order approximation on a smooth solution. What sort of 
expression must one use to define ( 6  In in order to get an approximation of 
second order? 

1 

524. The Courant-Friedrichs-Levy condition, 
necessary for convergence 

In s21 we proved that the difference scheme 

n 

T 

n+l- un n 
in 

m - = 0, 
- 

h 

u" = $(mh), 
m 

approximating the Cauchy problem 

cannot be convergent for an arbitrary function $(x) if T/h > 1 (see  Fig. 9 

on p. 193). In the course of the proof we used a principle, general in 
character and first formulated, in connection with another example, by 
Courant, Friedrichs and Levy. This principle is often useful in the con- 
struction and study of difference schemes. It may be stated as in the fol- 
lowing section. 

tion of a differential problem involves some function, $ (see (2), for 
example). Choose an arbitrary point, P, belonging to the domain of defini- 
tion of the solution U. Suppose that the value of the solution u(P> de- 

1. The Courant-Friedrichs-Levy condition. Suppose that the formula- 
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pends on va lues  of t he  f u n c t i o n  J, a t  t h e  p o i n t s  of some s e t ,  G = G (P ) ,  

belonging t o  t h e  domain of d e f i n i t i o n  of J,, i .e. a change i n  t h e  vafue  of J, 

i n  a smal l  neighborhood of any poin t  Q of G ( P )  can evoke a change i n  t h e  

va lue  of t h e  s o l u t i o n  of u(P) .  Suppose f u r t h e r  t h a t  f o r  t h e  computation 

of t he  s o l u t i o n  u ,  one uses a d i f f e r e n c e  scheme, L,,ufh) = f ( h ) ,  such t h a t  
t h e  va lue  of t h e  s o l u t i o n ,  u ( ~ ) ,  a t  t he  net-point c l o s e s t  t o  P 

p l e t e l y  determined by va lues  of t h e  func t ion  J, on some s e t  G(h’ = G(h)(P) .  

ence scheme must be so constructed that, as h + 0, an arbitrary neighbor- 
hood of any point of G,,,(P) must, for sufficiently small h, contain a point 

J, 

tJ 

is  com- 

J, J, 
In order that it be convergent, so that ufh) + u as h + 0, the differ- 

of the set G(h) = G(h);p). 
J, J, 

Let u s  e x p l a i n  why, i f  t h e  Courant-Friedrichs-Levy cond i t ion  is not 

s a t i s f i e d ,  one cannot expec t  convergence. Suppose the  cond i t ion  is  vio- 

l a t e d  so t h a t ,  i n  some f ixed  neighborhood of a po in t  Q of G ( P ) ,  f o r  

a l l  s u f f i c i e n t 1  s m a l l  h, t h e r e  is no poin t  of the  set G 

convergence u ( ~ ’  + u does occur ( a c c i d e n t a l l y ! )  f o r  the given f u n c t i o n  9 ,  
then  we change J, i n  t he  i n d i c a t e d  neighborhood of po in t  Q i n  such a way a s  

to change u (P) ,  l e a v i n g  J, unchanged o u t s i d e  t h i s  neighborhood. Convergence 

u ( ~ )  + u f o r  t h e  new func t ion  J, i s  imposs ib le :  t he  va lue  u(P)  has changed, 

while u ( ~ )  a t  t h e  ne t -poin t  c l o s e s t  t o  P has ,  f o r  smal l  h, remained un- 

changed, s ince  the re  has  been no change i n  J, a t  p o i n t s  of t h e  ne t  G(h) = 

(h)J,= G(h) (p) .  If 
J, J, 

G(h)(P) .  J, 

The Courant-Friedrichs-Levy cond i t ion  can e a s i l y  be put i n t o  the  form 

of a theorem, and the  above arguments conver ted  i n t o  a proof ,  but w e  s h a l l  

not do t h i s .  

Next w e  cons ide r  s e v e r a l  examples where t h e  above cons ide ra t ions  per- 

J, 

m i t  u s  t o  prove the  d ivergence  and u n s u i t a b i l i t y  of a proposed d i f f e r e n c e  

scheme, and t o  f e e l  ou r  way t o  a s t a b l e  and convergent d i f f e r e n c e  scheme. 

Of course  proof of convergence must be c a r r i e d  out  s e p a r a t e l y ,  s i n c e  f u l -  

f i l l m e n t  of t he  Courant-Friedrichs-Levy cond i t ion  i s  only  necessa ry ,  and 

not s u f f i c i e n t ,  f o r  convergence. We no te  f u r t h e r  t h a t ,  given approxi -  

mation, t he  Courant-Friedrichs-Levy cond i t ion  i s  a l s o  necessary  f o r  s t a -  

b i l i t y ,  s i n c e  approximation and s t a b i l i t y  imply convergence. 

t he  Courant-Friedrichs-Levy cond i t ion  f o r  t he  a n a l y s i s  of s e v e r a l  d i f -  

f e r ence  schemes approximating t h e  Cauchy problem 

2. Examples of difference schemes for the Cauchy problem. We now use 

u ( x ,  0) = J,p, - - < x < - ,  

where $,(x, t )  and J,,(x) a r e  g iven  “ inpu t  d a t a ”  f o r  problem ( 3 ) ,  and 

a ( t )  - 1 - 2 t .  
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Fig. 16 

The solution of problem (3) at any point, (xp, t ), depends on the 

values of the functions $ (x, t) and $ (x) at all points transversed by 

by the characteristic segment which, emerging from some point, A, of the x 

axis, ends at point P. 

P 

0 1 

* * * * * *  

In fact the characteristics, here, are the integral curves of the 

differential equation 

- -  dx - a(t), 
dt 

i.e. the parabolas x = -t2 - t + C. Along each characteristic 

Therefore the value of the solution u(x 

t ), is given by the expression 
tP), at some point 

P = (x 
P' P 

where A is a point on the x axis, and AQP a segment of the characteristic. 

* * *  

In Fig. 16 we show the characteristic x = 2 - t - t2, emerging from 
point A = (2, O), and entering point P = (0, 1). We see that the value 

u(P) = u(x t ) of the solution of problem ( 3 )  depends on the value of the 

function J, (x) at point A, so that A =G (P). Further, u(P) depends on the 

values of $ (x, t) on the characteristic segment AQP. This segment AQP is, 

P' P 

$1 1 

0 
then, GJ' ( P I .  

0 
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Cons ider  t h e  d i f f e r e n c e  scheme 

o r  

( 4 )  

(5) 

where x = mh, t = nT, r = T / h ,  a ( t )  5 -1 - 2 t .  We w i l l  show t h a t  t h i s  

scheme cannot  be convergent  f o r  any s t e p - s i z e  r a t i o  r ,  s i n c e  f o r  any r i t  

v i o l a t e s  t h e  Courant -Fr iedr ichs-Levy c o n d i t i o n .  

t h a t  NT = 1. The v a l u e  of t h e  s o l u t i o n  u") = u ( ~ ) ( P )  a t  t h e  p o i n t  

P = (0 ,  l ) ,  i .e .  uo,  by v i r t u e  of d i f f e r e n c e  e q u a t i o n  (5) ,  i s  g i v e n  i n  

u;-l. These two v a l u e s ,  i n  terms of $ ( 0 ,  l -T) ,  and i n  te rms  of u - ~  , 
t u r n ,  a r e  de te rmined  b Q ( -h ,  1 - 2T) and JI (0 ,  1-2T) and t h r o u g h  t h e  

t h r e e  v a l u e s  u- 2 9 u-1 * and u 

v a l u e  uo can be e x p r e s s e d  i n  te rms  of t h e  v a l u e s  of t h e  f u n c t i o n  Q ( x ,  t )  

a t  t h e  n e t  p o i n t s  d e s i g n a t e d ,  i n  Fig.  16,  by c r o s s e s ,  and i n  te rms  of t h e  

v a l u e s  of u" -N = Q ( x  - N ) ,  uoN+l = Q l ( ~ - N + l ) ,  .-., u t  = $ l ( x o )  

t i o n  Q ( x )  a t  t h e  p o i n t s  x -N, x -N+l, ..., xo on t h e  x a x i s .  

s e t  G(h) (P)  c o n s i s t s  of t h e  n e t - p o i n t s  marked w i t h  c r o s s e s ,  and t h e  s e t  

G(h) o! t h e  p o i n t s  x -N, x - ~ + ~ ,  ..., xo on t h e  x a x i s  (and i t  w i l l  be n o t e d  

t h a t  t h e s e  s e t s  have p o i n t s  on t h e  x a x i s  i n  common). Obvious ly  any p o i n t  

Q of t h e  set G (P)  h a s  a neighborhood which d o e s  n o t  c o n t a i n  a p o i n t  of t h e  

s e t  G(h) (P) ,  no m a t t e r  how s m a l l  we t a k e  h. The d i f f e r e n c e  scheme ( 4 )  does  

n o t  s a t i s f y  t h e  Courant -Fr iedr ichs-Levy c o n d i t i o n ,  n e c e s s a r y  f o r  

convergence.  

L e t  u s  t a k e ,  as p o i n t  P, t h e  p o i n t  ( 0  1) .  The n e t  w i l l  be d e f i n e d  so  

N 

N- 1 
0 

N-2 N-3 0 N-2 0 
, e t c .  I n  t h e  f i n a l  a n a l y s i s  t h e  

N 
0 

of t h e  func-  

Thus t h e  
1 

Q 

$1 

Q 

QO 

We c o n s i d e r  now, f o r  problem ( 3 ) ,  t h e  d i f E e r e n c e  scheme ( F i g .  17)  

o r  

where r = T/h. 
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Fig .  17 .  

The s t e p - s i z e  T w i l l  be chosen t o  s a t i s f y  t h e  cond i t ion  NT = 1, wi th  N 

a p o s i t i v e  i n t e g e r ,  so t h a t  t h e  po in t  P = (0, 1) w i l l  belong t o  t h e  n e t .  

The va lue  of t h e  s o l u t i o n  u ( ~ )  a t  t h i s  p o i n t ,  i .e. uN 
Eq. ( 7 )  in terms of $(O, l - T ) ,  and of t he  two va lues  uo 

va lues ,  in t u r n ,  through (7), are expressed i n  terms of $ (0, 1 - 2 T ) ,  

$ (h ,  1 - 2 T ) ,  and of t he  t h r e e  va lues  u , u1 , u2 , F i n a l l y  uo can be 

expressed i n  terms of the  va lues  of $ px t ) a t  n e t  po in t s  i n d i c a t e d  in 

Fig .  17 by c r o s s e s ,  and of t h e  va lues  u" = q1(0), uy = $ l ( x l ) ,  ... 
0 

u i  = $ ( x  ) a t  the  po in t s  xo, x l ,  .. ., xN of t h e  x a x i s .  Thus G(h'(P),  

i n  t h i s  case, i s  t h e  s e t  of po in t s  marked by c r o s s e s ,  whi le  G(h)::) is t h e  

set of p o i n t s  x o, xl ,  ..., xN on t h e  a x i s .  

(which i s  s t h e  case  dep ic t ed  i n  t h e  f i g u r e )  t h e  po in t  B = ( l / r ,  0) l i es  
t o  t h e  l e f t  of t h e  poin t  A = G (P ) .  Therefore  t h e r e  e x i s t s  a neighborhood 

JI 
of po in t  A in which, as h + 0, t h e r e  are no p o i n t s  of G(h)(P).  

Courant-Friedrichs-Levy cond i t ion  is  v i o l a t e d ,  and one cannot expec t  
convergence. 

necessary  t h a t  r L 1 / 2 .  

t h a t  some po in t  Q on t he  c h a r a c t e r i s t i c  AQP l i e s  above the  l i n e  BP, as i n  
Fig.  17.  Then, aga in ,  one cannot expec t  convergence. The va lue  of t h e  

func t ion  Q0(x, t )  a t  t he  po in t  Q e x e r t s  an  i n f l u e n c e  on the  va lue  u(0, 1) 

of the  s o l u t i o n  of the  d i f f e r e n t i a l  problem, i.e. Q belongs t o  t h e  set 

G (P ) .  But t h e  va lue  $ (x, t) a t  poin t  Q ( l i k e  t h e  va lues  9 ( x , t )  on t h e  

whole segment QP of t he  c h a r a c t e r i s t i c )  does not  a f f e c t  t h e  va lue  u ( ~ ) ( P )  

of t he  s o l u t i o n  of t h e  d i f f e r e n c e  equa t ion  a t  t h e  po in t  P: t h e r e  e x i s t s  a 
n e i  hborhood of poin t  Q i n t o  which, as h + 0, no p o i n t s  of t h e  set 

G(h'(P) w i l l  f a l l .  The Courant-Friedrichs-Levy c o n d i t i o n  i s  not  s a t i s f i e d .  

'o I f  r has been taken  so small t h a t  t he  t r i a n g l e  OPB c o n t a i n s ,  no t  on ly  

i s  expressed  through 
O'N-1  

and uy-'. These two 

N-2 N - 2  N-2 N 
0 

0 m' n 

1 N  

$1 
C l e a r l y ,  i f  r = T/h > 1/2 

The 
$1 

So t h a t  i t  w i l l  be p o s s i b l e  f o r  scheme ( 6 )  t o  be convergent i t  is 

But t h i s  is not  enough. Suppose t h a t  r < 1/2,  bu t  

0 0 $0 

t h e  po in t  A = ( 2 ,  0) ,  bu t  a l s o  t h e  whole c h a r a c t e r i s t i c  AQP, then  it is  

a l r e a d y  p o s s i b l e  t o  prove t h e  s t a b i l i t y  (and convergence) of d i f f e r e n c e  
scheme ( 6 ) .  To choose r i n  t h i s  way we no te  ( s i n c e  t h e  d i f f e r e n t i a l  equa- 
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tion of the characteristic is dx/dt = a(t)) that -l/a(t) = tan 8, where 8 

is the angle between the x axis and the tangent to the characteristic. It 

is easy to see that the characteristic AQP will lie in the triangle BOP if 

and then the Courant-Friedrichs-Levy condition will be fulfilled. 
Let us show that, under condition (8), difference scheme (6) which 

approximates Cauchy problem ( 3 )  i s  stable and, consequently, converges. 
For this purpose we define norms by means of the equations 

Noting that, from condition (8) 

we get from ( 7 )  

< max - 
m 

< max - 
m 

. . . . . . . . 
< max - 

m 

< max - 
m 

trill 5 

. . . . . . . . . . . . . . .  

Since the final equation 
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is valid for any m = 0, 2 1 ,  ... and any n ,  (n+l)~ i 1, 

and the stability of scheme (6) under condition (8) has been proven. The 

bound (8) on the step-size T for given h, T L  1 / 3  h, can be weakened 
without violating the Courant-Friedrichs-Levy condition if one takes T to 

be variable, t = t + T , and chooses it, in the transition from t to 
n+l n n n 

t taking into account the slope of the characteristic close to the 
point t = t i.e. chooses it from the condition 
n+l ' 

n' 
T 

(9 )  
- n  1 1 

r n - h  - -  i-la(tnn'==* n = O ,  1, .-. 
n 

Thus modified, scheme (6) takes the form 

OK 

UO = J, ( x  ). 
m 1 m  

The limitation on the step-size, T imposed by Eq.  (9) is less severe 
n' 

than that which is required when using scheme (6) with constant step-size. 
For small n one uses the step-size T h, and only when u(happroaches t = 

1 is it necessary to take T 

of scheme ( 1 0 )  under condition (9) differs only insignificantly from the 
proof of stability of (6) under condition (8); us ng the inequality 
1 + a(t )r  

= h/3 (iee Fig. 18). The proof of stability 

i' > o we get from (11) 
n n -  
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It follows that 

Ilu(h)ll" 5 Ilf(h)lI , 
h Fh 

signifying stability. 

Examples of difference schemes for the Dirichlet problem. Let us 
now use the Courant-Friedrichs-Levy condition for the analysis of two dif- 

3. 

Y 

/m +/, 2) 

0 /., f) 
4 To 4 

(ff7fjK!; X + 
ff 0) 1/, 8) 

Fig. 19. 

ference schemes approximating the following Dirichlet problem for the 

Poisson equation: 

in the square region D = ( O i  x, y'l), with boundary r .  We construct the 

net x = mh, yn = nh, where h = 1/M with M an integer (Fig. 19,a). 
net Dh we assign those points, (xm, yn), which fall inside the square D, or 
on its boundary. Consider the following difference scheme, approximating 
problem (12): 

To the 
m 
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m+l,n - *'mn + 'm-l,n + Um,n+l - 2umn + 'm.n-1 

h2 h2 

L u  (h) = $(mh, nh), if (mh, nh) is in D, (13) 
h 

= +(mh, nh), if (mh, nh) is in r .  

Scheme (13) is obtained by replacing the derivatives u and u by dif- 
ference relations, and there can be no doubt about approximation. We will 
prove its stability in 534 and discuss methods for computing its solution 
u(~) in $535-37. But we point out that computation of this solution is not 
a trivial matter, since the system of e uations L u(~) = f(h) which deter- 
mines the values of the net-function, lh), is rather complicated when h is 
small. 

to construct a scheme such that the numerical solution process will be 
simple. At first glance it appears that one can use the scheme 

xx YY 

h 

This very complexity leads one to consider whether it is possible 

. 
= $(mh, nh), 

m-1 ,n - 2umn + Um+l,n + "rn,n+l - 2Umn + Um,n-l 

h2 h2 

m = 1, 2, ..., M - 1 ;  n = 1, 2, ..., M-2, I 
"(h) m-1,2 - "m2 + um+1,2 + Um2 - "m1 + UmO 

= $(mh, h), (14) 
h ( "  h' h2 

m = 1, 2, ..., M - 1 ,  

u = $(mh, nh), (x, y) in r. i mn 
Obviously this scheme does approximate the differential problem, since it 
is obtained by replacing derivatives with difference relations and the 
boundary conditions are represented exactly. Each equation of the first 
group connects the values of the solution at the five net-points shown in 

Fig. 19,b. The second group of equations, for fixed m y  connects the 
solution-values at the five net-points shown in Fig. 19,c. 

Consider the set of equations of the first group corresponding to a 
fixed n, in fact to n = 1, together with the whole second group of equa- 
tions. 
and u while u 
tions. This system can be solved for u 
Then we use the difference equation from the first group for n = 2, and de- 
termine u via the explicit formula obtained by solving this equation for 
the only unknown quantity which it contains, i.e. um3. Proceeding level by 
level from u to u we compute, via the equations of the first group, 

the solution u(~) at all interior ,points of the net. Of course the values 
at boundary points are known from the start. 

The resulting system of equations connects the quantities u ml' Um2 

uol, uo2, uH1 and uM2 are given by the boundary condi- 
mO 

and um2, m = 1, 2 ,  ..., M-1. 
ml 

m3 

mn m,n+l 
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Hawever t h i s ,  a t  f i r s t  g lance  seemingly convenient ,  scheme is com- 

p l e t e l y  unuseable.  We know t h a t  t h e  s o l u t i o n  of t h e  D i r i c h l e t  problem f o r  

t h e  Laplace equa t ion  depends, a t  each p o i n t ,  on t h e  va lues  $ (x ,y ) l r  every-  
where on t h e  boundary. In c o n t r a s t ,  i n  t h e  com u t a t i o n a l  scheme we  have 

cons t ruc t ed  t h e  computation of t he  s o l u t i o n  u(" a t  a l l  i n t e r n a l  p o i n t s  

proceeds wi thout  u s ing  t h e  va lues  $(x ,y)  on t h e  upper s u r f a c e  of t h e  

square .  This  d i f f e r e n c e  scheme cannot be convergent .  The complex i t i e s  of 

scheme (13) a r e  e s s e n t i a l  t o  t h e  problem, 

* * * * i t  

In conclus ion  we stress aga in  t h a t  t h e  Courant-Friedrichs-Levy 

cond i t ion  is  not a s u f f i c i e n t  c o n d i t i o n  f o r  s t a b i l i t y .  

show, i n  p a r t i c u l a r ,  t h a t  t h e  d i f f e r e n c e  scheme 

In S25 w e  w i l l  

n+l n n n 
m 

u - u  u m - m+l - U m - l  
L U(h )  T 2h = O(mh, nT), 

h 
u" = $(mh) 

m 

i s  uns t ab le  f o r  any r = T/h = cons t .  This  scheme approximates t h e  Cauchy 

problem 

u - u = O(x, t ) ,  
t x  

f o r  which w e  have a l r e a d y  cons idered  s e v e r a l  o t h e r  schemes. It is easy  t o  

v e r i f y  t h a t ,  f o r  r < 1, i t  a l s o  s a t i s f i e s  t h e  necessary  c o n d i t i o n  f o r  

s t a b i l i t y .  
I n  o rde r  t o  do t h i s  we  aga in  cons ide r ,  f o r  t he  sake  of d e f i n i t e n e s s ,  

t h e  po in t  (0, 1) i n  t h e  x , t  p l ane ,  assuming t h a t  it belongs t o  t h e  net Dh 

f o r  a l l  h, so t h a t  NT = 1 where N is an  i n t e g e r .  
N -1 
-1 , u!-i and uN-'. These t h r e e  va lues  a r e  then  computed 1 from t h e  va lues  u 

from f i v e  va lues  a t  t h e  preceding  l e v e l  t = ( N - ~ ) T ,  e t c .  U l t ima te ly  uN i s  

computed, then ,  i n  terms of t h e  va lues  u" = Wmh), m = -N, - N + l ,  .... -1, 

0, 1, ..., N, on t h e  n e t  p o i n t s  which belong t o  t h e  i n t e r v a l  - l / r  x A l / r  
of t he  x a x i s .  I f  r = T/h < 1, then  t h i s  i n t e r v a l  con ta ins  t h e  po in t  x = 1 

where t h e  s o l u t i o n  va lue  i s  de f ined  by u(O, l ) ,  u (0 ,  1) = $( l ) .  Thus f o r  r 
- < 1 t h e  Courant-Friedrichs-Levy c o n d i t i o n  i s  s a t i s f i e d .  

The va lue  uN is computed 
0 

0 

m 

f t t  
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PROBLEMS 

1. The s o l u t i o n  of t h e  heat-conduction problem u = u 
t xx’ - - < x < -, t > 0 has the  form 

Does the re  e x i s t  a convergent d i f f e r e n c e  scheme approximating t h i s  problem, 

and having t h e  form 

(where the  a are c o n s t a n t s )  i f  T = h? 
i 

2. The system of a c o u s t i c  equat ions  

- -  < x < m ,  I 
has a s o l u t i o n  of the  form 

$(x - t )  + $(x - t )  + $ ( x  + t )  - *(x + t) 

$(x - t )  + *(x - t )  - Q ( x  + t )  + *(x + t )  

2 v(x ,  t )  = 

w(x, t )  = 2 I 
Can the re  be a convergent d i f f e r e n c e  scheme of t h e  form 

\ 

Compare the  domain of i n f luence  of s t a r t i n g  va lues  f o r  the  d i f f e r e n c e  and 

d i f f e r e n t i a l  problems. 



§24 Courant-Friedrichs-Levy Condition 

3 .  The Cauchy problem 

0 ,  t > O ,  - m < x < m ,  au au 
at ax - - - =  

iax 
U(X, 0) = e , - m < x < m ,  

has the solution 

iat iax 
u(x, t) = e e . 

The corresponding difference scheme 

i ahm 
u O = e  , 
m 

has the solution 

= 0 ,  p = 0 ,  1, '.., 
m = 0 ,  21, ..., 

239 

which, for p = t/T, m = x/h, tends to the solution of the differential 

problem as h + 0 ,  whatever the preassigned, fixed, value of r = T/h. 

Nevertheless for r > 1 the difference scheme does not satisfy the Courant- 
Friedrichs-Levy condition. Explain this apparent paradox. 
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Chapter 8 

Some Basic Methods for the Study of Stability 

525. Spectral analysis of the Cauchy difference problem 

Here we develop the Von Neumann method, useful in a wide range of 

circumstances for the study of difference problems with initial condi- 

tions. In this section we limit our discussion to the case of the Cauchy 

difference problem with constant coefficients, and in s26 we partially 
extend our results to the case of variable coefficients. 

1. Stability with respect to starting values. A s  the simplest 
example of a Cauchy difference scheme we take the problem, often considered 

above, 

Setting 

m = 0, 51, ..., 
we write problem (1) in the form 

LhU(h) = f(h). (2 )  

We will define the norms 1 l ~ ( ~ ) l  I and I If(h) I I 
'h Fh 

via the equations 

The stability condition for problem ( 2 )  

I 
Fh 

( 3 )  
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then takes the form 

where c does not depend on h (nor on T = rh, r = const). 

must be satisfied for arbitrary {qm} and {$:}. 
stability it is necessary that it be fulfilled for arbitrary { $  }and 

4: 3 0 ,  i.e. that the solution of the problem 

Condition ( 4 )  

In particular, for 

m 

satisfy the condition 

for any arbitrary, bounded, function uu = $J . 
Property (6), necessary for the stability ( 4 )  of problem (l), is 

called stability of problem (1) with respect to perturbations in starting 
vaZues. It indicates that a perturbation in {u'], the starting values of 

problem (l), induces a perturbation in {up}, the solution of problem (1) 
which, by virtue of ( 6 ) ,  is no greater than c times greater than the 

perturbation in starting values, where c does not depend on h. 

problem (1) with respect to starting data it is necessary that condition 

( 6 )  be fulfilled, in particular, when {u'} is any harmonic 

m m  

m 

2. Necessary spectral condition for stability. For the stability of 

m 

where a is a real parameter. But the solution of problem (5) for initial 

conditions (7) has the form 

where = X(a) is determined by substituting expression (8 )  into the homo- 

geneous difference equation of problem (5): 

For the solution (8)  we may write 



925 S p e c t r a l  Analys is  of D i f f e rence  Cauchy Problem 243  

There fo re ,  f f  c o n d i t i o n  ( 6 )  is t o  be s a t i s f i e d ,  it is necessary  t h a t ,  f o r  

a l l  r e a l  a,  w e  have 

o r  

Ih (a ) l  2 1 + C I T ,  (10) 

where c1 is some cons tan t  not depending on a o r  T. 

necessary spectra2 condition of Von Neumann as app l i ed  t o  t h e  example under 
cons ide ra t ion .  It is c a l l e d  a " s p e c t r a l "  c o n d i t i o n  f o r  t h e  fo l lowing  r e a -  

son. The e x i s t e n c e  of a s o l u t i o n  of t h e  form (8)  shows t h a t  t h e  harmonic 

{eiam} is a proper f u n c t i o n  of t he  t r a n s i t i o n  ope ra to r  

P r e c i s e l y  t h i s  is t h e  

which, accord ing  t o  d i f f e r e n c e  equa t ion  ( 5 ) ,  maps t h e  ne t  f u n c t i o n  (up} ,  

m = 0, +1, ..., def ined  on l e v e l  t = pT of t he  n e t ,  i n t o  t h e  f u n c t i o n  

h ( a )  = 1 - r + re is t he  e igenva lue  of t h e  t r a n s i t i o n  ope ra to r  c o r r e s -  

ponding t o  t h e  harmonic {eiam}. 

by t h e  po in t ,  h ( a ) ,  when a t r a v e r s e s  t h e  real a x i s ,  c o n s i s t s  e n t i r e l y  of 

e igenva lues ,  and is t h e  spectrum of the  t r a n s i t i o n  ope ra to r .  

Thus the necessary  c o n d i t i o n  f o r  t h e  s t a b i l i t y  of (10) can  be s t a t e d  

a s  fo l lows:  t he  spectrum of the  t r a n s i t i o n  ope ra to r  cor responding  t o  d i f -  

f e r ence  problem ( 5 )  must l i e  i n  a c i r c l e  of r ad ius  1 + c T in t h e  complex 
plane.  In our  example t h e  spectrum of ( 9 )  does not depend on T. For t h i s  

reason  cond i t ion  (10 )  i s  equ iva len t  t o  the  requirement t h a t  t h e  spectrum, 

h ( a ) ,  l i e  i n s i d e  the  u n i t  circle 

m 

p+l - P 
def ined  on t h e  l e v e l  t = (p  + 1 ) T .  The number 

P+l {urn 
} ,  m = 0, +1 

The curve desc r ibed  i n  t h e  complex plane 

1 

Let  u s  now use t h e  above-formulated c r i t e r i o n  t o  ana lyze  t h e  s t a b i l i t y  

of problem (1). The spectrum (9 )  c o n s t i t u t e s  a circle,  wi th  c e n t e r  a t  t h e  

poin t  1 - r and r ad ius  r,  in t he  

complex p lane .  I n  t h e  case r < 1 
A 

t h i s  r eg ion  l ies i n s i d e  t h e  u n i t  
circle (and is t angen t  t o  i t  a t  t h e  

poin t  A = 1); f o r  r = 1 i t  co inc ides  

wi th  t h e  u n i t  circle,  and f o r  r > 1 

l ies  o u t s i d e  the  u n i t  c i r c l e  

(F ig .  20).  Correspondingly t h e  

necessary  cond i t ion  f o r  s t a b i l i t y  F i g  20. 
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(11) is fulfilled for r 1, and not fulfilled when r > 1. In 3s21 we 

studied this same difference scheme and showed that, for r 1, it is 
stable, and is unstable for r > 1. 
stability condition turns out to be sensitive enough, in this particular 

case, so as to separate precisely the region of stability from the region 
of instability. 

or systems of difference equations, the necessary Von Neumann condition 
for stability consists in that the spectrum A = X(a, h) of the difference 
problem, for all sufficiently small h, must lie in the circle 

Thus the necessary Von Neumann 

In the case of the general Cauchy problem for difference equations, 

1 x 1  I1 + E 

of the complex plane no matter how small the previously-specified positive 

E. 

Note that if, for the given difference problem the spectrum turns out 
not to depend on h (or on T), then condition (12) is equivalent to the 
requirement that the spectrum, X = X(a,  h) = X ( a ) ,  must lie in the unit 
circle 

By the "spectrum" of the difference problem, referred to i n  ( 1 2 ) ,  is 

meant the totality of all A = X(a, h) for which the corresponding 
homogeneous difference equation (or system of equations) has a solution of 

the f o w  

where uo is a number (unity) if we are dealing with a scalar difference 
equation, and is a vector if the equation in question is a vector 

difference equation, i.e. a system of scalar difference equations. 

cannot expect stability f o r 9  reasonable choice of norms, and if it is 
satisfied one may hope to achieve stability for reasonably defined 

norms. A similar point regarding the indifference of the spectral 
stability criterion to the choice of norms has already been discussed, in 

connection with difference schemes for ordinary differential equations, in 
$15. 

3. Examples. We will now consider a series of interesting Cauchy 
difference problems, and will use the Von Neumann spectral criterion to 
analyze stability. We start with difference schemes approximating the 
Cauchy differential problem 

If the necessary Von Neumann condition ( 1 2 )  is not satisfied then one 
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Example 1. Consider the difference scheme 

uo = $(x ), m = 0 ,  21, ... 
m , 

Substituting an expression of form (8) into the corresponding homogeneous 
equation we get, after some simple manipulations 

-ia X(a)  = 1 + r - re . 
It follows that the spectrum constitutes the perimeter of a circle, 

centered at the point 1 + r, with radius r (Fig. 
21). There is no r f o r  which rhe spectrum lies 
in the unit circle. 

is never satisfied. 

that, for any r, the Courant-Ffiedrichs-Levy 
necessary condition for convergence (and sta- Fig. 21. 

bility) is violated. 

Stability criterion (12') 

In $24 it has already been established 

Example 2. Consider the following difference scheme 

approximating problem (14) to second order in h ($22). 

X = A ( a )  is determined by the equation 

For this scheme 

-ia 
ia -ia 

2h 
-T (cia - 2 + e 1 = 0. 

X - 1  e - e  - -  
T 

2h' 

As before, let r = r/h. Noting that 

ia -ia 

21 
= sin a, e - e  

e ia - 2 + e  -ia = _  t i a / 2  2i - e  -ia/2)i 
= - sin' $ , 4- 
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we get 
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(16) 

After some simple manipulation 

1 - 1 x 1 2  = 4r’sinQ 2 (1 - r’). (17 )  2 

The Von Neumann condition is satisfied if the right-hand side is non- 

negative, r 1, and is not satisfied for r > 1. 
Example 3 .  Consider the following difference scheme 

for the same Cauchy problem (14). 

we get an equation for A: 
Substituting expression (8) into Eq. (18), after some simplification 

or 

Fig. 22. The spectrum A = A(a) fills a vertical segment of 

If T/h = r = const, then condition (12’) is not satisfied; the 

spectrum does not lie in the unit circle. If, as h + 0 ,  the step-size T 

varies like h2, so that T = rh2, then the point A ( a )  farthest from A = 0 

represents an eigenvalue of modulus 

length 2T/h, passing through the point A = 1 (Fig. 22). 

The condition iA(a)l 5 1 + c+ is satisfied, in this case, with c = r/2. 

Clearly the requirement T = rh2 puts a much more severe condition on 
the reduction of the time step-size, T, as h tends to zero, then does the 

requirement T = rh, r ( 1, which was sufficient to guarantee satisfaction 
of the Von Neumann condition for schemes (5) and (15), approximating the 
same Cauchy problem (14). 

of s24) allows us to ascertain the instability of the scheme under consid- 

Note that the Courant-Friedrirhs-Levy criterion (as shown at the end 
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eration only for T/h > 1, while for T/h I1 it is inconclusive, so that it 

turns out, here, to be weaker than the Von Neumann criterion. 

Next we consider two difference schemes, constructed in s22 ,  approxi- 
mating the Cauchy problem for the heat equation 

u - a2u = +(x, t), - m < ~ < m ,  O < t < T ,  
t xx 

u(x, 0 )  = Wx), - - < x < m .  

Example 4. The explicit difference scheme 

(on substitution of the expression up = Ape i am into the corresponding 

homogeneous difference equation) leads to the relation 
m 

-ia 

T 
= 0. 

1 - 1  a2 e - 2 -+ eia - -  
h2 

Noting that 

-ia 
= - &.in2 2 e - 2 + e  _ _  

4 21 2 ’  

we get 

A s  a varies the quantity x ( a )  traverses the 

/-&a2 0. segment 1 - 4ra2 5 A 1 of the real axis (Fig. 
2 3 ) .  For stability it is necessary that the 
left end of this segment lie in the unit circle 

so that 1 - 4ra2 2 -1, or 

( 2 0 )  Fig. 23.  
1 

r I-. 
2a2 

If r > 1 / 2 a 2 ,  the point A(a)  = 1 - 4ra2 s i n 2 ( a / 2 )  corresponding to a = T 

lies to the left of the point -1. 
to the solution 

The harmonic exp(inm) = (-l)m gives rise 

up m = (1 - 4a2r)P(-l)m, 

not satisfying condition (6) for any constant c .  
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Example 5. We come now to the second scheme 

m = 0, 21, ..., - p = 0, 1, ..., [T/T]-~. 
Analogous calculations lead to the expression 

T 
r = - .  

1 
A(a) = 

1 + 4ra2 sin2 5 ’ h2 2 

The spectrum for this problem fills the segment 

-1 
11 + 4ra2sin2 $1 5 1 

of the real axis, and the condition 1x1  

Cauchy difference problem also in the case where there are two or more 
space variables. 

1 is satisfied for all r. 
The Von Neumann spectral criterion may be used for the study of the 

Example 6 .  For the problem 

t ) = (mh, nh, pT). Replacing derivatives by 
m’ ’nP p 

we take the net (x 

difference relations we construct the difference scheme 

uin = $(mh, nh). 

Taking uo 
two-dimensional harmonic depending on the two real parameters a and 8 ,  we 
get a solution of the form 

= exp[i(am + fin)], i.e. postulating a solution in the form of a 
mn 

i(am+bn) 
up = Apt,, 8)e 
mn 
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Substituting this expression into the difference equation, after some 

simplification and identity-transformations we find that 

A(a, B) = 1 - 4r sin2 2 - 4r sin2 p. 
2 

As the real a and B vary the point = k ( a ,  B )  traverses the segment 

of the real axis. 

r 1/4. 

The stability condition is satisfied if 1 - 8r 2 -1, 

Now we present an example illustrating the application of the Von 
Neumann criterion to difference equations connecting the values of the 

unknown function, not at two, but at three time levels. 
Example 7. The Cauchy problem for the wave equation 

will be approximated by the difference scheme 

1 Up+l - 2u; + u;-' up - 2u: + 
= 0, m m+l 

T 2  h2 

Substituting, into the difference equation, a solution of form ( 8 )  we get, 
after simple transformations, the following equation for determining A: 

~2 - 2(1 - 2r2sin2 + 1 = 0, r = 1 . 
2 h 

The product of the roots of this 

equation is equal to one. If the 
discriminant 

d(a) = 4r2sin2a (r2sin2 -1) 

of the quadratic equation is nega- 

tive, then the roots, A (a) and 

X (a), will be complex conjugates, 
1 

2 

Fig. 24. 
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and equal to one in modulus. When r < 1 the discriminant remains negative 
for a l l  a. In Fig. 24,a we show the spectrum i n  this case. It fills part 

of the circumference of the unit circle. In the case r=l the spectrum 
fills all of this circumference. For K > 1, as a increases from 0 to 71 the 
roots (a) and X (a) move, from the end point = 1, along the circum- 
ference of the unit circle, one in the clockwise and the other in the 

counterclockwise direction, until they meet at the point = -1; then one 
of the roots moves along the real axis from the point = -1 to the left, 
the other to the right, since both are real and = 1 (Fig. 24,b). The 
stability condition is satisfied for r( 1. 

of differential equations, describing the propagation of sound: 

1 2 

1 2  

Let us consider the Cauchy problem for the fol lowing hyperbolic system 

av a, - = -  
at ax 9 

- m < x < - ,  O < t < T ,  
aw av 
at ax 9 

- = -  (25) 

I 
v(x, 0) = $,(x), w(x, 0) = J12(x), - - < x < -. I 

We set 

and write (25) in the vector form 

where 

We will study two difference schemes approximating problem (25'). 
Example 8. Consider the difference scheme 

We seek a solution of the homogeneous vector equation of the form (13): 
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Substituting this equation into difference equation (26) we arrive at the 
equation 

or 

(A - l ) u o  - r(eia - 1)Au' = 0 ,  r = 1  (27) h '  

which one may regard as a system of linear equations, in vector notation, 

for the determination of the components of the vector uo. 

Let us write the system (27) in expanded form: 

The system of linear equations (28) has a nontrivial solution, uo = 

(vo, wO) ~ ,  only for those X = X(a) for which the determinant of system (28) 
vanishes : 

Therefore 

ia 

ia 

Xl(a) = 1 - r + re , 

X ( a ) = l + r - r e  . 
2 

The roots X (a) and (a) move along circles of radius r, centered at the 
points 1 - r and 1 + r, respectively (Fig. 25). The Von Neumann stability 

condition is not satisfied for any r. 

1 2 

Example 9. Consider the difference scheme 

p = 0, 1, ..., [T/T]-1; m = 0 ,  5 1, ..., 
." = $I.,), m = 0 ,  21, ..., 
m 

approximating problem (25') to second order, and analogous to scheme (15) 

for the scalar case ( 1 4 ) .  The condition for existence of a nontrivial 



252 Some Basic Methods for the Study of Stability Chapter 8 

solution, in form (13), of vector Eq. (29)  
consists (as in example 8) i n  that the 

determinant of the system which fixes 
u = (vo, w O ) ~  must vanish. Setting this 
determinant to zero we get a quadratic 
equation for X = x(a) ,  from which we find Fig. 25. 

that 

0 

i1 = I + ir sin a - 2r2 s i n 2  , 

x = 1 - ir sin a - 2r2 s i n 2  T .  
2 

These expressions are analogous to (16), and as in (17) we get 

The spectrum given by Eqs. (30)  lies in the unit circle for r '1. 

problem of the form 
4. Integral representation of the solution.* Consider the Cauchy 

I b -1 up+' m-1 + bOurl + bluz: - 

- (a-luL-l + sou: + aluLl) = 7+;, 

p = 0, 1, ..., [T/T]-l, 
.o = m = 0, +1, ...) m t* - 

with constant coefficients, assuming that 

Difference schemes (l), (15), (18) and (21) take on this form if both sides 
of the difference equations involved in these schemes are multiplied by T. 

and {$m}, problem (31) has one and only one bounded solution. 
it is already known that [up}, for a given fixed p, exists and is bounded, 
then Eq. (31) becomes an ordinary difference equation of second order 

We note first of all that, for arbitrary bounded net functions {$'} m 
In fact if 

m 

*Results obtained in this section are not used later. 
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f o r  { u r  }, wi th  bounded r igh t -hand s i d e .  The cor responding  c h a r a c t e r i s t i c  

equa t ion  b + b q + b1q2 = 0, thanks t o  ( 3 2 ) ,  has no r o o t s ,  q = eia, equa l  
t o  one i n  modulus. Therefore ,  as shown a t  t h e  end of 2 5 3 ,  it has a unique 

bounded s o l u t i o n  {up+'}. But { u i ]  = {$m} is given  and bounded; t h e r e f o r e  

Eq. ( 3 3 )  sequen t i a lyy  and uniquely  de te rmines  bounded f u n c t i o n s  {uk} , 
etc. 

-1 0 

rug} ,  

Below w e  w i l l  need t h e  fo l lowing  well-known f a c t  about F o u r i e r  series. 
Each sequence of numbers cm, m = 0, 21, ..., f o r  which 1 lcml < cor -  

responds t o  a convergent ( i n  t h e  mean-square sense) Four i e r  series 

t h e  sum of which is a func t ion ,  C ( a ) ,  squa re - in t eg rab le  on t h e  i n t e r v a l  

O i a ( Z n ,  

2n 
I IC(a)12 d a  < -. 
0 

Conversely,  eve ry  func t ion ,  C ( a ) ,  squa re - in t eg rab le  on t h e  i n t e r v a l  

0 2n ,  is  expandable i n  a unique F o u r i e r  series ( 3 4 ) ,  wi th  co- 

e f f i c i e n t s  cm given  by t h e  equa t ion  

c = -  1 I 2n C( a)e iamda. 
6 0  

F u r t h e r ,  t h e s e  c o e f f i c i e n t s  s a t i s f y  P a r s e v a l ' s  equa t ion  

Theorem 1. Suppose that, in Problem ( 3 1 )  

Then the bounded solution of this problem admits the integral 

representation 

2* 
up  = 2 I UP(a)eiamda, 

4 5 0  

where the square-integrable function Up( a) 

relation 

( 3 5 )  

( 3 7 )  

is defined by the recurrence 

zP(a) ,  p = 0, 1, ... ( 3 8 )  

Here 
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and the function 
-ia ia 

ia 

ale + a. + a-le 

ble + bo + b-le 
l(a) = -ia 

is so chosen that for  each a 
up = XP(a) exp (iam) satisfies the homogeneous equation corresponding to 
Eq. ( 3 1 ) .  

We may prove this theorem by direct substitution of expression (37) 

into E q s .  (31) ,  making use of Eqs. (34) and (35).  
Consequences. If, i n  (31) ,  the function Z 0, then ;'(a) = 0; by 

virtue of (38) we have Up(a) = hp(a) ?(a), and from (37) it follows that 

0 2 a 2 Zr, the net function 

m 

2* 
= 1 1 Ap(a) ?(a)eiamda. 

J 2 n O  
(39) 

The integral representations, (37) and (39) ,  can be used to analyze the 

properties of difference scheme (31).  
We define norms via the equations 

Theorem 2.  For the stab; ity of difference scheme (311 with respect 
to initiat conditions, i.e. to guarantee the vatidity of the inequatity 

1 I $ (  I < oD and 0' 3 0 ,  with constant c not depending m for arbitrary uo = J, 

on h (or on T = T ( h ) ) ,  it is necessary and sufficient that the spectrum 
l = h(a) Zie in the circZe (101: 

m m' 

where c1 does not depend on h (or on TI. 
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Proof. First we establish sufficiency. Given ( 4 1 ) ,  clearly 

( 4 2 )  
IX(a)lP( 11 + CIT~T/T( e clT . 

From representation ( 3 9 ) ,  using the Parseval inequality and inequality 

( 4 2 ) ,  we get 

Necessity. We now show that violation of ( 4 1 )  for all fixed c1 i m -  

plies instability. The fact that, in this case, the solution 

T 
up m = iP(a)eiam, p = O, ..., [TI, 

is unbounded as T + 0, cannot be used as a proof of instability, given norm 

( 4 0 ) ,  since {exp(iam)} does not belong to the space of net functions such 

that the sums of squares of the moduli of function values, over all net- 
points, is bounded. 

square-integrable function, U(a), in such a way as to satisfy the 

inequality 

To prove instability we note, first, that, one can always choose a 

where E > 0 is arbitrary. In fact if maxlk(a)l = IX(a*)l, we may take 
a 

1, if a is in [a* - 6, a* + 6 1 ,  

0 ,  if a is not in [a* - 6 ,  a* + 6 1 .  1 U(a) = 

Because of the continuity of the function ( 4 3 )  will be satisfied 
if 6 = 6 ( E )  is taken small enough. If ( 4 2 )  is not satisfied, then one can 
find a sequence of hk's, and a corresponding sequence 7 = T(hk), for which 

k 

Let us set E = 1 and choose a U(a) such that ( 4 3 )  is satisfied. A s  our 
sequence {u'} we take the sequence of Fourier coefficients of the function 

U(a). Then ( 4 3 ) ,  with p = [T/T], takes the form 
m 
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whichlndeed signals instability with respect to initial data. 

norms ( 4 0 1 ,  it is necessary and sufficient that the spectral stability 
criterion ( 4 1 )  be satisfied. 

Proof. Necessity is obvious, since violation of this criterion im- 

plies, via Theorem 2, that there is no stability with respect to initial 

data. 
To prove sufficiency we will establish that for every k 2 0 we have 

the inequality 

Theorem 3.  For stability of the Cauchy difference problem ( 3 1 1 ,  given 

Summing the left- and right-hand sides of the inequality for j = 0, 1, 

..., p term by term, and discarding identical terms on the left- and right- 

hand sides, we find we can write 

which, in view of the arbitrariness of p, p = 0, 1, ..., [T/T]-l, implies 
stability. 

(37), and the recurrence relation (38), from which 
To prove ( 4 4 )  we use the integral representation of the solution, 

( 4 5 )  
i am 

= -  1 2n 1 i(a)Uk(a)eiamda + - ' Y T  ek(a) ia e da. 
J 2 n O  4% 0 ble-ia + bo + b-le 

Thus the net-function {uk+'} of the argument m has been represented as the 
sum of two net functions, written in the form of integrals over the 

parameter a. Using Parseval's equation we may write, for the norms of 

these two net-functions 

m 
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From t h e s e  l a s t  two bounds on t h e  norms of t h e  terms on t h e  r igh t -hand 

One can show t h a t  i f ,  i n  p l ace  of t he  norm i n  ( 4 0 ) ,  one t akes  

s i d e  of Eq. (45) we g e t  bound ( 4 4 ) ,  completing t h e  proof .  

l l U P l I  = suplu;) , 
m 

then  t h e  s p e c t r a l  c r i t e r i o n  IA(a)l < 1 + c l T  w i l l  no longe r  be a s u f f i c i e n t  

c o n d i t i o n  f o r  s t a b i l i t y .  For t h e  Cauchy d i f f e r e n c e  problem f o r  a system o f  

equa t ions  t h i s  c r i t e r i o n  is aga in  on ly  a necessary  c o n d i t i o n  f o r  s t a b i l i t y .  

* * * * * *  

The i n t e g r a l  r e p r e s e n t a t i o n  (37) of the  s o l u t i o n  of t h e  Cauchy 

d i f f e r e n c e  problem is used, no t  on ly  i n  t h e  s tudy  of s t a b i l i t y ,  bu t  a l s o  t o  
b r ing  ou t  o t h e r  p r o p e r t i e s  of a d i f f e r e n c e  scheme. 

I f ,  f o r  example, t h e  spectrum A = A(a), f o r  a # 0, l i e s  s t r i c t l y  

i n s i d e  t h e  u n i t  c i r c l e ,  then  t h e  s o l u t i o n s  up = Ap(a) exp (iam) f o r  which 
a # 0 are damped, from l e v e l  t o  l e v e l ,  by t h e  f a c t o r  i ( a ) .  From Eq. (39) 

i t  i s  clear t h a t ,  f o r  [ T b ]  = p, one g e t s  a ne t - func t ion ,  cor responding  t o  

t h e  func t ion  Ap(a)g(a),  which is concen t r a t ed  i n  t h e  long-wave-length 
r eg ion  (a * 0 ) .  The d i f f e r e n c e  scheme "smooths" t h e  i n i t i a l  da t a .  

tional viscosity. We have seen  t h a t  t he  spectrum of t h e  d i f f e r e n c e  scheme 

m 

5 .  Smoothing of the difference solution as a result of approxima- 
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p = 0, 1, ..., [T/t]-1, ( ( 4 6 )  

uu = b(xm), m = 0 ,  - +I, ..., 
approximating the Cauchy problem 

J 

in the circle d l  = 1 - r f r exp (ia), 0 5 a 5 2 s .  

which a # 0 corresponds to a point of the spectrum i ( a )  such that 

I i ( a )  1 < 1. 
initial data, is damped, being multiplied by i ( a )  at each step from one 
level to another; in the course of time the solution is smoothed, since for 
small ah (i.e. for low-frequency harmonics) the damping is weaker. Note 
that the solution of the differential problem ( 4 7 ) ,  u(x, t) = $(x + t), 
does not become smoother with time; it is obtained from the initial data, 

as time progresses, by shifting these data to the left. Thus the solution 

of problem ( 4 7 ) ,  corresponding to the initial condition u(x, 0 )  = exp(iax), 
is u(x, t) = exp(iat)exp(iax), and the factor exp(iat) is equal to one in 

modulus. The computational smoothing of the solution, which occurs when 
one uses difference scheme ( 4 6 ) ,  may be understood as the manifestation of 
an "approximation viscosity", characteristic of this scheme. Let us ex- 

plain what we mean by approximational viscosity. If the equation 

For r < 1 each point for 

This means that every harmonic uu = exp( iamh) , specified via 
m 

au au 
T E - z = O  

is taken as the simplest model of an equation of motion for a non-viscous 

gas, then it is natural 

as a model equation for 

smoothing the solution. 

to take the equation 

au au a% 
P -  - - - =  

at ax ax2 

the motion of a gas with a viscosity, v > 0 ,  

With the initial conditions u(x, 0 )  = exp(iax) the 
solution of Eq. ( 4 8 )  has the form 

-va2t+iat iax I -, iax 
u(x, t) = e e - i ( a ,  t)e . 

For P = O ( T )  and t = T the factor, :(a, t), damping the harmonic exp(iax), 

may be written thus: 
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W e  w i l l  assume t h a t  t he  s o l u t i o n  u ( ~ )  of t he  d i f f e r e n c e  problem can be 

def incd  i n  such a way, v i a  a u x i l i a r y  cond i t ions  o u t s i d e  t h e  n e t ,  t h a t  t he  

r e s u l t i n g  smooth f u n c t i o n  u ( ~ ) ( x ,  t )  will be bounded uniformly i n  h ,  

t oge the r  wi th  i t s  d e r i v a t i v e s  up t o  f o u r t h  o r d e r .  Then a t  t h e  ne t -po in t s ,  

(x ,  t ) ,  us ing  Taylor ’s  formula we may w r i t e  

Here and below E ( ~ ) ,  eih’ and C i h ’  are f u n c t i o n s  uniformly bounded i n  h, 
1 

toge the r  wi th  t h e i r  d e r i v a t i v e s .  
From (50) it fo l lows ,  i n  p a r t i c u l a r ,  t h a t  

D i f f e r e n t i a t i n g  t h i s  i d e n t i t y  wi th  r e s p e c t  t o  t w e  

terms smal l  t o  second o rde r ,  we ge t  a d i f f e r e n t i a l  

I n s e r t i n g  t h e  above 

a2u(h )  

ax2 

2 
+ h a t = -  + h T +  

expres s ion  f o r  a2u(h ) / a t2  i n t o  Eq. (50 ) ,  and d i s c a r d i n g  

equa t ion  of form (48) ,  

which w e  w i l l  cons ide r ,  not j u s t  on t h e  n e t ,  but everywhere f o r  t > 0 .  

Thus d i f f e r e n c e  equa t ion  (26)  has  turned  ou t  t o  be “ b a s i c a l l y  equiva-  

l e n t ”  t o  t h e  differential approsirnation (51) ,  which is an equa t ion  of form 
(48) wi th  smal l  v i s c o s i t y  LI = (h  - T ) / 2 .  Th i s  v i s c o s i t y  is c a l l e d  approxi- 
mational s i n c e  it arises as a r e s u l t  of t h e  approximation of problem (47) 
by d i f f e r e n c e  problem (46) .  D i f f e r e n t i a l  equa t ion  (51)  smooths t h e  i n i t i a l  

d a t a  b a s i c a l l y  i n  the  same way a s  scheme (46 ) .  I n  f a c t  i f  U(x, 0)  = 

exp( i ax )  then a t  time t = T t h i s  harmonic, accord ing  t o  Eq. (49 ) ,  is  

m u l t i p l i e d  by 

For u” = exp( i ax ) )x=mh = exp(iamh),  by d i f f e r e n c e  scheme (46)  w e  g e t ,  a t  

t = T ,  t h i s  same harmonic m u l t i p l i e d  by t h e  f a c t o r  
m 
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a2h2 
X(a) = 1 - r + reiah = 1 - r + r(l + iah - T )  + o(h2) = 

h 
= 1 + iaT - - a2T + o ( T ~ ) ,  2 

which agrees with the factor (52) with an accuracy up to small terns of 

second order in T (or h). 

* * *  

PROBLEMS 

1. For what values of the parameter a > 0 does the difference scheme 

up - 2u; + u;-l p+l p+l p+l 
m+l uP+l - Um+1 - 2um + Um-l 

m m = U  + (1 - a) 
h2 h2 

, 

uu given, m = 0, 21, ..., 
m 

approximating the Cauchy problem for the heat equation, satisfy the 

Von Neumann spectral stability criterion for all r = T/h2? 

stability criterion: 
2 .  Does the following difference scheme satisfy the spectral 

where 

This difference scheme approximates Cauchy problem (19) for the heat 
equation to order O ( T 2  + h2) .  

3 .  Show that the difference scheme 

- ,P P+l P+l 

= 0 ,  m = O , + 1 ,  ..., m m mtl - U m - l  
T + *  2h 

p = 0 ,  1, ..., 
uo .= $(.,I, m = 0 ,  21, ..., 
m 
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approximating the Cauchy problem 

% + A $ = ( ) ,  at - - < x < - ,  t > o ,  

u(x, 0 )  = $(XI, - - < x < -, 
to order O(T + h2), satisfies the spectral stability criterion for any 
r = T/h and any constant A .  

solution of the Cauchy problem u 
4 .  Study the following predictor-corrector difference scheme for the 

+ Aux = 0 ,  u(x, 0 )  = $(x): 
t 

m 

p = 0 ,  1, ..., 
m = 0, 21, ..., u; = +Jm, 

A = const, where the intermediate net function 

determined from up = t u g }  in two stages: 
the solution of the difference problem 

= {US::;} is 
first one calculates vp = {vp} as 

P+1/2 - ,P P+1/2 P+1/2 
m-1 

=0, m = O , + 1 ,  ..., m+l - 
2h + A  

m 
V 

T/2 

and then upt1/2 = {us:;;} via the expression 

P+1/2 pt1/2 P+1/2 pt1/2 
m+2 + Vm-l 

2 
+ a  P+1/2 = (1 - .) 

um+l /2 2 
m+l + vm 

Show that if the interpolation parameter a lies in the interval 0 &a( .25 

then, for any r = T/h = const the spectral stability criterion is satis- 
fied. For a = 0 the whole spectrum lies on the unit circle, and for 0 < a 
- < 0.25 it is located in the unit circle and touches this circle only for A 
= 1. The eigenvalue A = 1 corresponds to the eigenfunction u = (21)". m 

26. Principle of frozen coefficients 

Here we present a method which greatly expands the class of time- 

dependent difference schemes which may be studied through use of the 
spectral stability criterion. This necessary condition for stability, 

developed in s25 for the study of the Cauchy difference problem with con- 
stant coefficients, can be used also in the case of Cauchy difference 

schemes with '*continuous", but not constant coefficients, and, as well, for 
problems in bounded regions when the boundary conditions are given not only 
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a t  the  t = 0 time-boundary, but a l s o  on t h e  s i d e  boundar ies .  Th i s  method 

can a l s o  be used f o r  t he  s tudy  of non l inea r  problems. 

p r i n c i p l e  of f rozen  c o e f f i c i e n t s  us ing ,  as an  example, t h e  fo l lowing  

d i f f e r e n c e  boundary-value problem: 

1. Frozen coeff ic ients  at  interior points. We w i l l  fo rmula te  t h e  

\ 

t p = 0 ,  1, ..., [T/T] - 1, 

u " = Q ~ ,  m = 0 , 1 ,  ..., M ;  m = l ,  
m 

J 
I n  t h i s  d i f f e r e n c e  boundary-value problem 

cond i t ions  g iven ,  r e s p e c t i v e l y  on t h e  l e f t  and r i g h t  boundaries of t h e  ne t  

segment 0 m M; f u r t h e r  a (x ,  t )  > 0. 

0 i x i  1, 0 
the  c o e f f i c i e n t s  of problem (1) a t  t h a t  po in t .  

= 0 and I12uf;t1 are c e r t a i n  

- -  
Now we  t ake  an a r b i t r a r y  i n t e r i o r  po in t ,  ( x ,  t )  , of the  r eg ion  

t 5 T, in which problem (1) is t o  be t r e a t e d ,  and " f r eeze"  

The d i f f e r e n c e  equa t ion  wi th  cons t an t  c o e f f i c i e n t s  

uP+l - u; m u;-l - 2u; + u;+l 
T 

- a(;, t) = 0, 
h2 

p = 0, 1, ..., [ T / T ] - l ;  m = 0, +I, ..., - 
genera ted  in t h i s  way, w i l l  be cons idered  now, not  on ly  f o r  0 < m < M, bu t  

f o r  a l l  i n t e g r a l  m. We w i l l  now formulate:  The p r i n c i p l e  of f rozen  coe f -  
f i c i e n t s .  
problem for  equation ( 2 )  with constant coe f f ic ien ts  should sa t i s f y  the  
necessary Von Newnann spectral s t a b i l i t y  cr i ter ion .  

presen t  t h e  fo l lowing  h e u r i s t i c  argument. 

t h e  poin t  (x, t ] ,  f o r  any f i x e d  number of s tep-widths  h in space ,  and T i n  
t i m e ,  changes less and less, and d i f f e r s  less and less from t h e  va lue  

a[;, t). In a d d i t i o n ,  t h e  d i s t a n c e  from t h e  po in t  ( x ,  t )  t o  t h e  boundar ies  
x = 0 and x = 1 of the  i n t e r v a l ,  as measured in numbers of n e t - s t e p s ,  t ends  

t o  i n f i n i t y .  Therefore  f o r  a f i n e  ne t  t he  p e r t u r b a t i o n s  induced in t h e  

s o l u t i o n  05 problem (l), a t  t h e  i n s t a n t  t = t ,  i n  t h e  neighborhood of 
po in t  x = x ,  deve lops  ( f o r  s h o r t  times) in approximate ly  the  same way as in 
problem (2). 

not  depend on t h e  number of space v a r i a b l e s  o r  t h e  number of unknown 

For the s t a b i l i t y  of problem 11) it i s  necessary that  the Cauchy 

To provide  a r a t i o n a l e  f o r  t h e  p r i n c i p l e  of f r o z e n  c o e f f i c i e n t s  we 

As we r e f i n e  t h e  mesh t h e  c o e f f i c i e n t  a ( x ,  t )  in t h e  neighborhood of - -  
* -  

- 

It  w i l l  be seen  t h a t  t h i s  reasoning  is g e n e r a l  in c h a r a c t e r .  It does 
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func t ions ;  nor  on t h e  form o r  the  d i f f e r e n c e  equa t ion  o r  t h e  system of 

d i f f e r e n c e  equa t ions .  

and found t h a t ,  t o  s a t i s f y  t h e  Von Neumann c r i t e r i o n ,  t h e  r a t i o  r = T/h2 of 

t h e  ne t  mesh-widths must s a t i s f y  t h e  cond i t ion  

I n  $25 w e  cons idered  t h e  Cauchy problem f o r  an  equa t ion  of form (2)  

1 
r i  

2a(G, F )  
Since ,  by the  p r i n c i p l e  of f r o z e n  c o e f f i c i e n t s ,  it is necessary  f o r  

s t a b i l i t y  t h a t  t h i s  c o n d i t i o n  be s a t i s f i e d  f o r  any ( x ,  t )  t h e  r a t i o ,  

r = T/h2, of s tep-widths  must s a t i s f y  t h e  c o n d i t i o n  

- -  

( 3 )  
1 

r l  - Y  

2 max a ( x ,  t )  - -  
x , t  

The p r i n c i p l e  of f rozen  c o e f f i c i e n t s  g ives  u s  same guidance ,  a t  a 

h e u r i s t i c  l e v e l  of r i g o r ,  a l s o  i n  t h e  i n v e s t i g a t i o n  of non l inea r  

problems. Cons ider ,  f o r  example, t h e  fo l lowing  non l inea r  problem: 

u - (1 + u')u, = 0,  

u(x ,  0 )  = Jb'x), 

0 < x < 1, 
t 

0 < x < 1, 

To t r e a t  t h i s  problem we-use t h e  fo l lowing  d i f f e r e n c e  scheme: 

0 < m < M, p = 0 ,  1, ..., [T/T]-1, I 

a l lowing  the  s tep-width  T t o  change from l e v e l  t o  l e v e l .  Th i s  scheme 
a l lows  one t o  compute s e q u e n t i a l l y ,  l e v e l  a f t e r  l e v e l ,  t h e  unknowns 

u:, m = 0 ,  ..., M, t hen  ui ,  m = 0 ,  1, ..., M, etc. 

up m = 0, 1, ..., M ,  and want t o  con t inue  t h e  caleulation.P'How should  w e  
choose t h e  next  s tep-width  T = T '? We can imagine t h a t  we  a r e  r equ i r ed  t o  

compute t h e  s o l u t i o n  of t h e  l i n e a r  d i f f e r e n c e  equa t ion  

P 

Suppose t h a t  we have a l r e a d y  g o t t e n  t o  t h e  l e v e l  t = t have computed 

m' 

P 
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2 
wi th  the  g iven  v a r i a b l e  c o e f f i c i e n t  a ( x  t ) : 1 + (u:) . 
n a t u r a l  t o  assume t h a t  t h e  va lues  up a r e  c l o s e  t o  t h e  va lues  u ( x  , t  ) of m m 
t h e  smooth s o l u t i o n ,  u(x ,  t ) ,  of t h e  d i f f e r e n t i a l  problem. 

is then c l o s e  t o  t h e  cont inuous  func t ion  a ( x ,  t )  

t h e  course  of s e v e r a l  t ime-s teps ,  changes very  l i t t l e .  

v a r i a b l e  c o e f f i c i e n t s  a(xm, t ) y i e l d s  the  r e s t r i c t i o n  ( 3 )  on t h e  r e l a t i o n  
between s t e p  wid ths ,  

I n  f a c t  it i s  

The c o e P f i c i e n t  

m’ P 

1 + u2(x ,  t )  which, i n  

The a p p l i c a t i o n  of t h e  Von Neumann c r i t e r i o n  t o  t h e  equa t ion  wi th  

P 

a s  a necessary  cond i t ion  f o r  s t a b i l i t y .  On t h i s  b a s i s  i t  seems p l a u s i b l e  

t h a t  t h e  next s t e p  width should s a t i s f y  t h e  c o n d i t i o n  

h2 . 1 
r <  

2 
2 max I + (ug)  1 

p -  I m 

Computer experiments confirm t h e  v a l i d i t y  of t h i s  h e u r i s t i c  reasoning .  

of the  Cauchy problem with c o e f f i c i e n t s  f rozen  a t  any a r b i t r a r y  ne t -po in t ,  

t u r n  ou t  t o  be v i o l a t e d ,  t hen  one cannot expec t  s t a b i l i t y  f o r  any boundary 

cond i t ions .  We stress, however, t h a t  t he  p r i n c i p l e  of f rozen  c o e f f i c i e n t s  
does not t a k e  i n t o  account t h e  in f luence  of boundary cond i t ions .  I f  t h e  

necessary  s t a b i l i t y  cond i t ions ,  f lowing from t h e  p r i n c i p l e  of f r o z e n  

c o e f f i c i e n t s ,  are f u l f i l l e d ,  then  we may have s t a b i l i t y  f o r  some, and no t  

f o r  o t h e r  boundary cond i t ions .  Now w e  develop t h e  c r i t e r i o n  of K. I. 
Babenko and I. M. Gelfand, which t ake  i n t o  account t h e  e f f e c t  of boundary 

cond i t ions  f o r  problems posed on i n t e r v a l s .  

2. Criterion of Babenko and Gelfand. I n  cons ide r ing  problem ( l ) ,  we 
pos tu l a t ed  t h a t  p e r t u r b a t i o n s  communicated t o  t h e  so lu t io[e  of problem (1) 

i n  the  neighborhood of some a r b i t r a r y  i n t e r n a l  po in t  ( x ,  t )  develop ,  f o r  a 
f i n e  mesh, approximately i n  t h e  same way a s  t h e  same p e r t u r b a t i o n s  communi- 

ca ted  t o  t h e  s o l u t i o n  of Cauchy problem (2), with  c o e f f i c i e n t s  f rozen  a t  

poin t  (x, t).  In j u s t i f y i n g  t h i s  p r i n c i p l e  we argued t h a t  t h e  d i s t a n c e  
from t h e  i n t e r i o r  po in t  [x, t )  t o  t h e  boundary, measured i n  numbers of ne t -  

s t e p s ,  i n c r e a s e s  wi thout  bound as t h e  ne t  is r e f i n e d .  But i f  t h e  p o i n t  

( x ,  t )  lies on t h e  side-boundary x = 0 o r  x = 1, then  t h i s  h e u r i s t i c  

argument l o s e s  i t s  fo rce .  Suppose, f o r  example, t h a t  x = 0. Then t h e  

d i s t a n c e  from po in t  t o  any f ixed  po in t  x > 0 (and, in p a r t i c u l a r ,  t o  t h e  

r i g h t  in te rva l -boundary  x = l), as measured i n  s t e p  wid ths  w i l l ,  as be fo re ,  

I f  t h e  necessary  cond i t ions  f o r  s t a b i l i t y ,  de r ived  v i a  c o n s i d e r a t i o n  

- -  
..,% 

Y . . ,  * - 
M 
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grow w i t h o u t  bound a s  h + 0 ;  but  t h e  number of s t e p s  to  the l e f t  boundary,  

x = 0 ,  does n o t  change and remains  e q u a l  t o  z e r o .  

l e f t - h a n d  boundary x = 0 must d e v e l o p ,  i n  s h o r t  t ime-spans,  l i k e  a p e r t u r -  

b a t i o n  of t h e  s o l u t i o n  of t h e  problem 

For  t h i s  r e a s o n  a p e r t u r b a t i o n  of  t h e  s o l u t i o n  of problem (1) n e a r  t h e  

uP+l - up - 2u; + u p 1  
‘I 

= 0 ,  m = 1 ,  2 ,  ..., m m 5 m + l  - a(O, t )  

( 4 )  
h2 

a. up+1 = 0. 
1 0  

T h i s  problem i s  o b t a i n e d  from t h e  o r i g i n a l  problem ( 1 )  by f r e e z i n g  t h e  - - 
c o e f f i c i e n t  a ( x ,  t )  a t  t h e  l e f t  i n t e r v a l - b o u n d a r y  x = 0 and s i m u l t a n e o u s l y  
moving t h e  r igh t -hand boundary t o  + m. It is n a t u r a l  t o  c o n s i d e r  problem 

( 4 )  o n l y  f o r  t h o s e  f u n c t i o n s  u p  = {u:, u:, u:, ...) f o r  which 

u P + 0  as m + + w .  
m 

It is  o n l y  i n  t h i s  c a s e  t h a t  t h e  p e r t u r b a t i o n  i s  c o n c e n t r a t e d  n e a r  t h e  

boundary x = 0 ,  and it is o n l y  w i t h  r e s p e c t  t o  p e r t u r b a t i o n s  of t h i s  con- 

c e n t r a t e d  form t h a t  problems (1) and ( 4 1 ,  n e a r  t h e  l e f t - h a n d  boundary x = 

0 ,  a r e  s i m i l a r  t o  e a c h  o t h e r .  

So t o o ,  t h e  development of p e r t u r b a t i o n s  of t h e  s o l u t i o n s  of problem 

( 1 )  n e a r  t h e  r igh t -hand boundary x = 1 must be similar t o  t h e  development  

of t h e  same sorts of p e r t u r b a t i o n s  i n  t h e  problem 

I m = ..., -2, -1, 0, 1 ,  ..., M-1,  ( 5 )  

w i t h  o n l y  a r igh t -hand boundary. T h i s  problem was o b t a i n e d  from t h e  o r i g i -  

n a l  problem ( 1 )  by f r e e z i n g  t h e  c o e f f i c i e n t ,  a ( x ,  t ) ,  a t  t h e  r igh t -hand 

boundary x = 1 ,  and removing t h e  l e f t - h a n d  boundary t o  - a. Problem ( 5 )  

m u s t  be c o n s i d e r e d  f o r  n e t  f u n c t i o n s  u p  = { ..., u!~ ,  up1, u:, u;, ..., u i } ,  
s a t i s f y i n g  t h e  c o n d i t i o n  up + 0 as m + - m. 

i n  t h e  s e n s e  t h a t ,  f o r  f i x e d  r = 7/h2 ,  t h e y  do n o t  depend on h,  and a r e  

problems w i t h  c o n s t a n t  c o e f f i c i e n t s .  

Thus t h e  procedure  f o r  s t u d y i n g  s t a b i l i t y ,  t a k i n g  i n t o  a c c o u n t  t h e  

e f f e c t  of t h e  boundary,  a s  a p p l i e d  t o  problem (1) t a k e s  t h e  f o l l o w i n g  

Porm. One f o r m u l a t e s  t h r e e  a u x i l i a r y  problems (Z), ( 4 )  and (5 ) .  For  e a c h  
of t h e s e  t h r e e  problems,  n o t  depending  on h ,  one f i n d s  a l l  those h ( the  

e i g e n v a l u e s  of t h e  t r a n s i t i o n  o p e r a t o r  from up  t o  up+’) f o r  which t h e r e  
e x i s t s  a s o l u t i o n  of t h e  form 

- 

m 
Problems ( 2 ) ,  ( 4 ) ,  and (5) a r e  s i m p l e r  t h a n  t h e  o r i g i n a l  problem (1) 
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For problem (2)  u" = {u:}, m = 0 ,  21, ..., must be bounded. 
problem ( 4 )  u" = { u i ,  u i ,  . .. u:, . . .}, uu + 0 as 

problem ( 5 )  

In the case of 

m + + m, while for 
m 

u" = { ..., u$, uyl, uo, U u;, ..., u g ,  

u 0 + 0  as m + - m .  
m 

If problem ( 1 )  is to be stable the totality of eigenvalues of the 
three problems ( 2 ) ,  ( 4 1 ,  and (51 must lie in thz unit Zircle 1x1 5 1. 
problem ( 2 )  is to be considered for each fixed x, 0 < x < I. .  

Let us continue to examine problem (1). We will assume, hereafter, 

2), ( 4 ) ,  

( 2 )  we 

= 0 .  

that a(x ,  t) 1, and compute the spectra for all three problems 
and ( 5 ) ,  with different boundary conditions E uptl = 0 and E2uM 

get 

P+1 
1 0  

Substituting the solution up = Xpu into difference equation 
m m 

T 
(A - 1)um - r(udl - 2u + = 0 ,  r = -  

h2 
m 

or 

This is a second order difference equation. Similar equations have been 

investigated in Chapter 1. To find the general solution of Eq. (6) we 
first construct the characteristic equation 

( 7 )  q2 + ( 2  + y h  A - 1  + 1 = 0 .  

If q is a root of this equation the net function 

is one of the solutions of the equation 

= 0. m m - m+l 
T 

h2 

If l q l  = 1, i.e. q = exp(ia), then the net function 

,P = APeiam 
rn 

bounded as m + + and m +. - is a solution, as we saw i n  s25, for 
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These 

t h i s  i n t e r v a l  i s ,  then ,  t he  spectrum of problem ( 2 ) .  There a r e  no e igen-  

va lues ,  A ,  of problem ( 2 )  which do no t  l i e  i n  t h i s  i n t e r v a l  s i n c e ,  i f  
c h a r a c t e r i s t i c  equa t ion  ( 7 )  has no r o o t s ,  q ,  equa l  t o  u n i t y  i n  modulus, 

problem ( 6 )  has no s o l u t i o n s  bounded as m + 2 m. 

c h a r a c t e r i s t i c  equa t ion  (7 )  a r e  d i f f e r e n t  from one i n  modulus, bu t  t h e i r  

product is equa l  t o  t h e  cons t an t  term of Eq. ( 7 ) ,  i . e .  is equa l  t o  one. 
Therefore  one of t he  r o o t s  of (7 is g r e a t e r  than ,  and t h e  o t h e r  less than  

u n i t y .  Suppose, f o r  t h e  sake  of d e f i n i t e n e s s ,  t h a t  lq l l  < 1 and 1q21 > 1. 
Then t h e  g e n e r a l  s o l u t i o n  of ( 6 )  dec reas ing  i n  modulus a s  m + + m, has t h e  

form 

= x(a) f i l l  t h e  i n t e r v a l  1 - r l x  i 1 on t h e  r e a l  a x i s .  P r e c i s e l y  

I f  A does not l i e  on t h e  i n t e r v a l  1 - 4 r  xi 1, then  both r o o t s  of 

and t h e  g e n e r a l  s o l u t i o n  of ( 6 )  t ending  t o  z e r o  as m + - m has  t h e  form 

To determine t h e  e igenva lues  of problem ( 4 )  one must s u b s t i t u t e  

u 
1 f o r  which it is s a t i s f i e d .  These will, t hen ,  be a l l  t h e  e igenva lues  of 

problem ( 4 ) .  I f ,  f o r  example 

= cqm(A) i n  t h e  l e f t -hand  boundary cond i t ion  9. u = 0 and f i n d  a l l  t hose  
m 1  1 

then  t h e  c o n d i t i o n  cqu = 0 i s  not f u l f i l l e d  f o r  any c f 0, so t h a t  t h e r e  

a r e  no e igenvalues .  

I f  X u = u - uo = 0 then  t h e  c o n d i t i o n  cq: - c q i  = c(q l  - 1) = 0, i n  
1 

view of t he  f a c t  t h a t  q1 f 1, l e a d s  t o  c = 0 so t h a t ,  aga in ,  t h e r e  are no 

e igenvalues .  
- 1) = 0 is f u l f i l l e d  

f o r  c f 0 i f  q1 = 1/2. 

1 

I f  X u = 2u - uo = 0, then  t h e  c o n d i t i o n  c (2q  
1 1 

From Eq. ( 7 )  we f i n d  t h a t ,  f o r  q = 1 / 2 ,  is given  
1 

by 

This  is, i n  f a c t ,  t h e  only  e igenvalue  of problem ( 4 ) ,  and i t  l ies  o u t s i d e  

t h e  u n i t  circle,  s i n c e  

computed ana logous ly .  They a r e  g o t t e n  from t h e  equa t ion  

= 1 + r / 2  > 1. The e igenva lues  of problem (5) are 

9.pn = 0 ,  
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m 
urn = q2,  q2 = q,(x), m = M ,  M - 1, M - 2, ... 

We take as another example the difference scheme 

Mh = 1, 

= +(x,), m = 0 ,  1, ..., M, 
q 1  = 0 ,  

approximating the problem 

u - u  = O ,  O < x < l ,  O < t < T ,  
t x  

u(x, 0) = NX), 

u(1, t) = 0 .  

Let us examine the stability of this problem via the Babenko-Gelfand 
criterion. We associate, with scheme ( 8 ) ,  three related problems: the 
problem without side-boundaries 

uP+l - ,P - "P 
m m - m+l m = 0 ,  m = 0 ,  21, ..., 

'I h 

the problem with only a left-hand boundary 

P 0 

- - "m = o, m = 0 ,  1, ..., 
? h 

and the problem with only a right-hand boundary 

In the case of problem (10)  with only a left-hand boundary there is no 
boundary condition, since there was no left-hand boundary condition in the 
original problem (8) .  
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We must now compute a l l  t he  e igenva lues  of t h e  th ree  t r a n s i t i o n  
o p e r a t o r s  from up t o  up+', cor responding  t o  each of t he  t h r e e  a u x i l i a r y  

problems (9), (10) and ( l l ) ,  and determine under what cond i t ions  they  l i e  

i n  t h e  circle 1x1 1. 

The s o l u t i o n  of t h e  form 

up = APUO 
m m 

under the  s u b s t i t u t i o n  

gene ra t e s  t h e  fo l lowing  o rd ina ry  €irst  o rde r  d i f f e r e n c e  equa t ion  f o r  t h e  

e igen func t ions :  

(1 - 1 + r ) u  - r u  > 0. (12)  
m m+l - 

The cor responding  c h a r a c t e r i s t i c  equa t ion  

( A  - 1 + r )  - rq = 0 (13)  

provides  a connec t ion  between X and q. The gene ra l  s o l u t i o n  of Eq. (12)  i s  

For ( q (  = 1, q = e x p ( i a ) ,  O l a c  2n 

i a  
X = ( 1  - r )  + re . 

The po in t  1 = A(a) t r a v e r s e s  the  per imeter  of a c i r c l e  w i th  c e n t e r  a t  po in t  

1 - r and r ad ius  r. This  per imeter  i s ,  then ,  t he  e igenva lue  spectrum of 

F ig .  26. 

problem ( 9 )  ( s e e  Fig. 26,a).  The n o n t r i v i a l  s o l u t i o n  dec reas ing  a s  

m + + m  

up = AP" = cOAPqm 
m 
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exists for any q, 141 < 1. Corresponding eigenvalues 1 = 1 - r + rq, 
clearly, fill the disc bounded by the circle 1 = (1 - r) + r exp(ia) 
(Fig. 26,b). 

decreasing as 

m + - m ,  must have the form 

Finally, the solution of problem (ll), up = hPu m my 

where 1 and q are connected by Eq. (13). From the boundary condition 

I$ = 0 it follows that a nontrivial solution (c f 0) exists only for 1 = 

A(q) = 0, i.e. q = (r - l)/r. This value of q is greater than one in 

modulus i f  either (r - l)/r > 1 or (r - l)/r < -1. The first equation has 

no solution: the solution of the second is r < 1/2. 

In Fig. 27,a,b and c are represented the totality of eigenvalues of the 
Thus for r < 1/2 problem (10) has the eigenvalue 1 = 0 (Fig. 26,c). 

Fig. 27 .  

three problems for r < 1/2, 1/2 < r < 1 ,  and r > 1. Clearly the set of all 
eigenvalues of all three problems lies in the circle 1x1 < 1 + cT, where c 
does not depend on h, if and only if r I1. 

The above stability criterion for nonstationary problems on an inter- 

val, taking into account the influence of boundary conditions, is appli- 
cable to boundary value problems on an interval also for systems of dif- 

ference equations. In this case seemingly natural difference schemes, 
satisfying the Von Neumann criterion, often turn out to be unstable because 

of an unsatisfactory approximation to the boundary conditions, and it is 
important to know how to choose schemes free from this defect. 

In Chapter 14 we will return to a discussion of the Babenko-Gelfand 
spectral criterion taking a broader point of view. In particular we will 

demonstrate rigorously that fulfillment of this condition is necessary for 
stability, and that if it is satisfied there cannot be a "gross" insta- 

bility. 

PROBLEMS 

1 .  Show under what conditions the spectral stability criterion is 

satisfied for the difference scheme 
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m = 1, 2, ..., M - 1 ,  

uo = $(xm), m = 0 ,  1, ..., M ,  
m 

approximating the differential problem 

u - u  = o ,  O < x < l ,  O < t < T ,  

u(x, 0 )  = Nx), 

t x  

u(0 ,  t) = u(1, t) = 0 

on a smooth solution u(x, t) to second order in h. 

Answer: T/hil. 

2 .  To construct a difference scheme approximating the following 
boundary-value problem for the hyperbolic system of differential equations 

av aw 
at ax' 
aw av 
at ax* 

_ = -  

O i x l l ,  O(t(T, 
_ = -  

v(x, 0 )  = tJ1(X), w(x, 0 )  = tJ2(x), 

v(0, t) = w(1, t) = 0 ,  

we set u(x, t) = (v(x, t), w(x, t))T, and write the equation in matrix form 

where 

Take, as a net, (xm, t,) = (mh, nT), h = 1/M, M a positive integer. Set 
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uP+l - - up up - 2u; + P 
m m m+l m - 1  - 2 A2 m + l  

T 
h2 

- A  2h 2 

m = 1, 2, ..., 
u" m = +(.,I, 

vP+l = wP+l = 0.  
0 M 

To complete c o n s t r u c t i o n  of t h i s  scheme i t  is necessary  

Chapter 8 

= 0 ,  

M - 1  , 

t o  impose 

a d d i t i o n a l  boundary cond i t ions  on t h e  l e f t  and r i g h t  s ide-boundar ies .  

Noting t h a t ,  f o r  any a and 8,  i t  fo l lows  from t h e  system of d i f f e r e n t i a l  
equat ions  t h a t  

a (w  :xav'l = O S  
a ( v  + aw) - 

a t  
x=o 

+ E ~ )  
a t  a (w  + ax  Bv)l  = 0 ,  

x= 1 

we  pose t h e  supplementary d i f f e r e n c e  boundary-conditions s e t t i n g  

(.~+l + a w f l l )  - (vgP + awe) (w; + av;) - ( w g  + avgPj 
0 -  = 0 ,  h T 

0 0 

(vi+'+ EwP+') - (f, + E w i )  ( w i  + 8 v i )  - (w;-~ + BvM-') P - = 0.  
M 

T h 

Under t h e  cond i t ion  r = T/h '1 show t h a t :  
a )  i f  a = 1, E = -1 t h e  s p e c t r a l  s t a b i l i t y  c r i t e r i o n  is s a t i s f i e d ;  

b)  i f  a = -1 then ,  r e g a r d l e s s  of t he  choice  of B t h e  s p e c t r a l  

c )  Find t h e  cond i t ions  which a and 8 must obey so t h a t  t h e  s p e c t r a l  

s t a b i l i t y  c r i t e r i o n  is not s a t i s f i e d .  

s t a b i l i t y  c r i t e r i o n  w i l l  be s a t i s f i e d ,  t ak ing  account of t h e  in f luence  of 

boundary cond i t ions .  

527. Representation of the solution of some model 
problems i n  the form of f in i t e  Fourier series. 

Here w e  p re sen t  examples of model problems whose s o l u t i o n s  can be 

r ep resen ted  i n  t h e  form of f i n i t e  Four i e r  series. Such r e p r e s e n t a t i o n s  are 
of g r e a t  va lue  s i n c e  they a l low us t o  understand t h e  p r o p e r t i e s  of t h e  

g iven  model problems, and thus  of t h e  c l a s s  of problems they model. 

func t ion .  

real  func t ions  v = { v  } ,  def ined  a t  t h e  p o i n t s  x 

F i r s t  we must exp la in  what i s  meant by a "Four ie r  s e r i e s ' '  f o r  a n e t  

1. Fourier series for net functions. Let  us cons ide r  t h e  set of a l l  
= mh, m = 0, 1, ..., M ,  

m m 
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Mh = 1, and van i sh ing  a t  m = 0 and m = M. The s e t  of such f u n c t i o n s ,  a long  

wi th  t h e  o rd ina ry  o p e r a t i o n s  of a d d i t i o n ,  and of m u l t i p l i c a t i o n  by real 

f a c t o r s ,  forms a l i n e a r  space .  The dimension of t h i s  space  is  M - 1 ,  s i n c e  
t h e  system o f  func t ions  

0, i f  m f k ,  I 1, i f m = k ,  k = l , 2  ,..., M - 1 ,  

-(k) = 
'm 

c l e a r l y  forms a b a s i s .  

vo = vM = 0 can  be r ep resen ted  uniquely  as a l i n e a r  combination of t h e  
f u n c t i o n s  -(I) J, , p, ... $M-l). 

I n  f a c t  each func t ion  v = ( v o ,  vl ,  ..., vM),  

D 

p - 1 1 .  
M-1 

v = v + ... + v 
1 

We i n t roduce ,  i n  t he  space under c o n s i d e r a t i o n ,  a scalar product de f ined  by 

t h e  r e l a t i o n  

M 

m=O 
( v , w ) = h  1 v w .  

m m  

L e t  us  now show t h a t  t h e  system of f u n c t i o n s  

(2 )  +(k) = {fi s i n  T}, knm k = 1, 2 ,  ..., M-1,  

forms an orthonormal b a s i s  i n  t h i s  space ,  i . e .  t h a t  

0, k f r ,  I 1, k = r ,  
(p, '(T)) = 

k ,  r = l ,  2 ,  ..., M - 1 .  

For th is  purpose we no te  t h a t  

( 3 )  

- i L n  0,  i f  L i s  even and 0 < 2 < 2M, 

1, i f  .C i s  odd. 

1 1 - e  ian 1 1 - e 

' 1 - e  ' 1 - e  
= -  

i L n / M  
i- - 

It  fo l lows  t h a t ,  f o r  k f r 

knm rnm 
M-1  

m=O 

knm r n m  
($(k) ,  $ ( r ) )  = 2h 1 s i n  M s i n  - = 2h 1 s i n  7 s i n  - = 

M M m=O 

M:1 M - 1  

M 
(k + r ) n m  

h 1 cos  M = 0, = h co8 (k  - r>nm _. 

m-0 m=O 
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while for k = r 

M - 1  M - 1  

m=O m=O 
($(k), $ ( k ) )  = h 1 cos 0 - h 1 cos M = hM - h 0 = 1. 

vM) Using this orthonormal basis any net function v = (vo,  vl, ..., 
may be expanded in the sum 

,,,(M-l f 
M - 1  

v = c $(l) + ... + c 
1 Y 

or 

My1 knm 
ck sin - 

k=l 
v = fi 1 

M ’  m 

where 

kn m 
M 

M 
c = (v ,  ‘i~(~)) = fi h 1 v sin - . 

m=o k 

Clearly, because of the orthonormality of the basis (2) 

( v ,  v) = c* + c; + ... + c2 (5)  1 M - 1  ’ 

It is sum ( 4 )  which is the finite Fourier expansion of the net function 

v = {v } ,  and (5) is the exact analog of the Parseval equation in the 
ordinary theory of Fourier series. 

functions on a square net. Define the net 

In exactly the same way one can consider the finite Fourier series for 

x = mh, yn = nh, 0 mh 5 1, 0 5 nh 5 1, 
m 

where h = 1/M, for M a positive integer. The set of all real functions, 

v = {vmnj, defined at the points of the net and vanishing at points lying 

on the boundary of the square, forms a linear space. Introduce, in this 

space, the scalar product 

M M  

n=O m=O 
(v, w) = h2 

In the given linear space of dimension (M-1)’ the system of functions 

k = 1, 2 ,  ..., M-1, 
& = 1, 2, ..., M-1, 

knm &Tn 
sin - $(k,‘) = 2 sin 

M y  

forms an orthonormal basis 
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' ( 1, for k = r and P. = s .  

This follows from ( 3 )  if we note that 

Any function, 

may be expanded in 

M 

v = {vmn}, which vanishes on the boundary of the square 

a finite, two-dimensional, Fourier series 

M-1 

k,P.=l 

kLm RTn 
M M 

v = 2 1 ckP. sin - sin - , 
mn 

where 

and the coefficients satisfy Parseval's equation 

M - 1  

k,P.=l 
(v, v) = 1 Cia. (7) 

In a l l  the examples of difference boundary-value problems whose 

solutions we will write using finite Fourier series we encounter the 
expression 

(8) Axxvm - 1  = - ( v ~ + ~  - 2vm + v ~ - ~ ) ,  m = 1, 2, ...) M - 1 .  
h2 

Note that 

2 kn knm kn m - 1) sin - = u sin - h2 M k M '  = - (cos m = 1, 2, ...) M - 1 ,  

where uk = -(4/h2) sin' (kn/2M). 

tor A 
vanishing at m = 0 and m = M into functions of the same space via the 

relations 

In other words the basis (2) consists of eigenfunctions of the opera- 

xx' m 
which maps functions v = {v } from the space'of functions 

1 

h2 
w = - ( v ~ + ~  - 2vm + vm-l)y m = 1, 2, ...) M-1. 

To the eigenfunction $(k) = fi sin(knm/M) corresponds the eigenvalue 
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2. Representation of the solutions of difference schemes for the heat 
equation on an interval. As a first example in which one can represent the 

solution in a finite Fourier series, consider the simplest difference 
scheme 

T 1 - ,P P P  

= 0 ,  
m m - m+l - 2um + 'm-1 

h2 

m = 1, 2, ..., M-1, p = 0 ,  1, ..., [T/T]-l, 

u" = N m h )  

for the heat equation on an interval 

I 

Problem (LO) may be rewritten thus: 

Here E is the identity transformation: Eup = up while E + T A ~ ~  is the 

operator effecting transitions from up to up+', i.e. the level-to-level 
transition operator. As regards the net functions up 

we assume that, for each fixed p, they belong to the space under considera- 
tion, i.e u: = u; = 0 .  

m m' 

{u:] of argument m 

We will look for a solution of E q .  (12) in the form 

Substituting this expression into the equation, dividing Xpfi sin (nnm/M) 
out of both sides, and making use of (9). we get the following expression 
for Xk: 

k 

k = 1, 2 ,  ..., M-1. 4 r  kn A = I + ?pk = 1 - - sin* z, 
h2 

k 
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Because of t h e  l i n e a r i t y  of Eq. (12)  t h e  e x p r e s s i o n  

p (k) 
M- 1 

k = l  
up = 2' CkXkJl 

i s  a s o l u t i o n  f o r  any a r b i t r a r y  c o n s t a n t s  ck. For  p = 0 w e  g e t  

M- 1 

k = l  

knm uo  = 1 c (JT s i n  y). 
k m 

Let  us  t a k e ,  a s  t h e  c o n s t a n t s  c k ,  t h e  c o e f f i c i e n t s  i n  t h e  e x p a n s i o n  of 

t h e  g i v e n  f u n c t i o n  u o  = +(mh) i n  a f i n i t e  F o u r i e r  s e r i e s ,  i .e. set 

Then t h e  s o l u t i o n  (13) ,  

w i l l  s a t i s f y  t h e  g i v e n  i n i t i a l  c o n d i t i o n  uo = Jl(mh). 

t h e  r e q u i r e d  r e p r e s e n t a t i o n  of t h e  s o l u t i o n  of t h i s  problem i n  a f i n i t e  

F o u r i e r  s e r i e s .  

E q u a t i o n  (14)  t h e n  is 
m 

For f i x e d  p, t h e  c o e f f i c i e n t s ,  c"), of  t h e  e x p a n s i o n  
k 

of t h e  f u n c t i o n  u ( ~ ) ,  of argument  m, i n  t h e  o r t h o n o r m a l  b a s i s  f u n c t i o n s  

+(k) = a sin(knm?M), have t h e  form 

T h e r e f o r e ,  t a k i n g  n o t e  of P a r s e v a l ' s  e q u a l i t y ,  we have 

where ,  moreover ,  t h e  s t r ic t  e q u a l i t y  (up+', up+') = 

a t t a i n e d  i f ,  a s  u o ,  one t a k e s  t h a t  J l (k)  f o r  which 

IXk(2(up ,  up)  is  

1 is  g r e a t e s t .  
k 

I f  max 11 < 1, t h e n  
k 

k 

(15 )  

The p o s i t i v e - d e f i n i t e  q u a d r a t i c  form 
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where A is a square matrix, brings to mind the expression for energy in the 

equations of mathematical physics. Therefore an inequality of the form 

(AU~'~, up+') (Aup, up) 

for the solution of a difference boundary-value problem i s  commonly called 

an energy inequality. 

* * * * * *  

Thus bound (15) is the simplest energy inequality. When some sort of 

energy inequality exists it is natural to relate the norms 1 1  I 

1 1  ) I F  t o  the form (Au', up) and, in particular, to take I ~ u ' ~ )  
max(AuP, up) . Such norms are called "energy norms". 

1 / 2  

P 
* t i  

and 
'h 
I =  
'h 

The inequality maxlx l2 5 1 is satisfied, as one easily can see, if 
k k  

For 

1 
r = const > - 2 

and for small enough h, there will be a Xk for which l A , l  > 1 .  

then have stability for any reasonable* choice of norms. 

Consider the difference scheme of more general form 

We cannot 

u" = $(mh) 
m 

for this same heat-conduction problem (11). Here cr is some free parameter. 
We look for a solution of the form 

*See s13. 



927 F i n i t e  F o u r i e r  S e r i e s  279 

knm 
up = xkp fi s i n  y, k = 1, 2 ,  ..., M - 1 ,  m 

where xk  remains t o  be determined. 

equa t ion  which xk must s a t i s f y :  
S u b s t i t u t i n g  t h i s  expres ion  i n t o  t h e  d i f f e r e n c e  equa t ion  w e  g e t  an 

Thus 

4 (1  - U ) T  kn 
s i n 2  - 2M 

1 -  

, k = l , 2  ,..., M - 1 .  
h2 

4 a r  
1 + - s i n 2  

h2 

x =  

A s  before  

(upf-l ,  5 max ixk12(up, up).  
k 

Energy i n e q u a l i t y  (15)  i s  s a t i s f i e d  i f  

maxl i  I < 1 
k -  

o r  

11 - 4(1  - u ) r  sin2 k" < 1 + 4or s i n 2  *I , r = L .  
h2 

2M I !  - 

It is clear t h a t  f o r  12 0 2 1 / 2  t h i s  i n e q u a l i t y ,  and a l s o  energy  i n e -  

q u a l i t y  (15) ,  a r e  s a t i s f i e d  f o r  any r. I f  0 = 0 t h e  d i f f e r e n c e  scheme 

t akes  the  form of t h e  e x p l i c i t  scheme, a l r e a d y  cons idered  above and, as we 

have seen ,  i f  energy i n e q u a l i t y  (15)  i s  then  t o  be s a t i s f i e d  f o r  a l l  h it 

is necessary  t h a t  r I 1 / 2 .  

d imens iona l  hea t -conduct ion  problem. We now cons ide r  t he  two-dimensional 

hea t -conduct ion  problem 

3. Uepreaen ta t ion  of the s o l u t i o n  of d i f f e r e n c e  schemes for the two- 

L = - + U  a 22, az  
at  ax2 ay2  ' 

0 5 x 5 1 ,  O ( y ( 1 ,  

u(x ,  Y,  0 )  = +(x ,  Y), 
O ( t i T .  

u(x, Y, t f I r  = 0 ,  

Here r i s  t he  l a t e r a l  s u r f a c e  of t h e  p a r a l l e l o p i p e d  O (  x,  y'1, 

O i t l T .  
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We construct the net (x t ) = (mh, nh, pT) with h = 1/M for some 
rn' 'n p 

positive integer M. As the set D we take those points of the net inside 
h 

and on the boundary of the parallelopiped O(x, y(1, 0 (t(T. 
Let us now introduce the notation 

The operators A and A are perfectly analogous, except that the first 

acts on the variable m, with n and p treated as parameters, while the 

second acts on n ,  in its turn treating m and p as parameters. 

xx YY 

The simplest difference scheme for problem ( 1 6 )  is 

We will look for solutions of the difference equation, under the condition 

= 0, of the form 

Note that 

Therefore we get, for A k a ,  the expression 

or 

4T kn La 

h2 
Aka = 1 - - (sin' + s in2  x) . 

The solution 
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s a t i s f i e s  t h e  cond i t ions  on t he  lateral  boundary f o r  any choice of the  

cons t an t s  ck2. For p = 0 t h i s  s o l u t i o n  t akes  the  form 

I f  t h e  i n i t i a l  cond i t ion  

i s  t o  be s a t i s f i e d ,  then t h e  ckll must be taken t o  be the  Four i e r  c o e f f i -  

c i e n t s  of t h e  func t ion  $(mh, nT), 1.e. 

(19 
knm llnm M 

c = h2 1 $(mh, nh)(2 sin M s i n  -). 
M kt m,n=o 

According t o  Eq. (18) t h e  c o e f f i c i e n t  of $(k’2) i n  t he  Four i e r  expansion 

up i s  equal t o  ckE~ER.  m e r e f o r e  

For any given p we may, t he re fo re ,  write 

k,R-1 

of 

Equa l i ty  i s  a t t a i n e d  i f  w e  t ake ,  as $(mh, nh),  t h a t  e igen func t ion  of t he  

ope ra to r  E + T ( A  

l e v e l  t = pT t o  l e v e l  p = (n  + I)?) wi th  eigenvalue,  A k R ,  l a r g e s t  i n  
modulus. 

+ A 
xx YY 

) ( i . e .  t he  ope ra to r  which e f f e c t s  t r a n s i t i o n s  from 

I f  maxlX I < 1 we have the energy i n e q u a l i t y  
k2 - 

k.2 

A s  k and R run through t h e  va lues  k,R = 1, 2, ..., M-1,  t h e  e igenvalues  run  

through a f i n i t e  set of po in t s ,  on t h e  real a x i s ,  l y i n g  t o  t h e  l e f t  of t he  
po in t  1 = 1. The l e f tmos t  po in t  is reached f o r  k = R = M-1: 
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x = 1 - 8r sin2 (M-l)n = 
M-1 ,M-1 2M 

= 1 - 8r cos2 !- 2M = 1 - 8r + O ( 2 ) .  

Therefore the inequality maxlx I < 1 i s  satisfied for -1 5 1 - 8r, r 5 114 kR - 
For the implicit scheme 

u" = $(mh, nh), 
mn 

up = 0 
mnlp 

J 

the solution has the form 

where 

and the coefficients ckR are determined, as before,  by Eq. ( 1 9 ) .  Here 
0 < xkR < 1, and the energy inequality (20) holds for any value of r = 

r/h2. 

* * * * * *  

4. Representation of the solution of a difference scheme for the 

vibrating string problem. Consider the example of the three-level scheme 
L u(~) = f(h), approximating the problem of the vibrating string with fixed 
ends: 

Utt - uxx = 0, O(x(1, O(t(T, 

h 

Define 
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- T 2  T2 
$m = u(mh,O) + T U  (mh,O) + - u (mh,O) = J, (mh) + Wl(mh) + $ i * ( x ) .  t 2 t t  0 

We w i l l  look f o r  a s o l u t i o n  of t h e  d i f f e r e n c e  equa t ion  s a t i s f y i n g  

cond i t ion  u: = { = 0, and of t h e  form 

m = ap fi s i n  T ( z  X P J , ' ~ ) ) ,  (21)  

- 
i gnor ing ,  f o r  t he  moment, t h e  i n i t i a l  cond i t ions  u" = $O(mh) and u: = qm. 

m 
For h we ge t  t h e  fo l lowing  equa t ion  

1 
h - 2 + -  x 

TZ 
s i n 2  , 

!Jk= -h2  - Pk = 0, 

Thus t h e r e  are two s o l u t i o n s  of t he  d e s i r e d  form ( 2 1 ) :  

Because of t h e  l i n e a r i t y  of t h e  problem t h e  expres s ion  
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i s  a solution for any choice of the numbers ak and Bk, k = 1, 2, ..., M - 1 .  

For p = 0 and p = 1 one gets, respectively, 

These relations determine the values of ak and Bk. 
the Fourier coefficient of the expansion Jio(mh) in the functions [ $  k(h)i , 
i.e. 

The sum a + B must be 

Similarly 

* * *  

Expansion of the solution of a difference equation in a finite Fourier 
series is a device used not only to determine under what conditions an 

energy inequality is satisfied. 
for various purposes in the qualitative study of model problems. 

finite Fourier series is rarely used directly for the computation of the 

solution. 
problems. 
problems with variable coefficients, and regions with curved boundaries. 
Further, we can expect that, in the modified problems, such properties as 
the validity of an energy inequality will be preserved. 
change in the problem eliminates the possibility that its solution can be 
represented as a finite Fourier series: we generally cannot find 
eigenfunctions of the level-to-level transition operator and cannot compute 

corresponding eigenvalues. 

Below we will often use such expansions 

It must be noted, however, that the representation of a solution as a 

A good computational method must be useful for a wide range of 
The above difference schemes may easily be generalized to treat 

But any such 
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PROBLEMS 

1. For the two-dimensional heat-conduction problem in a square 

region, with a solution vanishing on the boundary, consider the difference 
scheme 

7 
(in the notation introduced in the text of the above section). Write out 
the solution of this problem in the form of a finite Fourier series. De- 

termine for what values of n, 0 5 (J 

i (up, up) is valid for any choice of r = T/h2. 

For which (J can we write, given any up f 0, the strict inequality 

(up+', up+') < (up, up), regardless of the choice of r or of the step- 
width, h? 

1, the energy inequality (up+', up'') 

2. Write the solutions of the differential problem 

u - u  =0, O l x < 1 ,  O l t l T ,  
t x x  

ulr = 0 ,  u(x, 0) = $(XI 

and the difference problem 

I upfl - up 
mn - Axxu;, = 0, mn 

respectively, in a Fourier series and finite Fourier series. Prove by 
comparing these series for r 

that the solution of the difference scheme converges to the solution of the 
differential problem. Prove that for r > 1/2 there is, in general, no 
covergence 

problem for the Poisson equation in the square region 0 (x, y (I: 

1/2, assuming the boundedness of $"(x), 

3 .  Write out in a finite Fourier series the solution of the Dirichlet 

A u + A u = $(mh, nh), 0 < mh, nh < 1, 
xx mn y y  mn 

with the boundary condition 
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nh, if m = 0 

1 + mh, if n = M, 

mn mh, if n = 0, 

1 + nh, if m = M. 

Hint for 3b: u = mh + nh + Z where 2 satisfies homogeneous 
mn mn ' mn 

conditions on the boundary. 

528. The maximum principle 

We have already seen by way of examples, in §§21  and 2 4 ,  how to prove 

stability with the aid of the maximum principle. Here we analyze two more 

interesting examples where one can prove stability via this method: impli- 

cit and explicit difference schemes approximating the boundary-value 
problem for the heat equation 

7 au aZu - - a2(x, t) - = $(x, t), 
ax2 

at 
o < x < 1, o 5 t 5 T ,  

1. Explicit difference scheme. Let us consider the explicit dif- 

ference scheme 

m = 1, 2, ..., M-1; n = 0 ,  1, ..., [ T / T ] - 1 ,  

uo m = $O(mh), m = 0, 1, ..., Mh, 

u; = bl(nT),  

% = 'b2(nT), 

n = 1, 2 ,  ..., [ T / T ] ,  

n = 1, 2,  ..., [ T / T ] ,  
n 

where M = l/h is a positive integer. 

The Von Neumann spectral criterion, together with the principle of 

frozen coefficients leads, as we saw in 926,  to the necessary stability 

condition 

1 T < 
h2 - 2 max a2(x, t) 

X,t 
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We will now show that, given this condition, the above scheme really is 

stable if norms are defined via the equations 

Let us first establish the validity of the inequality (the "maximum 

principle") 

For this purpose we rewrite the difference equation on which scheme (2) is 

based, casting it in the form 

If condition ( 3 )  is satisfied the expression 1 - 2ra2(xm, tn) is non- 
negative. Therefore we may write 
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we arrive at the maximum principle (5). 

two terms, uChp = v(~) + w(~), defining v(~) and w(~), respectively, as the 
Next we s lit the solution, ufh), of the problem I.hu(h) = f(h) into 

solutions of the following equations 

Similarly, again by virtue of bound (5), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

From the bounds on vn+' and wn+l it follows that 
m m 
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where 

This inequality is valid for all n. Therefore 

and the scheme is stable. 

2. Implicit difference scheme. Now let us consider the implicit 
difference scheme 

n+l 
m m' 

In order to compute the u 
the problem 

, given un m = 0, 1, ..., N, one must solve 

n+l - n+l n+l 

h2 

+ un 
= $ + $(x,, tn), 

um+l 2um - -  a 2 bm, tn) 
n+l 
'm 

After both sides of the above difference equation have been multiplied by T 

this problem takes the form 

a v + b v + cmvmCl = gm, rn = 1, 2, ..., M - 1 ,  I (15) 
m m-1 m m 

vo = a, VM = 6, 
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The coefficients am, bm, cm satisfy the conditions 

a > 0 ,  cm > 0, !b,l > am + cm + $ ( 6  > 0 ) .  

Therefore, as shown in § § 4  and 5, the problem has a unique solution 

which can be computed by FEBS. 

To prove stability we must still demonstrate the validity of 
inequality (12). For this purpose we first prove inequality (5 )  (the 

maximum principle), from which bounds (10) and ( 1 2 )  may be derived exactly, 
word for word, as in the case of explicit scheme (2 ) .  

Of all the quantities, u;", equal in modulus to m;xlu:l), select 

that one whose index, m, has the smallest value m = m*. If m* = 0 or 

m* = M then, in view of (8), the validity of inequality (5 )  is obvious. 

ose in* f 0 and m* f M. Let us write out Eq.  ( 1 4 )  for m = in*: 

= - u;* - '$(X,*, tn). 

n+l 
Suppose, for the sake of definiteness, that > 0.  Then the left-hand 
side of this equation can be bounded thus: 

Theref ore 
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3. Comparison of the explicit and implicit difference schemes. Thus 

we have proven inequality (5), and also the maximum principle implied by 

(5). At the same time we have also proven the stability of implicit dif- 
ference scheme ( 1 4 )  in norms ( 4 ) .  

we stress the essential difference between the explicit and implicit 
schemes ( 2 1  and ( 1 4 ) .  
limitation 

The first requires f o r  stability the step-size 

which becomes very restrictive if the coefficient J ( x ,  tl takes on large 
values even in the small neighborhood of some single point. 
implicit, difference scheme remains stable for any arbitrary relation 
between the step-sizes h and T. 

for any arbitrary relation between net step-sizes are called absolutely 
stable or unconditionally stable. Explicit scheme (2) is not uncondi- 

tionally stable. 

The second, 

Difference schemes which, like the implicit scheme ( 1 4 ) ,  remain stable 



This Page Intentionally Left Blank



293 

Chapter 9 

D i f f e rence  Scheme C m c e p t s  i n  t h e  Computation 

of Genera l ized  S o l u t i o n s  

629 The Genera l ized  S o l u t i o n  

In  a l l  t he  examples s o  f a r  cons idered  we have assumed t h a t  t h e r e  ex i s -  

t ed  " s u f f i c i e n t l y  smooth" s o l u t i o n s  of t he  d i f f e r e n t i a l .  boundary-value 

problem, and based the  cons t ruc t ion  of d i f f e r e n c e  schemes on t h e  approxi- 

mate replacement of d e r i v a t i v e s ,  i n  a d i f f e r e n t i a l  equa t ion ,  by d i f f e r e n c e  
r e l a t i o n s .  But d i f f e r e n t i a b l e  func t ions  do not  s u f f i c e  f o r  t h e  d e s c r i p t i o n  

of many phys ics  processes .  Thus, f o r  example, experiments show t h a t  t he  

d i s t r i b u t i o n s  of p re s su re ,  d e n s i t y  and tempera ture  i n  the  supe r son ic  flow 

of a non-viscous gas are desc r ibed  by f u n c t i o n s  wi th  jump-d icon t inu i t i e s ,  

d i s c o n t i n u i t i e s  c a l l e d  "shock waves." D i s c o n t i n u i t i e s  may develop ,  i n  t h e  

course  of time, even from smooth i n i t i a l  cond i t ions .  

The corresponding d i f f e r e n t i a l  boundary-value problems do  not  have 

smooth s o l u t i o n s .  It w i l l  be necessa ry  f o r  us  t o  broaden the  concept of a 

s o l u t i o n  and, i n  some n a t u r a l  way, t o  in t roduce  gene ra l i zed  s o l u t i o n s  which 

can be d iscont inuous .  There a r e  two b a s i c a l l y  d i f f e r e n t  ways t o  do t h i s .  

The f i r s t  approach i s  t o  w r i t e  t he  phys ica l  conserva t ion  laws (conser -  

va t ion  of mass, momentum, energy ,  e t c . )  no t  i n  d i f f e r e n t i a l ,  bu t  i n  i n t e -  

g r a l  form. Then they are meaningful even f o r  d i scon t inuous  f u n c t i o n s  which 

cannot be d i f f e r e n t i a t e d  but can be i n t e g r a t e d .  

The second c o n s i s t s  i n  t h a t  one a r t i f i c i a l l y  in t roduces  i n t o  the  d i f -  

f e r e n t i a l  equa t ions  terms such t h a t  t he  r e s u l t i n g  equa t ions  w i l l  have 

smooth s o l u t i o n s .  These a r t i f i c i a l l y  in t roduced  terms may, i n  the case  of 

gas dynamics problems, be i n t e p r e t e d  a s  smal l  v i s c o s i t y  terms which smooth 
the  d i s c o n t i n u i t i e s  i n  t he  s o l u t i o n .  Eventua l ly  the  c o e f f i c i e n t s  of t hese  

"v iscous"  terms tend t o  ze ro ,  and the  l i m i t  approached by the  s o l u t i o n  is  
taken  t o  be the  gene ra l i zed  s o l u t i o n  of the  o r i g i n a l  problem. 

t a t i o n a l  methods which may be needed t o  compute t h i s  s o l u t i o n ,  v i a  t h e  

example of t he  fo l lowing  Cauchy problem 

We c l a r i f y  the  d e f i n i t i o n  of the  gene ra l i zed  s o l u t i o n ,  and the  compu- 

au  
3 + u - = 0 ,  a t  ax o < t < T ,  - m < X < m ,  
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which is the  s i m p l e s t  model gas  dynamics problem among a l l  those  i n  which 

d iscont inuous  s o l u t i o n s  develop from smooth i n i t i a l  da t a .  

problem ( I )  has t h e  smooth s o l u t i o n  u(x,  t ) .  

def ined  by the  equat ion  

1. Mechanism generating discontinuities. Let us assume, f i r s t ,  t h a t  
D r a w  t h e  l i n e s ,  x = x ( t ) ,  

These l i n e s  a r e  c a l l e d  characteristics of t h e  equa t ion  u + uu = 0.  t 

Fig.  28. Fig 29. 

Along each c h a r a c t e r i s t i c  x = x ( t )  t h e  s o l u t i o n  u (x ,  t )  may be cons idered  a 

func t ion  of t a lone :  

u(x ,  t )  - u [ x ( t ) ,  t ]  = u ( t ) .  

C lea r ly  

Therefore  a long  each c h a r a c t e r i s t i c  t he  s o l u t i o n  is  cons t an t ,  u (x ,  t )  = 

cons t .  But, by v i r t u e  of Eq. ( 2 ) ,  i t  fo l lows  from u = const t h a t  each 

C h a r a c t e r i s t i c  is  a s t r a i g h t  l i n e  x = u t  + xo.  

t h e  point (xo, 0 )  froin which the  c h a r a c t e r i s t i c  emerges, and u = $(x  ) is 

Here xo is the  a b s c i s s a  of 

0 
t h e  tangent  of t h e  angle which i t  

makes wi th  t h e  t a x i s .  The a s s ign -  

ment of i n i t i a l  va lues  u(x ,  0 )  = 

trf $(x) thus  de te rmines ,  i n  a manner 

e a s i l y  v i s u a l i s e d ,  both t h e  p a t t e r n  
of c h a r a c t e r i s t i c s ,  and the  va lue  of 

t h e  s o l u t i o n  a t  each po in t  of t he  

ha l f -p lane  t > 0 (Fig.  28). 

t h e  assumption t h a t  t h e r e  e x i s t s  a 

Fig. 30. smooth s o l u t i o n  u(x ,  t ) ,  t h e  char- 

Let u s  no te  a t  once t h a t ,  under 
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a c t e r i s t i c s  cannot i n t e r s e c t ;  o therwise  each c h a r a c t e r i s t i c  would b r ing  t o  

the  i n t e r s e c t i o n  po in t  i t s  own s o l u t i o n  va lue ,  and t h e  s o l u t i o n  would no t  

be a s ing le-va lued  func t ion .  For a monotonica l ly  i n c r e a s i n g  f u n c t i o n  $ (x )  
t he  ang le  a i n c r e a s e s  wi th  i n c r e a s i n g  xo ,  and the  c h a r a c t e r i s t i c s  cannot 

i n t e r s e c t  (F ig .  29). But i n  the  case  where $(x) dec reases  wi th  i n c r e a s i n g  
xo the  c h a r a c t e r i s t i c s  converge and must i n t e r s e c t ,  r e g a r d l e s s  of t h e  

smoothness of $(x) .  A smooth s o l u t i o n  of problem ( 1 )  ceases  t o  e x i s t  a t  
t he  moment t = t ,  when a t  least two c h a r a c t e r i s t i c s  i n t e r s e c t  (F ig .  30). 

Fig.  31. 

- 
1 -  - 
2 

Graphs of the  func t ions  u = u(x ,  t )  a t  t = 0 ,  - t and t a r e  shown i n  

f " pcz, a 
I 

I -2 
D 

Fig. 31. 

2. Definition of the generalized solution. We r e c a l l  Green's 

formula,  which we w i l l  use t o  determine the  gene ra l i zed  s o l u t i o n  of 

problem (1). Let D be an a r b i t r a r y  reg ion ,  w i th  boundary r ,  on the  x t  

p lane ,  and suppose t h a t  0 (x ,  t )  and 4 (x ,  t )  have, i n  reg ion  D,  p a r t i a l  

d e r i v a t i v e s  which a r e  continuous up  t o  the  boundary. Then one can d e r i v e  

the  fo l lowing  equa t ion  

1 2 

due t o  Green. The expres s ion  (a0  / a t )  + ( W 2 / a t )  i s  the  divergence of t h e  
vec to r  0 = ( 0  1, 42)T. Green's formula (3 )  states t h a t  the  i n t e g r a l  of t he  

d ivergence  of the  vec to r  f i e l d  0 over the  reg ion  D is equal  t o  t h e  c u r r e n t  

of v e c t o r  0 a c r o s s  the  boundary, r ,  of t h a t  reg ion .  

F i r s t  we w i l l  w r i t e  t he  d i f f e r e n t i a l  equa t ion  of problem ( 1 )  i n  d ivergence  

form : 

1 

We go on, now, t o  de f ine  the  concept of a gene ra l i zed  s o l u t i o n .  

aU a ~2 

a t  ax - + -  (,) = 0. ( 4 )  

I n t e g r a t i n g  both s i d e s  of E q .  ( 4 )  over any a r b i t r a r y  r eg ion ,  D ,  l y i n g  
i n  the  ha l f -p lane  t 0,  w e  g e t  

a u  a 2 U2 
0 = 1,j [z + a (:)Id. d t  = b(u  dx - - 2 d t ) .  

r 
Thus each d i f f e r e n t i a b l e  s o l u t i o n  of Eq. ( 4 )  s a t i s f i e s  t he  i n t e g r a l  

re l a  t i o n  
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U2 
b(u dx - - d t )  = 0 ,  

2 r 

C h a p t e r  9 

( 5 )  

where r i s  a n  a r b i t r a r y  c o n t o u r  l y i n g  i n  t h e  h a l f - p l a n e  t > 0. Equa- 

t i o n  (5) e x p r e s s e s  a c e r t a i n  c o n s e r v a t i o n  l a w :  i .e .  t h e  c u r r e n t  of t h e  

v e c t o r  ( u ,  u 2 / 2 ) T  a c r o s s  any c l o s e d  contour  v a n i s h e s .  

i n t e g r a l  c o n s e r v a t i o n  law ( 5 )  f o r  e v e r y  c o n t o u r  r ,  t h e n  a t  e a c h  p o i n t  

( x o ,  t o ) ,  to > 0 ,  Eq. ( 4 )  i s  s a t i s f i e d .  

f o r  t h e  s a k e  of d e f i n i t e n e s s ,  t h a t  a t  some p o i n t  ( x  

L e t  u s  now prove t h a t ,  c o n v e r s e l y ,  i f  a smooth f u n c t i o n  s a t i s f i e s  t h e  

Assume t h e  c o n t r a r y  and suppose ,  

0’ to)  

> 0. 

0’ 
0 

x = x  
t = t  

Then by c o n t i n u i t y  one can f i n d  a c i r c l e  D ,  w i t h  c e n t e r  a t  ( x  

p e r i m e t e r  r ,  s m a l l  enough so  t h a t  everywhere w i t h i n  i t  u + (u2/2Yx > 0. 
Thus 

t ) and 
0 ’  

t 

U* a U  a 
2 a x  2 

0 = b(u dx - - d t )  = 1,1 [z + - (-)]dx d t  > 0. 
r 

The c o n t r a d i c t i o n  0 > 0 proves  t h a t ,  f o r  a smooth f u n c t i o n  u ( x ,  t ) ,  

( 5 )  i m p l i e s  ( 4 ) ,  s o  t h a t  ( 4 )  and ( 5 )  a r e  e q u i v a l e n t .  But i n  t h e  c a s e  of a 

d i s c o n t i n u o u s  f u n c t i o n  u ( x ,  t )  t h e  d i f f e r e n t i a l  e q u a t i o n  (1) o r  ( 4 ) ,  on a 

l i n e  of d i s c o n t i n u i t y ,  w i l l  l o s e  i t s  meaning, w h i l e  t h e  i n t e g r a l  c o n d i t i o n  

( 5 )  w i l l  n o t .  T h e r e f o r e  any p i e c e w i s e - d i f f e r e n t i a b l e  f u n c t i o n  which 

s a t i s f i e s  c o n d i t i o n s  ( 5 ) ,  f o r  e v e r y  a r b i t r a r y  c o n t o u r  I’ i n  t h e  h a l f - p l a n e  

t 2 0, w i l l  be c a l l e d  a “ g e n e r a l i z e d  s o l u t i o n ”  of Eq. ( 4 ) .  

t h a t ,  w i t h i n  a r e g i o n  where we s e e k  a s o l u t i o n ,  t h e r e  is a l i n e  x S x ( t ) ,  

on which t h e  g e n e r a l i z e d  s o l u t i o n  has  a 

f i r s t - o r d e r  d i s c o n t i n u i t y .  Suppose t h a t ,  

on approaching  from t h e  l e f t  or r i g h t  we 

g e t  on t h i s  l i n e ,  r e s p e c t i v e l y ,  

3. Condition 00 a line of discontinuity of a solution. Suppose 

u(x ,  t )  = Uleft(x,  t ) ,  

u ( x ,  t )  = Uright (x$  t ) .  

X 

i:+f; 
Q F i g .  32. It t u r n s  o u t  t h a t  t h e  v a l u e s  u l e f t ( x ,  t )  

and ur ight(x,  t )  and t h e  s p e e d ,  x = d x / d t ,  
w i t h  which a p o i n t  of d i s c o n t i n u i t y  moves cannot  be a r b i t r a r y :  t h e s e  

v a r i o u s  q u a n t i t i e s  are i n t e r c o n n e c t e d  by c e r t a i n  r e l a t i o n s .  
Suppose L i s  t h e  l i n e  of d i s c o n t i n u i t y  ( F i g .  32) .  The i n t e g r a l  

1 1 
ABCDA 
v a n i s h e s .  When t h e  segments  BC and DA s h r i n k  t o  t h e  p o i n t s  E and F ,  

( u  dx - y u 2 d t )  on t h e  c o n t o u r  ABCDA, as on any o t h e r  c o n t o u r ,  
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r e s p e c t i v e l y ,  t he  i n t e g r a l s  a long  t h e s e  segments vanish  and we ge t  t he  

equa t ion  

or 

I 
L’ 

I 
L’ 
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where [ z ]  = zright - zleft  is  the  step-jump i n  t h e  va lue  of z a long  the  

l i n e  of d i s c o n t i n u i t y ,  and L’ is an a r b i t r a r y  segment of t h i s  l i n e .  

po in t  of l i n e  L ,  the  in t eg rands  i n  t h e  above equa t ions  must vanish :  

I n  view of t he  a r b i t r a r i n e s s  of segment L’ w e  conclude t h a t ,  a t  each 

Theref ore  

+ u  
l e f t  r i g h t  

U 2  - u2 
r i g h t  l e f t  = 

d t  21” - u  2 
r i g h t  l e f t ’  

s o  t h a t  

+ u  
( 6 )  

- -  dx - U l e f t  r i g h t  
d t  2 

I f  we had w r i t t e n  t h e  equa t ion  u + uu = 0 i n  another  d ivergence  form, 

e.g. 
t 

w e  would have a r r i v e d ,  by a similar r o u t e ,  t o  another  i n t e g r a l  r e l a t i o n ,  i n  

t h i s  case t o  

u2 u3 6 (1 dx - 7- d t )  = 0, 
r 

and t o  another  cond i t ion  on t h e  l i n e  of d i s c o n t i n u i t y :  

+ u2 
- =  dx 2 U:eft + U l e f t u r i g h t  r i g h t  
d t  7 + u  

u l e f t  r i g h t  

The s lope  (9 )  of t h e  d i s c o n t i n u i t y  l i n e  ( o r  t he  speed of t he  shock 

wave) does not co inc ide  with t h e  s l o p e  (6), corresponding  t o  the  f i r s t  

d ivergence  form ( 4 ) .  Thus it is  c l e a r  t h a t  t h e  na tu re  of t h e  gene ra l i zed  

s o l u t i o n  depends on p r e c i s e l y  what conse rva t ion  l a w  underLies the  d i f f e r -  
e n t i a l  equa t ion  (1 ) .  In  t h e  problems of mathematical  phys ics  the  conser- 

va t ion  l a w s  have a p e r f e c t l y  w e l l  def ined  phys ica l  meaning. 

For smooth func t ions  u a l l  f i v e  expres s ions  
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a u + u " = O ,  a 
a t  ax  

aU a -+-(-) = 0 ,  a t  ax  2 

a &  a u 3  -( ) +-[--) = 0, a t  2 ax 3 

(f 2 dx - - u3 d t )  = 0 
3 r 

a r e  e q u i v a l e n t .  Below, i n  d i s c u s s i n g  Cauchy problem ( I ) ,  we w i l l  be 
assuming i n t e g r a l  c o n s e r v a t i o n  l a w  (5), and d i s c o n t i n u i t y  c o n d i t i o n  ( 6 )  

which f lows  from i t .  

4. Decay of an arbitrary discontinuity. Suppose w e  a r e  g i v e n  t h e  

d i s c o n t i n u o u s  i n i t i a l  c o n d i t i o n s  

2 f o r  x < 0 

1 f o r  x > 0. 
u =  j 

u =  1 

The s o l u t i o n  c o n s t r u c t e d  from t h e s e  i n i t i a l  c o n d i t i o n s  i s  shown i n  Fig.  33. 

t h e  a r i t h m e t i c  a v e r a g e  of t h e  s l o p e s  of t h e  c h a r a c t e r i s t i c s  on e i t h e r  s i d e  

of i t .  

The s l o p e  of t h e  l i n e  of d i s c o n t i n u i t y  ( d x / d t )  = ( 2  + 1 ) / 2  = 3/2 is  

We now a s s i g n  i n i t i a l  c o n d i t i o n s  w i t h  a d i f f e r e n t  d i s c o n t i n u i t y :  

1 f o r  x < 0, 

2 f o r  x > 0. 

From Fig .  34 one sees t h a t  i t  is  now p o s s i b l e  t o  c o n s t r u c t  s o l u t i o n s  

i n  two ways. The f i r s t  g i v e s  u s  a c o n t i n u o u s  s o l u t i o n ,  w h i l e  t h e  second 

Fig .  33. 

y i e l d s  a s o l u t i o n  d i s c o n t i n u o u s  f o r  t > 0. Here i t  i s  n e c e s s a r y  t o  g i v e  

p r e f e r e n c e  t o  t h e  c o n t i n u o u s  s o l u t i o n .  

a rgue  a s  f o l l o w s .  I f  t h e  i n i t i a l  c o n d i t i o n s  are s l i g h t l y  changed,  so  t h a t  
w e  a r e  g i v e n  

In  f a v o r  of t h i s  c o n c l u s i o n  one may 
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f o r  x LO, 
f o r  x 2 E ,  

1 + X / E  f o r  0 5 X E ,  

t h e n  the s o l u t i o n  u, shown i n  F ig .  35, i s  d e t e r m i n e d  u n i q u e l y .  A s  E t e n d s  

t o  z e r o  t h i s  s o l u t i o n  goes o v e r  t o  t h e  c o n t i n u o u s  s o l u t i o n  drawn i n  Fig.  

34a. The i m p o s s i b i l i t y  of t h e  s o l u t i o n  d e p i c t e d  i n  34b, because  of 

Fig. 34 .  

Its  i n s t a b i l i t y  w i t h  r e s p e c t  t o  p e r t u r b a t i o n s  i n  i n i t i a l  c o n d i t i o n s ,  i s  

ana logous  t o  t h e  i m p o s s i b i l i t y  of r a r i f i c a t i o n  shock waves i n  t h e  

mathemat ica l  d e s c r i p t i o n  of t h e  f low of i d e a l  g a s e s .  

t h e  g e n e r a l i z e d - s o l u t i o n  concept  t h r o u g h  c o n s i d e r a t i o n  of t h e  a u x i l i a r y  

problem 

5 .  O t h e r  d e f i n i t i o n  of t h e  g e n e r a l i z e d  s o l u t i o n .  One may f o r m u l a t e  

Here t h e  d i f f e r e n t i a l  e q u a t i o n  is  no l o n g e r  h y p e r b o l i c ,  h u t  of p a r a b o l i c  

type .  I t ’ s  s o l u t i o n s  p r e s e r v e  smoothness  i f  +(x) is  a smooth f u n c t i o n :  

F ig .  35. 

and i f  u(x ,  0 )  i s  d i s c o n t i n u o u s ,  t h e n  t h e  d i s c o n t i n u i t y  i s  smoothed. The 

parameter  P > 0 p l a y s  t h e  same r o l e  h e r e  a s  v i s c o s i t y  i n  g a s  dynamics.  

p + O t h e  s o l u t i o n  of problem (10)  t e n d s  t o  a l i m i t  which we can t a k e  t o  be 

t h e  g e n e r a l i z e d  s o l u t i o n  of problem ( 1 ) .  One can show t h a t ,  f o r  problem 

AS 
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( l ) ,  t h i s  l a t t e r  d e f i n i t i o n  of t h e  gene ra l i zed  s o l u t i o n  i s  equ iva len t  t o  

the  d e f i n i t i o n  based on conserva t ion  law (5). 

530. The construction of difference schemes 

L e t  u s  proceed, now, t o  d i scuss  the  cons t ruc t ion  of d i f f e r e n c e  schemes 

f o r  the  problem 

We w i l l  assume, f o r  t he  sake  of d e f i n i t e n e s s ,  t h a t  + (x )  > 0. Then 

u(x ,  t )  > 0. It may seem n a t u r a l ,  a t  f i r s t  g l ance ,  t o  cons ider  t h e  use of 
t h e  d i f f e r e n c e  schemes 

m 
- ,P up - up 

= 0 ,  p = 0, 1,  ..., m m-1 
h 

+ up 
m 

Freez ing  the  c o e f f i c i e n t  up a t  t he  po in t  m = m0 we see t h a t ,  f o r  t h e  

r e s u l t i n g  equa t ion  wi th  cons tan t  c o e f f i c i e n t s ,  i n  t h e  t r a n s i t i o n  t o  t h e  
l e v e l  t = ( p  + l)T t he  maximum p r i n c i p l e  is f u l f i l l e d  if the  s t ep - s i ze ,  

T = T i s  chosen s o  as t o  s a t i s f y  the  cond i t ion  

m 

P’ 

Thus we may expec t  s t a b i l i t y .  I f  t he  s o l u t i o n  of problem (1) i s  smooth, 

then the re  i s  l i t t l e  reason t o  doubt t h a t  problem ( 2 )  approximates problem 

( 1 ) .  And, i n  f a c t ,  i n  t h i s  case exper imenta l  computations of s o l u t i o n s  

known, beforehand, t o  be smooth confirm convergence. 
However, i f  problem ( 1 )  has a d i scont inuous  s o l u t i o n ,  then convergence 

t o  the  gene ra l i zed  s o l u t i o n  determined, l e t  us say ,  by the  i n t e g r a l  conser -  

va t ion  l a w  

cannot be expected on any reasonable  grounds. Indeed, no informat ion  has 

been b u i l t  i n t o  the  proposed d i f f e r e n c e  scheme ( 2 )  a s  t o  j u s t  what s o r t  of 
conserva t ion  law ( (8)  $29, or ( 3 ) ,  or  perhaps some o t h e r )  w e  have taken  as 

a b a s i s  f o r  t h e  gene ra l i zed  s o l u t i o n .  
Therefore  i n  cons t ruc t ing  a d i f f e r e n c e  scheme one must use  e i t h e r  t h e  

i n t e g r a l  conserva t ion  l a w  cor responding  t o  t h e  d e s i r e d  gene ra l i zed  so lu -  
t i o n ,  say l a w  ( 3 ) ,  or  the  equa t ion  with a r t i f i c i a l  v i s c o s i t y  (10) $ 2 9 ;  
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which 

u + uu = !Ju 
t xx’ 

ccompl ishes ,  a s  D + 0 ,  t h e  s e l e c t i o n  of t h e  g e n e r a l i z e d  

( 4 )  

o l u t i o n  

which i n t e r e s t s  U S .  

1.  Schemes v i t h  a r t i f i c i a l  v i s c o s i t y .  Le t  u s  p o i n t  o u t  a t  once t h a t  

t h e  d i f f e r e n c e  scheme w i t h  a r t i f i c i a l  v i s c o s i t y  

up - 2up + up 
m m-1 m m+l m p m m-1 

u P + l  - up - up 

T = ! J  
h2 

h , 

has  a s o l u t i o n ,  u ( ~ )  = [u:} which,  f o r  s u f f i c i e n t l y  s m a l l  ‘I = T(h,  !-I), 

converges  uni formly  as  h + 0 t o  t h e  d e s i r e d  g e n e r a l i z e d  s o l u t i o n  o u t s i d e  

any p r e s c r i b e d  neighborhood,  however s m a l l ,  of t h e  l i n e  of d i s c o n t i n u i t y  of 

t h i s  s o l u t i o n .  I t  must be assumed, h e r e ,  t h a t  !J = u ( h )  t e n d s  t o  z e r o  s u f -  

f i c i e n t l y  s l o w l y .  Var ious  schemes u s i n g  a r t i f i c i a l  v i s c o s i t y  a r e  a p p l i e d  

s u c c e s s f u l l y  i n  g a s  dynamics c a l c u l a t i o n s .  T h e i r  weakness is  t h e  smear ing  

of d i s c o n t i n u i t i e s .  

We t u r n  now t o  c o n s i d e r ,  i n  d e t a i l ,  t h e  c o n s t r u c t i o n  of d i f f e r e n c e  

schemes based on c o n s e r v a t i o n  law ( 3 ) .  
I t  is  p o s s i b l e  t o  d i s t i n g u i s h  two approaches .  I n  t h e  f i r s t  one u s e s ,  

no t  on ly  t h e  c o n s e r v a t i o n  law ( 3 )  i t s e l f ,  b u t  a l s o  t h e  d i s c o n t i n u i t y  condi-  

t i o n  

dx U l e f t  + U r i g h t  
d t  2 
- =  

which t h i s  law i m p l i e s .  I n  t h e  second t h e  d i s c o n t i n u i t i e s  a r e  n o t  s i n g l e d  

o u t ,  and t h e  computa t ion  is  governed by t h e  same e q u a t i o n s  a t  a l l  p o i n t s  of 

t h e  c o m p u t a t i o n a l  n e t .  

2. The method of c h a r a c t e r i s t i c s .  The i d e a  of s i n g l i n g  o u t  t h e  d i s -  

c o n t i n u i t y  i n  computing t h e  g e n e r a l i z e d  s o l u t i o n  i s  embodied i n  i t s  c l e a r -  

e s t  form i n  t h e  method of c h a r a c t e r i s t i c s ,  which may be c o n s i d e r e d  as one 

of t h e  v a r i a n t s  of t h e  f i n i t e  d i f f e r e n c e  method. The development  of d i s -  

c o n t i n u i t i e s  i n  t h e  c o u r s e  of t h e  computa t ion ,  i . e .  w i t h  i n c r e a s i n g  t i m e  t ,  

is t a k e n  i n t o  account  v i a  s p e c i a l  e q u a t i o n s ,  making u s e  of r e l a t i o n  ( 5 )  on 

t h e  d i s c o n t i n u i t y .  Away from t h e  d i s c o n t i n u i t y  s t a t e m e n t s  of t h e  d i f f e r e n -  

t i a l  e q u a t i o n s  i n  a l l  t h e  forms we have e n c o u n t e r e d  are e q u i v a l e n t .  There- 

f o r e ,  i n  c o n s t r u c t i n g  c o m p u t a t i o n a l  formulas  a t  p o i n t s  where t h e  s o l u t i o n  

I s  smooth, w e  may t a k e  as our  s t a r t i n g  p o i n t  t h e  c o n s e r v a t i o n  l a w  i n  d i f -  

f e r e n t i a l  form,  i . e .  t h e  d i f f e r e n t i a l  e q u a t i o n  

+ 0. - 
a t  ax 
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I n  i t s  main o u t l i n e s  one of t h e  v a r i a n t s  of t h e  method of c h a r a c t e r -  

i s t ics ,  a v a r i a n t  a p p l i c a b l e  t o  our  example, may be s k e t c h e d  as f o l l o w s .  

Mark out  on t h e  x a x i s  t h e  p o i n t s  x = mh. We w i l l  assume,  f o r  t h e  s a k e  of 
m 

d e f i n i t e n e s s ,  t h a t  t h e  i n i t i a l  c o n d i t i o n ,  u ( x ,  0) = $ ( x ) ,  i s  g i v e n  by t h e  

smooth f u n c t i o n  Jl(x). 

e q u a t i o n  u + uu = 0.  
t 

Suppose, i n  o r d e r  no t  t o  c o m p l i c a t e  our  p r e s e n t a t i o n ,  t h a t  f o r  t h e  

g i v e n  f u n c t i o n ,  $ ( x ) ,  one can choose such  a small T t h a t  d u r i n g  any time 

i n t e r v a l  of l e n g t h  T a c h a r a c t e r i s t i c  can i n t e r s e c t  no more t h a n  one of i t s  

n e i g h b o r i n g  c h a r a c t e r i s t i c s .  S e l e c t  such  a T and draw t h e  l i n e s  t = t = 

PT. 

t h e  p o i n t  (xm, 0 )  w i t h  t h e  l i n e  t = 7, and t r a n s l a t e  t o  t h e s e  p o i n t s ,  a l o n g  

t h e  c h a r a c t e r i s t i c s ,  t h e  v a l u e s  of t h e  s o l u t i o n  u(x 

I f ,  i n  t h e  i n t e r v a l  0 t 5 T, no two c h a r a c t e r i s t i c s  have i n t e r s e c t e d  

we t a k e  t h e  f o l l o w i n g  s t e p ;  we e x t e n d  t h e  c h a r a c t e r i s t i c s  up t o  t h e i r  i n -  

t e r s e c t i o n s  w i t h  t h e  l i n e  t = 2T and t r a n s l a t e  t h e  s o l u t i o n  values  a l o n g  

t h e  c h a r a c t e r i s t i c s ,  t o  t h e  p o i n t s  of i n t e r s e c t i o n .  I f ,  d u r i n g  t h e  t i m e  
T < t < 2 ~ ,  t h e r e  is  a g a i n  no i n t e r s e c t i o n s  of t h e  c h a r a c t e r i s t i c s  w e  t a k e  

t h e  f o l l o w i n g  s t e p ,  e t c . ,  u n t i l  on some segment t < t < t two char -  

a c t e r i s t i c s ,  emerging f o r  example Erom t h e  p o i n t s  (x 

( x ~ + ~ ,  0 ) ,  have i n t e r s e c t e d  (F ig .  36) .  

Qm+l’ n 

From e a c h  p o i n t  ( x  , 0) draw a c h a r a c t e r i s t i c  of t h e  

Loca te  t h e  p o i n t s  of i n t e r s e c t i o n  of t h e  c h a r a c t e r i s t i c  emerging f rom 

0)  = $(x,). m ’  

P 
0)  

Then t h e  midpoin t  of t h e  segment 
m’ 

’+’ 0’’’ w i l l  be t a k e n  as t h e  p o i n t  from which a d i s c o n t i n u i t y  or igi-  

n a t e s .  The p o i n t s  Q:” and 9::; w i l l  be 

r e p l a c e d  by t h e  s i n g l e  p o i n t  Q, t o  which 

we a s c r i b e  two s o l u t i o n  v a l u e s ,  u 

and u t a k i n g  f o r  t h e s e  q u a n t i t i e s  

t h e  v a l u e s  

&tF 
l e f t  

r i g h t ’  

t=tp+r 
U l e f t  = u(QZ) and u r i g h t  = U(QZ+~). 

t’ff From t h e  p o i n t  Q we draw t h e  d l s c o n t i -  

n u i t y  l i n e  up t o  i t s  i n t e r s e c t i o n  w i t h  

F i g .  36. t h e  l i n e  t = t . The s l o p e  of t h e  

d i s c o n t i n u i t y  y;?e i s  d e f i n e d  by t h e  

4; @?+, 

d i s con t i n u i  t y c o n d i t i o n  

+ u  
U l e f t  r i g h t  

2 t a n  a = 

From t h e  p o i n t  of i n t e r s e c t i o n  of t h e  d i s c o n t i n u i t y  l i n e  w i t h  

t = t we  draw c h a r a c t e r i s t i c s  back t o  t h e i r  i n t e r s e c t i o n s  w i t h  t h e  l i n e  

t = tP+* g i v i n g  them t h e  s l o p e s  u 

a t  t h e  p r e v i o u s  l e v e l .  

t ics w i t h  t h e  l i n e  t = t we f i n d  v a l u e s  of u by i n t e r p o l a t i o n  i n  x ,  and 

t a k e  t h e s e  a s  t h e  l e f t -  and r igh t -hand v a l u e s  of t h e  s o l u t i o n  a t  t h e  p o i n t  

of d i s c o n t i n u i t y  l y i n g  on t h e  l i n e  tp+l. 

t h e  v a l u e s  of u a s s i g n e d  

A t  t h e  p o i n t s  of i n t e r s e c t i o n  of t h e s e  c h a r a c t e r i s -  
r i g h t  

and u 
p+l ’  l e f t  

P+ 1 

In th i s  way we can now d e f i n e  a 
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new s lope  of t he  d i s c o n t i n u i t y  l i n e  as t h e  a r i t h m e t i c  average  of t he  newly- 

found l e f t -  and right-hand va lues ,  and cont inue  t h i s  l i n e  s t i l l  ano the r  

t imes tep  T. 

method of c h a r a c t e r i s t i c s  i s  

t h a t  it allows one t o  t r a c k  

the  d i s c o n t i n u i t y  and t o  

compute i t  accu ra t e ly .  But i n  

the  computational process  more 

and more new d i s c o n t i n u i t i e s  

develop and, i n  f a c t ,  unimpor- Fig. 3 7 .  
t a n t  d i s c o n t i n u i t i e s  may 

i n t e r s e c t ,  s o  t h a t  i n  time the  p i c t u r e  becomes more and more complicated.  

The computational l o g i c  becomes more compl ica ted ,  t he  demands on computer 

s to rage  and computing time inc rease .  

/m,p 4 The advantage of t h e  

@-&P+i)~;~ /m+j,P $1 

/m,P,' 

This  c o n s t i t u t e s  t h e  d isadvantage  of t he  method of c h a r a c t e r i s t i c s ,  i n  

3. Divergence d i f f erence  schemes. Difference  schemes which do not  

which the  d i s c o n t i n u i t i e s  a r e  s i n g l e d  out and t r e a t e d  i n  a s p e c i a l  manner. 

use a r t i f i c i a l  v i s c o s i t y ,  and do  not  use  d i s c o n t i n u i t y  cond i t ions  must, as 

noted e a r l i e r ,  r e l y  on i n t e g r a l  conserva t ion  laws. 

0 ,  2 1 ,  ... We next mark off t he  midpoints of the  s i d e s  of t he  thus-formed 

ne t  r ec t ang le s  (F ig .  37:  coord ina te  axes  not shown) and add these  mid- 

po in t s  t o  t he  ne t  D 

O n  the x t  plane let  u s  draw a n e t  of l i n e s  t = pT, x = ( m  + 1 /2 )h ,  m = 

h'  
The func t ion  [u],  which w e  would l i k e  t o  c a l c u l a t e  w e  t ake  t o  be the  

n e t  func t ion  de f ined ,  a t  each po in t  of D h ,  by averaging  the  s o l u t i o n  

u ( x ,  t )  along t h a t  s i d e  of the  ne t  r e c t a n g l e  t o  which the  poin t  belongs: 

- -p+1/2 = 
[ u l  hl  x=x = 'm+1/2 

m+1/2' 
t =t 

p+1/2 
The approximate s o l u t i o n  of t h i s  problem i s  def ined  on t h e  same 

h '  
ne t  D Values of u ( ~ )  a t  t h e  p o i n t s ,  (xm,  , l y i n g  on the  h o r i z o n t a l  

s i d e s  of t he  rectang1.e w i l l  be des igna ted  up those  a t  p o i n t s  ( x  
m+1/2' 

t 

s i d e ,  t = t , x !? x < x ~ + ~ ,  t o  which t h e  po in t  ( x  , t ) belongs.  Analo- 

gous ly ,  we w i l l  cons ide r  t h a t  U '+lf2 is def ined  on t h e  whole v e r t i c a l  

i n t e r v a l  

) of the  v e r t i c a l  s i d e s  by 
P+1/2 

The va lues  up may be cons idered  t o  p e r t a i n  t o  t h e  whole r ec t ang le -  

P m  m p  
m+1/2 
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Thus u ( ~ )  w i l l  be a f u n c t i o n  d e f i n e d  on t h e  l i n e s  x = mh, t = pT. 

connec t ion  between t h e  q u a n t i t i e s  up and p = 0 ,  1, ..., m = 0 ,  2 1 ,  

..., w i l l  be e s t a b l i s h e d  by a p r o c e s s  s t a r t i n g  from t h e  i n t e g r a l  conserva-  

t i o n  l a w  

The 
p+1/2 

UL d ( u  dx - - d t )  = 0 .  2 r 
Let u s  t a k e ,  a s  c o n t o u r  r ,  an e l e m e n t a r y  n e t - r e c t a n g l e ,  s e t t i n g  

o r ,  i n  expanded form 

I f  we can now s e t  down a r u l e  by which one can compute t h e  q u a n t i t i e s  
P+1/2 

t 

m = 0, 21, ..., from already-known v a l u e s  of up m = 0, 21, ..., 
m' 

t h e n  Eq. ( 7 )  w i l l  a l l o w  u s  t o  compute 

t h e  q u a n t i t i e s  up+', m = 0, 21, ..., 
i . e .  t o  move ahead one t i m e s t e p .  But ,  

by whatever  s p e c i f i c  method we  com- ;IT\, __--_-- ---- p u t e  U m+1/2, a d i f f e r e n c e  scheme of 

form ( 7 )  h a s  t h e  divergence proper t y ,  
which c o n s i s t s  i n  t h e  f o l l o w i n g .  

- - -1- -- Draw, i n  t h e  ha l f -p lane  t 0, any 

c l o s e d  c o n t o u r ,  which does n o t  i n t e r -  

s e c t  i t s e l f ,  and c o n s i s t s  e n t i r e l y  of 

t h e  s i d e s  of n e t - r e c t a n g l e s  (F ig .  

r e g i o n ,  G h ,  made up of n e t  r e c t a n g l e s .  

m 

p+1/2 _-__ +--- 

I 

I 

I 

---- --- 

- s  
8 

Fig .  38. 38) .  T h i s  c o n t o u r  gh e n c l o s e s  some 

We now add,  term-by-term, a l l  Eqs. ( 7 )  p e r t a i n i n g  t o  t h e  r e c t a n g l e s  

c o n s t i t u t i n g  r e g i o n  Gh. E q u a t i o n s  ( 6 )  and ( 7 )  d i f f e r  o n l y  i n  n o t a t i o n .  

T h e r e f o r e  we may, a s  w e l l ,  sum Eqs. (7 ) ,  and we t h e n  g e t  

I n t e g r a l s  i n  (6), over  r e c t a n g l e - s i d e s  which do n o t  l i e  on t h e  boun- 

d a r y ,  g,,, of r e g i o n  G w i l l  c a n c e l  a f t e r  t h e  summation. I n  f a c t  e a c h  s u c h  

s i d e  be longs  t o  two n e i g h b o r i n g  r e c t a n g l e s  s o  t h a t  i n t e g r a t i o n  of u ( ~ )  o v e r  

e a c h  i s  encountered  t w i c e ,  w i t h  t h e  two i n t e g r a t i o n s  c a r r i e d  o u t  i n  oppo- 

s i t e  d i r e c t i o n s  (F ig .  39). 

of t h e  n e t - r e g i o n  G h ,  i n v o l v e  only  a l g e b r a i c  sums of unknowns, o r  f u n c t i o n s  

h '  

Schemes based on d i f f e r e n c e  e q u a t i o n s  which,  when summed o v e r  p o i n t s  
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of unknowns, on t h e  region-boundary are c a l l e d  "divergence schemes" o r  

"conserva t ive  schemes". Such schemes a r e  analogous t o  d i f f e r e n t i a l  

equa t ions  i n  d ivergence  form 

aal aa 
d i v @ = - + 2 =  a t  ax  0 ,  

which, when i n t e g r a t e d  term by term over t h e  two-dimensional reg ion  D 

y i e l d ,  on the  le f t -hand  s i d e ,  t he  contour  i n t e g r a l  ( 3 )  529. Scheme ( 3 )  i s  

not i n  divergence form, scheme ( 7 )  i s .  

func t ion ,  u ( ~ ) ,  s a t i s f y i n g  E q .  (7 ) ,  con- 
verges  uniformly as h + 0 t o  some 

piecewide-continuous func t ion  u(x ,  t )  i n  

each c losed  reg ion  not  con ta in ing  a 
d i s c o n t i n u i t y  l i n e ,  and l e t  uCh)  be 
uniformly bounded i n  h. Then u(x ,  t )  

s a t i s f i e s  t he  i n t e g r a l  conserva t ion  l a w  

Note t h e  fo l lowing .  Suppose the  n e t  

Fig. 39. 

U2 
( u  dx - - d t )  = 0, 2 

g 

where g i s  an a r b i t r a r y  piecewise-smooth contour.  

contour  g by a contour gh ,  t oge the r  wi th  Eq. (8)  and the  assumption of 

convergence* u -t U. 

I f  scheme ( 7 )  is t o  take  on meaning one must i n d i c a t e  a method f o r  

computing U m.f1,2 from known u p r s .  I n  t h e  scheme of S. K. Godunov, which we 
w i l l  use t o  i l l u s t r a t e  t he  concept of a d ivergence  scheme, one computes 

'm+1/2 
t = 0 t h e  s o l u t i o n  u(x ,  0 )  i s  given by the  cond i t ions  

Th i s  fo l lows  immediately from t h e  f a c t  t h a t  one can approximate 

h 

p+1/2 

v i a  the  fo l lowing  " d i s c o n t i n u i t y  decay" problem. Suppose t h a t  a t  

r i g h t  f o r  x > 0, 

where u = cons t  and u = cons t .  I t  is then poss ib l e  t o  c o n s t r u c t  

t h e  cor responding  gene ra l i zed  s o l u t i o n .  How t h i s  can be done we have seen  
l e f t  r i g h t  

i n  S29, f i r s t  f o r  t h e  example u = = 2 ,  and then  f o r  u = 2 ,  
l e f t  I '  U r i g h t  l e f t  

*The func t ion  u = u(x ,  t )  is def ined  almost everywhere,  while u f h )  = 
u(~)(x, t )  i s  def ined  only on a network of l i n e s .  
t h i s  formal i ncons i s t ency ,  f i r s t ,  by p o s t u l a t i n g  t h a t ,  a s  h dec reases ,  
each new ne t  i s  g o t t e n  by subd iv id ing  the  l a s t  n e t ,  and, second, by 
t r e a t i n g  convergence a t  t h e  p o i n t s  of one of t h e  poss ib l e  n e t s ,  con- 
s t r u c t e d  f o r  any one poss ib l e  f ixed  h. 

One can circumvent 
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u . = 1. An i m p o r t a n t  s t e p  is t h e  d e t e r m i n a t i o n  of t h e  v a l u e  U = u ( 0 , t )  

of t h e  s o l u t i o n  u ( x ,  t )  f o r  x = 0. 

r e p r e s e n t i n g  t h e  s o l u t i o n  u ( x ,  t ) ,  w i l l  e a s i l y  v e r i f y  t h a t  on t h e  l i n e  x = 

0 t h e  s o l u t i o n  w i l l  t a k e  on t h e  v a l u e s  u 

i n i t i a l  d a t a ,  and can e a s i l y  d e t e r m i n e ,  f o r  any s p e c i f i c  p a i r  of numbers 

r i g h t  

The r e a d e r ,  having  c o n s t r u c t e d  s k e t c h e s  l i k e  F i g s .  33 and 3 4 ,  

o r  0 ,  depending  on t h e  
l e f t  ' U r i g h t  

u and u p r e c i s e l y  which of t h e s e  v a l u e s  i t  w i l l  have. For  

l e f t  example i f  u > 0, u 

and u < 0 t h e n  u ( 0 ,  t )  = u 

l e f t  r i g h t ,  > 0, t h e n  u(0,  t )  5 ulef t ,  and i f  u < 0 
l e f t  r i g h t  

r i g h t  r i g h t '  

The q u a n t i t y  U m+112 (= U )  i n  scheme ( 7 )  w i l l  be de te rmined  v i a  t h e  p + l / 2  

m+1/2' 
a n a l y s i s  of a d i s c o n t i n u i t y  decay problem a t  t h e  boundary,  x = x 

between two segments  where w e  a r e  g i v e n  t h e  c o n s t a n t  v a l u e s  up  ( =  u 

and ( =  u 
] m l e f t  P 

I f ,  f o r  example, u p  > 0, m = 0 ,  fl, ..., t h e n  
r i g h t  

and scheme ( 7 )  t a k e s  t h e  form 

o r  

One can e a s i l y  s e e  t h a t ,  f o r  

t h e  maximum p r i n c i p l e  h o l d s  

C l e a r l y  t h e n ,  i f  T = h/maxl $ ( x )  I ,  we have r e a s o n  t o  hope t h a t  t h e  above 

d i f f e r e n c e  scheme w i l l  be s t a b l e  f o r  some r e a s o n a b l e  c h o i c e  of norms. We 

w i l l  n o t ,  however, s p e c i f i c a l l y  p o i n t  out  such  norms: n u m e r i c a l  e x p e r i -  

ments  conf i rm t h a t ,  as t h e  n e t  is r e f i n e d ,  t h e  s o l u t i o n  u(~) of problem 
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( 7 ) ,  w i t h  piecewise-monotonic  and piecewise-smooth i n i t i a l  v a l u e s  J l (x) ,  

converges  t o  some f u n c t i o n ,  u ( x ,  t ) ,  w i t h  a f i n i t e  number of d i s c o n t i n u -  

i t i e s ;  and,  f u r t h e r ,  o u t s i d e  any neighborhood of t h e s e  d i s c o n t i n u i t i e s ,  

convergence i s  uniform.  

Scheme ( 7 ) ,  w i t h  '+'I2 computed v i a  decay of d i s c o n t i n u i t i e s ,  is n o t ,  

of c o u r s e ,  t h e  o n l y  d i v e r g e n c e  scheme f o r  problem 11). T h e r e  is, for  
example,  a s t i l l  s i m p l e r  scheme based on t h e  p r e d i c t o r - c o r r e c t o r  i d e a .  

T h i s  i d e a  was f o r m u l a t e d  i n  3§22. For  s i m p l i c i t y  w e  l i m i t  our  d i s c u s s i o n  

t o  t h e  c a s e  $(x) > 0. 

F i r s t  w e  w i l l  d e t e r m i n e  a u x i l i a r y  q u a n t i t i e s  from t h e  non-divergence 

i m p l i c i t  d i f f e r e n c e  scheme 

-p+1/2 - -p+1/2 
U 

= 0 .  U m - l  
;p+1/2 - 

m m 
T I 2  + u; h 

The v a l u e  of t h e  c o e f f i c i e n t  of u i n  t h e  e q u a t i o n  u + uu = 0 h a s  been re- 

p l a c e d  h e r e  by up  and n o t  by ;p+fi2, so  t h a t  t h e  r e s u l t i n :  scheme s h o u l d  

be l i n e a r  w i t h  r e s p e c t  t o  t h e  q u a n t i t i e s  t o  be computed. 

t 

m' 

Next we le t  

and u s e  scheme ( 7 ) ,  (9) .  The d i v e r g e n c e  scheme so  d e r i v e d  has  second-order  

approximat ion  on a smooth s o l u t i o n .  

l i n e a r i z a t i o n  and t h e  f r e e z i n g  of c o e f f i c i e n t s ,  s u g g e s t s  s t a b i l i t y  f o r  

a r b i t r a r y  r = T/h. L e t  u s  now c a r r y  out  t h i s  a n a l y s i s .  

A h e u r i s t i c  a n a l y s i s  u s i n g  t h e  Von Neumann s p e c t r a l  c r i t e r i o n ,  a f t e r  

A s  a r e s u l t  of l i n e a r i z a t i o n ,  and of f r e e z i n g  c o e f f i c i e n t s ,  w e  g e t  a 

scheme of t h e  form 

-p+I/2 - -p+1/2 - ;p+112 

= 0 ,  m m m- 1 
T/2 + a h 

m 
= 0.  

P + l  - 
m 

2 h 2 2 

Given t h e  i n i t i a l  c o n d i t i o n s  

i a m  
up = e 

we g e t  

-p+1/2 iam 
U = ue , 

m 
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where 

F u r t h e r  

where 

The Computat ion of G e n e r a l i z e d  S o l u t i o n s  

1 
r -ia ' u =  

1 + a t -  a - e  2 

i a m  
up+' = Xe , 

+i a 
= 2 + ar - are 

2 + a r  - a r e  
, IX(a) l  = 1. 

C h a p t e r  9 
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P a r t  4 

PROBLEMS WITH Two SPACX VARIABLE 

C h a p t e r  10 

The Concept of Difference Schemes with Splitting 

D i f f e r e n c e  schemes w i t h  s p l i t t i n g  be long  among our  i m p o r t a n t  t o o l s  € o r  

computing s o l u t i o n s  of t h e  m u l t i d i m e n s i o n a l  t ime-dependent  problems of 

mathemat ica l  p h y s i c s .  

531. Construction of splitting schemes 

A t  a d e s c r i p t i v e  l e v e l  t h e  i d e a  of t h e  c o n s t r u c t i o n  of s p l i t t i n g  

Cons ider  a d i f f e r e n t i a l  problem of t h e  form 

schemes may be p r e s e n t e d  a s  f o l l o w s .  

where A is some o p e r a t o r  i n  t h e  s p a c e  v a r i a b l e s  s u c h  as, f o r  example,  

The v a l u e  u ( x ,  y ,  t,+l) can be e x p r e s s e d  i n  terms of a l r e a d y  known v a l u e s  

t p  = PT, by means of t h e  r e l a t i o n  

= (x, y,  t ] + T A ~ ( X ,  y ,  t ) + O W )  = ( E  + T A ) U ( X ,  y,  t ) + o ( + ) .  
P P P 

(where E i s  t h e  i d e n t i t y  o p e r a t o r ,  Ev = v ) .  

Suppose t h a t  t h e  r i g h t  hand s i d e  of Eq.  ( 1 )  h a s  t h e  form 

Au A u + A U. 
1 2 

We w i l l ,  t h e n ,  s p l i t  E q .  ( 1 )  

a u  at = A1u + A2u 
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into the following two equations: 

av 
= A1V' tp 5 5 tp+l* 

v(x, Y. t = .(x, Y, , I P tP) 

Note that 

I n  fact 

= (E + TA~)U(X, y, tP) + o ( T ~ ) .  

Further, taking account of the last equation, we have 

w(x, Y, tp+,) = ( E  + rA2)w(x. Y, t ) + O(T') = 
P 

= (E + TA~)V(X, y, tp+l) + o ( & )  = 

= (E + TA~)(E + TA~)u(~, y, t ) + o ( + )  = 
P 

= [E + T(A~ + A2)]u(x, y, t ) + T2A A u(x, y, t ) + O ( ? )  = 

= (E + TA)U(X, y, t ) + o ( ? )  = U(X, y, tp+l ) + O ( T 2 ) .  

P 1 2  P 

P 

On the basis of Eq. ( 4 )  we can now, in each time interval t 

I n  actuality, to solve (2) and ( 3 )  we approximate these equations by 

t i 
solve Eqs. (2) and ( 3 )  sequentially in place of problem ( l p .  

difference equations of some sort. We then get a difference-splitting- 
scheme, L u(~) = f(h), which allows us to compute up+', in two stages, from 
the already-known up ( i n  the first stage computing vP+l from the given 

vp = up and, in the second, computing up+' = wP+l from wp = vP+', using the 

vP+l already computed in the first stage). 

of dif ference-split ting-scheme 

tp+1 

h 

The above considerations are heuristic in character. After some sort 
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f o r  computing t h e  s o l u t i o n  of problem (1) has  been cons t ruc t ed  we must 

s t i l l ,  somehow, Ver i fy  approximation and s t a b i l i t y .  

I n  t h e  case  of t h e  Cauchy problem f o r  t he  two-dimensional h e a t  

equa t i on 

we may t a k e ,  €or example, a s  t he  system (21, ( 3 )  

This  s p l i t t i n g  of t h e  two d imens iona l  equa t ion  of problem ( 6 )  i n t o  t w o  

one-dimensional equa t ions  ( 7 )  can be i n t e r p r e t e d  as an approximate r ep lace -  

ment of t he  process  by which hea t  sp reads  i n  t h e  xy p l ane ,  i n  t i m e  t < t 

by two processes .  In t h e  f i r s t  of t hese ,  desc r ibed  by t h e  f i r s t  of 

Eqs.  (7), one in t roduces  ( concep tua l ly )  non-heat-conducting 

P -  
t p + l '  

. . Pt f  

Fig. 40.  Fig. 41. 

p a r t i t i o n s  p reven t ing  the  spread  of hea t  in t h e  y-d i rec t ion .  Then, du r ing  

t ime- in t e rva l  T, i n s t e a d  of t hose  p a r t i t i o n s  me i n t r o d u c e s  o t h e r s  prevent -  

ing  the  spread  of hea t  i n  t h e  x d i r e c t i o n .  This  spread  of h e a t ,  aga in  i n  
t ime- in te rva l  T, is desc r ibed  by t h e  second equat ion .  

We now choose the n e t  ( x  , yn,  t ) = (mh, nh, pr ) .  

A di f fe rence-sp l i t t ing-scheme based on ( 7 )  can be cons t ruc t ed  i n  many 
m P 

ways. We cons ide r  two p o s s i b i l i t i e s ,  i.e., 
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and 

I n  both s p l i t t i n g  schemes we set 

w - P+l ~ wP uP+l 2 wP+l  . 
mn’ mn mn 

u = v  mn mn 

L e t  us r e c a l l  t h a t ,  i n  n o t a t i o n  def ined  ear l ier  

- 2 u  + u  

hZ 

‘m+l,n mn m-1,n A u  = s 
xx mn 

- 2 u  + u  
Um,n+l mn m,n-l 

h2 
A u  = 

YY mn 

Scheme (8)  i s  r ep resen ted  schemat i ca l ly  i n  Fig. 40, scheme ( 9 )  i n  Fig. 41. 

The s p l i t t i n g  of problem ( 6 )  i t s e l f  is a l s o  no t  unique. One can, f o r  

example, write t h e  problem i n  the  form 

( 6 ’ )  

u(x ,  y ,  0) = $(x ,  Y), 

cons t ruc t ing ,  cor respondingly ,  i n  t h e  i n t e r v a l  tp 5 t 5 tp+l, t h e  fo l lowing  
two systems: 

and 
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w ( x ,  Y ,  tp)  = v ( x ,  y ,  t P+l ). 
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(11)  

Such a s p l i t t i n g  is not a p h y s i c a l l y - b a s e d  s p l i t t i n g  l i k e  scheme (7). We 

now choose a d i f f e r e n c e  scheme as f o l l o w s  (Fig.  42):  

J u" = lb(Xm, Y n ) '  
mn 

To c a l c u l a t e  up+' by aztemating-direct ion scheme (12) one must,  

f i r s t ,  f o r  e a c h  f i x e d  m, s o l v e  t h e  i m p l i c i t  e q u a t i o n  f o r  i n  which m mn' 
o c c u r s  as a parameter .  Then t o  
compute up+' it is n e c e s s a r y  t o  

s o l v e  t h e  second e q u a t i o n  (12 ) ,  
i m p l i c i t  w i t h  r e s p e c t  t o  up'', i n  

which n o c c u r s  as a parameter .  

Scheme ( 8 )  can be w r i t t e n  i n  

form (5) i f  one sets 

&P+/ 
m-/,n mn 

w 

mn 

- 
%*n+ f 

where 2 = up + T A  up is determined  from t h e  f i r s t  of Eqs. (8). Then 
m n m n  x x m  

m, n = 0 ,  +I, ...; p = 0 ,  1, .... [T/T]-l 

m, n = 0, 21, ... f ( h )  

We propose  t o  t h e  r e a d e r  t h a n  he wr i te  schemes (9 )  and ( 1 2 )  i n  form (5) .  
The r e a d e r  may v e r i f y  t h a t  t h e  Von Neumann s p e c t r a l  s t a b i l i t y  

c r i t e r i o n  (i.e. t h e  requi rement  t h a t  solutions of t h e  form up 

XPexp[i(nm + Rn)] s h o u l d  remain bounded) is s a t i s f i e d  f o r  scheme ( 8 )  w i t h  
any r = T/h2 (+, and f o r  schemes (9) and ( 1 2 )  is  s a t i s f i e d  f o r  any  r. We 

w i l l  n o t  pause h e r e  t o  s t u d y  t h e  s t a b i l i t y  c o n d i t i o n s ,  o r  t o  prove  approx- 

i m a t i o n ,  f o r  schemes (E), (9 )  and (12) .  

= 
mn 
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PROBLEMS 

1. Determine for which r = T/hL the Von Neumann spectral criterion is 

satisfied for difference-splitting-schemes (8), (9) and ( 1 2 ) ,  introduced i n  

the text above. 
2. Verify that scheme (8) approximates problem ( 6 )  on a sufficiently 

3. Repeat problem 2, but for difference-splitting-schemes ( 9 )  and 
smooth bounded solution u(x, y, t). 

( 1 2 ) .  

532. Economical difference schemes 

We will now consider and study examples of difference-splitting- 
schemes for the heat-conduction problem 

i n  the rectangular region 0 A x ,  y 5 1 with boundary l', using the usual net 
(xm, tn, t ) = (mh, nh, pT), m, n = 1, 2, ..., N and h = 1/N. 

The dgfference-splitting-scheme which we now introduce has, in certain 
respects basic advantages over the simplest explicit 

T 
mn mn 

uP+l  - 
= A  up + A  up 

xx mn yy mn' 

q r = 0  mn J 
and the simplest implicit 

T = A up+' + 
uP+l - ,P 
mn mn 

xx mn 

mn J 
difference schemes. 
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Computation by e x p l i c i t  scheme (2)  i s  very simple.  To proceed from 

t h e  a l r eady  known up t o  the  unknown up+' = {u::'} w e  must execu te  a r i t h -  

me t i c  ope ra t ions  whose number is p r o p o r t i o n a l  t o  t h e  number, (N-lIL, of 
unknowns {up''}. I n  t h i s  sense t he  e x p l i c i t  scheme i s  t h e  b e s t  poss ib l e .  

D i f f e rence  schemes i n  which t h e  number of a r i t h m e t i c  ope ra t ions  involved  i n  
the  s t e p  from up t o  up+' = {up*'t is  p ropor t iona l  t o  t h e  number of unknowns 

a r e  c a l l e d  "economical". On t h e  o t h e r  hand, a l though i t  is economical,  t h e  

e x p l i c i t  scheme is s t a b l e  only under the  ve ry  s t r i n g e n t  cond i t ion  T I h2/4 

on t h e  t imes tep  T. The above " s imples t  i m p l i c i t  d i f f e r e n c e  scheme" ( 3 ) ,  a s  

we  a l r e a d y  know ( s e e  3627)  is a b s o l u t e l y  s t a b l e .  But i t  i s  f a r  from econo- 
mical.  

mn 
(non-separable)  system of l i n e a r  equa t ions .  A s  we know from t h e  a n a l y s i s  
of numerical  methods, t h i s  r e q u i r e s  t h a t  we perform numerical ope ra t ions  

whose number i s  p r o p o r t i o n a l ,  no t  t o  t h e  f i r s t  power of t h e  number of un- 

knowns a s  i n  economical schemes, but t o  the  cube of t he  number of unknowns, 

i f  one uses  some s o r t  of e l i m i n a t i o n  method. 

mn 

mn 

To c a l c u l a t e  t he  unknowns {up"} one has t o  so lve  a complicated 

* * * * * *  

We no te  t h a t  a s ea rch  is now i n  p rogres s  f o r  more economical ways t o  

so lve  gene ra l  l i n e a r  systems. S t r a s s e n  has poin ted  out  an a lgo r i thm re- 
q u i t i n g  a number of o p e r a t i o n s  p r o p o r t i o n a l ,  no t  t o  the  t h i r d ,  but t o  t h e  

1%2(7) ' t h  power of t h e  number of unknowns. 

* * *  

The d i f fe rence-sp l i t t ing-scheme which we w i l l  now cons t ruc t  is  

economical and uncond i t iona l ly  s t a b l e ,  i .e. i t  u n i t e s  t he  advantages  of 

e x p l i c i t  scheme ( 2 )  and i m p l i c i t  scheme ( 3 ) .  

i t  has  d e r i v a t i v e s  cont inuous  r i g h t  up t o  t h e  boundary r ,  of a l l  o r d e r s  

r equ i r ed  i n  t h e  course  of our  work. Note t h a t ,  on t h e  boundary r ,  a l l  
even-order space  d e r i v a t i v e s  (up t o  a l l  o rde r s  f o r  which they  e x i s t  and are 
con t inous )  w i l l  van i sh  

As r ega rds  the  s o l u t i o n  u(x ,  y,  t )  of problem ( l ) ,  we w i l l  assume t h a t  

Thus, a long  t h e  s i d e  x = 0 of t h e  boundary r of t h e  square  0 x,  y 1, 
t h e  d e r i v a t i v e s  a u / a t  and aLu/ay' bo th  vanish .  

u = u + u a l s o  u = 0. D i f f e r e n t i a t i n g  the  equa t ion  twice by y we 

g e t  

The re fo re ,  s i n c e  

t xx yy' xx 

a u  
J=" + u  

a t  XXYY YYYY' 

But on the  s i d e  x = 0 of boundary r we have 
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a u  
u = o ,  U = o ,  * = o ,  

YY YYYY 

and, t h e r e f o r e ,  i t  fo l lows  from t h e  d i f f e r e n t i a l  equa t ion  t h a t  a l s o  

U = 0. 

problem (1). In p a r a l l e l  wi th  problem (11, on t h e  i n t e r v a l  

t i t 5 t 

XXYYNow let  us  proceed t o  cons t ruc t  a d i f fe rence-sp l i t t ing-scheme f o r  

' we pose t h e  two problems 
P P+l 

The ne t  func t ion  

w i l l  be determined, s e q u e n t i a l l y ,  from the  equa t ions  

- 
T 

u inn - u p  mn w 

= A  u m, n = I ,  2 ,  ..., N-1 xx mn' 
(7) 

Problem ( 7 )  is analogous t o  problem (5 ) ,  whi le  (8)  i s  analogous t o  (6) .  
Here 

Using ( 7 )  and (8) one f i r s t  computes the  a u x i l i a r y  f u n c t i o n  from 

up = 
mn 

and then ,  from (81, computes up+' a { u z ' } .  
Note t h a t  d i f f e r e n c e  scheme ( 7 )  f o r  Gmn, f o r  each  f ixed  n ,  n = 1, ..., 

N-1, e x a c t l y  co inc ides  wi th  t h e  i m p l i c i t  d i f f e r e n c e  scheme 
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P+l - .P 
mn = vP+l 

V 

T xx mn 

f o r  t h e  one-dimensional hea t  equa t ion  on t h e  i n t e r v a l  0 & x & 1, i n  which y 
e n t e r s  only as a parameter.  

D i f f e rence  problem (7), f o r  each  f i x e d  n ,  is so lved  by FEBS in t h e  

d i r e c t i o n  of t he  x a x i s .  In p r e c i s e l y  the  same way d i f f e r e n c e  scheme ( 8 ) ,  

f o r  each  f i x e d  m, is so lved  by FEBS i n  t h e  d i r e c t i o n  of t h e  y a x i s .  We 
no te  t h a t ,  by v i r t u e  of t h e  p r o p e r t i e s  of t h e  FEBS a lgo r i thm,  t h e  t o t a l  
number of a r i t h m e t i c  ope ra t ions  r equ i r ed  f o r  t h e  computation up+' = {u::~} 

t u r n s  out  t o  be p r o p o r t i o n a l  t o  t h e  number of unknowns, i.e. d i f f e r e n c e  

scheme (71, (8) is economical. 

we w r i t e  d i f f e r e n c e  scheme ( 7 ) .  (8) i n  t h e  form w e  have t aken  a s  s t a n d a r d  

throughout t h i s  book, 

So as t o  formula te  t h e  concepts  of approximation and s t a b i l i t y  e x a c t l y  

For t h i s  purpose w e  se t  

where is t h e  s o l u t i o n  of t h e  a u x i l i a r y  problem 
mn 

In t h i s  case we  must then  t a k e ,  as f ( h ) ,  

A s  a norm i n  Uh we t a k e  



318 The Concept of D i f f e r e n c e  Schemes w i t h  S p l i t t i n g  C h a p t e r  10 

Elements in F w i l l  have t h e  form 
h 

and t h e  norm i n  Fh w i l l  be d e f i n e d  by t h e  e q u a t i o n  

F i r s t  l e t  us demonst ra te  t h e  u n c o n d i t i o n a l  s t a b i l i t y  of d i f f e r e n c e  scheme 

(9). d e f i n e d  by E q s .  (10) and (121 ,  and approximat ion  w i l l  be proven la ter .  

In view of t h e  l i n e a r i t y  of d i f f e r e n c e  scheme (9), t o  prove  s t a b i l i t y  one 

w i l l  have t o  show t h a t  t h e  problem L z c h )  = g ( h )  h a s  a s o l u t i o n  f o r  

a n y  g * 
( h )  h 

and, moreover, 

where c does n o t  depend on h. 

Le t  us now wri te  t h e  problem L z ( ~ )  i n  expanded form: 
h 

zP+l - ; 
mn - 4 zp+’ = +::’, m ,  n = I ,  2, ..., N-1, mn 

YY mn 
(13)  

0 ,  z P + l  = z P + l  = 
On Nn 

where 2 i s  t h e  s o l u t i o n  of t h e  a u x i l i a r y  problem 
mn 
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whi le  

By the  maximum p r i n c i p l e ,  proven i n  828 f o r  t h e  one-dimensional, 

i m p l i c i t ,  d i f f e r e n c e  scheme approximating t h e  one-dimensional hea t  equa- 
t i o n ,  i t  fo l lows  from 

max 
m,n 

(13) t h a t  

+ T max 
mln,P 

But from ( 1 4 )  

max 
m,n 

The r e f  o re  

so  t h a t  

. . . . . . . . . . . . . . . . . . . . . .  

The above i n e q u a l i t y  

is v a l i d  f o r  any p ,  and t h e r e f o r e  

f o r  any a r b i t r a r y  r e l a t i o n  between s t e p - s i z e s  T and h. T h i s  means t h a t  t h e  

s p l i t t i n g  scheme under c o n s i d e r a t i o n  i s  uncond i t iona l ly  s t a b l e .  

u s u a l ,  t h a t  problem ( 1 )  has a s u f f i c i e n t l y  smooth s o l u t i o n  u(x ,  y, t ) .  We 

L e t  us now proceed t o  v e r i f y  approximation. It w i l l  be assumed, as 



3 20 The Concept of Difference Schemes with Splitting Chapter 10 

- A  =0, m, n = l ,  2, ..., N-1, 
T xx mn 

Y 

will compute the residual Af(h), Lh[uIh = f(h) + Af(h), which develops 

when [u] is substituted into the left-hand side of Eq. (91, and show 
that I lh!(h)I IFh = O ( T  + h2). 

By the definition of Lh we have 

YY 

m, n = 1, ..., N-1, 
0 at points on l', 

Lh[UIh = 

t ( 1 6 )  

Inserting this expression for into (15) we get 
mn 
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where 

O ( T  + h 2 )  a t  p o i n t s  on (xm,  yn ,  

0, p = 0, 1, ..., [ T / T ] - l ,  

0, m, n = 1, 2 ,  ..., N-1. 
( h )  - 

A €  - 

Theref o r e  

It remains f o r  u s  t o  prove t h e  approximate r e p r e s e n t a t i o n  (17 )  f o r  t h e  

solution of problem (16) .  F i r s t  we b r i n g  out some h e u r i s t i c  cons ide r -  

a t i o n s  sugges t ing  r e p r e s e n t a t i o n  (17).  It is c l e a r  t h a t ,  f o r  sma l l  T ,  we 
may write t h e  approximate equa t ion  

mn’ 

- 
u mn = dx , ,  Y n t  * 

- 
I f ,  on t h i s  b a s i s ,  i n  Eq. (16 )  we were t o  r ep lace  t h e  expres s ion  A u by 

t h e  expres s ion  A xxu(xm, y,, t ), we would g e t  t h e  equa t ion  
P 

xx  mn 

- 
A u = O ,  u - u  -- 

T xx 

from which fo l lows  the equa t ion  = u + T A  which d i f f e r s  from (17)  on ly  

i n  t h e  remainder term O ( T 2 ) .  
XXU) 

L e t  u s  now proceed t o  prove t h e  v a l i d i t y  of 

(17).  
F i r s t ,  t o  complete t h e  d e f i n i t i o n  of Axxu(xm, y , , we set 

n tp)  

U b m ’  tn,  t P 1 + T~xxu(Xm, Y n r  tP)  

Axxulr = 0. S u b s t i t u t i n g  

w mn 

i n  p l ace  of u i n t o  Eq. (16 )  we ge t  
mn’ 
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Assuming t h a t  a4u/ax’ is cont inuous  and bounded, and t a k i n g  i n t o  account  

t h a t  a2, 

Theref ore  

= 0, i t  is  easy  t o  see t h a t  A A u(xm, y n r  t ) is  bounded. 
xx xx P ax2 

Sub t rac t ing  Eq. (16)  tern by term from these  equa t ions  we  g e t ,  f o r  t h e  

d i f f e r e n c e  z = w - u 
- 

mn mn mn’ 

2 - T A  Z = o ( T 2 ) ,  
mn x x m n  

(18) 

zmnlr = O, 

or  i n  expanded form 

I 
r z  - 2(r + 1). + r z  = O(’C2),  

m-1 ,n  2 mn m+l,n 

m ,  n = 1, ..., N-1, 
z = z = 0 ,  r = T/h2. 
On Mn 

But t h i s  problem f o r  ( zmn) has  t h e  form 

a u  + b u  + c u  = gm, m = 1, ..., N-1, 
m m-1 m m m m+l 

uo = UN = 0 ,  

a > 0, cm > 0, lbml 2 am + cm + 6 ,  6 = 1. 
m 

In 84 it was shown t h a t ,  i n  such a case 
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max l u m l  maxlgmlD 

where c depends o n l y  on 6 .  T h e r e f o r e  z = O ( T 2 ) ,  i . e .  
mn 

w 

U mn mn 
= w  

mn 
- 2  = w  

mn 

which c o i n c i d e s  w i t h  r e p r e s e n t a t i o n  (17), as was t o  be proven. 

PROBLEMS 

1. For t h e  d i f f e r e n t i a l  boundary-value problem ( l ) ,  r e l a t i n g  t o  t h e  

p r o p a g a t i o n  of h e a t  i n  t h e  s q u a r e  r e g i o n  0 I x ,  y 
i n v e s t i g a t e  a d i f f e r e n c e - s p l i t t i n g - s c h e m e ,  ana logous  t o  t h e  e x p l i c i t  

s p l i t t i n g  scheme (8) of 131 f o r  t h e  Cauchy problem. 

2. For t h e  d i f f e r e n t i a l  boundary-value problem (1) propose  a 

d i f f e r e n c e  scheme ana logous  t o  t h e  a l t e r n a t i n g - d i r e c t i o n  scheme (12) of 
831.  

1, propose  and 

Prove t h a t  approximat ion  is of o r d e r  O ( T  + h2) .  

3 .  To s o l v e  t h e  problem 

a u  
a t  
- -  

i n  t h e  case of a 

scheme ana logous  

( 1 )  i n  t h e  above 

The i d e a  of 

r e g i o n ,  D ,  w i t h  curved  b o u n d a r i e s ,  p ropose  a d i f f e r e n c e  
t o  t h e  d i f f e r e n c e - s p l i t t i n g - s c h e m e  c o n s i d e r e d  f o r  problem 

t e x t .  

133. Splitting by physical factors 

s p l i t t i n g  is used n o t  on ly  as a b a s i s  f o r  development of 

economical and a b s o l u t e l y  s t a b l e  schemes. Sometimes one s p l i t s  a compli- 

c a t e d  problem i n t o  s i m p l e r  problems s o  as t o  s e p a r a t e ,  in e a c h  s m a l l  t i m e -  

i n t e r v a l  t < t < tp+l, t h e  a c t i o n  of v a r i o u s  f a c t o r s  which i n f l u e n c e  t h e  

p r o c e s s  under  s t u d y .  For  the r e s u l t i n g ,  r e l a t i v e l y  s imple ,  problem i t  t h e n  
becomes e a s i e r  t o  c o n s t r u c t  s a t i s f a c t o r y  d i f f e r e n c e  schemes which, t o g e t h -  

e r ,  c o n s t i t u t e  a d i f f e r e n c e - s p l i t t i n g - s c h e m e  f o r  t h e  e n t i r e  problem. 
By way of example we  c i t e  t h e  method of s u p e r - p a r t i c l e s ,  deve loped  by 

0. M. B e l o t s e r k o v s k i i  and Yu. M. Davidov (U.S.S.R. Comp. Math. and Math. 

Phys. 11, #l (1971))  i n t e n d e d  f o r  t h e  computation of g a s  f l o w  w i t h  s t r o n g  

deformat ion  of t h e  medium and l a r g e  d e n s i t y  o s c i l l a t i o n s .  T h i s  method, l i k e  

Harlow's p a r t i c l e - i n - c e l l  method c a n ,  as p o i n t e d  o u t  by N. N .  Yanenko, be 

t r e a t e d  a s  a c e r t a i n  d i f f e r e n c e - s p l i t t i n g - s c h e m e  f o r  t h e  gas-dynamics 

e q u a t i o n s .  The whole medium i s  s p l i t  up, by a n e t  of s t a t i o n a r y  l i n e s  (and 

P 
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it should be noted that we are considering, here, the two dimensional 

problem), into cells. The material contained in a cell at time t is a 

"super-particle". To it is ascribed a momentum and total energy. Next one 
constructs a difference scheme modeling the change in speed, momentum and 

total energy of the super-particles under the influence of pressure alone, 

without taking into account those terias, i n  the system of gas dynamics 

equations, which describe the transport of matter, momentum and energy. 

This is the first step in the difference-splitting-scheme. In the second 

step one recomputes intermediate values, resulting from the first step, by 
a difference scheme which treats the remaining terms in the gas-dynamics 

equations, i.e., treats only the flow of matter from each cell to its 

neighbors, and the corresponding flow of momentum and energy. Thus one 

produces super-particles, with their corresponding momentum and energy, at 

time t = t + T. 
P+ 1 P 

P 
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Chapter 11 
E l l i p t i c  Problems 

534. Simplest difference scheme for the Dirichlet  problem 

Here we  w i l l  confirm t h a t  t h e  s imples t  d i f f e r e n c e  scheme (13) 5 2 4  
approximates t h e  D i r i c h l e t  problem ( 1 2 )  5 2 4  t o  second o rde r  i n  h,  and is  

s t a b l e ,  s o  t h a t  i t  may be used f o r  t h e  approximate computation of t h e  
s o l u t i o n  of t h e  D i r i c h l e t  problem. 

D = (0  ( x ,  y 5 l ) ,  wi th  boundary r, w i l l  be w r i t t e n  i n  t h e  form 
The D i r i c h l e t  problem f o r  t he  Poisson  equa t ion  in t h e  squa re  r eg ion  

I a2, + a2, = + ( x ,  y ) ,  0 5 x, y 5 1, 
ax2 ay2 

where s is t he  a r c  l eng th  a long  the  boundary r ,  and t h e  f u n c t i o n s  $ ( x ,  y) 

and + ( s )  are g lven .  
The set  of ne t -poin ts  (xm,  y,) = (mh, nh)  ( h  = 1/M, M a p o s i t i v e  

i n t e g e r )  f a l l i n g  in t h e  square  o r  on i t s  boundary w i l l  be denoted by Dh. 
The p o i n t s  of Dh l y i n g  s t r i c t l y  i n s i d e  t h e  squa re  D w i l l  be cons ide red  

" i n t e r n a l  po in ts ' '  of t h e  net-square Dh: t h e  set of a l l  i n t e r n a l  p o i n t s  we  
c a l l  Dk. The p o i n t s  of Dh l y i n g  on t h e  boundary r of square  D w i l l  be 

cons idered  "boundary p o i n t s "  of ne t - reg ion  Dh,  and t h e  set of boundary 

p o i n t s  w i l l  be denoted by rh. Di f f e rence  scheme (13)  5 2 4  

we now write i n  t h e  form 

where $(s  

belonging  t o  rh. 
) is t he  va lue  of t h e  f u n c t i o n  ip(s) a t  t h e  po in t  (%, y,) 

mn 
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1. Approrimation. The r igh t -hand s i d e ,  f ( h ) ,  of d i f f e r e n c e  scheme 

( 2 )  has  t h e  form 

Assuming that t h e  s o l u t i o n ,  u ( x ,  y), of problem ( 1 )  h a s  bounded f o u r t h  

d e r i v a t i v e s  one can ,  w i t h  t h e  a i d  of T a y l o r ' s  f o r m u l a s ,  d e r i v e  t h e  e q u a t i o n  

T h e r e f o r e  € o r  the s o l u t i o n  u ( x ,  y )  of problem (1) we may wri te  

Thus t h e  r e s i d u a l ,  6 f ( h ) ,  which d e v e l o p s  when [u] ,  i s  s u b s t i t u t e d  i n t o  t h e  

le f t -hand  s i d e  of d i f f e r e n c e  scheme ( 2 )  h a s  t h e  form 

I n  t h e  s p a c e  Fh, composed of e l e m e n t s  of t h e  form 

w e  i n t r o d u c e  the norm 

maX I+,/ + max I I ' ( 8 )  
(mh,nh) i n  r 

h 

I l f ' h ) l I  = 
Fh (mh,nh) i n  Do 

h 

Then 
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Thus d i f f e r e n c e  boundary-value problem ( 3 )  approximates D i r i c h l e t  problem 

(1) t o  second o rde r  wi th  r e spec t  t o  h. 

2. Stability. Let  us d e f i n e  a norm i n  t h e  space ,  U h ,  of f u n c t i o n s  

g iven  on the  n e t  Dh,  s e t t i n g  

To prove s t a b i l i t y  of d i f f e r e n c e  scheme ( 3 ) ,  a s  i s  our  p re sen t  goa l ,  w e  

w i l l  have t o  e s t a b l i s h  t h a t ,  i n  accordance wi th  t h e  d e f i n i t i o n  of 

s t a b i l i t y ,  problem ( 2 )  has a unique s o l u t i o n  f o r  any a r b i t r a r y  right-hand 

s i d e  f ( h )  ( a  p rope r ty  which does not depend on choice  of norms), and t h a t  

( h )  where c depends n e i t h e r  on h nor on f . 
} is defined on the 

net Dh and at internal points, (xm, yn) = (mh, nh) in D i ,  satisfies the 
condition 

Lemma 1. Suppose that the function v ( ~ )  = { v  
mn 

> 0 ,  (mh, nh) i n  D L .  AhvCh) I(mh, nh) - 

Then the maximum of v ( ~ )  over the set Dh is attained at one or  more points 

of T h .  

h at 
which v ( ~ )  a t t a i n s  i t ’ s  maximum, any s i n g l e  po in t  ( x  

l a r g e s t  a b c i s s a .  By our  assumption (xm, y,) i s  an i n t e r n a l  p o i n t  and, 
 further,^ is  s t r i c t l y  l a r g e r  than v A t  po in t  m,n then  we have 

Proof .  Assume t h e  oppos i t e .  Choose, among those  p o i n t s  of D 

y ) having t h e  
m’ n 

mn m+l , n *  

s i n c e ,  i n  t h e  numerator,  t h e  f i r s t  exp res s ion  i n  pa ren theses  is nega t ive ,  

and t h e  o t h e r s  a r e  non-pos i t ive .  But t h i s  conclus ion  c o n t r a d i c t s  (11). 

D and, at interior points (mh, nh) in D;, satisfies the condition 
Lemma 2 .  Suppose the function v ( h )  = {v  1 is defined on the net 

mn 

h 

< 0 ,  (mh, nh) i n  D:. Ahv(h) ‘(mh, nh) - 
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Then the m i n i m  value of v ( ~ )  on the  net Dh is taken on at  leas t  a t  one 

point of the boundary. 
The proof of Lemma 2 is  analogous t o  t h a t  of Lemma 1. 

Theorem ("maximum p r i n c i p l e " ) .  Every solut ion of the  di f ference 
equation 

(13 )  

at ta ins  i t s  m a x i m  and minimum values at  points  of rh .  

and 2 .  
A proof may be cons t ruc t ed  by combining what i s  a s s e r t e d  i n  Lemmas 1 

This  p rope r ty  of the  s o l u t i o n  of d i f f e r e n c e  equa t ion  (13) is analogous 

t o  the  cor responding  proper ty  of t h e  s o l u t i o n ,  v ( x , y ) ,  of t he  Laplace  

equa t ion  v + v = 0, a s o l u t i o n  which a l s o  t akes  on i t s  least and 

g r e a t e s t  va lues  on t h e  boundary of t he  domain where i t  i s  def ined .  
xx YY 

From t h e  maximum p r i n c i p l e  i t  fo l lows  t h a t  t h e  problem 

has  only the  vanish ing  s o l u t i o n  u ( ~ )  = 0,  s i n c e  t h e  g r e a t e s t  and s m a l l e s t  

va lues  of t h i s  s o l u t i o n  are taken  on a t  po in t s  of r h ,  where u 

Therefore  t h e  de te rminant  of t h e  system of l i n e a r  equa t ions  (3)  is  
d i f f e r e n t  from ze ro ,  and d i f f e r e n c e  boundary-value problem ( 2 )  has a unique 

s o l u t i o n  f o r  any a r b i t r a r y  right-hand s i d e  f ( h ) .  

every  polynomial P(x ,y)  of second (o r  even t h i r d )  o rde r  

= 0. 
mn 

Let u s  now go on t o  H proof of bound (10) .  By v i r t u e  of E q .  ( 5 ) ,  f o r  

P(x ,y)  = ax2 + bxy + cy2 + dx + ey + f 

we have t h e  e q u a l i t y  

s i n c e  t h e  f o u r t h  d e r i v a t i v e s  of P (x ,y ) ,  which appear  i n  the  remainder terms 

of Eq. (5), a l l  vanish .  
Using t h e  func t ions  $ and I) which form t h e  right-hand s i d e s  of 

system (31, and t ak ing  R >%, we cons t ruc t  t h e  a u x i l i a r y  f u n c t i o n  
mn 

max bmnl + max l J ' m n l  9 

(h )  1 
P (x ,  y )  = -[R2 -(x2 + y 2 ) ]  

h 
(mh,nh) i n  D i  (mh,nh) i n  l' 

4 
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which we will consider only at the points of D . This latter fact is 

indicated by the superscript h in the notationhP(h)(x,y). 

that, at all points of Do 
h 

From (15) we see 

Ahp(h)l Z - max lars I, (mh,nh) in D:- 
x=mh, (rh,sh) in DL 
y=nh 

Therefore, at the points of D“ 
h’ 

of problem ( 3 )  and the function P(h) satisfies the relations 

the difference between the solution u(~), 

By lemma 1 the difference u (h) - P(h) takes on its greatest value on the 

boundary r But there this difference 
h’ 

= llllmn - max 
(rh,sh) in r, 

is nonpositive since, everywhere in square D, x2 + yz < Rz and both square 
brackets on the right-hand side are nonpositive. Since the greatest value 

of u (h) - p(h) is nonpositive, then everywhere on D 
h 

Similarly, for the function u(~) + P(h) at the points of Di we have 

and at the points of r 
everywhere on D 

the sum LI(~) + Pch) is non-negative. By lemma 2 ,  
h 

h 

+ P(h) - > 0 ,  or -p(h) 2 u(h). 

h 
Thus, everywhere on D 

from which we get inequality (10): 
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= (  max l Q r s l  + max N r s I L  
(rh,sh) i n  DE (rh,sh) i n  Th 

where 

completing the proof of stability. 

variable coefficients 

In the case of the Dirichlet problem f o r  the elliptic equation with 

where k (x,y) and k (x,y) are positive, smooth functions i n  the rectangle 

D, one can construct difference equations analogously. Replacing the 
derivatives a/ax(k 

net D:, by difference expressions via the approximations 

1 2 

au/ax) and a/ay(k2 au/ay), at interior points of the 
1 
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Using Taylor's formula one can convince oneself that approximation is of 

second order. It is possible to prove stability of this scheme after 

overcoming some additional difficulties which do not appear in the simpler 
examples we have chosen to consider. 

In practice in treating specific problems one limits oneself, 
ordinarily, to very fundamental theoretical considerations, based on the 

analysis of model problems like those above. Concrete error estimates are 

obtained, as a rule, not from theoretical bounds, but from intercomparison 

of the results of computations carried out with various stepwidths, h. 

After a difference boundary-value problem, approximating a given 
diEferentia1 problem, is constructed one still needs to specify a method of 

solution which is not "too difficult". After all, for small h problem (2 )  
is a system of scalar equations of very high order. In the example we have 

chosen the solution of the difference equations is a complex and inter- 

esting problem, but we defer consideration of this problem to § § 3 5 ,  36. 

PROBLEMS 

1. Show that if, at the interior points of domain D the function 
h' 

uCh) satisfies the equation 

Mh = 1, 

then either ~1'~) takes on, everywhere in Dh, one and the same value, or the 

greatest and least values of u(~) are not attained at 9 interior point of 
the set Dh (the "strengthened maximum principle"). 

2 .  If, at all internal points of the domain Dh, the condition 

2 0 is satisfied and, moreover, strict inequality holds at least at 
one point, then u(~) does not attain its maximum at any interior point. 

3.  Consider a difference scheme L uch) = f(h) of the form 
h 
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+ u  + u  + u  - 4u 
mtl,n m,n+l m-1,n m,n-1 mn 

h2 
= 

This difference scheme approximates the problem (see Fig. 4 3 )  

a% a'& 
ax2 ay2 

+ - = +(x,Y) (x, Y) in D, - 

a) Prove that for any $(mh,nh , ~ J ~ ( s ~ ~ )  

and t!JZ(nh) the problem L u(~) = f(h' has a 
unique solution. 

and $ ( 6  

u(h) is EApositive. 

h 

b) Prove that if $(mh,nh) is non-negative, 

) and $ (nh) are nonpositive, then 2 

c) Prove that for any $, 6 and J J ~  there 
1 

Fig. 4 3 .  exists a bound of form 

where c is some constant not depending on h. Compute c. 

535. Method of time-development 

1. Idea of the method of time-development. To calculate the 
solutions of many of the stationary problems of mathematical physics, 

describing various equilibrium states, one considers these equilibria as 
the results of the approach-to-steady-state of processes developing in 
time, whose computational treatment is simpler than the direct calculation 
of the equilibrium state itself. 

example of an algorithm for the computational solution of the Dirichlet 
problem 

We illustrate the use of the method of time-development via the 
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+ * = ab,, Yn), m, n = 1, 2, ..., M-1, 
‘xxUmn yy mn 

approximating the differential Dirichlet problem 

In the case of problem (l), which we will consider here, it will be 

possible to carry out a theoretical analysis of various time-development 

algorithms with the aid of finite Fourier series. Note that, for the 

solution of elliptic difference problems like problem (l), much more 

effective iterative methods have been developed. Some of these will be 

described in 9536,  37 .  Methods for the exact solution of problem ( l ) ,  
capable of generalization to the case of variable coefficients and domains 

with curvilinear boundaries (like the Gauss elimination method) for M at 
all large become very inconvenient, and tend not to be used. 

We present, first, some introductory, orientational considerations. 

The solution u(x,y) of problem (2) can be taken to be the time independent 

temperature at point (x,y) of a plate in thermal equilibrium. Functions 

C(x,y) and $(s) are in this case, respectively, the distributions of heat 

sources and the temperature on the boundary. 

Consider the auxiliary nonstationary heat-flow problem 

au a2u a‘u 
ax‘ ayl 

= - + - - +(X,Y), 

where $ and are the same as in problem (2) ,  and 3, (x,y) is arbitrary. 

Since the distribution of heat sources $(x,y), and the boundary 
temperature ~b(s),  are time-independent, it is natural to expect that the 

solution, U(x,y,t) will change more and more slowly with time, and that the 

temperature distribution U(x,y,t), in the limit as t + -, will evolve into 
the equilibrium temperature distribution u(x,y) characterized by problem 

(2) .  Therefore instead of stationary problem (2)  one can solve 
nonstationary problem ( 3 )  out to the time, t, when the solution stops 
changing within the accuracy we require. This is the idea behind the 
solution of stationary problems by the “method of time-development”. 

instead of (Z) ,  and instead of difference scheme (1) for problem ( 2 ) ,  we 
consider and compare three different difference schemes for problem ( 3 ) .  

0 

In accordance with these considerations we will solve problem ( 3 )  
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First we will consider the simplest explicit difference scheme 

uu = 11 (x 
mn 0 m' Yn). 

Then we examine also the simplest implicit difference scheme 

u" mn = 9,(Xm, Yn). J 
Finally we will study the alternating-direction scheme ( 1 2 )  531: 

mn 

uu mn = bO(Xm' Yn). 

It will be assumed that 6 (x , yn) is  so defined that on the boundary 
O m  

(7 )  

The computation of up+' = {u;:l}, given up = [up } 

The computation of up" = {up''}, given up = {up } ,  by scheme (5) 

is accomplished in 
mn 

scheme ( 4 )  by the use of ex licit equations. 

requires the solution of the problem 
mn mn 
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This problem is in no way simpler than the original problem ( 1 ) .  Therefore 

it makes no sense to iise this scheme for the approximate solution of (1). 

Finally, the computation of up+' = {u: } from given up = {uEn} via scheme 
( 6 )  is accomplished by the FEBS method used, first, in the direction of the 
x axis for the solution {g ] of one-dimensional. Iirohlems for each fixed n, 
and then in the y direction for computation of the solution [up+'} of one- 
dimensional problems for each fixed m. 

of unknowns. For each of the two schemes, ( 4 )  and ( 6 ) ,  which we set aside 

for further study, we will consider the difference 

+I 

mn 
mn 

The number of arithmetic operations is then proportional to the number 

2 E up - 
mn mn nn 

between the net function up = {u:,] and the exact solution, u = {u,}, of 

problem (11, whose existence was demonstrated in 134 .  
in the solution 

up of the nonstationary problem tends to zero with increasing p, and also 

the character of this convergence towards zero; we then choose an optimal T 

and evalute the volume of computational work required to decrease the norm 

of the original error 

We will determine under what conditions the error cP 
mn 

nn 

by a given amount. 

solution { umn} of problem ( 1 ), obviously, satisfies the equations 
2. Analysis of the explicit time-development scheme. The 

u = u  . 
mn mn 

Subtracting these equations from E q .  ( 4 )  term by term, we get for the 
error, E~ the following difference problem: 

mn' 
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Note that the net function E' for each p, p = 0, 1 ,  ..., vanishes on 
the points of r .  This function may be considered an element of the linear 
space of functions, defined on the net (x , yn) = (mh, nh), m, n = 0, 1, 

..., N, and vanishing on r .  A norm in this space will be defined, as in 
927, by the equation 

mn 

m 

In 927 we arrived at a representation of the solution of problem (17) 

in the form of a finite Fourier series. This problem differs from 

difference scheme (9 )  for the error E' = {EP } only in the designation of 

the unknown function. Therefore 
mn 

where the c are coefficients in the expansion of the initial error, 

Eo = { E 0  } ,  in a finite Fourier series, and the Xrs are given by the 

expression 

rs 

mn 

The quantities cp : c Xp are the coefficients in expansions of the 

error, E~ = {&Ln}, in Fourier series with the orthonormal basis Jl(rss). 
Therefore 

rs rs rs 

Clearly, then, 

Further, one can always choose an Eo such that strict eguality is 

attained. For this purpose one need only take EO = $J(~ y s c ) ,  where 
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( r c , s ’ )  i s  t h a t  p a i r  of i n d i c e s  f o r  which 

Thus, i f  1 1cPI ) / I  I E O  1 1  i s  t o  tend t o  zero  a s  p + m, i t  i s  necessa ry  t h a t  

The e r r o r  w i l l  decrease  most r a p i d l y  i f  T is s o  chosen t h a t  maxlA 

t a k e  on i t s  s m a l l e s t  p o s s i b l e  value.  
and right-most p o i n t s  A : 

I w i l l  
K S ‘” 

From E q .  (11) w e  f i n d  tlk lef t -most  

K S  

87 

h2 
A l e f t  = 1 - - cos2 2L 

2M’ 

8 T  
A . = 1 - - s i n 2  -1_ 2 M  

h2 r i g h t  

(F ig .  4 4 ) .  Inc reas ing  T ,  s t a r t i n g  
from T = 0 ,  we cause a l e f tward  

s h i f t  of both these  po in t s .  For 

t h a t  va lue  of T f o r  which t h e  p o i n t s  

r e spec t  t o  t h e  po in t  A = 0 ,  

hRIGHT 

/ 
Y -  a r e  symmetr ica l ly  p laced  wi th  

XLEFT 
Y r. - -  

-i 0 

Fig. 44. -A = A  ( 14 )  
l e f t  r i g h t ’  

any f u r t h e r  i n c r e a s e  i n  T is  harmful.  In  f a c t  i f  7 i n c r e a s e s  f u r t h e r  t h e  

right-hand p o i n t ,  A r i g h t ,  w i l l  cont inue  t o  approach zero,  bu t  i n  r e t u r n  t h e  

l e f t  (which becomes l a r g e s t  i n  modulus, max(A 

from zero .  

I = -A ) moves f u r t h e r  
rs l e f t  

For t h a t  T f o r  which = -1 ,  and f o r  l a r g e r  T’S, t h e  e r r o r  Ep w i l l  

Thus t h e  optimum 7 = h2/4 i s  determined from cond i t ion  (14) .  

l e f t  
not tend t o  ze ro  a t  a l l .  

Moreover 

Therefore ,  t o  reduce t h e  norm of the  o r i g i n a l  e r r o r  Eo = { E i n }  by a f a c t o r  

e i t  i s  necessary  t o  ca r ry  o u t  a number, p ,  of s t e p s  of i t e r a t i v e  p rocess  

( 4 ) ,  such t h a t  

7i p -1 
( 1  - 2 s i n 2  =) < e . 

Theref o re  
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L e t  us now e s t i m a t e  how many a r i t h m e t i c  ope ra t ions  are r equ i r ed  t o  reduce 

the  e r r o r  by e .  
a r i t h m e t i c  ope ra t ions .  

behavior of t he  e r r o r  E~ = [€gn} f o r  scheme ( 6 ) .  

t h e  d i f f e r e n c e  boundary-value problem 

For each t r a n s i t i o n  from up t o  up+' one needs cM2 
Therefore  t h e  t o t a l  number i s  cpMP = O(M4). 

3. The alternating-direction scheme. We now t u r n  t o  a s tudy  of t h e  

As before  we f i n d  t h a t  t h e  e r r o r ,  E P ,  i n  t h i s  ca se  is  determined by 

Y 

= A €  + A s p +  mn mn 
T I 2  xx mn yy mn , 

The s o l u t i o n  of problem (15) was w r i t t e n  o u t  i n  t he  form of a f i n i t e  

Four i e r  s e r i e s  i n  527. As a l s o  f o r  problem (9) ,  i t  has form (10) :  

where the  c are c o e f f i c i e n t s  i n  the  expansion of t h e  i n i t i a l  e r r o r  
r S  

i n  a f i n i t e  Four i e r  s e r i e s ,  but t h e  q u a n t i t i e s ,  X by which t h e  

harmonics $('") a r e  m u l t i p l i e d  i n  t h e  t r a n s i t i o n  from E' t o  E'", are now 

d i f f e r e n t :  

rs' 

( 1 - 2rM2 s i n 2  ")( I - ZTM* s in*  z) 
= ( 1  + 2TM2 s i n 2  ")( 1 + 2TM2 Sin2 2) 

2M 

2M 2M 

As i n  t h e  a n a l y s i s  of the  convergence of scheme ( 4 ) ,  Eq. (13) i s  s a t i s f i e d :  

and, moreover, e q u a l i t y  i s  achieved f o r  some s p e c i a l  choice  of E O  = 

t i o n  l X r s l  < 1 i s  s a t i s f i e d  and, consequent ly ,  I 
Fur the r ,  X = A * X where 

From expres s ion  ( 1 6 )  f o r  one can see t h a t ,  f o r  any T ,  t h e  condi- rs I t ends  t o  zero .  

rs r s' 
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nk 

nk ’ 
1 - 2TM2 s i n 2  - 2 M  

1 + 2TM2 s i n 2  5 
k = 1, 2, ..., M-I. A =  

Therefore  max [ A  

which I A  ,I i s  maximum. 

monotonic. Therefore  

I i s  a t t a i n e d  f o r  r = s = r., where r’ i s  t h e  index  fo r  r,s rs 
C l e a r l y  t h e  f u n c t i o n  A = ( 1  - x ) / ( l  + x )  i s  

ns 
1 - 2TM2 sin2 

1 + 2 T M 2  s i n 2  
A =  

T S  

l ies  between t h e  p o i n t s  

and 

1 - 2TM2 cos2  

‘left - 1 + 2TM2 cos2  
2M 

1 - 2 T M 2  sin2 

’ r igh t  - 1 + 2 r M 2  s i n 2  

on t h e  r e a l  a x i s .  I n c r e a s i n g  T s h i f t s  t h e  po in t s  and A t o  t h e  

l e f t .  
l e f t  r i g h t  

Therefore  t h e  q u a n t i t y  mgx(Asl w i l l  be smallest f o r  t he  T f o r  which 

-A = x  i .e.  f o r  T = 1 / f l 1 1 M .  I n  t h i s  ca se  
l e f t  r i g h t ’  

fill 
max = I - - + o($) . 

M 

To make the  norm of the  error 1 1 1 smaZZer by a factor e than t h e  
original: error-norm 1 I Eo 1 1 t h e  number of steps, p ,  must satisfy the  
condition [1 - ( T f i / M ) ] ’  e , so that 

-1 

P ” -  = O ( M ) .  
n C T  

Each t r a n s i t i o n  from up t o  up+’ r e q u i r e s  cM2 a r i t h m e t i c  ope ra t ions .  

Therefore  the  t o t a l  number of a r i t h m e t i c a l  o p e r a t i o n s  r equ i r ed  t o  dec rease  

the  e r r o r  e t imes i s  O ( M 3 ) ,  and t h e  number of ope ra t ions  needed t o  dec rease  

t h e  e r r o r  k t imes  i s  O(M3 Qn k). 
We see t h a t ,  for l a r g e  M ,  the  second of t h e  time-development p rocesses  

cons idered  he re ,  u s ing  t h e  a l t e r n a t i n g  d i r e c t i o n s  scheme, y i e l d s  a 

p resc r ibed  dec rease  i n  e r r o r  a t  a smaller c o s t  i n  a r i t h m e t i c  o p e r a t i o n s  

than t h e  time-development method based on t h e  use of t he  s imples t  e x p l i c i t  

scheme ( ( 4 ) :  f o r  s u f f i c i e n t l y  l a r g e  va lues  of M (i.e. f o r  f i n e  n e t s )  t h e  

a l t e r n a t i n g  d i r e c t i o n s  scheme t u r n s  ou t  t o  be the  more e f f i c i e n t  of t h e  
two. 
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4. Choice of accuracy. We now make some remarks on the accuracy 
which must be attained in solving problem (1) by time-development, or some 

other method yielding a sequence of approximations, ul, u2, . . . , up. 
Difference scheme (1) approximates problem ( 2 )  on a smooth solution u(x,y) 

to order h2 = 1/M2. Therefore the exact solution u(~) of problem (1) 

differs from the desired table [u] 
h 

makes no sense to calculate the solution u(~) of problem (1) with any 

greater accuracy. 

given with an error of order 1, than the number, k, by which we want to 
decrease the norm of the error should be taken of order M2. To decrease 

the original error by more than O ( M 2 )  would be a useless expenditure of 
computational effort. 

In computations on a specific, fixed, net one iterates, in practice, 

until the sequence of approximations up, up+', ..., stops changing within 
prescribed limits of accuracy. 

by a quantity of order 1/M2. Thus it 

If we suppose that the zeroeth approximation uo = 6, is 

5. Limits of applicability of methods. Difference scheme ( 4 ) ,  as 
well as our analysis of error reduction, can be generalized to difference 

schemes approximating other boundary-value problems for elliptic equations 

with Variable coefficients, in regions with curvilinear boundaries. Here 

it is important only that the operator xh, analogous to the operator 
-A - ( A  + A ) of scheme ( l ) ,  ranging over ne't functions satisfying 
h xx YY 

homogeneous boundary conditions, be selfadjoint and that its eigenvalues 
u .  be of one sign: 
.l 

In this case one uses for analysis in finite Fourier series, not the 
functions 

but an orthonormal system of eigenfunctions of the selfadjoint operator 

Ah. It is known that such a system of eigenfunctions exists and is 
complete, and the specific form of these functions does not enter the 

general argument. 
Alternating directions difference scheme (6) withstands generalization 

to the case of variable coefficients in domains with curvilinear boundaries 

(although the Fourier analysis then becomes impossible). For boundary 

conditions of the form CYU + 6 au/an), = J, a direct generalization of scheme 

(6) does not lead to an algorithm which separates into two one-dimensional 
FEBS calculations. 

N 
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PROBLEMS 

1 .  Write ,  i n  analogy t o  the  above schemes ( 4 )  and ( 6 ) ,  e x p l i c i t  and 

a )  f o r  t he  Laplace equa t ion  wi th  v a r i a b l e  c o e f f i c i e n t s :  

i m p l i c i t  time-development schemes f o r  t he  s o l u t i o n  of t he  D i r i c h l e t  problem 

u l r  = $(X,Y)Ir.  

2. Show t h a t ,  i n  the  a l t e r n a t i n g  d i r e c t i o n  method f o r  the  i t e r a t i v e  

s o l u t i o n  of t he  D i r i c h l e t  problem 

xx mn yy mn 

m , n = l , 2 ,  ..., M - l ; M h = l ,  

one can choose an i t e r a t i o n  parameter T such  t h a t ,  a f t e r  t h e  very f i r s t  

i t e r a t i o n ,  t he  f i n i t e  Four i e r  s e r i e s  f o r  t h e  e r r o r  c P  w i l l  not c o n t a i n  some 

s i n g l e ,  p re sc r ibed ,  harmonic I # ( ~ * ~ ) .  

5 36. Iteration with variable step-size 

1.  The idea of Richardson. The convergence mechanism f o r  t h e  

s imples t  time-development scheme ( 4 )  635 
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c o n s i s t s ,  as we have seen ,  i n  t h e  damping of each harmonic, $ ( r * s ) ,  con- 
t a i n e d  i n  t h e  Four i e r  s e r i e s  expansion of the  e r r o r ,  E o  - uo , i n  

t h e  zeroe th  approximation. I f  

= u 
mn mn mn 

then  t h e  Four i e r  c o e f f i c i e n t s  of t he  e r r o r  i n  t h e  next  approximation 

can be expressed i n  terms of cp v i a  t h e  equat ions  ( s e e  (10) and (11)  8 3 5 ) :  
rs 

For a given, f i x e d ,  T no t  a l l  t h e  harmonics damp e q u a l l y  f a s t .  The 

harmonics + ( r , s )  which damp most qu ick ly  a r e  those  f o r  which the  damping 

f a c t o r s  X r s  f 1 - TU 
This  sugges ts  t h a t ,  s t e p  a f t e r  s t e p ,  we change the  parameter T so as t o  
damp a l l  t h e  harmonics $ ( r 7 s )  e f f e c t i v e l y  i n  sequence, w i th  the  r e s u l t  

t h a t ,  a f t e r  s e v e r a l  s t e p s ,  a l l  t h e  harmonics w i l l  have damped more o r  less 

uniformly. 

l i n e a r  systems o f  equa t ions ,  wi th  ma t r i ces  a l l  of whose e igenvalues  have 

t h e  same s ign .  

a r e  c l o s e s t  t o  zero ,  i . e  those  f o r  which vrs = 1 / ~ .  
rs 

This c o n s t i t u t e s  Richardson ' s  i d e a  f o r  t h e  s o l u t i o n  of s e l f a d j o i n t  

2. The Chebyshev set of parameters. Richardson ' s  i t e r a t i o n  p rocess  

i s  given by t h e  equa t ions  

1 m ,  n = 1, 2 ,  ,.., M-1, ( 4 )  

= $(smn); [u:n} given  I 
r mn 

wi th  i t e r a t i o n  parameters,  T , depending on t h e  i t e r a t i o n  number. 

Richardson i n d i c a t e d  a usefuf f 'bu t  no t  op t imal ,  set of parameters { T  1. We 
now present  r e s u l t s  on the  optimum choice  of i t e r a t i o n  parameters [T } ,  and 

e s t i m a t e  t h e  r a t e  of decrease  of t h e  norm of the  e r r o r  I 1 .  From Eq. 
( 3 )  i t  is c l e a r  t h a t  t h e  Four i e r  c o e f f i c i e n t s  , crs, of t he  e r r o r  E~ i n  t h e  

k ' t h  s t e p ,  can be expressed  i n  terms of t he  F o u r i e r  c o e f f i c i e n t s  co 

o r i g i n a l  e r r o r  Eo by t h e  equa t ion  

P 

P 

k 

of t h e  
rs 

L e t  us now in t roduce  t h e  n o t a t i o n  Q ( p ) ,  s e t t i n g  
k 
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Then 

34 3 

( 5 )  

It is c l e a r  t h a t  t he  i n e q u a l i t y  

becomes an exac t  e q u a l i t y  f o r  some E o .  

Eq. (31, are d i s t r i b u t e d  over  t h e  i n t e r v a l  

The q u a n t i t i e s  1! , given  by 
rs 

a = p  = b, min 5 'max 

where 

a = u = 8M2 sin2 & a 2n2, 
b = vmax = 8M2 cos2 & p 8M2. 

min 

We w i l l  not r e l y  on knowledge of t h e  a c t u a l  va lues  of t h e  numbers u 
s i n c e  t h i s  i s  an a c c i d e n t a l  c i rcumstance ,  p a r t i c u l a r  t o  our example. 
In s t ead  we use only t h e  f a c t  t h a t  w e  know t h e  boundar ies ,  a and b, of t h e  

i n t e r v a l  ( 6 )  on which they l i e .  Therefore ,  g iven  k, we ask  how one can 
d e f i n e  t h e  i t e r a t i o n  parameters  T ~ ,  T2, ..., Tk, so t h a t ,  among a l l  

polynomials,  Q (u), s a t i s f y i n g  the  cond i t ion  

rs '  

k 

Q(0) = 1, (7) 

polynomial (5)  will, on t h e  i n t e r v a l  a 5 u 5 b, d e v i a t e  l e a s t  from ze ro :  

This  problem i n  the  theory  of approximations was so lved  i n  1892 by 

A. A. Markov. The d e s i r e d  polynomial Q (1-1) S Tk(p)  may be expressed  i n  
k 
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terms of the Chebychev polynomial (see for example V. L. Goncharov,* 

"Theory of Iteration and Approxlinatton of Functions," 1954, in Russian) 

T (x) 5 cos k arccos x 
k 

which, among all polynomials of order k with coefficient of xk equal to 

one, deviates least from zero on the interval -1 x & 1. In fact if one 

makes the linear transformation 

b + a - 2 p  
b - a  ' x =  ( 9 )  

mapping the interval a 

u = 0 into x = (b i a)/(b - a) > 1, then 

p L b into the interval -1 x i  1, and the point 

0 

k k 

Tk(') = rk(x) 
(x +4x2 - 1) + (x -dx2 - 1) k *  

(10) 
Y 

k(= (xo +&T)k t (xo -JV) 
The set of iteration parameters T which generate polynomial 

( l o ) ,  are defined through the condition that the zeroes, u j  = l / T j ,  of the 

polynomial T ( p ) ,  under transformation ( 9 ) ,  should be mapped into the 
zeroes x of the Chebyshev polynomial T (x): 

T2, ..., 5 
1' k' 

- 
k 

j k 

Let us now evaluate the maximum, QZ, of the deviation from zero of 
N 

polynomial Qk(U) E T(P) on the interval a u & b. 
theory of approximation, the Chebyshev polynomial T (x) takes on its k 
maximum-modulus value, on the interval -1 ( x i  1, at k + 1 points, 

including the ends of this interval. Therefore it follows from (10) that 

As is known from the 

(12 )  
Tk(l) 2 
T x -  -k k '  

Qi: = T-7: (xo +.Jx; - 1) + (xo -dx; - 1) 
Further, from (9) we get 

*Or R. S .  Varga, "Matrix Iterative Analysis" Prentice Hall 1962. 

(Translator's note). 
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Therefore  f o r  l a r g e  M 

+ x2 - 1 = 1 + 2 6 +  0 ( n ) ,  -\I 0 - 

from which, t ak ing  n o t e  of (13 ) ,  i t  fo l lows  t h a t  

2 Qi = - 
[ l  + 2 6  + 0(n)Ik + [ l  - 2 6  + 0 ( n ) I k  

I =  k Rn(1 + 2 6  + O ( I I ) )  + ek Rn(1 - 2 6  + O(Tl)) 
= 2 ~  {e 

Cons ider ing  t h e  f a c t  t h a t  t he  norm of t h e  i n i t i a l  e r r o r  Eo is of o r d e r  

1 J 1,  and n o t i n g  t h e  comments i n  4835 as t o  t h e  accuracy  which u n i t y ,  1 
i t  is reasonable  t o  achieve  i n  t h e  i t e r a t i v e  s o l u t i o n  p rocess ,  we conclude 

t h a t  k should be ob ta ined  from the  c o n d i t i o n  Q* M - ~ ,  i.e. 

~ 2 Rn M + En 2 ~ 2 En M + En 2 

n 2 6  
-1 

To reduce the initial error by a factor e , k must be obtained ,from 
the condition Q t  5 e-l, i . e .  

(15)  
1 + Rn2 k = - M ill + En = O ( M ) .  

TI 2 6  

Having chosen k i n  t h i s  way one can then  cons ide r  t h e  f i r s t  k i t e r a t i o n s  as 
t h e  f i r s t  i t e r a t i o n  c y c l e ,  and r e p e a t  the whole c y c l e  wi th  t h e  same set of 

parameters  T ~ ,  T ~ ,  ..., T ~ .  To dec rease  t h e  norm of the  e r r o r  by a f a c t o r  

M 2 ,  t h e  number of c y c l e s ,  V,  must be taken  such t h a t  exp(-v) 

V - 2 En M. The n e t  number of e lementary  s t e p s  of t h e  i t e r a t i v e  p rocess  i n  

v cyc le s  w i l l  be 

1 / M 2 ,  

Th is  exceeds on ly  by t h e  f i n i t e  f a c t o r  

t h e  number (14)  of elemenary i t e r a t i v e  s t e p s  r equ i r ed  wi thout  cyc l ing .  

Thus t h e  use of c y c l i n g  wi th  k 
s i m p l i f i c a t i o n  wi thout  s u b s t a n t i a l l y  i n c r e a s i n g  t h e  number of i t e r a t i o n s .  

f o r  k = 1 the  Richardson process  ( 4 )  t ransforms i n t o  simple i t e r a t i o n  (1 )  

with op t ima l ly  chosen T. The Iilimlxr of s t e p s  r equ i r ed ,  v i a  t h i s  p rocess ,  

(1 + Rn 2 ) / ( 2  4% aciiteves some 

The use of c y c l e s  of l e n g t h  k << 1 / (2J? )  is inadv i seab le .  For example 
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t o  reduce t h e  norm, 1 
= 2M2/7r2, a s  shown in 2135. 
number of s t e p s  r equ i r ed  t o  achieve  t h i s  same reduc t ion  when the  cyc le-  
l e n g t h  is taken  i n  accordance wi th  (15).  

1, T ~ ,  ..., T optimum set of i t e r a t i o n  parameters T 

Suppose we now rea r range ,  somehow, t h e  members of t he  sequence 
TI, T 2 ,  ..., T k ,  i n t o  a new sequence K ( ~ )  = ( K ~ ,  K ~ ,  ..., K ~ ) ,  and i t e r a t e  

accord ing  t o  t h e  formula 

1 1, of t h e  o r i g i n a l  e r r o r  by a f a c t o r  e i s  
Th i s  number i s  O(M) t imes  l a r g e r  than  t h e  

3. Numbering of i t e r a t i o n  parameters .  Equation (11)  g ives  t h e  
( f o r  given f i x e d  k ) .  

k 

up+1 = up + T~ (Ahup - 4 ) .  
D+ 1 

P+ 1 u = +, uo  g iven .  

I f  a lgo r i thm (16)  is  r e a l i z e d  e x a c t l y  t h e  r e s u l t  of t he  f i n a l ,  k ' t h ,  

i t e r a t i o n  w i l l  no t  depend on t h e  d e t a i l s  of the  chosen sequence K(k) = 

( K ~ ,  c 2 ,  ..., 
a f i n i t e  number of s i g n i f i c a n t  f i g u r e s ,  t h i s  o rde r ing  i s  ex t remely  impor- 
t a n t .  For l a r g e  k i t  Very s t r o n g l y  

computed r e s u l t  t o  rounding e r r o r s  

committed i n  i n t e r v e n i n g  s t e p s  of 

t h e  process ,  i.e. the  computa t iona l  

s t a b i l i t y  of t h e  a lgor i thm.  Before 0 17 
i n t roduc ing  accep tab le  o rde r ings  
K ( k )  = (K1, K2 ..., K k ) ,  we  no te  

t h a t  t he  o r i g i n a l  a lgor i thm ( 4 )  
corresponding t o  t h e  o rde r ing  

K ( ~ )  = (1, 2 ,  ..., k )  i s  u s e l e s s ,  

from a p r a c t i c a l  po in t  of view. 

. But i n  real c a l c u l a t i o n s ,  c a r r i e d  ou t  on a machine wi th  
Kk) 

in f luences  t h e  s e n s i t i v i t y  of t h e  A /-q/f 

Fig. 45. 

We now analyze  t h e  mechanism which g ives  r i s e  t o  i n s t a b i l i t y  i n  t h i s  

case. Suppose t h e  o r i g i n a l  e r r o r  Eo has the  form E O  = 2' co $ J ( ~ " ) ,  

co TJ 1 ,  and t h e  computation is  c a r r i e d  out  e x a c t l y ,  wi thout  roundoff 
e r r o r .  Then t h e  c o e f f i c i e n t s  of t he  e r r o r  i n  t h e  a ' t h  approximation, 
E' = 1 

K S  

K S  

are given by t h e  expres s ion  

L e t  us fo l low t h e  evo lu t ion  of ca 

I n  t h i s  case 
wi th  i n c r e a s i n g  a f o r  r = M-1, s = M-I. 

K S  
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Consider the linear functions 1 - T . V ,  j = 1, 2, ..., k, whose zeroes, 
p .  = l / ~  
tdat, for (2j - 1)/2k < 1 / 3 ,  or j < (2k  + 3 ) / 6  (and large enough M), we 
have v < b/2, and therefore (see Fig. 4 5 )  

are determined by Eqs. (j1). From these equations it is clear 
j' 

j 

(18) 

If k - l/(ZJfi) - M and j - 1, then v 
and therefore 

- a + (1/M2), T - (l/a) - (1/M2) 
j j 

b 
11 - T j b l  - - -  M 2 .  

Thus the value F,', defined by Eq. (17), increases initially by about a 
factor of M2 per step, and then more slowly. We see from (18) that this 

growth continues at least as long as 9.5 (2k + 3 ) / 6 ,  so that for 9. - k/3 
the quantity c 

increasing with k. In fact the order of magnitude of the value of the 

approximation uR = {umn} may exceed the limits allowed by the computer even 

for reasonable values of k, k << M. 
If, hypothetically, this didn't happen, and the computation were 

continued with infinite precision, then up to step R = k the quantity 
R k *  %-l,M-l, would decrease so that 5 < Qk. 
then unavoidable, relatively small roundoff errors, at 9. - k/3 will be very 
large in absolute value. These errors are random, so that in their finite- 

Fourier series expansions all terms will be present and, in particular, the 

term of form 

and therefore also [ ( E ' I  I ,  will be very large, R 
M-1 ,M-1 ' 

a. 

But the point is that, even if an overflow did not occur at II - k/3, 

- 
where c 

troduced into the harmonic $ (1'1) by roundoff in the step R ;':/3 is not 

substantially damped, and distorts the computationally result unaccept- 

ably. $J(','), of this error to the approximation 

uk obtained at the last, k'th, step, is given by the expression 

is a quantity which isn't small in absolute value. 
1 1  

We ;ow show that, in later iterative steps, the error $("') in- 

The contribution, ck 
1,1 

Hut for j > (2k + 3 ) / 6 ,  clearly 

u 1 > ? [ b + a - ~ ]  b - a  >T-M'. b 
j 



34 8 

Theref o re  

E l l i p t i c  Problems Chapter 11 

so t h a t  

have shown t h a t  use  of t he  parameter sequence K ( ~ )  = (1, 2 ,  ..., k) is  
i m p r a c t i c a l .  

I f  i n  t h e  Il ' th s t e p  of process  (16)  one has  in t roduced  a roundoff 

- cl , l ,  and t h e  roundoff e r r o r  has  [not been damped. Thus w e  

e r r o r  

( r , s )  
c q  Y rs 

then at  t h e  k ' t h  s t e p  t h i s  e r r o r  evolves  i n t o  

For  t h i s  reason  i t  seems d e s i r a b l e  t o  t r y  t o  ach ieve  an  o rde r ing  K ( ~ )  = 

(K1, K2, ..., K,), f o r  which 

wi th  some moderate va lue  of A .  

imation. By t h e  2 ' t h  s t e p  t h i s  e r r o r  develops i n t o  
Suppose c:s~(rys)  is  a component of t he  e r r o r  E o  i n  t he  z e r o t h  approx- 

If  the  norm of t h i s  func t ion  i s  l a r g e  then  roundoff w i l l  g ive  con t r ibu -  

t i o n s ,  l a r g e  i n  abso lu te  va lue ,  t o  a l l  harmonics. It can then happen t h a t  

a c o n t r i b u t i o n  t o  some harmonic w i l l  no t  be damped by f u r t h e r  i t e r a t i o n ,  

and w i l l  s t r o n g l y  d i s t o r t  t h e  computed r e s u l t .  

t o  look f o r  an o rde r ing ,  K ( ~ )  = ( K ~ ,  K 2 ,  ..., K ~ ) ,  f o r  which 

Therefore  i t  i s  p l a u s i b l e  
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with  some moderate va lue  of B. 

I n  t he  work of V. I. Lebedev and S. A. Finogenov, (U.S.S.R. Comp. 

Math. and Math. Phys. 11, #2 (1971)) ,  and of A. A.  Samarski i  [ 2 3 ] ,  t h e  

au tho r s  desc r ibe  va r ious  u s e f u l  methods of o rde r ing  parameters ,  and shed 

some l i g h t  on t h e  h i s t o r y  of t h i s  ques t ion .  Here we p resen t  some r e s u l t s  

of V. I. Lebedev and S. A. Finogenov. In  t h e i r  work they  assume t h a t  k is 

a power of 2 ,  i .e. k = zi, and g ive  a r ecu r rence  formula f o r  t h e  

cons t ruc t ion  of K(k). 

S p e c i f i c a l l y ,  f o r  i = 1 

K(k) = (1,  2 ) .  

I f  f o r  k = Zi-I t he  o rde r ing  K ( z i - l l  has  a l r e a d y  been de f ined  

then  one s e t s  

i i + 
- K2i -  

= ( K 1 ,  2i f 1 - K1,  K 2 ,  2 + 1 - K 2 ,  ..., 
In  p a r t i c u l a r  f o r  i = 2,  i = 3 and i = 4 we g e t ,  s equen t i a  

) (21)  

1 Y  

( 1 ,  16,  8, 9, 4 ,  13, 5,  12, 2 ,  15, 7 ,  10, 3 ,  14, 6 ,  11 ) .  

By the  i n d i c a t e d  method (21)  of o rde r ing  i t e r a t i o n  parameters ,  t he  numbers 

A and B i n  i n e q u a l i t i e s  (19 )  and (20)  can be t aken  t o  be independent of k 
and &. 

The parameter-ordering a lgo r i thm p resen ted  by A. A .  Samarski i  has a 

somewhat more compl ica ted  formula t ion ,  but i n  r e t u r n  does not  n e c e s s a r i l y  

r e q u i r e  t h a t  t h e  o rde r  be a power of 2.  The number k can have the  form k = 
( 2 j  + l )*Z i .  

which, i n  some sense ,  gua ran tee  s t a b i l i t y .  

( 6 )  $35 we w i l l  t ake  t h e  i t e r a t i o n  parameter ,  T, to depend on t h e  step- 

number, s e t t i n g  

I n s t e a d  of (19) and ( 2 0 )  t h e  au tho r  e s t a b l i s h e s  o t h e r  bounds 

4. The Douglas-Rachford method. In  t h e  a l t e r n a t i n g  d i r e c t i o n  method 

n 

ncl  - 
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For the error E~ = uk - u we get the expression 

where 
ni 

1 - 2TM2 sin2 - 2M 
ni ' 1 + 2rM2 sin2 

i = 1, 2, ..., k. Xi(T) E 

k' 
For a given k the optimum set of T ' s  is the set, Tl, T2, ..., T 

for which the quantity 

takes on its smallest value. If one does not make use of the exact values 

of h ( T )  and X ( T ) ,  but only of the boundaries within which these values 

lie, one gets involved in a Chebyshev-type problem like the problem for 
polynomials in section 2, above, but €or products of rational fractions, 

each linear in numerator and denominator. 

The statement of this problem and, as well, the proposal to solve the 

Poisson equation by the process of time-development using an alternating 

direction scheme, is due to Douglas, Peaceman and Rachford.* 

Douglas-Rachford work of 1956t which is presented here, this problem is 

solved approximately. For their choice of iteration parameters the  number 

of fterative steps required to decrease the error by a factor e is O(AnM), 

and the number of arithmetic operations is O(M22nM). 

We show first that, given an arbitrary positive q, q < 1, one can 
T2, ..., T with k = O(AnM), so as to 

1' k' 

In the 

choose iteration parameters T 

satisfy the inequality 

r ,  s =  I ,  2, ..., M-1. 
Then I lekl I 1. ql I E O ~  I. 
iteration parameters Tl, T2, ..., Tk, and the next k iterations again 

If one carries out the first k iterations with 

*See, for example, the discussion in R. S. Varga, "Matrix Iterative 
Analysis," Prentice Hall 1962. (Translator's note.) 

tDouglas, J. Jr. and Rachford, H. H., Jr., "On the numerical solution of 

heat conduction problems in two and three space variables," Trans. Amer. 

Math. SOC. 82, 421-439 (1956). 
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using T , T ~ ,  ..., T ~ ,  then to decrease the norm of the error by a factor e 

one will require, clearly, some number of cycles (a number independent of 
M), each cycle made up of k = O(8nM) iterations. 

Let us now justify Eq. (22) and, in the process, explain how one can 

choose the parameters T 1 ,  T ~ ,  ..., T ~ .  

1 

It is clear that 

(Xi(T)[ < 1, i = 1 ,  2, ..., M-1, t > 0. 

Therefore if inequality (22) is to be satisfied for any r,s = 1, 2, ..., 
M-1, it is sufficient that for each i = 1, 2, ..., M-1 at least one of the 
k factors X ( T  ),  p = 1, 2, ..., k should satisfy the inequality 

i P  

A l l  the quantities 2M2sin2(ri/2M), i = 1 ,  2, ..., M-1 belong to the 
interval 

Thus to satisfy (22) it is sufficient, in view of (23), that for each 11 in 

the interval (24) the inequality 

be satisfied for at least one T, T = T l ,  T2, ..., T k ;  and it is all the 

more sufficient that the icequality 

be satisfied. 

For this to be true it is necessary that, for each p in the interval 

(24), there is a T , p = 1, 2, ..., k, for which 
P 

l - G < T ! . l L l + G .  
- P  

Let us define 11 and T respectively, via the relations 
P P' 

1 1 - -  -(: ::)'-'a, p = 1, 2, ..., k, 

1 - G i  
T =- , p = l , 2  ,..., k. 

P 
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Then as p i n c r e a s e  from up t o  

(25)  * 

t h e  product T p t r a v e r s e s  t h e  i n t e r v a l  
P 

C lea r ly ,  i f  we t a k e  k t o  s a t i s f y  t h e  cond i t ion  l~ > b, i.e. k -  

I 
k L A L n a + l = A ( 2 $ n M + L n - )  b 4 + I ,  

7 2  

1 

En - 
A =  

1 +J;i' 
1 - 6  

L' we do indeed g e t ,  from Eq. (251, t h e  des i r ed  sequence T 1 ,  T 2 ,  ..., T 

PROBLEMS 

1 .  Is i t  p o s s i b l e  t o  choose i t e r a t i o n  parameters  T 1, T2, ..., T such 

t h a t  a f i n i t e  number of i t e r a t i o n  s t e p s  of process  ( 4 )  w i l l  y i e l d  t h e  exac t  
s o l u t i o n  of t h e  D i r i c h l e t  d i f f e r e n c e  problem? 

g e n e r a l i z a t i o n  t o  t h e  case  where t h e  exac t  e igenva lues  N are unknown. 

2. Expla in  t h e  mechanism f o r  t h e  development of computational 
i n s t a b i l i t y  i n  computations v i a  Eq. ( 1 6 ) ,  with  

k 

How many i t e r a t i o n s  would be r equ i r ed?  Can such a method permit 

rs 

K ( ~ )  = (k ,  k-1, k-2, ..., 2 ,  I ) ,  

f o r  l a r g e  k and M. 

s e r i e s  f o r  t he  e r r o r ,  E ~ ,  i n  a c a l c u l a t i o n  wi th  K ( ~ )  = ( k ,  k-1, k-2, 
..., l ) ,  and i n  t h e  presence o f  roundoff e r r o r s ?  

i n t e r v a l  0 < p 

condition-number n = 
process  

Which harmonics $ ( r , s )  w i l l  dominate i n  the  F o u r i e r  

3 .  Suppose A is a s e l f a d j o i n t  ope ra to r  whose e igenva lues  l i e  on t h e  
< !.I < pmax. What c o n s t r a i n t  must be s a t i s f i e d  by t h e  

min 
i f ,  f o r  t he  equa t ion  Ax = 0, t h e  Richardson 

pmin'pmax* 

i s  t o  converge,  and be computa t iona l ly  s t a b l e ,  f o r  any a r b i t r a r y  choice  of 
T = 1 / p j ,  pmin < P .  < urnax, j = 1, 2 ,  ..., k ,  and a r b i t r a r y  k?  

J 

t h e  parameters T T 2 ,  ..., T k ,  has no s u b s t a n t i a l  i n f l u e n c e  on t h e  

computational s t a b i l i t y  of t he  i t e r a t i v e  process?  
5. Assuming t h e  the  machine time requ i r ed  f o r  one s tep  of t h e  

Douglas-Rachford process  i s  twenty times g r e a t e r  t han  f o r  one s t e p  of t h e  
Richardson scheme estimate, through use of Eqs. (15) and ( 2 7 )  f o r  what 

va lue  of M t he  s u p e r i o r i t y  of t h e  Douglas-Rachford method f i r s t  becomes 

apparent .  

j 
4 .  Why i s  it t h a t ,  i n  t h e  Douglas-Rachford scheme, t h e  o rde r ing  of 

1' 
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137. 'he Federenko Method 

In the work of R. P. Federenko, U.S.S.R. Comp. Math. and Math. Phys. 
- 1, 85 (1961). the author presents an iteration method* for the solution of 

elliptic difference problems, a method which he calls relaxational. To 
decrease the norm of the original error by a factor e this method requires, 

in all, cM2 arithmetic operations, where M is the number of net-steps in 
one direction and c i s  some constant not depending on M. We note that the 

most rapidly convergent of the above (and generally of all other known) 
methods, the Douglas-Rachford method requires, for the same error 

reduction, O( (hM)M2) arithmetic operations. 
The range of applicability of the Fedorenko method is almost the same 

as that of the simplest time-development method. An additional limitation 
is the requirement of "smoothness" of the lowest-order eigenvectors, a 
requirement ordinarily fulfilled for elliptic problems. 

In simple examples the computational speed of this method, as compared 
with the most quickly-convergent iterative methods of other types, is 

already convincingly demonstrated for M = 50. It must be kept in mind that 
the logical organization of the relaxational method is substantially more 
complicated, as we shall see, than the logic of, let us say, the Richardson 

scheme. Therefore the computer time depends very strongly on the quality 
of the computer program. 

imation to the Poisson equation in a square region, on a square net, with 
given boundary-values) was obtained by R. P. Fedorenko, U.S.S.R. Comp. 
Math. and Math. Phys. A, //3 (1964). 

The simplest estimate of convergence rate (for a difference approx- 

In the work of N. S. Bakhvalov ( U . S . S . R .  Comp. Math. and Math. Phys. 
- 6 ,  1 5  (1966))  the author studied the convergence of the Fedorenko method, 

and got precisely the same result for the difference analogue of the first 
boundary-value problem in a rectangle, for a general elliptic equation 
with smooth coefficients 

aZu aZu aU au - + a  - a2, ; + 2a12 axay 22 + al z + a2 + au = 
aY2 

Finally, G. P .  Astrakhantsev (U.S.S.R. Comp. Math. and Math. Phys. ll, 112 
(1971)) got analogous results for a difference approximation to the third 

boundary-value problem for a selfadjoint difference equation in an arbi- 
trary two-dimensional region with smooth boundaries. 

Since the derivation is very involved we limit ourselves to a 
qualitative description of the idea of the method, and of the Fedorenko 
algorithm itself, referring the reader to proofs in the original work and, 

to a review article by R. P. Fedorenko, Uspekhi. Mat. Nauk**28, Vol. 2 
(1973) .  * * * * * *  
*Pn early variant of the multi-grid method. For a more extensive presen- 

tation of multi-grid methods see, for example, "Multi-Grid Methods and 
Applications", W. Hackbusch, Springer-Verlag (1985). (Translator's note). 

Title of translated journal is Russian Math. Surveys. 
(Translator's note.) 

** 
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1.  Idea of the method. To a r r i v e  a t  an i t e r a t i v e  s o l u t i o n  of t h e  

problem 

we set out  from t h e  s i m p l e s t  time-development process  ( 4 )  8 3 5  

which, on t h e  whole, converges very slowly but un i formly  i n  the  v a r i o u s  
harmonics. 

form of a f i n i t e  F o u r i e r  s e r i e s  

The e r r o r  E' = up - u, as i n  (10) 835, may be w r i t t e n  i n  t h e  

where the  co 
ze roe th  approximation, and 

a r e  expansion c o e f f i c i e n t s  of t he  e r r o r ,  E O  = u0 - U ,  i n  t h e  
rs 

llr mS 
X r s  = 1 - 4sM2(sin2 + s i n 2  x). 

l e f t  5 ' r i g h t '  where The q u a n t i t i e s  X l i e  on t h e  i n t e r v a l  X 
rs 

x = A  = 1 - 8 ~ ~ 2 ,  
l e f t  M-l,M-1 

r i g h t  1 , l  
X = A a 1 - 2T27.  

Suppose t h a t  

3 

1 6M2 
T = -. (4) 

I f ,  under t h i s  cond i t ion ,  a t  least one of t h e  numbers r o r  s i s  g r e a t e r  

t han  M f 2 ,  then 

Therefore  t h e  c o n t r i b u t i o n  of t h e  high-frequency harmonics r > M/2 
o r  s > M/2, t o  t h e  e r r o r  ( 3 )  dec reases ,  in one i t e r a t i v e  s t e p ,  almost i n  

h a l f ,  and qu ick ly  becomes smal l .  A f t e r  s e v e r a l  i t e r a t i o n s  v i a  Eq. ( 2 )  t h e  

e r r o r  izP w i l l  con ta in ,  e s s e n t i a l l y  on ly  a smooth component (harmonics 

Jt"'"), r < Mf2, s < M/2), because t h e  low-frequency harmonics J l ( r 9 s )  are 
m u l t i p l i e d  by f a c t o r s  X which a r e  c l o s e r  t o  un i ty .  The c o n t r i b u t i o n  of 

t h e  f i r s t  harmonic $(lS1' damps very slowly; f o r  t h e  g iven  choice  of T 

r s  
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Let u s  designate by U 

( 2 1 ,  and let v by the 

the approximation up, obtained by iterative process 

error E~ = up - u = U - U. If we knew the error v we 
could find the desired solution u = U - V. But all we know about v i s  that 

it satisfies the equation 

A v = 5 ,  vIr = 0, (7 )  h 

where 5 ,  a known net function, is the residual obtained when one substi- 
tutes up = U into Eq. (1): 

5 = AhuP - $ = AhuP - Ahu = Ah(up - u )  = Ahv. 

Problem ( 7 )  which determines the corra<..tion v is simpler than the original 

problem (1) only i n  the sense that we know that v is a smooth net func- 

tion. Therefore to determine v we can take as an approximation this same 

problem posed on a net twice as coarse which (for even M) is contained in 
the original net: 

A v* = 5*, v*Ir* = 0. ( I*)  2h 

Here the asterisk designates quantities pertaining to the coarsened net. 

We will solve problem ( I*)  by the iterative process 

taking as a zeroeth approximation (v* )' 
3 / [  16(M*)'] = 4 T .  

0 .  Here M* = M/2, T* = 
mn 

Each step of iterative process (Z * )  requires only a quarter as much 

work as a step of ( 2 ) ,  because there are only a quarter as many points in 
the computational mesh. Further, thanks to the fact that T* = 4 1 ,  the 
attenuation of the most s lowly  damped error component proceeds more 

quickly. Corresponding to ( 6 )  we now have 

and, to attenuate the contribution $(lyl) by a factor e, one needs a fourth 
as many iterations. Let u s  designate by V* the result of iteration by Eq. 

( 2 * ) .  We next interpolate V* onto the original net (linearly). Smooth 
components will be obtained almost exactly. The error induced i n  the 
smooth function by interpolation will be small relative to the interpolated 

smooth function, but (since the error due to interpolation I s  jagged 
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because of s l o p e - d i s c o n t i n u i t i e s  a t  t h e  i n t e r p o l a t i o n  p o i n t s )  t h e  F o u r i e r  

expansion of t h e  e r r o r  w i l l  c o n t a i n  a l l  components. I n  a d d i t i o n  t h e  non- 

smooth component of V*, which bea r s  no r e l a t i o n  t o  t h e  d e s i r e d  c o r r e c t i o n ,  

upon i n t e r p o l a t i o n  a l s o  g ives  a random c o n t r i b u t i o n  t o  the  non-smooth 

component of t h e  func t ion  V ,  produced by the  i n t e r p o l a t i o n  process .  

Thus the  smooth component of t he  d i f f e r e n c e  U-V is  c l o s e  t o  t h e  smooth 
component of t h e  d e s i r e d  s o l u t i o n  u = U-v, but t h e  non-smooth component is 

no t  very smal l  and has random f e a t u r e s .  

i t e r a t i v e  process  ( 2 1 ,  t ak ing  U-V a s  an i n i t i a l  approximation. I n  t h i s  way 

one quick ly  damps t h e  non-smooth e r r o r  components, in t roduced  by t h e  
i n t e r p o l a t i o n  p rocess ,  and a t t e n u a t e d  by process  ( 2 )  almost by a f a c t o r  of 

2 i n  a s i n g l e  s t ep .  

2. Description of the algorithm. The convergence-acce lera t ion ,  

achieved by use  of t h e  coarsened mesh and process  ( 2 * ) ,  may prove inade-  

qua te .  For l a r g e  M ( i . e .  a f i n e  n e t )  problem (I*)  011 t h e  coarsened n e t  may 

s t i l l  be d i f f i c u l t .  Therefore  t o  s o l v e  t h i s  second problem i t  may be 

worthwhile t o  c a r r y  out  s t i l l  another  mesh-width-doubling, and t o  s o l v e  t h e  

problem on t h e  quadrupled mesh one may ag.iTi1 doiihle the  mesh-width, aga in  

doubling T, etc. I n  t h e  exper iments  of R. P. Fedorenko t h e  n e t  s t e p - s i z e s  

were not doubled, but t r i p l e d .  For M 100 two coa r sen ings  t u r n  out  t o  be 

s u f f i c i e n t .  

power of two. 

t h e  e r r o r .  This  e r r o r  i s  unknown t o  us and, t h e r e f o r e ,  we monitor t h e  

i t e r a t i v e  process  by keeping t r a c k  of t h e  r e s i d u a l ,  AhuP - +, which a l s o  

undergoes smoothing. The r e s u l t  of t h e  c a l c u l a t i o n  U = up is  s t o r e d  f o r  

l a t e r  use.  Next, t o  c a l c u l a t e  t h e  c o r r e c t i o n  v, we t r e a t  t he  problem on 

t h e  coarsened mesh, performing some i t e r a t i o n s  (2" )  so a s  t o  smooth t h e  

"co r rec t ion  t o  t h e  c o r r e c t i o n "  and s t o r i n g  t h e  r e s u l t  :* (which occup ies  

only a f o u r t h  as much s t o r a g e  space  a s  U). To c a l c u l a t e  t h e  c o r r e c t i o n  

t o  v* w e  cons ide r  t h e  problem on a ne t  aga in  coarsened by doubl ing ,  and do 
s e v e r a l  i t e r a t i o n s  wi th  a s t ep - s i ze  T** = 4T* = 16r, s t o r i n g  t h e  r e s u l t  

V**. This  process  of computing c o r r e c t i o n s  t o  c o r r e c t i o n s ,  on n e t s  coar- 

sened by doubl ing ,  i s  repea ted  k times u n t i l  one g e t s  t o  the  c o a r s e s t  n e t  

and t o  t h e  c o r r e c t i o n  V . 
c o a r s e s t  n e t ,  one i n t e r p o l a t e s  t h e  last-computed c o r r e c t  ion ?(k*) on to  t h e  

next  twice-as-fine,  n e t ,  and i n s e r t s  t h e  i n t e r p o l a t e d  c o r r e c t i o n  i n t o  

?((k-l)*) performing r e v e r a l  i t e r a t i o n s  t o  damp e r r q r s  in t roduced  by t h e  
i n t e r p o l a t i o n .  The r e s u l t s  of t h e s e  i t e r a t i o n s  are then  i n t e r p o l a t e d  on to  
the  next twice-as-fine ne t :  through use  of t h i s  i n t e r p o l a t e d s f u n c t i o n ,  one 

r e f i n e s  t h e  s t o r e d  c o r r e c t i o n ,  ?((k-2)*) ,  p e r t a i n i n g  t o  t h i s  n e t ,  performs 

s e v e r a l  i t e r a t i o n s ,  and carries ou t  t h e  next i n t e r p o l a t i o n .  On t h e  next- 

t o - l a s t  s t e p ,  aftcar c o r r e c t i n g  v* and i t e r a t i n g ,  one g e t s  t h e  c o r r e c t i o n  

V*, which i s  then  i n t e r p o l a t e d  on to  t h e  o r i g i n a l  n e t .  Then, performing 

some i t e r a t i o n s  ( 2 )  on U-V, t h e  f i n a l  r e s u l t  is obta ined .  

Therefore  i t  is  necessary  t o  execu te  a few more s t e p s  of t h e  o r i g i n a l  

We w i l l  assume f o r  s i m p l i c i t y  t h a t  M = Zk,  i .e. M i s  some 

On the  o r i g i n a l  n e t  w e  t ake  s e v e r a l  s t e p s  of i t e r a t i o n  ( 2 )  t o  "smooth" 

.., 

-(k*) 

Next one s tar ts  t o  move back t o  t h e  f i n e  ne t .  F i r s t ,  from t h e  
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Chapter 12 

The Concept of Variational-Difference and 

Projection-Difference Schemes 

In this chapter we present a method for constructing difference 

schemes, based on the use of one or another variational or projective 

formulation of the boundary-value problem whose solution we wish to 
evaluate numerically. This method, sometimes called the finite element 

method, allows one to construct effective difference sclieiiirs on irregular 

nets, and with a minimum of assumptions as to the smoothness of the desired 

solution, or of the coefficients of the equation. Thanks to the resulting 
freedom in our choice of nets the net-points may be distributed more 

densely in those parts of the domain of definition of the desired function 
where its form is particularly complicated, or where we are interested in 
the finer details of its behavior. 

Our ability to distribute points appropriately allows us to attain a 

The method of finite elements may be interpreted as one of the possi- 
desired accuracy with a minimum number of net-points. 

ble realizations of the classical variational methods for the solution of 

boundary-value problems. For this reason we begin (638) with a description 
of the classical variational and projection Ii8-t:iods, and then ( 8 3 9 )  discuss 
variational-difference schemes. 

538. Variational and projection methods 

1 .  Variational formulation of boundary-value problems. Many dif- 

ferential boundary-value problems of mathematical physics adisi L natural 

variational formulations. We limit ourselves to a consideration of two 

simple examples of such probl.eiiis and their variational formulations which, 

however, illustrate what is essential here. In these examples we will be 

discussing various boundary-value problems for the Poisson equation in a 
certain bounded domain D of the xy plane, with a piecewise-smooth boundary 
1 .  

We designate by W the linear space of all functions continuous in 
domain D and on its boundary r and possessing, in addition, bounded first 
derivatives which may have discontinuities'only on a finite set of lines (a 
set which may be different for each of the Eunctjons, w(x,y), in space 

W). We will introduce a norm, in space W, setting 
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for each of its member functions W. 

* * * * * *  

Completion of the space W leads to the complete Sobolev space W1 
2' 

* * *  

Let u s  now turn to a consideration of examples. 

Example 1. Consider the first boundary-value problem (the Dirichlet 
problem) 

( A )  I + -  a2u = f(x, y), (x, y) in D, 
a2, 
ax* ay2 
_. 

Ulr = $ ( s ) ,  

where s is the arc-length along the boundary r of domain D. Further, 

f(x,y) and $ ( s )  are given functions, functions satisfying a l l  conditions 

which are needed to assure that the solution, u(x,y), of problem ( A )  will 

have continuous second derivatives everywhere in D, and on its boundary r .  

condition 
Theorem 1 .  Among the functions, w in W, satisfying the boundary 

the solution u(x,y) of problem ( A )  gives to the expression (or 
"functional") 

its minimum nwner-ical value. 

Proof. Let w(x,y) i n  W, w l r  = # ( s ) ,  be some given fixed function. 

Introduce the notation S(x,y) w(x,y) - u(x,y), so that 

Since u(x,y) has continuous second derivatives, and w(x,y) is in W, then 
also S(x,y) is in W and, moreover, 51, = 0. We now prove that 
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from which t h e  theorem fo l lows  s i n c e ,  i n  t h e  case  w(x,y) f u(x ,y ) ,  t h e  

func t ion  S(x ,y)  doesn’ t  vanish  i d e n t i c a l l y ,  so  t h a t  t h e  second term on t h e  

right-hand s i d e  of Eq. ( 4 )  is s t r i c t l y  p o s i t i v e ,  and I(w) > I ( u ) .  C l e a r l y  

It remains t o  be shown t h a t  t h e  t h i r d  term on t h e  right-hand s i d e  
vanishes .  I n  f a c t ,  from the  obvious i d e n t i t i e s  

it fo l lows  t h a t  

where au/an is t he  d e r i v a t i v e  a long  t h e  inward-d i rec ted  normal. 

I n  t h e  next - to- las t  l i n k  i n  the  cha in  of equa t ions  ( 6 )  we used t h e  

theorem of vec to r  a n a l y s i s  which s t a t e s  t h a t  t h e  i n t e g r a l  of t he  divergence 

of a v e c t o r  f i e l d  over  a r eg ion  i s  equa l  t o  t h e  f l u x  of t h i s  vec to r  f i e l d  

ac ross  the  region-boundary. 

van i shes ,  s i n c e  5 )  = 0. The theorem i s  proven. 

all the functions of cZass W satisfying condition (2), find the one that 
minimizes the functional I ( w l ,  defined by Eq. ( 3 ) .  

I n  t h e  given c a s e  t h i s  f l u x  1 S(au/an)ds  
r 

r 
Thus problem ( A )  admi ts  t h e  fo l lowing  v a r i a t i o n a l  fo rmula t ion :  among 

Example 2. Consider t h e  t h i r d  boundary va lue  problem 

where f (x ,Y) ,  @ ( s )  and d s )  2 00 > 0 a r e  g iven  f u n c t i o n s ,  and av/an i s  the  
d e r i v a t i v e  a long  t h e  inward-d i rec ted  normal. 
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Theorem 2. Among all functions w in K the solution u of problem ( B )  

minimizes the functional 

+ I [0(s)w2 - 2$(s)w]ds 
r 

Proof. Let w in W be some given function, while 

( 7 )  

We now prove the equality 

J(w) Z J(v + TI) + J(v) + 

from which it follows that for w f v ,  i.e. n ? 0, we have the inequality 
J(w) > J ( v ) ,  whose validity is asserted i n  the theorem. 

Clearly, 

It remains for us to show that the expression on the right-hand side of 
(9), in the second p € r  of curly brackets, vanishes. In fact transforming 
the double integral in this expression as in (6) we get 

= / av  qds + [ u ( s ) v  - $(s)]nds = I n[g + (Jv - $Ids = 0, 
r r 
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since &/an + ovIr : 9. 

the following variational formulation: 

that one which minimizes the functional J(wl introduced in Eq. (7 ) .  
We direct the reader's attention to the fact that the difference 

between the variational formulations of boundary-value problems ( A )  and (B) 

lies not only in the difference between the functionals I(w) and J(w). In 
minimizing the functional J(w) we are allowed, as trial functions, all 

functions w in W, while in minimizing the functional I(w) trial functions 

are admissible only if they satisfy the boundary condition, wlr = $(s), of 

problem ( A ) .  

of problem ( B )  "natural": in the variational formulation it imposes no 
limitation on the class of admissable functions. 

The theorem has been proven. 

Thus the third boundary-value problem for Poisson equation ( B )  allows 

among all functions w in W, find 

It is because of this difference that one calls the boundary condition 

2. Convergence of minimizing sequences. The exact solution of 
problem ( A ) ,  as we have seen, is chat function w(x,y) 5 u(x,y) which, among 

all atlowable functions (i.e. functions w in W satisfying the condition 
wlr = $ ( s ) ,  minimizes the functional I(w). 

problem of finding u(x,y) consists in the construction of a function, w in 
W, wr = + ( s ) ,  which gives the functional, if not its minimum value, then at 

least a value "close" to this minimum. More precisely, for computational 
purposes one must designate a method for constructing the terms of a 

The numerical solution of the 

sequence of admissable functions, wN(x,y) in W, w = $ ( s ) ,  for which 

lim l(wN) = ~ ( u ) .  
N+m 

Such a sequence of allowable functions is called a "minimizing sequence". 
Choosing a term, w,(x,y), of the minimizing sequence with large enough N, 

one can attain a functional value, I(wN), as close as one likes to I ( u ) .  

a minimizing sequence of allowable functlotls i s  any sequence of functions, 

WN(X,Y) in W, for which 

Completely analogously, for the variational formulation of problem ( B )  

lim J(W ) = J(v). 

Methods for constructing minimizing sequences for variational problems (the 
Ritz method, and variational difference schemes) will be pointed out, 

below, in this chapter. 

N+m N 

Here we will prove only that minimizing sequences converge in the 

mean-square sense, together with their first derivatives, to the solutions 

u and v of the respective variational problems, so that their terms may be 

considered as approximations to these solutions. More precisely, we will 

prove the following two assertions. 

Theorem 3 .  suppose that w is in V ,  wIr = d ( s ) -  Then 
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where 
and not dependinq on the function w 

is some constant compZeteZy determined by the form of the domuin D, 

Theorem 4 .  Let w be an arbitrary function in W. Then 

where the constant 8 > 0 depends onZy on the  form of the domain D, and on 
the quantity min o l A )  = oo > 0, but not on w. 

YA Equations ( 1 0 )  and ( l l ) ,  
clearly, imply the convergence of 

minimizing sequences, for the 
variational formulation of boundary- 

value problems A and B, to their 

solutions, u and v respectively: 

when w is replaced by a member wN, 

of the corresponding minimizing 

C sequence, the right- and therefore 

d 

also the left-hand sides of Eqs. 
47 b % (10) and (11) tend to zero as N + m .  

Fig. 46. The proof of theorems 3 and 4 

is based on the following lemma. 

Lemma. Suppose that nfx,y) is in F/, and ofs)  2 a. > 0. Then we may 
write the following inequa2ity: 

Here ‘ii is a constant whose value is completely defined by the domain D and 
the number 00,  and does not depend on the function n(x,y) in W. 

* * * * * *  

We prove inequality ( 1 2 )  under the additional assumption that each 

line y = eonst intersects the boundary r of- domain D in at most two 
points. This assumption is in no way essential, but considerably shortens 

the proof. 
Suppose x and y are points interior to domain D (Fig. 4 6 ) .  Then 

Let us now square both sides of inequality ( 1 3 )  and use the obvious 
inequality 2AB 5 A2 + B2, valid for any two numbers A and B: 
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We now apply the  Bunyakovsky i n e q u a l i t y *  

Combining ( 1 4 )  and (15 )  we g e t  

I n t e g r a t i n g  both s i d e s  of (16) over x from x = x’ = x’(y) t o  x = x ’ ~  = 

x ” ( y ) ,  and us ing  t h e  f a c t  t h a t  t h e  r i g h t  hand s i d e  does no t  depend on x: 

Now w e  i n t e g r a t e  both s i d e s  of i n e q u a l i t y  ( 1 7 )  over  y, from y = c t o  y = d 

and g e t  

C l e a r l y  

j f(Sl2 dx dy 5 1 + ($)21dx dy- 
D D 

From (18)  and ( 1 9 )  i t  fo l lows  t h a t  

*Usually c a l l e d  “Schwarz’s i n e q u a l i t y “  i n  Engl i sh .  ( T r a n s l a t o r ’ s  no te . )  
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v2 dx dy 
D 

1 - < 2(b - a)max[a, b - a]* 
0 

which is, in fact, inequality (12) with 8 taken as 8 = 2(b-a)max[(l/ao),b-a]. 

* * *  

Inference. Suppose ((x,y) is in W, and & I , =  0. Then the  ~riedrichs 
inequaZity 

f 1 S2dxdy 5 f [(%l2 + (%)2]dx dy, (21) 
D D 

N 

is v a l i d ,  with a = 2(b-a)2. 

* * * * * *  

Proof. Set us - = l/(b-a). For a function s(x,y) 5 Tl(x,y) in W, 
= uo 

satisfying the auxiliary condition 51, = ylr = 0, inequality (12) takes the 

form ( . ? I ) ,  where 2 = 8 = 2(b-a)2. 

* * *  

Proof of Theorem 3 .  F o r  each function w in W, wlr = $ ( s ) ,  the 

function 5 = w - u satisfies the conditions which allow us to deduce Eq. 
(21) as an inference from the lemma. Taking account of ( 4 )  

one can write E q .  (21) in the form 

fDj (W - ul2dx dy 5 G[I(w) - I(u)l. (21’) 

Adding Eq. (4 ’ )  to inequality (21’) one ge ts  Eq. (lo), with ca = a + 1. 
Theorem 3 is proven. 
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Proof of Theorem 4 .  For any function w in W, rl = w - v satisfies the 
conditions of the lemma, and thus also inequality (12). Taking into 

account Eq. (8) 

Equation ( 1 2 )  can be written in the form 

] ] (W - v)’dx dy 5 B[J(w) - J(V)]. (12’) 
D 

Adding ( 8 ’ )  and (12’) term by term, and discarding from the left-hand side 

the non-negative term-] o(s)n’ds, we get inequality (11) with the constant 

6 = ‘B‘ + 1 .  
r 

Theorem 4 is proven. 
3. The variational method of Ritz. From theorems 3 and 4 ,  by virtue 

of inequalities (10) and (ll), it follows that one may take, as 

approximations to solutions u and v of boundary-value problems (A) and ( B )  

those functions which, among all admissable (w in W and wlr = $ ( S )  for 
problem (A) and w in W for problem ( B ) ) ,  give to the functionals I(w) and 

J(w) values close to the mlnima, I ( u )  and J ( u ) ,  over the corresponding 
classes of allowable functions. 

For the actual determination of approximate solutions Ritz proposed, 

in 1908, a method which we present, first, as applied to problem ( A ) .  For 
convenience in presentation we will assume that, in the boundary condition 

of A ,  $ ( s )  = 0, S O  that u I ~  = 0 .  
this one if we go over to a new unknown function G, u = u + h, where h(x,y) 
i s  any twice differentiable function satisfying the boundary condition hIr 

= $ ( s ) .  The formal scheme for finding an approximate tolution by the Ritz 

method consists of the following steps. Designate by W the linear space of 
all functions w in W satisfying the boundary condition Wlr = 0. 
positive integer N, and any N linearly independent function 

The senera1 case, $ ( s )  $ 0 ,  reduces to - 

Choose a 

satisfying the condition 

( 2 3 )  

Consider, now, the N-dimensional linear space, p, of all possible linear 
combinations of functions (22) 

where al, ..., aN are arbitrary real numbers. 
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We now seek, in place of a function w z u minimizing the functional 

0 

0 
I(w) over the space W, a function w (x, y, al, ..., a ) minimizing the 

functional I(w) on the set of all functions in the N-dimensional space WN. 
It is this function w (x, y, a 

the approximate solution for the given choice of N basis functions (22). 
The problem of determining the function (x,y) is incomparably simpler 

than that of evaluating the desired exact solution u(x,y). 

N N 

..., a ) : iN(x,y) which we will take as 
N 1’ N 

N 

In fact 

and we are now looking for N numbers a], ..., a 
tion IlwN(x, y, al, ..., a,)] of N variables. 
of numbers al, ..., aN exists. 
expression (24) is a quadratic form in al, ..., aN. 
independence of function system (22), this form for aN 3 0 must be strictly 
positive, since i n  the contrary case it would, for some set of ahT 3 0, be 

which minimize the func- 
N’ 
We show next that such a set 

The first term on the right-hand side of 

In view of the linear 

- 
equal to zero and we would have, by virtue of (21) 

from which it follows, despite the linear independence of the w N 1  

that 
n ‘9 

Because of the proven positive-definiteness of the quadratic form 

expression (24) has a unique minimum. This minLmum is attained for those 

values an 
- 

= an, n = 1, ..., N ,  for which 
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In detail, the linear system of equations (25) for the 
numbers al, ..., aN can be written in the form 

So as to abbreviate notation, and for convenience below we consider, 

along with the normed space W, the linear space consisting of the same 

functions as in W, but with the scalar product (w-, w”) 

where U ( S )  cj > 0 is some given function. This scalar product induces a 

norm I Iwl 1 -  in the space W via the expression 
0 - 

w 
I Iwl12 = (w9w). (28) 

W 0 
We designate by the subspace of functions w in satisfying the condition 

wlr = 0. 
After the introduction of the scalar product system (26), thanks to 

= 0, takes the form 

Note that the matrix of system (29) 

= 1 ,  ..., N. (29) 

is the Gram matrix of a system of linearly independent functions (22) .  

From a standard course in linear algebra we know that the determinant of 

this matrix is differyt from zero. 

function 

Y 

The solution a = an, n = 1, ..., N, of system (29) now provides the 
- - - 
w,(x,Y) = wN(x, Y, al, ..., a,), 

which one takes as the approximate solution. 

simple geometric interpretation. 

This function GN allows a 
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From ( 4 )  and (27)  we  have 

I ( W N )  - I ( u )  = (WN - u, w - u ) .  
N 

Fur the r  

Chapter 12 

Thus iN is  t h a t  element of t he  l i n e a r  N d imens iona l  space  wN which, of a l l  

elements e r e c t e d  on t h e  b a s i s  (22)  ( i . e .  i n  t h e  "span" of t he  b a s i s  
f u n c t i o n s ) ,  d e v i a t e s  l e a s t  from u i n  t he  sense of norm (28),  i.e. wN i s  t h e  

p r o j e c t i o n  of t h e  s o l u t i o n  u on to  t h e  subspace FN in t h e  sense  of t h e  

s c a l a r  product ( 2 7 ) .  A t  t h i s  po in t  w e  have completed ou r  formal 

p re sen ta t ion  of t h e  R i t z  scheme f o r  de te rmining  approximarc> s o l u t i o n s .  

Let us now see  what de te rmines  how c l o s e  t h e  approximate s o l u t i o n  

0 

'N = w N ( x S  Y ,  '1, ' " 9  'N), 

computed by the  R i t z  method, comes to  the  exac t  s o l u t i o n  of problem ( A ) ,  i n  

which we have adopted the  assumption t h a t  $ ( s )  = 0. Na tu ra l ly  t h e  q u a n t i t y  

1 
example, t h e  b a s i s  func t ions  (22) had been chosen i n  such a way (by an 
improbable a c c i d e n t )  t h a t  t h e  f u n c t i o n  u tu rned  out  t o  be one of t h e  
func t ions  of t he  N dimensional space WN l y ing  i n  t h e  span of t h e  b a s i s  

( 2 2 ) ,  then t h e  approximate s o l u t i o n ,  wN, would co inc ide  wi th  t h e  exac t  

s o l u t i o n  U .  In  f a c t  

- U I  l w  depends upon t h e  choice  of b a s i s  f u n c t i o n s  (22 ) .  I f ,  f o r  

0 

l(WN) - ~ ( u )  = min ( ~ ( w )  - ~ ( u ) )  = ~ ( u )  - ~ ( u )  = o 
0 
-N 

w i n  W 

and by theorem 3 

Rut t h e  func t ion  u is I?'<nown t o  us, and we know only c e r t a i n  of i t s  

p r o p e r t i e s ,  p r o p e r t i e s  no t  p e c u l i a r  t o  i t  a lone  but t o  a whole class U of 

func t ions .  Suppose, f o r  example, we know t h a t  t he  second d e r i v a t i v e s  of 
t h e  func t ion  u are cont inuous ,  and bounded by t h e  cons t an t  M. Then t h e  

c l a s s  U c o n s i s t s  of a l l  twice-cont inuous ly-d tEEerent iab le  f u n c t i o n s  t h e  

second d e r i v a t i v e s  of which don ' t  exceed M, and which s a t i s f y  the  cond i t ion  

ulr  = 0. 
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0 
We r e c a l l  t h a t ,  f o r  t h e  s o l u t i o n  11 and any w i n  w 

I (w)  - I(u) = (w - u ,  w - u )  = I lw - UI I' 
W 

and t h a t  by theorem 3 

l l w  - .Il'L a l l w  - UII'. 
W W 

Therefore ,  i n s o f a r  as p o s s i b l e ,  t he  b a s i s  €uncLions must be chosen i n  such  

a way t h a t ,  f o r  each func t ion  v i n  U, with  U i n  i, t h e r e  should  be a 

f u n c t i o n  w i n  fjN c l o s e  t o  i t ,  i . e . ,  a f u n c t i o n  f o r  which [I.,- v (  1 -  is 
N W 

smal l .  Then, i n  p a r t i c u l a r ,  t h e  q u a n t i t y  

0 

0 

I(;N - uII' = min ~ ( w )  - ~ ( u ) ]  = min ,,(w - u, w - u ) ,  

 win^ N w i n  WN 

w i l l  be sma l l  and, a long  wi th  i t ,  a l s o  t h e  q u a n t i t y  - ulIw: 

More p r e c i s e l y ,  t he  b e s t  s e t  of func t ions  ( 2 2 )  would be one f o r  which t h e  

q u a n t i t y  

( 3 0 )  

0 
is  a s  smal l  as p o s s i b l e .  We des igna te  by K ( U , c )  t h e  number 

N 

This number i s  c a l l e d  the N-dimensional Kolmogorov diameter of the class of 

functions U with respect to the normed space 
choice  of f u n c t i o n s  (22)  would be one f o r  which t h e  q u a n t i t y  (30) c o i n c i d e s  

wi th  K (U, c),  the  d iameter  of A. N. Kolmogorov. 

e x i s t s ,  obvious ly ,  a set of b a s i s  f u n c t i o n s  ( 2 2 )  f o r  which 

0 
in fj. C l e a r l y  t h e  optimum 

0 
For any E > 0 t h e r e  

N 
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* * * * * *  

The N-dimensional Kolmognrov diameter, K (X,Y), of a set X lying i n  
N 

linear normed space Y, with respect to this space, is defined by the 
expression 

K (x,Y) = Inf SUP min IIy - xIly, 
N N 

N 
Y i n Y  x i n X  y i n Y  

where YN is an arbitrary, given, N-dimensional linear manifold 

("hyperplane"). 
Diagonals have been computed in many cases. I n  particular, it is 

known that. for the class of all functions v, v l r  = 0, whose second 
derivatives, in some domain, are continuous, and all bounded by one single 

constant, 

Taking into account additional information about the desired solution 

u, obtained i n  a preliminary analysis of the problem, or as a result oE 

experience in solving similar problems,  one may narrow the class U, and as 

a result the diameter K (U, c ) ,  N = 1, 2, ... can only decrease. 
Thus the skill and experience of the analyst are manifested here 

through his ability to choose a narrow class, U, containing the required 

solution u and then, for a given N, to choose basis functions (22)  in such 

a way that the nuinher s ( U ,  GN), introduced via Eq. (301, will not be much 

larger than the N-dimensional diameter K (U, i ) .  
side of the equation 

0 

N 

0 

0 
Then on the right-hand 

N 

0 
we w i l l  have a number, close to 

quickly, with increasing N, the narrower the class U. If one takes full 

enough account of special features of the solution u,  known prior to the 
computation, and then, correspondingly, makes a good choice of basis 

functions, then a sufficiently accurate solution may be obtained even for a 

small N. But the volume of computational work, work which consists in the 

computation of coefficients and solution of system ( 2 6 1 ,  depends precisely 
on N. Thus the computational algorithm will then be very efficient. 

KG(U, i ) ,  which irends to zero all the more 
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L e t  us now i l l u s t r a t e  t h e  R i t z  method wi th  s t i l l  ano the r  example: 
cons ide r  problem ( B ) .  A f t e r  a system of b a s i s  func t ions  (22)  has  been 

chosen, we look f o r  an approximate s o l u t i o n  

i n  t h e  space WN 

t h e  expres s ion  

of a l l  l i n e a r  combinations,  choosing c o n s t a n t s  such t h a t  

be minimized. 

system of equa t ions  

Minimizing c o n s t a n t s  a l ,  ..., a must be determined from t h e  
N 

a J [ w N ( x >  YY a l *  * " V  a N ) l  
= 0 ,  n = l , . . . ,  N. ( 3 4 )  

a an 

We w i l l  assume t h a t  i n  t h e  d e f i n i t i o n  ( 2 7 )  of s c a l a r  m u l t i p l i c a t i o n  

t h e  func t ion  u(s)  co inc ides  with t h e  cor responding  f u n c t i o n  which appears  

i n  t h e  boundary cond i t ion  of problem ( B ) .  

( 3 4 )  t akes  t h e  form 
Then t h e  system of equa t ions  

( 3 5 )  
N N  N N 

a i ( w i ,  WN) = - I I fwndx dy + 1 +(s)wnds, 
N 
1 n = 1, ..., N. 

i=1 D r 
- 

The s o l u t i o n  of t h i s  system a 
!! 

d e s i r e d  approximate so l l i t i on  w 

= an, n = 1, ..., N then g ives  e x a c t l y  t h e  

" 

For a f u n c t i o n  GN i n  W, and the  s o l u t i o n  v of problem (B), we g e t  from Eq. 

( 8 )  

Y w 

J(;~) - ~ ( v )  = (iN - v,  iN - v )  max min ( w  - v,  w - v ) ,  
N Y 

v i n U  w i n W  

where U is t h e  c l a s s  of f u n c t i o n s  c o n t a i n t n z  rhe qo lu t ion  v of problem 

( 8 ) .  From t h e  l a s t  i n e q u a l i t y  it is c l e a r  t h a t  t h e  b a s i s  f u n c t i o n s  uN 

..., W! must be chosen i n  such a way t h a t  t h e  right-hand s i d e  of t h i s  

i n e q u a l i t y  w i l l  be a s  smal l  a s  p o s s i b l e .  I n  t h i s  ca se  i t  is  not necessa ry ,  
a s  i t  w a s  i n  t h e  previolis example, t o  s u b j e c t  t h e  b a s i s  func t ions  t o  any 

s o r t  of boundary cond i t ions .  

a computational method f o r  t h e  s o l u t i o n  of boundary-value problems, a 

method which d id  not r e q u i r e  t h a t  t h e  problem t o  be t r e a t e d  should have a 

known v a r i a t i o n a l  formula t ion .  We p resen t  t h i s  method v i a  the  example of 

boundary-value problem (A) assuming, moreover, as i n  Sec t .  3 above, t h a t  

1' 

4. Projection method of Galerkin. B. G. Galerk in ,  i n  1916, proposed 
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Again we choose a system of basis functions (22), but now we (temporarily) 

stipulate that the functions wN(x,y) have continuow second derivatives. 

Again we seek an approximate solution in the form of a linear combination 
n 

(37) 

Now we substitute Eq. ( 3 7 )  into the left-hand side of the equation and 

boundary condition of (36) and get 

where 6 (x, y, al, ..., a ) is the resulting residual. 

(we, w.*) defined above, another scalar product 

N N N 

Let us now introduce in space W, along with the scalar product 

[w’, w”] = 1 1 w’w” dx dy. 
D 

If it turned out that 6 
sense of this scalar product, then 6 (x, y, al, ..., a ) would vanish iden- 
tically, and wN would be the exact solution. 

al, ..., aN is too small to allow u s  to construct an exact solution by 

adjusting these constants. Therefore we wFll choose them, instead, from 
the condition that the projection of the residual on all the wN, n = 1, 

..., N, be equal to zero, i.e. that the residual be orthogonal to all the 
basis functions (22) 

were orthogonal to all the functions in is, in the 

But the number of parameters 

N 
N N 

In expanded form the system 
may be written thus: 

” of equations ( 3 8 )  for the numbers al, ..., a 

(- aZwN + 2) azw UN dx dy = .f 1 fun N dx dy, 

ax2 ay2 n 

Integrating by parts we see 

n = 1, ..., N. ( 3 9 )  

that, thanks to l:he condition wNI = 0, 
“ r  
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a2wN a2w 
D f (- a x >  + 2) ay2 wN dx dy = 

dx dy 
D 

dy = 

Thus system (39)  may be r e w r i t t e n  i n  t h e  form 

and, for  t h e  given choice  of s c a l a r  product [ * I ,  e x a c t l y  ag rees  wi th  t h e  

system (29)  obta ined  by t h e  R i t z  method. 

t i v e s  can he re  be dropped, s ince t h e  Ga le rk in  equa t ions  ( 4 0 )  r e t a i n  t h e i r  

meaning even wi thout  t h i s  requi rement .  

N ( N  - loo) ,  t he  R l t z  or  Ga le rk in  equa t ion - se t s  can be so lved  e x a c t l y  by 

e x i s t i n g  s t anda rd  codes f o r  systems of l i n e a r  equa t ions .  Fu r the r  t h e  
mat r ix  uN of R i t z  system (29)  i n  ou r  ex.mple (and t h i s  is t y p i c a l )  i s  a 
Gram matr ix  f o r  t h e  b a s i s  system uN, n = 1, ..., N. 

symmetric, and i t  is known t o  be p o s i t i v e  d e f i n i t e .  Therefore  t o  compute 
the  s o l u t i o n  of R i t z  system (29)  one can make use of any o w  of d number of 

i t e r a t i v e  methods l i k e ,  f o r  example, i t e r a t i o n  wi th  Chebyshev parameters .  

I t e r a t i v e  methods become cons ide rab ly  s imple r  i f  o n l y  a few of t h e  

elements of t he  ma t r ix  IIJ a r e  d i f f e r e n t  from zero.  We w i l l  s ee  t h a t ,  i n  

t h e  v a r i a t i o n a l - d i f f e r e n c e  and p ro jec t ion -d i f f e rence  schemes p r e c i s e l y  t h i s  

is t r u e .  

approximate s o l u t i o n ,  f o r  a given number N of b a s i s  f u n c t i o n s  wN 

..., N ,  depends on how we l l  one can approximate t h e  s o l u t i o n  wi th  e lements  

of t h e  N d imens iona l  l i nea r  .:,,ii’v formed by the  span of t h e s e  b a s i s  func- 

t i o n s .  Thus the  accuracy  depends on t h e  choice  of an approximat ing  space ,  

but not on t h e  b a s i s  used i n  t h i s  space.  

(29)  of t he  R i t z  method, o r  o f  Galerkin-method system ( 4 0 ) ,  depends on t h e  
cond i t ion ing  of the  ma t r ix  oN of t h e  equa t ion  system. 

The a d d i t i o n a l  a s sup t ion  t h a t  t he  b a s i s  func t ions  have second de r iva -  

5. Methods for s o l v i n g  t h e  a l g e b r a i c  system. For no t  very l a r g e  

Obviously i t  i s  
n 

N 

6. Computational s t a b i l i t y .  We have seen  t h a t  t h e  accuracy  of t h e  
n = 1, 

n’ 

The s t a b i l i t y ,  i.e t h e  cond i t ion ing  p r o p e r t i e s ,  of t h e  equa t ion  system 

From t h e  po in t  of 
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N view of stability it would be ideal if the functions wn, n = I ,  ..., N, 
formed an orthonormal basis. In that case the matrix w would be unitary. 

N 

PROBLEMS 

1. Show that the solution of the following first boundary-value 

problem for elliptic equations with variable coefficients 

minimizes the functional 

over the class of all functions w i n  W satisfying the auxiliary boundary 
condition wlr = $ ( s ) .  

Assume that the solution u(x, y) has continuous second derivatives. 
2. N N Given a system of basis functions wl, ..., wN, write out the 

system of Ritz equations for computation of the solution, u(x, y), of the 
above problem 1 with $ ( s )  E 0. 

elliptic equation with variable coefficients 

3.  Show that the solution of the third boundary-value problem for the 

minimizes the functional 

over the set of all functions w in W. 
4 .  Given a system of basis functions wN, ..., w:, write out the 

1 
system of Ritz equations for computation of the solution u(x,y) of problem 

3.  
5. Given a system of basis functions uy, ..., wN write out the " 

system of Galerkin equations for the first boundary-value problem. 
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U l r  = 0. 

139. Construction and properties of variational-difference 

and pro jection-dif f erence schemes 

1. Definition of variational-difference and projection-difference 

schemes. Suppose that, i n  the closed region, D, i n  which we want to solve 

some variational problem for each N of a monotone increasing sequence of 

natural numbers, we are given N points P1, P;, ..., PN. The totality of 

these points will be called the "net corresponding to the given N . "  
Suppose, further, that the Ritz method for solving the variational problem 

makes use of a system of basis functions 

N N 

N N N N 
W,(X,Y), W2(X.Y), ..., Wn(X,Y), ..., W,(X,Y), 

the n'th member of which (i.e. wN(x,y)) takes on, at PN 

vanishing at all other points of the net: 

the value unity, 
n' 

UN(PN) = rSk n ,  k = 1, 2, ..., N. ( 1 )  k k n' 

In  this case the linear comblnation 

takes on at point PN the value w (PN) = an, n = 1, ..., N .  

may write 

Therefore one 
n N n  

The system of Ritz equations for the determination of coefficients, 

a l ,  .. ., aN, such that this linear comblliatioli minimizes the variational 
functional over the linear space generated by the basis functions wl, ..., 
w: will, thus, connect the values, w (PN), n = 1, ..., N ,  of the solution 
function itself at the points of the given net PI, ..., : i.e. the Ritz 
equations turn out to be a sort of difference scheme. This difference 
scheme, i n  conformity with the method by which it WAS constructed, is 
called a "variational-difference" scheme. 

uses basis functions w:, ..., wN satisfying condition ( l ) ,  then the 

Galerkin method becomes a sort o€ difference scheme, which it is natural to 
call a "projection-difference" scheme. 

may be worthwhile to make the Following remarks. 

n = 1, ..., N ,  the linear combination 

N 

p; 
N n  N 

Correspondingly if, to implement the Galerkin projection method, one 

N' 

So that the reader will more easily visualize what has been done it 
N For given values wN(Pn), 
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can be understood as an expression which completes the definition of, or 

"fills i n "  the function w (x,y) everywhere i n  domain D, according to its 
values wN(Pn), n = 1, ..., N, at the net-points. 
choice of the net P:, n = 1, ..., N for a given N, nor the choice of a 
system of basis functions wl, ..., wx, satisfying condition (1) and 

defining a method for filling-in the net function, i s  unique. Thus, for 
example, in the one-dimensional case the function might be completed i n  the 

interval, according to its net-point values, piecewise-linearly, or  quad- 

ratically, or by Lagrange InLerpolation, etc. On the choice of net P:, and 

of the basis functions, depends the form and properties of the resulting 
variational-difference or projection-dif ference scheme f o r  the given 

variational or differential boundary-value problem. 

Let us now consider examples of variational-difference schemes for 

problem ( A )  and (B) of 138. We will assume, here, that region D, in which 

we want solutions, is convex. (4 region, D, is  called "convex" if, for any 
two p o i n t s  P and P' i n  D, all points on the line, PP', with end-points at P 

and P-, also belong to D). 

simplifies our p r  ,<entation. 

N N 
Clearly neither the 

N 

The assumption that D is convex is not at all essential, but 

2. Example of a variational-difference scheme for the first boundary- 

with vertices 

value problem. Choose a positive integer N. Next inscribe i n  contour r ,  
bounding region D, a non-fntersecting polygon QN QN . . . 

Qm NQ1 ' 2  
at points Q,, ..., 9,. Call this 
polygon DN. 

into triangles i n  such a way that 

perimeter will be a side of one of 

the triafiglf><, (b )  that  each pair of 

triangles either has no points i n  

coininon, shares a vertex, or shares a 

side, and (c) that the total number 

of vertices P1, ..., PN of these 
triangles lying inside the polygon 

D should be equal to N. The s e t  of 

points P , ..., P will, then, serve 
Fig. 47 as our net (PLg. 4 7 ) .  Now we con- 

struct a system of hasis functions 

Divide the polygon DN 

Qf (a) each segment or i t s  broken-line 

42 
N 

N 

N N N 
1 N 

4 

uy, ..., w:. We define the basis function, wN(x,y), n = 1, ..., N as 
follows. First we assign function-values at the net points via Eq. ( 1 )  

N n  k 
w (PJ = 6ns n 

n, k = l ,  ..., N. 
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Then we fix these values at the 

points Q , ,  ..., Q,, assuming them all to 

vanish at these points. Thus each 
function is already defined at the 

vertices of all triangles constituting the 
decomposition DN. 

triangles we then complete the definition 
of the set of basis functions, taking them 

define them in the region D\D where we 

will set them to zero. 

N N 

In each of these 

a l l  to be linear. It remains for us  to Pi” 

N’ 

V p !  Note that, for any triangle that has 

no point PN as any of its vertices the J 

Fig. 48 .  function wN(x,y), as we have constructed 

it, will vanish. In a triangle with a 
vertex at point pN the function ut = w:(x,y) appears, in the space xyw, as 

a section of a plane (Fig. 4 8 )  passing through the side lying opposite the 
vertex PN, and upraised to untt height above the point PN. The system of 

Ritz equEtions, (29)  138, determining the coefficients a: = wN[P!) in the 

approximate solution 

has the form 

N 
2’ wN(Py)(wy,w:) = - fwN dx dy, 
i=l D n  

n = 1, ..., N.  

This is precisely the variational-difference scheme corresponding 

above choice of net and of hasis functions. 
The matrix of this difference scheme 

0 

has, as elements, the quantities 

( 2 )  

he 

Obviously only those products (wN, wN) can differ from zero for which the 

points PN and PN are vertices of one and the same decomposition triangle. 
In fact ?f PN and Py are not, in this sense, neighboring net-points then 

n i  

i 
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N N regions in which w 
integrand in Eq. ( 3 )  will vanish identically everywhere in the range of 
integration. 

difference scheme (2) connects values of the unknown €unction af point 
PN with other values of this function only at neighboring points. 

culties. 

f 0 and wi f 0 will not intersect, and therefore the 

Thus the n'th equation of the set which constitutes variational- 

The computation of coefficients via Eq. ( 3 )  presents no diffi- 
In fact the coefficients (wN wN) are integrals of the quantity 

n' i 

aver a pair of subdivision triangles, triangles with the segment PNPN as 

their common side. Further, the integral over any one of these triangles 

is completely determined by the lengths of its sides, and does not depend 

on its orientation or location. In fact the quantity ( 4 ) ,  constant over 
the triangle, is the pnxhct of the lengths of the vectors grad uN and grad 

wN, multiplied by the cosine of the angle between these vectors, and there- 

fore may be expressed in the form 

n i  

n 

i 

- -  I - cos (hn, hi]. 
hnhi 

Here h and h are the lengths of Perpendiculars drawn from the vertices 

PN andnPy respectively to the surfaces 

rzspective vertices, like the vectors grad wN and grad wi. The integral 
over the triangle is obtained by taking the product of the quantity (5) 
with the area of the triangle. 

The construction of variational-difference scheme ( 2 1 ,  for a given 

choice of points QY and P!, is completed. Clearly, however, one cannot 

i 
= wN(x,y) and W = w;(x,y), while 

and are unit vectors directed along these perpendiculars, towards the 
i N 

every choice a€ these points, uniquely defining a system of 
w!, n = 1, ..., N, the corresponding approximate solution 

expect that for 

basis functions 

will be a "good approximation" to the exact solution, u(x,y), of the ori- 

ginal problem. 

Py, ..., PN were distributed over one "half" of the region, with not a 
single net-point in the "other half", then the resulting approximation 

couldn't turn out to be good. To make a good choice of boundary-points 
QY, ..., Qi, and net-points Py ,  ..., P:, one must take account of relations 

discussed in 538, and reproduced here: 

In fact if ,  fot, example, all the points QT, ..., Q/ and 

N 
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= a sup Inf ([w - v[[' . ( 6 )  
W 

v i n ~  w i n ?  

0 
In (6) EN is the N dimensional linear space generated by all possible 

linear combinations of the basis functions, and U is a set of functions 
containing the exact solution. 

More precisely, it will be seen from (6) that it is adviseable to 
choose the points QY, ..., Q: and P:, ..., PN with the properties of class 

U in mind, so that the quantity s ( U ,  GN) will be "as small as practically 
possible", and so that, as N + m, the sequence K (U, EN) will go to zero 

"as fast as possible". 

O N  

0 

N 

0 - 0 3 
Always s ( U ,  aN) > K ~ ( U ,  G), where K ~ ( U ,  W) is the N-dimensional 

0 - - 
Kolmogorov diameter of the set U with respect to normed space W (see 
3138). Therefore for a choice of points to be "good" it is sufficient that 

%(U, W ) be close to KN(U, W). 
0 - 0 

-N 

* * * * * *  

Generally speaking, however, it is not true that, f o r  each set of 

functions U, 

exceed K (U, 

will be smal 
N 

0 
there exists a net for which K (U, zN) does not "greatly" 
0 
WN), so that as N -f m the quantities K (U, EN) and K ~ ( U ,  E) 

O 0 

The problem is that, in parti- 

N - 
N 

1 of the same order in N-'. 

cular, the piecewise linear basis functions which we are using in this sec- 

tion to complete the net functions will, for each choice OF points, gener- 

ate spaces EN, of piecewise-linear functions, spaces which do not exhaust 
0 

0 
all possible N dimensional subspaces of space E, and among which there may 

not be a subset GN 
0 

which constitutes a good approximation to set U. 

* * *  

Let us now analyze in detail a case where all the a priori information 

which we have as to the properties of the solution, u ,  permits u s  to con- 

clude only that u belongs to the class, U, of all functions, vanishing on 
the boundary, whose second derivatives do not exceed some number, M. 

In this case we will show how one must distribute the points Q Y ,  ..., 
0 

Q:, P;, ..., PN s o  that, as N increases, s ( U ,  w) will be of order O(l/JT). N 
Then, thanks to Eq. ( 6 )  f o r  the error, GN - u ,  in the approximate s o l u -  

tion GN, we are assured that 
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where c is some constant. 

* * * * * *  

Note that, because of equations (32) and (33) §38 for the diameters 

these bounds are best possiE e in the following sense. E we look for an 
approximate solution in the form of a linear combination of some given 

N N 
1 functions J, (x,~), ..., $,(x,y), 

N 

then one cannot, for any choice of functions $L(x,y), nor f o r  any method of 

computing the coefficients c given a right-hand side f(x,y), achieve 
bounds of the form IIw - u l t o  = o(l / f f i )  and IIwN - u I l 0  = o( l /dF) ,  valid 

for any f(x,y) for which the solution, u, belongs to our class U. 
N W  W 

* * *  

Theorem 1. Let U be the set of a l l  functions whose second derivatives 

Suppose that, for each N of some increas- 
are continuous and do not exceed some number, M, in modulus, fmctions 
which vanish on the boundary, r. 

N N  N ing sequence of natural numbers, one has selected points Q,, Q2, ..., Q, 
N N  m = mfNI, and a decomposition of the polynomial DN = Q,;,, ..., Q~ into 
P2, ..., PN. Assume, triangles generating, as described above, the net PI, 

further, that the following conditions are fulfilled: 
The length t ,  of any side of a subdiuisior! triungle satisfies the 

inequality 

Nm N 

lo. 

where 
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and C1 is some positive number not depending on h. 
2 " .  The area of the region D \ D ~  satisfies the bound 

S < C h2, C = cons t .  (9 )  N -  2 2 

3O. Each angle a of any of the subdivision triangles of region D~ 
satisfies the bound 

a > a. = cons t  > 0. ( 10) 

0 -N 
Under the given conditions we have, f o r  the quantity k$U, W ) :  

0 
a(w - v ) , ~  + [a(" - V) ] }dx dy (11 )  

-N 

a Y  $(us w 1 = S U P  ~ n f  I I t [  ax 
-N D 

v i n U  w i n W  

the bound 

where Cj is some constant. 

* * * * * *  

Proof.  I t  is s u f f i c i e n t  t o  show t h a t ,  f o r  each f u n c t i o n  v i n  U t h e  

fo l lowing  func t ion  

s a t i s f i e s  the  bound 

s i n c e ,  obvious ly ,  i n  t h i s  ca se  bound (12 )  i s  v a l i d .  

The i n t e g r a l  (14)  may be w r i t t e n  as the  sum of (non-negative) 

i n t e g r a l s  over t h e  polygon DN,  i n s c r i b e d  i n  r eg ion  D ,  and i t s  complement 

D \ D  i n  t h e  whole reg ion  D: N 
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Let u s  now estimate each of the two terms on the right-hand side of (15), 
establishing the bounds 

] {...}dx dy &Alh2, (16 )  

N 
D 

{...}dx dy (A2h2, 

DN 

where Al and A 

h. Clearly, by virtue of (15), E q s .  (16) and (17) imply (14) with constant 
C4 = A1 + A2. 

To prove bound (16) it is sufficient to show that, inside each 
triangle making up the decomposition of region D, we have the inequality 

are constants not depending on the function v in U, nor on 2 

where R is a constant which depends neither on the function v in U, nor on 

h. Then, clearly bound (16) will be valid if, for A, we take A = 

2B2.(area of D). 

establish bound (18). which we now set out to do. The proof of (18) will 

be divided into two stages. First we show that the derivative d(w - v)/da, 
in any direction a ,  can change inside a triangle by no more than A h, where 

A = const, so that for any two points (x’,y’) and (x”,y”) belonging to 
the triangle we may write 

1 
Thus to complete the proof of bound (16) we need to 

3 
3 

Next we choose any two sides of this triangle forming acute angle a, and 

show that everywhere i n  the triangle the derivatives d(w - v)dlll and 

d(w - v)/d!i2, in the directions of these sides, satisfy the bounds 

Then we use the equations 

where al and a2 are the angles which the directions t l  and R2 make with the 
x axis. Considering Eqs. (21) as a system of equations for a(w - v)/ax and 
a(w - v)/ay, we find that 
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s i n  a 
2 d(w - v )  - 1 . d(w - v)  , s i n  a 

a(w - V )  = 
ax  

dQ 2 
s i n ( a 2  - a l l  dQ1 s i n ( a 2  - a l J  

I cos a cos a 1 . d(w - v )  . 
a(w - V )  = - 2 d(w - v )  + 

d Q 2  
a Y  s i n ( a 2  - a l l  d Q l  s i n ( a 2  - a l )  

- al 
a. > 0 and a < A - 2a0, so  t h a t  - But by Eq. (10) t h e  ang le  a = a 

s i n  a 2 s i n  a. = cons t  > 0. 

From E q .  ( 2 2 )  and i n e q u a l i t y  (20 )  one d e r i v e s  t h e  bounds 

which t ake  t h e  form (18) i f  we d e f i n e  B = ( 2 / s i n  a ) A  

use t o  prove hounds (19 )  and (20)  on which w e  have r e l i e d .  Let us  f i r s t  

prove (19). Des igna te  by S t h e  d i r e c t i o n  from po in t  (x’,y’> t o  po in t  

( x ” , ~ ” ) .  On t h e  i n t e r v a l  j o i n i n g  these  p o i n t s  any f u n c t i o n  + ( x , y )  can be 

cons idered  as a func t ion  of s ,  where s is t h e  d i s t a n c e  from po in t  (x* ,y , ) .  

By t h e  theorem on f i n i t e  increments  

0 3 ’  
To complete t h e  proof of bound (18) and, t hus ,  of ( 1 6 ) ,  i t  remains f o r  

$(x” ,y”)  - +(x , ,y>)  = (x”  - x’)2 + (y”  - y c ) 2  7. d+(S,n)  

where (5,  n) is  some po in t  of t h e  i n t e r v a l  connec t ing  p o i n t s  (x# ,y’ )  and 

(x”,y”).  I f  

then  

Designate the  ang le s  t h a t  d i r e c t i o n s  Q and s ,  r e s p e c t i v e l y ,  make wi th  the  x 

a x i s  as a and B. Then w e  may wri te  t h e  symbolic e q u a l i t y  

d a a 
dQ  ax 5’  - = cos a - + s i n  a 

d a a 
= cos B + s i n  B F .  

C 1 e a r  1 y 

d (L) = cos a CoS 6 - + [cos  a s i n  B + s i n  a cos 61 
ds  dQ 

a 2  a2 

ax2 
+ 

X Y  

a 2  + s i n  a s i n  6 - . 
a Y 2  

Theref o r e  



384 V a r i a t i o n a l  and P ro jec t ion  Methods Chapter 12 

which co inc ides  wi th  (19)  i f  we  t ake  A = 6Mc To prove t h e  f i r s t  of ine- 

q u a l i t i e s  (20)  we no te  t h a t  on t h e  s i d e  of t he  t r i a n g l e  having d i r e c t i o n  111 
t h e r e  i s  a po in t  where d(w - v)/dll l  = 0. In  f a c t  on t h e  ends of t h i s  s i d e  

w - v vanishes  by cons t ruc t ion  and, t h e r e f o r e ,  by R o l l e ’ s  theorem t h e r e  i s  
an in t e rmed ia t e  po in t  where the  d e r i v a t i v e  vanishes .  We now d e s i g n a t e  t h i s  

po in t  as  po in t  ( x - ,  y’) and use  (19 ) ,  i n  which we t ake  d i r e c t i o n  ll t o  coin- 

c i d e  with d i r e c t i o n  111, 

second is  obta ined  ana logous ly .  Having completed t h e  p roof s  of inequal -  
i t i e s  (19) and (20)  we have thus  a l s o  completed t h e  proof of i n e q u a l i t y  

(16) .  To complete t h e  proof of t he  whole theorem i t  remains f o r  us  t o  

e s t a b l i s h  i n e q u a l i t y  (17) .  

3 1’ 

In t h i s  way we g e t  t he  f i r s t  i n e q u a l i t y .  The 

Note, f i r s t  of a l l ,  t h a t  each f u n c t i o n  v i n  U s a t i s f i e s  t h e  cond i t ions  

where M i s  t h e  maximum modulus of t h e  second d e r i v a t i v e s  of func t ion  v (x ,y )  

i n  domain D ,  and L i s  the  d i agona l  of any square  con ta in ing  D. Suppose 
t h a t  t he  l i n e  y = cons t  i n t e r s e c t s  domain D. Since  a t  t h e  ends of t h e  

i n t e r v a l  of i n t e r s e c t i o n ,  where t h i s  l i n e  c r o s s e s  T ,  by our  assumption 

v (x ,y )  vanishes ,  then  a t  some i n t e r i o r  po in t  (xo, y )  of t h i s  i n t e r v a l ,  by 

Ro l l e ’ s  theorem, av(x,,y)/ax = 0. A t  any o t h e r  po in t  of t h e  i n t e r v a l  

The second of i n e q u a l i t i e s  (24)  is proven ana logous ly .  From t h e  s t r u c t u r e  
of t h e  b a s i s  func t ions  uN i t  fo l lows  t h a t  t h e  f u n c t i o n s  w(x,y) = 

n’ 
N N  1 

n= 1 
i n t e g r a t i o n  t h e  le f t -hand  s i d e  of ( l ? ) ,  is i d e n t i c a l l y  zero.  Therefore ,  by 

bound (24 ) ,  t h e  in t eg rand  on the  le f t -hand  s i d e  of (17)  does no t  exceed t h e  

bound 2M2L2, and the  i n t e g r a l  i t s e l f  does not exceed t h e  q u a n t i t y  

v(Pn)un(x ,y) ,  i n  t h e  r eg ion  D\DN over  which one carries ou t  t h e  

2M2L2 SN 5 2M2L2C2h2 
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Thus inequality (17) is valid if one takes A = 2M2L2C2. 

proven. 
The theorem is 

2 

* * *  

3. An example of a variational-difference scheme for the third 

boundary-value problem. Consider, now, third boundary-value problem 
( B )  638: 

Suppose that, for some N belonging to a given increasing sequence of 

natural numbers, we have chosen a net P y ,  ..., P:, and a system of basis 

functions wy,  ..., w: satisfying condition (1) 

Then the system of Ritz equations for the coefficients in the linear 

combination 

minimizing the functional J(w) over the class of all functions w = a wN + 
... + a wN 

N N' 
difference scheme: 

1 1  
can be written in the form of the following variational- 

n = 1 ,  ..., N ( 2 6 )  

Let u s  now state ~ > I I - W ~ I A ~  'nore specifically how we will choose our net and 

basis functions. For a given positive integer N we inscribe, in contour r ,  
a closed non-intersecting broken-line figure Q ~ Q ~ .  . .QNQN, with vertices at 
points Q,, ..., 
polygon into triangles i n  such a way that any two either have no points i n  
common, or have a common vertex or a common side, and that the total number 

of vertices of these triangles, including the vertices QN ..., Q,,is equal 

to N. The totality of all these vertices will be taken as our net. We 
label the net points PN, P;, ..., P:, f o r  the sake of definiteness taking 

P: = Qn for n = 1, 2, ..., m. Next we define the basis function w:(x,y), 

n = 1,  ..., N ,  as follows. First we specify the function at the net points 

in accordance w l L h  condition ( 1 ) :  

1 2  m l  
We then decompose this Qfl, N , bounding the polygon DN. 

N 
1, 

N 1 
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UN(PN) = 6k n ,  k = 1, 2 ,  ..., N. (27)  n k n’ 

Next we de f ine  i t  i n  each decomposition t r i a n g l e  i n  such a way t h a t  i t  i s  a 

l i n e a r  func t ion  L 1  rich r r i s n g l e ,  t a k i n g  on va lues  a t  each ve r t ex  g iven  by 

Eq. (27) .  

t h e  polygon DN. 

t h e  reg ion  D\DN and on the  boundary r .  
The reg ion  D\DN c o n s i s t s  of s e c t o r s ,  each 
of which is bounded by one of t he  s i d e s  of 

t he  broken-line f i g u r e  Q:. . .Q:Qy, t h e  s i d e  

forming a chord of an a r c  of contour  r. 
Now s i n g l e  out  any one of t hese  s e c t o r s  

and cons ider  t h a t  subd iv i s ion - t r i ang le  of 

D f o r  which the  chord of t h i s  s e c t o r  i s  

one of i t s  s i d e s .  I n  t h i s  t r i a n g l e  t h e  

func t ion  wN(x,y) is a l r eady  de f ined ,  and 

i s  a l i n e a r  func t ion  ( a l b e i t  perhaps iden- 
t i c a l l y  ze ro ) .  

i n s i d e  t h e  s e c t o r  and on i t s  bounda:y i n  such a way t h a t  wN(x,y) remains a 

l i n e a r  func t ion  i n  t h e  reg ion  formed by the  union of t he  s e c t o r  and t r i a n -  
g l e  ( t h e  ru l ed  a r e a  i n  Fig.  49). With t h i s  a u x i l i a r y  d e f i n i t i o n  i n  each  of 

t h e  s e c t o r s  we have completed t h e  c o n s t r u c t i o n  of t h e  func t ions  wN(x,y). 

Now t h e  c o e f f i c i e n t s  and right-hand sides of v a r i a t i o n a l - d i f f e r e n c e  
scheme (26)  have taken  011 c l e i i n i t r  numerical  va lues .  Note t h a t ,  i f  p o i n t s  

PN and PN a r e  not  v e r t i c e s  of one and t h e  same s u b d i v i s i o n  t r i a n g l e s ,  then  

t c e  corresponding c o e f f i c i e n t ,  (w:, w y ) ,  of scheme (26)  w i l l  van ish .  

s o l u t i o n  obta ined  v i a  scheme (26) .  By theorem 4138 

Thus t h e  func t ion  wN(x,y) i s  a l r eady  def ined  everywhere i n  

L e t  u s  now d e f i n e  i t  i n  

N 

L e t  us now d e f i n e  wN(x,y) 

i 

Let u s  now d i s c u s s  the  ques t ion  of t he  accuracy  of t he  approximate 

Fur the r ,  i n  view of ( 8 )  138 and (28 )  

Suppose we know noth ing  about t h e  exac t  s o l u t i o n  except  t h a t  i t  belongs t o  

some set of f u n c t i o n s  V. 

d i f f e r e n c e  wN - v s a t i s f i e s  t h e  fo l lowing  bounds: 

Then by (29)  w e  are only guaranteed  t h a t  t h e  
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where 

(31) G(v, -N w ) = sup Inf (w - v, w - v> 
v i n V  w i n W  -N 

and iN is the linear N-dimensional space spanned by our system of basis 
functions w (x,y), ..., wN(x,y). 
of all functions with continuous second derivatives not exceeding some 
Riven number in magnitude. 

N N 
1 

Consider, now, the case where V consists 

In theorem 2, below, are formulated additional requirements on the net 
which, when fulfilled, have the effect that 

Theorem 2. Suppose V is the set of a11 functions having continuous 
second deriuatives not exceeding some number, M a  in modulus. 
further, that the net Pn, n = I, ..., N, constructed aboue, is subjected to 
the two additional requirements: 

of DN satisfies the bound 

Suppose, 
N 

lo. The length, 2 ,  of each side of any of the subdivision-triangles 

where c1 is some constant. 

bound 
2". Tach angle, a, of any of the subdivision triangles satisfies the 

a > a. > 0 ,  

where a is some constant not depending on N .  
0 

Then bound (32) is valid. 

Proof. From definition (31) of the quantity s(V, "W) it follows 
that, to prove bound (32), it is sufficient to construct, for each function 
u(x,y) in V, a function w (x,y) which satisfies the inequality 

N 
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w i th  cons tan t  A not depending on u or  h. We show t h a t  we may t ake ,  as t h i s  

func t ion  w, t h e  func t ion  

N N N  
W(X,Y) = z U(Pn)Wn(X,Y). 

n=l  
( 3 4 )  

I n  view of t h e  s t r u c t u r e  of t h e  le f t -hand  s i d e  of i n e q u a l i t y  (33) it i s  
s u f f i c i e n t  t o  prove t h e  fo l lowing  i n e q u a l i t y :  

1 a(w ax-( - u )  5 Blh, I a ( w a i  " 1  5 Blh everywhere i n  D ,  (35) 

Iw - U I  B h on r ,  ( 3 6 )  

I n e q u a l i t y  (35) may be proven i n  t h e  same 

2 

where B 

way, almost word f o r  word, a s  i n e q u a l i t y  (18), e s t a b l i s h e d  above f o r  poly- 
gon DN. 

( 35 )  which remains v a l i d  on t h e  boundary r ,  t h e  d e r i v a t i v e  

and B2 a r e  cons t an t s .  

To prove i n e q u a l i t y  ( 3 6 )  w e  no te  t h a t ,  by v i r t u e  of i n e q u a l i t y  

1 

a (w - u )  
a Y  

d(w - u )  = cos a(W,- u,  + s i n  y 
ds  

of t h e  func t ion  w - u along t h e  boundary does not  exceed 28 h i n  magnitude. 

Here y i s  t h e  angle  between t h e  x a x i s  and t h e  d i r e c t i o n  of t h e  boundary a t  
t h e  given po in t .  Fu r the r ,  a t  t he  p o i n t s  Pn = Qn, n = 1, 2 ,  ..., m, we have 

t h e  equat ion  w - u = 0. Therefore  a t  any po in t  Q on t h e  boundary 

1 

N N  

where S 

a long  thenboundary r .  
4. On the method for proving convergence. To ana lyze  v a r i a t i o n a l -  

d i f f e r e n c e  schemes i t  was not  necessary  f o r  us t o  s p l i t  t h e  convergence 

proof i n t o  s e p a r a t e  s t u d i e s  of s t a b i l i t y  and approximation, a s  we d i d  i n  

a l l  o the r  chap te r s .  I n  c a r r y i n g  nut t h e  v a r i a t i o n a l - d i f f e r e n c e  computa- 

t i o n s  s t a b i l i t y ,  which should be understood t o  mean t h e  good cond i t ion ing  

of the  r e l evan t  system of equa t ions ,  a s  be fo re  p l ays  an impor tan t  r o l e :  

n o t ,  however, as a f a c t o r  gua ran tee ing  convergence but only a s  a p rope r ty  
which permi ts  us t o  d i s r ega rd  the  in f luence  of roundoff e r r o r s  on t h e  f i n a l  

r e s u l t .  The concept of approximation, i n  t h e  sense  understood everywhere 
i n  o the r  chap te r s ,  no longer  p lays  a r o l e .  It is  rep laced  by approximation 

of t he  set of func t ions  U by l i n e a r  combinations of b a s i s  func t ions .  

n e t  may t u r n  out  t o  be t h e  sane a s  some o rd ina ry  d i f f e r e n c e  scheme ( s e e  t h e  

problem a t  t he  end of t h i s  s e c t i o n ) ,  and then  the  v a r i a t i o n a l  approach t o  a 

is t h e  d i s t a n c e  from po in t  Q t o  t h e  c l o s e s t  p o i n t  Q N  measured 
Q Q ~  

The theorem i s  proven. 

I n c i d e n t a l l y ,  however, a v a r i a t i o n a l - d i f f e r e n c e  scheme on a r e g u l a r  
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study of this scheme can be supplemented by the methods used to study 
ordinary difference schemes, so as to get additional information as to the 
properties of the approximate solutions. 

Comparison of variationaldifference schems d t h  general 
variational and ordinary difference schema. 
schemes are syntheses of variational methods with ordinary difference 
schemes. One of the basic advantages of the Galerkin-Ritz method is the 
great freedom it gives us in the choice of basis functions. If it is known 
a priori that the desired 60lutfon, u, belongs to some specific, narrow, 
class of functions, U, with a rapidly decreasing sequence of N-dimensional 
diameters cN, then in principle one can choose basis functions so as to 

achieve good accuracy even for small N and, consequently, for small compu- 
tational effort. This fact made it possible for the skilled analyst to 
solve selected problems numerically even before the appearance of fast 
computing machtiies. But the actual construction of basis functions with 

good properties is  a difficult problem. 
In the variational-difference method one's freedom to choose basis 

functions is limited to the choice of net structure which results from 
decomposition of the given region into a set of polygons whose vertices 
serve as net-points, and the choice of methods by which the definition of 
net functions will be extended over the whole domain. This limitation in 
our freedom to choose basis fti iwitons brings with it, however, a degree of 

automation in their construction. And we can still, to a certain extent, 
take into account the special features of the class of functions, U, 
containing the solution, by use of unequal polygons; or by taking advantage 
of our freedom to fill in the basis function in each of thr. drcomposition- 
polygons, accomplishing this process (like the decomposition itself) with 

the aid of a priori information on the behavior of the solution in this 
polygon. 

On the other hand the variational-difference scheme retains the 
convenience of ordinary difference schemes resulting from the simple 
structure of coefficient matrices containing many zero elements. This 
structure is obtained through use of basis functions each of which differs 
from zero only in a small neighborhood adjacent to one of the net-points. 
Further we retain here the simple, vislia2izeable interpretation of ordinary 

difference schemes, where the unknowns are the values of the function of 
interest at the net points, and not some auxiliary system of numbers with 

no immediately visualizeable significance. At the same time variational- 
difference schemes enable us to overcome the difficulties which arise 
through the use of difference schemes on irregular nets, or in dealing with 
boundary conditions on curvilinear boundaries. 

5. 

Variational-difference 
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PROBLEMS 

Suppose the decomposttion of region D into triangles is accomplished 

in such a way that the net-point PN for  a given N, is the vertex of right- 
angled isosceles triangles with sides of length h, shown as hatched in Fig. 
50. 

N 

n' 

Fig. 50. 

Show that the equation 

corresponding to the net-point P: in variational-difference scheme (2), in 

this case takes the form 

where (x ) are the coordinates of the point pN. 
n' 'n 
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P a r t  5 
S t a b i l i t y  of Evolu t iona l  Boundary-Value Problems 

Viewed as the Boundedness of Normg of Powers of a Certain Opera tor  

In  t h e  preceding  p a r t s  of t h i s  book much a t t e n t i o n  w a s  devoted t o  

s tudy  of t he  s t a b i l i t y  of d i f f e r e n c e  boundary-value problems L u ( ~ )  = f ( h ) .  

We s t u d i e d ,  i n  p a r t i c u l a r ,  t h e  s t a b i l i t y  of c e r t a i n  d i f f e r e n c e  schemes 

approximating t h e  D i r i c h l e t  problem f o r  t h e  Poisson equa t ion .  Th i s  i s  a 

s t a t i o n a r y  problem; its s o l u t i o n  does not depend on t i m e .  But we took a s  

fundamental t he  e v o l u t i o n a l  problem cor responding  t o  time-dependent 

processes  such a s ,  f o r  example, t h e  propagat ion  of hea t  o r  of waves. 
Methods f o r  t he  s tudy  of e v o l u t i o n a l  d i f f e r e n c e  boundary-value problems a r e  

b e t t e r  developed than those  des igned  f o r  s t a t i o n a r y  problems. This  s i t u a -  

t i o n  may be exp la ined ,  i n  p a r t ,  by the  f a c t  t h a t ,  i n  many cases ,  t h e  

s t a t i o n a r y  s t a t e  may be regarded a s  t h e  r e s u l t  of t h e  s t a b i l i z a t i o n  of 
processes  evolv ing  i n  t i m e .  

h 

In  s tudying  the  s t a b i l i t y  of e v o l u t i o n a l  d i f f e r e n c e  problems we 

appl ied  the  maximum p r i n c i p l e ,  energy i n e q u a l i t i e s ,  s p e c t r a l  cr i ter ia ,  a s  

w e l l  a s  o t h e r  p r i n c i p l e s .  In  a l l  t h e s e  approaches we used, i m p l i c i t l y ,  t h e  

s p e c i a l  s t r u c t u r e  of t h e  e v o l u t i o n a l  d i f f e r e n c e  scheme, i n  which t h e  

s o l u t i o n  u ( ~ )  i s  given on one or s e v e r a l  i n i t i a l  t ime-levels of t h e  n e t ,  
and i s  then  c a l c u l a t e d  step-by-step on succeeding  t ime- leve ls .  Here we 

w i l l  express  t h e  l aye red  c h a r a c t e r  of t h e  e v o l u t i o n a l  d i f f e r e n c e  scheme 

d i r e c t l y  i n  w r i t i n g  the  scheme, s e t t i n g  up a cor responding  l i n e a r  o p e r a t o r ,  
R h ,  which a c t s  t o  e f f e c t  the  t r a n s i t i o n ,  from the  already-known s o l u t i o n  on 

a given t ime- leve l ,  t o  still  unknown va lues  of t h i s  s o l u t i o n  on t h e  nex t  
l e v e l .  This ope ra to r  may be chosen i n  va r ious  ways. We w i l l  c o n s t r u c t  i t  

i n  such a form t h a t  t he  s t a b i l i t y  of t h e  d i f f e r e n c e  scheme t u r n s  out  t o  be 
equ iva len t  t o  the  boundedness of t he  norms of i t s  powers. Th i s  approach 

w i l l  p e r m i t  us t o  look a t  the  a l ready-encountered  methods f o r  s tudy ing  t h e  
s t a b i l i t y  of e v o l u t i o n a l  d i f f e r e n c e  boundary-value problems from a u n i f i e d  

po in t  of view, r ega rd ing  them a s  methods f o r  s tudy ing  the  p r o p e r t i e s  of t h e  
ope ra to r  Rh: 

of a fami ly  of d i f f e r e n c e  o p e r a t o r s ,  and a spectral  c r i t e r i o n  f o r  t h e  s t a -  
b i l i t y  of a non- se l f ad jo in t  d i f f e r e n c e  boundary-value problem. 

i t  permi ts  u s  a l s o  t o  formula te  t h e  concept of t h e  spectrum 
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Chapter 13 
Construction of the Transition Operator 

040. Level structure of the solution of evolutional problems 

In all the above examples of evolutional difference schemes 

L .(h) = f(h) (1) 
h 

we were given the value of the solution u(~) on one or several initial 
levels of the net. 

determined, step by step, from the equations constituting difference 

boundary-value problem (1). By the term "level" we mean the totality of 

all points of the net Dh lying on the line (or plane) t = const. 

will assume that difference scheme (l), under consideration here, has the 
indicated level-structure. 

The value of u(~) on the following levels was 

Below we 

Example 1. Consider the difference scheme 

J m = 0 ,  1, ..., M; p = 0, 1, ..., [ T / T ] - l ,  

approximating the heat-conduction problem 

a u  a*, 
a t  ax* 
- = - + $(x,t), 0 < x < 1, 0 < t < T, 

u(o,t) = $,(t), U ( I ,  ti = $,(t), u(x,O) = $(x), 

O < x < l .  

Knowing the value of the solution u(~) at the points of the level t = tp = 

PT, i.e. knowing the net function 

. P = { P  urn}, m = 0 ,  1, ..., M, ( 4 )  

of argument m we can calculate, sequentially, the values of the net 

functions up+' = {u!+~], up+,, etc., using the equations 
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The ne t  f u n c t i o n  uo = {u:} = {$(xm)} is  given. 

Thus the  s o l u t i o n  u(~), def ined  on t h e  two-dimensional ne t  

(x,, t ) = (mh, pT), m = 0, 1, ..., M; p = 0, 1, ..., [TIT] ( 6 )  
P 

i n  t h e  x-t plane has ,  i n  x very n a t u r a l  way, s p l i t  i n t o  l a y e r s ,  having been 

rep laced  by the  sequence of f u n c t i o n s  

u o ,  u ' ,  . , . , up, p = [TIT] ,  ( 7 )  

def ined  on one-dimensional n e t s .  

a r e  def ined  f o r  p = 0, 1 ,  ..., p, a r e  t h e  same f o r  a l l  p (F ig .  51 , a ) ,  so 

t h a t  one may cons ide r  them as va r ious  exemplars of one and t h e  s a m e  ne t .  

Th i s  one d imens iona l  n e t  is r ep resen ted  i n  Fig. 51,b. 

The one-dimensional n e t s ,  on which t h e  up 

Consider t h e  l i n e a r  space ,  U', of 

f u n c t i o n s  def ined  on the  one-dimensional 

ne t  of Fig.  51,b. The ne t  f u n c t i o n s  up, 

p = 0, 1,  ..., p, i n  p a r t i c u l a r ,  belong t o  

t h i s  space.  We assume t h a t  t he  l i n e a r  
space  is normed. For example t h e  norm of 

o ,  u l ,  . . . , u } might be the  element u = { u  

given  by one of t h e  equa t ions  
UI 

D B f X 
Q) 

M 

UP 
I Jut I = max1uml, 

m 

( 8 )  d) 
* : ? = : : .  

M 112  
l l . ' I ' = ( h  z I yn tz )  ' 

m=O F ig .  51. 

In  t h e  d e f i n i t i o n  of s t a b i l i t y  and convergence one encoun te r s  t h e  

norms I l u  ( h )  Huh.  of t h e  s o l u t i o n  of d i f f e r e n c e  boundary-value problem 

( 1 ) .  

l eve l - cha rac t e r  of t he  s o l u t i o n  u ' ~ ) ,  more s p e c i f i c a l l y  those  f o r  which 

We w i l l  use only  such norms 1 I u ( ~ ) (  1 which t ake  i n t o  account t h e  
"h 

where p t akes  on the  va lues  p = 0, 1,  ..., [TIT],  i . e .  a l l  those  va lues  f o r  
which t h e  r eg ion  of d e f i n i t i o n  of t h e  n e t  f u n c t i o n  up = up} belongs t o  t h e  

two-dimensional domain of d e f i n i t i o n  of t he  s o l u t i o n  u . 
Example 2. Consider t h e  d i f f e r e n c e  equa t ion  

( h i  

up+l - 2u; + ug-1 up - 2u; + P 
m m+l 

T 2  h2 (10)  
m = 0, 21, ...,; p = 1, 2, ..., [T/T]-l, 
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which is the difference analogue of the differential equation 

- - -  a2u a2u = g(x,t), 0 < t < T, - < x < --. (11) 
at* ax2 

In contrast to example 1, the solution u(~) of this difference 

Here it is necessary to know the values u(~) at the net-points of two 

equation is not determined by its values at the net-points of one level t = 

p ~ .  
levels: t = pT and t = (p+l)T, i.e. values of the vector-function (Fig. 

52,a) 

From the values of up, through use of Eq. ( l o ) ,  one can define, sequen- 

tially, up+’, up+2, etc. In accordance with these considerations we take, 

as space Ui, the space of vector- 
functions (Fig. 52,b) 

bo b l  ... 

4 with some norm I 1u1 I .  Concerning 

this norm we make the following 

remarks. 
8 

. z z z  Z ?  z : a  The solution of differential 
u p  equation (11) is determined by two 

functions: 
81, ~ - ~ - .  

Fig. 52. 
au(x,t) 
at’ u(x, to) and 

whose difference analogues are, respectively, the net functions 

..., up1, uop, u;, ... 
and 

p+l - u; uP+l - u; 
Y , , ... ... u”:’ - up1 uo 1 

T T T 

Therefore any natural norm in space U i  must depend on both these net 

functions. We may, for example, take 
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or 

After the introduction of a norm in space UG we automatically get a 
norm, via E q .  (9), in the space, Uh,  of net functions defined on the two- 

dimensional net: 

Here p runs through those values p = 0, 1, ..., [ T I T ] ,  for which the region 

of definition of the net vector-function belongs to the two-dimensional 

domain of definition of the net function u(~). 

Since, by the convention we've adopted, all our norms must be of form 

( 9 ) ,  the inequality 

which, for a linear operator Lh signifies stability, is equivalent to the 

inequality 

for all those p for which the function up is defined. 

convenient for the study of stability. 

This turns out to be 

PROBLEMS 

1. Define the space U' for the difference scheme 
h 

1 uP+l - 
mn mn = up + A up + $(xm, y,, tp), 'xx mn yy mn 

J m, n = 1, 2, ..., M-1; Mh = 1, 

p = 0 ,  1, ..., [T/T]-1; 
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Here (xm, yn, tP) = (mh, nh, pr), and r consists of those net-points which 
lie on the lateral boundaries of the parallelopiped 0 5 x, y i  1, 0 ( t i  T. 

2. Define the space U’ for the difference-splitting-scheme 
h 

- n 

u - u r  I mn mn 
= f, 

T YY mn’ 

m, n = 1, 2, ..., M-1; Mh = 1; p = 0, 1 ,  ..., fT/T]-l; 
r is the lateral boundary of the parallelopiped 0 i x, y & 1, 0 i t T. 

041. Statement of the difference boundary-value problem 

in the form uP1 = %up + Tpp 

1. Canonical form. We will write the difference scheme 

..., 

vp+l = (1 - r)uP + rup pP = $P 
m m m+l’ m m’ - 

Eq.  (1) can be rewritten in the form 
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UP+l = vp+l + TOP, uo = JI,. 
m 

The term vP+l is completely determined by up = {uz], so-that we may write 

"P+l = %UP, 

where % is an operator which maps each net function up in U i  into a net 
function vP+l in U L  via Eq. (2). In this notation 

In this section we show also by other examples how 

evolutional difference boundary-value problem 

Eq. (1) takes the form 

( 3 )  

one can reduce an 

( 4 )  

to form ( 3 ) .  Further, we establish that if, in this reduction, certain 

natural requirements are satisfied, then stability of problem ( 4 )  on the 

interval 0 It 5 T is equivalent to fulfillment of the inequality 

where K is some constant independent of h: thus we reduce the study of 

stability to the establishment of bounds on the quantities I IRE1 1 ,  i.e. the 

norms of powers of the transition operator R 

16. We recall that in 141 the study of stability was reduced to the con- 
sideration of the inequality 

h' 
Analogous constructions and considerations were presented in 1115 and 

Specifically, it was shown that stability is equivalent to the existance of 

a number c, independent of h and f(h) in Fh, such that inequality ( 6 )  is 

satisfied for a l l  p, p = 1 ,  2 ,  ..., [ T / T ] .  

Now we set out to implement the proposed plan, starting with an 

Consider the difference scheme 

example of the reduction of a difference scheme to form ( 3 ) .  
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T 

uP+l - 
m m - m+l 

= 4;, 
h2 

p = 0 ,  1, ..., [T/T]-1; m = 1, 2, ..., M-1, 
ug = Sl(tp), 

m 

4 = e2(tp), p = 0 ,  1, ..., f T / s l  

.o = $(mh), m = 0, 1, ..., M. 
Clearly it is necessary t o  satisfy, here, the consistency condition $ (0) = 

$ ( 0 ) ,  $2(0) = $(1). 
and the functions u l ,  u2, ..., can be computed consecutively. 
this computation one must rewrite the difference equation of scheme (7) in 
the form 

1 

To carry out 

By the conditions of the problem u' = {u:} is given, 

r = m = 1, 2, ..., M-1; p = 0, 1, ..., [T/T]-l, 
h2' 

and make use of the equation 

Let us, then, take as U' the space of net functions 
h 

with norm 

We now write the difference boundary-value problem in the form 

up+1 = R up + TPP, 
h 

uo given, 

denoting by R 
into an element b = {b } of the same space via the equations 

the operator mapping each element u = {a } of the space U i  h m 

m 

I bo = aO, 

b = (1 - 2t)a + r(am-l + am+l), m = 1, 2, ..., M-1, 
bM = %. 
m m 
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With t h i s  choice  of t h e  o p e r a t o r  R t h e  n e t  func t ion  PP  i n  U’ 
h h 

is def ined  by t h e  equa t ion  

p = 0, 1, ..., [T/?]-l. 
We have now completed the  r educ t ion  of t he  above scheme ( 7 )  t o  form ( 3 ) .  
Next we propose t o  use  t h i s  form of t h e  d i f f e r e n c e  boundary-value problem 

t o  s tudy  s t a b i l i t y .  But i f  i n e q u a l i t y  ( 6 ) ,  s i g n i f y i n g  s t a b i l i t y ,  i s  t o  

have any meaning, one must d e f i n e  t h e  norm 1 If I I 
d i f f e r e n c e  boundary-value problem ( 7 )  may be w r i t t e n  i n  form ( 4 )  i f  we s e t  

h . In  our example 
Fh 

, m = l , 2  ,..., M-1, m - m + l  

h2 
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2. Stability as the uniform boundedoess of the norms of powers of 

R,,. 
of any difference scheme ( 4 )  to form ( 3 ) ,  allow one to affirm that 
inequality ( 5 )  implies stability. 

We now formulate two conditions which, if satisfied in the reduction 

Condition 1'. The irIf?qUUlity 

(h) I l p p l  1 K1l I f  1 IFh. 

is valid for &me K 

which pp is meaningful. 

independent of h and f(h), and for all p for  
1 

Condition 2". The bound 

hoZds for some K independent of h and f(h). 

Conditions 1' and 2' require a certain compatibility between the 

choice of norms in spaces UL and Fh, and the definition of the 
operator Rh (since the form of the vector PP i s  uniquely determined by the 

choice of Rh). 

reduced to form ( 3 ) .  these conditions are fulfilled. To convince oneself 
of this it suffices to compare the norms of net functions P p  and uo 

2 

We note that in the above example, where scheme (7 )  is 

( ( u O ( (  = maxfu:l = max/+(xm)( 
m m 

(h) defined by Eq.  (10). The numbers K and K2, in 
with the norms I If 1 I F h  1 

this example, may be set equal to one. 
Let us now prove that, if i n  the reduction of difference boundary- 

value problem ( 4 )  to form (3), conditions 1" and 2" are satisfied, then the 

validity of bound (5) is  sufficient for the stability of difference scheme 

( 4 ) .  We have to show that the bound 

where K3 is some number independent of h and f(h), i s  satisfied for all p, 
p = 0, 1, ..., po for which the domain of definition of the net function up 

belongs to the region of definition of the solution u . (h) 

From the equation 
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up+' = %Up + T p P ,  p = 0, 1, ..., Po-1, 

it follows that 

p-2 + TpP-2) + TpP-l  = 
up = R h up-' + TpP-l  = Rh ( RhU 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
= 5:uo -k T ( q - ' p o  4- %-'p1 + ... pp-'), p = 0 ,  1, ..., Po* 

By assumption 

R 
IIR,II 5 K, 2 = 0, 1, ..., [T/T]. 

From this inequality and Eq. ( 1 1 )  we get the bound 

40 1 

lIuPIl 5 K I l u O l I  + d I I p 0  

Taking account of conditions 1' 

1 + [ I P l ( (  + ... + IIPp-'II). (12) 

and 2', by virtue of which we may write 

, II = 0, 1, ..., Po-1, 
h 

R (h) 

(h) 

I I P  I I  i K 1 I I f  I I F  

I Iu01 I 5 K2l I f  I l F h l  
bound (12) can be replaced by the following 

I l u p l  1 5 (KK2 + TPKK1)l IF < K(K1 + TK1) 1 IF = '1 If(h)l IFh* 
h h 

where the constant c = K(K + TK ) does not depend on h o r  f(h). 

have proven stability. 

to show that, for r = T/h2 i 1/2, difference scheme ( 7 )  is stable. 

introduced via Eq. (9) in the reduction of scheme ( 7 )  to canonical form 

( 3 1 ,  we have the inequality 1 lRh(( 5 1 and, therefore, also I1R$I 5 
IIRhlI 1 .  For r 5 1/2 

Thus we 
2 1 

Let us now use the just-established sufficient condition for stability 

In fact we will convince ourselves that, for the operator Rh, which we 

P 

(bo( = la 0 -  I < maxla m 1 = IlalI, 

lb,l = ((1 - 2r)a + r(a + 5 

- < (1 - 2r + 2r) max)am( = 1 la1 1 ,  
m m- 1 

m 

lb I = la I < maxla 1 = I(a1I. 
M -  m 

m m 
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From these bounds it follows that I Ibl I = I lRhal I 5 I la1 I, i.e. I l % l  I 1. 
Thus for r i  1 / 2  the sufficient condition for stability is satisfied. 

can show that, if the constant r = T/h2 > 1/2 ,  the sufficient condition for 

stability is not satisfied. It is, then, natural to ask whether, also in 

the general case, stability is lost when the inequality I 
2, ..., [T/T] is no longer valid. It turns o u t  that i n  fact the validity 

of the inequality I IRE1 1 < K is necessary for stability under one, addi- 
tional¶ condition 3' which we now state in general form, and which is 

satisfied in the example just considered above. 

Suppose the difference boundary-value problem ( 4 )  is 
reduced to form ( 3 ) .  Take any function Go in U' and construct the net 
function il, i2, ... Cp, ... by the recurrence relation iP+' = RhGP. The 

set of net functions tip}, p = 0 1, ..., [T/T], each of which belongs 
to U;, forms some net function ifh) in space Uh. Let u s  now compute the 

corresponding T(h), 

One 

I < K, p = 1, 

Condition 3". 

h 

We will say that, in the reduction of difference scheme 141 to canonicaZ 
form (31 ,  condition 3 O  is satisfied if there exists a bound of the form 

where the constant K3 does not depend on lo in Ui and does not depend on h. 

above, of difference scheme ( 7 )  to canonical form ( 3 ) ,  condition 3" is 
fulfilled. 

Let us now convince ourselves that i n  the reduction, just described 

In fact, given an arbitrary function io = {G:}, we get 

With our choice of norms 

We now show that if, in the reduction of difference scheme ( 4 )  to 

canonical form ( 3 ) ,  condition 3" is fulfilled then, for this scheme to be 
stable on the interval 0 < t < T, it is necessary that the transition 
operator satisfy bound (5): 

where K is a constant not depending on h. 

find an h and Po, and a net function Z o ,  such that 
If the indicated criterion is not satisfied then, for any K, one can 
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Having cons t ruc t ed  t h e  v e c t o r s  I I p o l  I > Kl  ILo1 I )  from i0 and, from t h e  

S ,  formed t h e  n e t  func t ion  ;(h , we conclude t h a t  ;P I 

A t  t h e  same t i m e  

It is  c l e a r ,  t h e r e f o r e ,  t h a t  

Th i s  i n e q u a l i t y ,  because of t he  a r b i t r a r i n e s s  of K,  does indeed s i g n i f y  

i n s t a b i l i t y .  

Now l e t  us summarize t h e  c o n s i d e r a t i o n s  of t h i s  s e c t i o n .  We have 

shown t h a t ,  a f t e r  reducing  t h e  d i f f e r e n c e  scheme Lhu(h) = f ( h )  t o  form ( 3 )  

one can use  the  o p e r a t o r  Rh t o  s tudy  s t a b i l i t y .  
proven the  fo l lowing  

If, in the reduction of difference scheme ( 4 1  to form (31, 
condition 3O has been satisfied then, for stability, it is necessary that 

More p r e c i s e l y  w e  have 

Theorem. 

11q11 < K, P = 1, 2, ..., [ T I T I ,  (13)  

where K is some constant not depending on h. 
has been carried out in accordance with conditions l o  and 2", then bounds 
( 1 3 )  are sufficient for stability. 

We c a l l  t o  t h e  r e a d e r ' s  a t t e n t i o n  the  f a c t  t h a t ,  o r d i n a r i l y ,  t h e  

s p l i t t i n g  of u ( ~ )  i n t o  l e v e l s ,  and the  r educ t ion  of t h e  d i f f e r e n c e  scheme 
t o  canon ica l  form ( 3 ) ,  may be accomplished i n  s e v e r a l  d i f f e r e n t  ways. 

However, we w i l l  no t  pause t o  d i s c u s s  t h i s  po in t  i n  d e t a i l  ( s e e  1 1 4 ,  where 

t h e  same ques t ion  w a s  d i scussed  i n  t h e  case  of d i f f e r e n c e  schemes f o r  

o rd ina ry  d i f f e r e n t i a l  equa t ions ) .  

scheme 

If the reduction to form ( 3 1  

3. Example.  I n  concluding t h i s  s e c t i o n  w e  cons ide r  t h e  i m p l i c i t  
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m = 1, 2, ..., M-1; p = 0, 1, ..., [T/T]-1, 
u; = f, m = 0 ,  ..., M, 

p = 0, 1, ..., [T/T]-l, 
for the heat-conduction problem 

- _ _ _  - d(x,t), 
at ax2 

This scheme was considered i n  detail in $28. 

1 lupl I = maxluil. 

the form of a sum, 

We take as vector up the vector up = (LIE, uy, ..., up) with norm M 
The solution at the (p+l)'st level will be written in 

m 

where 

are, in turn, solutions of the auxiliary systems of equations 

7 v;+l = uop = 6 (t ), 
1 P  
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7 

The f i r s t  of t h e s e  sys tems can be t a k e n  a s  t h e  d e f i n i t i o n  of t h e  o p e r a t o r  

R h ,  s o  t h a t  we may write 

vP+l  = RhuP. 

I f  I I f h l l F h  is d e f i n e d ,  a s  b e f o r e ,  by E q .  (101, t h e n  s a t i s f a c t i o n  of 

c o n d i t i o n  1' 

( h )  1 l p p l  I K1l I f  I IFh 

f o l l o w s  from t h e  bound 

v a l i d  f o r  t h e  s o l u t i o n  { p p }  of sys tem ( 1 7 )  by v i r t u e  of bound (7) 14 .  
F u r t h e r ,  K1 = 1. 

m 

C o n d i t i o n  2" 

is  a l s o  s a t i s f i e d ,  by v i r t u e  of (10) w i t h  u o  = 9 , and h e r e ,  c l e a r l y ,  we 

can  set K2 = 1. 
m m  

F u r t h e r ,  i n  128 w e  proved t h e  bound 

w h i c h  may be i n t e r p r e t e d  a s  t h e  i n e q u a l i t y  

from which i t  f o l l o w s  t h a t  
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We have here followed the same general plan as in the stability proof 

of 628, showing that it and the proof presented here are the same. 

above example is interesting also in that it makes use of a rather 

complicated method for constructing the vector pp. 

The 

PROBLEMS 

1. For the system of acoustic equations 

au  au + A - = $(x,t), a t  ax 
-m < x < m, 0 < t < T, 

U(X,O) = Jl(x), -- < x < -, 

reduce to canonical form (3) the scheme 

1 
J U0 m = +(xm), 

taking up = {up}. Verify that, if norms are defined via the equation 

where 

1 IUP 
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Prove that for r 5 1 difference scheme (*) is stable, and for r > 1 is 

Hint. 
unstable. 

To bound the norms 1 IRE1 I go over to the variables 

called "Riemann invariants" and use the spectral criterion of section 4125. 
2. Bring the difference scheme 

vp+1 - 2v; + v;-1 vp - 2v; + v p l  
m+l P 

= $,, 
m 

T2 h2 

approximating the Cauchy problem 

to canonical form ( 3 )  setting 

m 

a) Verify that conditions 1 O - 3 '  are satisfied. 

b) 
it is unstable. 

Prove that for r/h = r( 1 the scheme i s  stable, while for T/h = r > 1 
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542. Use of particular solutions in the construction 

of the transition operator 

I n  541 we talked about the reduction of the difference boundary-value 
problem 

L u(h) = f(h) 
h 

to the form 

up+' = R up + rpP, 
h 

u o  given. 

In this reduction the operator R, can be chosen in various ways. The 
L L  

reduction to form (2) has the purpose that, by bounding the values of 
I IR:I 1 ,  we be able to draw conclusions regarding stability. 

that the bound 

It was shown 

IIRph(( < K, p = 1 ,  2, ..., [T/T], ( 3 )  

ensures stability if 

chosen in such a way 

1" 

where p runs through 

2 O  

In the examples 

only the operator R and the required norms, are 

as to satisfy the conditions: 
11 ' 

all values for which ph is defined; and 

I l U 0 l  I 5 K21 IFh. 
considered in 141 the operator Rh could be taken to be 

fairly simple, at the same time still satisfying conditions 1' and 2". 
But one can also encounter examples (and one will be considered in this 

h'  'On- 
section) where condition 1' is too strict, so that the operator R 

structed so as to take account of this condition, cannot be as simple as 
one would like. 

cient for stability if condition 1' is replaced by the less restrictive 

condition l*. 
taken simpler and simpler the more one knows about the solutions of the 

above difference problem (1).  In particular, the structure of the opera- 

tor, Rh, which appears in the reduction of the difference scheme to form 

(2 ) ,  becomes simpler if we know certain particular solutions of the differ- 
ence equations entering into the formulation of problem (1). 

pondingly, one can simplify the proof of inequality (3),  which implies 

Below in this section it will be shown that bound (3) remains suffi- 

Thanks to the substition of 1* for 1' the operator Rh may be 

Corres- 

_. 
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stability. All this will be demonstrated later by way of examples. Now we 

turn to the formulation of condition l*. 
depending, generally, on 

f(h). 

split the net function u(~) into functions up of Ui. In the same way we 

now split the net function z ( ~ ) ,  by levels, into functions zp of U f i ,  and 

postulate that the zp satisfy inequalities of the form 

Suppose that zh is some net function in U 
h 

In the reduction of difference scheme ( 1 )  to canonical form (2)  we 

- 
where K is some constant, and p runs through those values p = 0, 1, ..., 
p,, for which zp is defined. 

Condition I*. 

141, and such that 
There exists a function z(~), satisfying (nequality 

If one can take, as z ( h )  , z(~) 5 0, then not only condition 1* is 

Theorem. 

satisfied, but also the stricter condition I". 

(21, while satisfying both conditions 1* and 2 O ,  then bound ( 3 1  impties the 
inequatity 

If difference probtem (1) may be written in canonical form 

which, in turn, implies stabitity. A s  the constant c one may take 

c = K(2K + 2F + TK1) + z. 2 

Proof. Define the function w(~) = u(~) - z(~). From the equation 

up+' = R up + T p P  
h 

it follows that 

where 

By condition 1* we have 
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Using Eq. ( 6 )  and inequality ( 3 )  we find without difficulty, as we 
have many times before, that 

This follows from the inequalities 

of which the second coincides with condition 2 O ,  and the third with 

inequality ( 4 )  for p = 0. 
Substituting bound (8)  for I lwo 1 I into (7 )  we see that 

It only remains, now, to note that 

Thanks to the replacement of condition 1' by condition 1* one can now, 

in the investigation of stability, apportion the difficulties between the 

construction of an operator, Rh, whose norms are not too difficult to bound 

and the proof of the existence of a function z (h). 
start that condition I* be satisfied with z(~) = 0, i.e. that condition 1" 

should be satisfied, we are imposing the strictest limitations on the 
choice of the operator Rh. It may turn out that any operator, Rh, which we 

manage t o  construct under condition 1' will have a very complicated form, 

so that bounding the norms of its powers will be too difficult. O n  the 
other hand if we make the operator Rh extremely simple, equal to one let us 

say, and not in any way connected to the difference problem, we transfer 
all the difficulties to the verification of condition I*, i.e. to the 

computation of the necessary bound for the function z(~) which in this 

In demanding from the 
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case, it is most natural to take equal to u(~). 

an operator Rh, and such a function z ' ~ ) ,  would in no way advance our 

investigation of stability. 

ble. O n  the other hand, R must so faithfully reflect the properties of 

the difference problem L uPh) = f(h), that fulfillment of condition 1*, 

i.e. existence of the required function, z(~), will be fairly clear. 
often possible to use the freedom we have in the choice of Rh, thanks to 

the replacement of condition 1" by the less restrictive condition 1*, to 
make it easier to prove stability. For this purpose one takes, as z(~), 
functions constructed from the solutions of difference problems with right- 

hand sides f(h) of some special form. 

The introduction of such 

One must try to choose an operator, R which is as simple as possi- 
h' 

h 
It is 

We will now show, by way of examples, how to use the proposed method. 
Example 1. Consider a difference boundary-value problem (1) of the 

form 

m 
T 

uP+l - - ,P 
m - "'=,:, m = ~ ,  1, ..., M - I ; M ~ = ~ ,  m+l 

h 

U O  = JI(x,), m = 0 ,  I, ..., M. 
p = 1, 2 ,  ..., [T/Tl. $ = $JI(tp), 

This difference problem approximates the problem 

ut - ux = $(x,t), 0 < x < 1, 0 < t < T, 
U(X,O) = $(XI, O < x < l ,  

u(1,t) = JIl(t), 0 < t < T, 
for the following choice of norms 

To reduce problem (9) to canonical form ( 2 )  we set 

up = (u;, uy, ..., g), I J u I )  = maxlu m 1 .  
m 



412 Construction of the Transition Operator Chapter 13 

The operator Rh, b = R,a carrying the element a = (a 0s alp * * * #  

of space Uc into element b = [bo ,  bl, ..., bM) of the same space, will be 
defined by the equations 

bm = (1 - r)a, + ram+l, 

bM = 0, 

m = 0, 1, ..., M-1, 
r = T/h. 

Then, obviously, 

It is clear that condition 1’ 

is not satisfied because the last component of the vector p P  is +l(tp+l)/~, 
which grows as T + 0. (In this problem it would have been easy to 

formulate an operator, R,, such that condition lo would be satisfied. 

do this it would suffice, in the definition of Rh, to replace the 

equation b, = 0 by the equation 41 = %.) On the other hand it isn’t 

difficult to show that the condition 1* 

To 

is satisfied. The left-hand side of this inequality can be written i n  the 
form 

Therefore to prove that 1* is fulfilled it is sufficient to construct a 

function, z‘~), satisfying the equation 

which may be written in the form 

or 
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In the case where J, (t 

stationary (i.e. p-independent) solution 

) does not depend on t this problem has the 
1 p+l 

zP = - J,l = const. 
m 

m 

In the general case JIP = J, (t ) depends on p but, for a bounded norm 
1 If(h) 1 I F  (containing the term IJ,l(tp+l) - J, (t ) I / T )  it cannot vary very 

rapidly. 

1 1 P  

h 1 P  
Therefore the function z(~), defined by the equation 

although not a stationary solution (nor a solution at all) of problem ( l l ) ,  

"almost" satisfies ( 1 1 ) .  In fact 

T ' T  
..., 

Theref ore 

Condition 2' 
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is also satisfied: 

To prove stability, which is present for T i h ,  it is sufficient to 

show that I1R:1I 5 1. 
bound I IRhl 1 5 1: 

The validity of this inequality follows from the 

Example 2. We will take, as a more compllcated example, a different 
difference scheme for the same differential boundary-value problem ( l o ) :  

p = 0 ,  1, ..., [T/T]-1; m = 1, 2, ..., M - 1 ,  

u0 = +(xrn), m = 0, 1, ..., M, 
m 

p = 0, 1, ..., [T/?]-1, 

The difference equation which occurs in this scheme is of second order in 

x, while the corresponding differential equation (10) is first order. 
Therefore at the left-hand boundary x = 0 (m = 0) we have added the 

condition 

which we will use in the form 

Difference scheme ( 1 2 )  has already been considered in 623, where we 

h were 
discussed the question of approximation. Norms in the space F 
introduced, there, as follows: if 
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a at points (mh, 0), m = 0, 1, ..., M 
bp at points (1, pT), 

m 

p = 0 ,  1, ..., [T/T]. 
cp at points (0, pT), p = 0 ,  1, ..., [T/?]-1, 
$: at points (mh, pT), m = 1, 2, ..., M-I; 

p = 0, 1, ..., [T/?]-l, 
then 

A s  was shown in 823 approximation, in this case, is of order h2. Let 

us now show that, if we define the norm I I by the equation 
'h 

with r ' 1  then, along with approximation, we also have stability. 

form (2). For this purpose we set 
We verify stability, first having brought difference scheme ( 1 2 )  into 

up = (u;, ..., 4 
with norm 

The operator \ will be defined via the following equations: 
If a = (ao, al, ..., %), b = (bo, bl, ..., bn) and b = Rha, then 

bo = ( 1  - r)ao + ral, 

b = (- - +-)a 
m 2 2 m-1 

r r2 r r2 + ( 1  - r2)am + (? + T)am+l, 

m = 1 ,  2 ,  ..., M-I ,  
( 1 3 )  

b = 0. 
M 

In this case 
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Clearly, with our choice of norms condition 1' is not satisfied. 

if, for example 

0 at points (mh, 0), m = 0, 1, ..., M 
0 at points (1, pT), p = 0 ,  1, ..., [ T / r ] .  

1 at points (0, pT), p = 0, 1, ..., [T/T]-l, 
0 at points (mh, pT), m = 1, 2, ..., M-1; 

p = 0, 1 ,  ..., [ T / T ] - ~ ,  

then 

so that there can be no K1 for which the inequality 

1 fact, 

will hold for all h. 
For our choice of the space Uk, consisting of the vectors u p  = 

(u;, q, *.., g), and for our choice of norms it is, apparently, impos- 
sible to find an operator, Rh, such that condition 1' will be satisfied, 
but to satisfy condition 1* zs  possible. 

* * * * * *  

Before proving this last assertion we note that, if we change the norm 

I l F h  setting 

then the operator R defined by Eq. (131, will satisfy condition l o ,  but 
the order of approximation (instead of h2) will be only h3/2. 
without changing the norms, bring the difference boundary-value problem 
(12) to canonical form (2), whllt? conforming to conditions 1' and 2', if we 
take as U' the set of vector functions 

h 
We can, 

h 

up=[$'], m = O , 1 ,  ..., M. 
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But we then complicate the construction of the operator, Rh, and the 

estimation of norms of its powers. For this reason w e  will not consider 

such a reduction process. 

* * *  

Let us show that, for our choice (13) of the operator Rh, there exists 

a zp, satisfying condition 1*: 

To construct the function z(~) we proceed very much as in example 1, 
writing out the stationary (p-independent) solution of the problem 

T 

m = 1, 2, ..., M-1, 
zP+' - ,P zP - ZP 

0 0 - 1  -- 0 - p ,  

2 = $12, 
h 

M 

postulating that +p and jlp are fixed, and do not depend on p. 
0 1 

This solution has the form 

m 
zp m = $ h 9 [(-) - (m 

The function {zp} satisfies the bound 
m 

I ]zpI I If(h)( lFh, K = 2. 

In fact 

L e t  
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$J =P+l - 

Since zp is the solution of a time-indepan~Iel\t problem we may write 

zp = RhzP + TgP, 

where 

Theref ore 

so that 

m = 0 .  

Therefore the coordinates of the vector pp = pp - CP/T have the form 

m = 0, I 

O < m < M ,  

m = M. 

The inequality constituting condition 1* 

is satisfied: 
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Condi t ion  2' is s a t i s f i e d ,  

s i n c e ,  c l e a r l y  

To prove t h a t  t h e  proposed scheme is s t a b l e ,  which it is f o r  r 

s t i l l  necessa ry  t o  prove t h a t ,  under t h i s  cond i t ion ,  

1, i t  is 

where K is some cons tan t  independent of h. We w i l l  prove la ter  t h a t  f o r  

any vec to r ,  u = (uo, u l ,  ..., u,), whose las t  component % is equa l  t o  

zero ,  we have t h e  i n e q u a l i t y  

Applying the  ope ra to r  \ t o  t h e  v e c t o r  u = (0 ,  0, ..., 1 )  we ge t  t he  vec to r  

(0, 0, ..., 0, 1 / 2 r  + 1 / 2 2 ,  01, whose norm does not  exceed sf;. Therefore  

f o r  an a r b i t r a r y  vec to r  u = (u o,  u l ,  ..., u ~ ) ,  whose component uM is not  
n e c e s s a r i l y  ze ro  we may write ( t a k i n g  account of i n e q u a l i t y  (16 ) ,  v a l i d  f o r  

a v e c t o r  of t h e  form u = (u  o '  U1' .*., M-1 '  011, 

Now we prove i n e q u a l i t y  (15 ) .  I n  view oC the d e f i n i t i o n  of t h e  

ope ra to r  Rh t h e  vec to r  v = %u has t h e  van i sh ing  component v M' VM = 0. 

Therefore ,  using (16) and (17 ) ,  we g e t  
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It remains for us to justify inequality (16)  upon which we have relied, 

i.e. to prove the following proposition. 

component, !+,, is equal to zero, and let v 5 Rhu. 

Suppose u = (uo, ul, ..., u 0) is an arbitrary vector whose last 
M-1’ 

Then ~~v~~ 5 1 1 ~ 1 1 ;  i.e. 

h 
Recall that, by virtue of definition ( 1 3 )  of the operator R 

1’ 
v0 E (1 - r h o  + ru 

r r2 r r2 
v = (- + +m-l + (1 - r2)um + (7 + +m+l, m 

m = 1, 2 ,  ..., M-1, 
v = 0. 
M 

We note the inequality 

r r2 r2 2 

v; “- 7 + T)Um-l + (1 - r2hm + (; + ~ l ~ m + l l  + 

- 2um + Um+J2 
r2(1 - r2)  

4 
+ 

r2(1 + r) ,2 - 
- 2  m- 1 2 m+l 

- r(1 - r2)u u + r(1 - r2)u u 
m-1 m m m+l’ 

which is satisfied for r & 1, and also the obvious identity 

Now for r 1 it is easy to verify, step by step, the validity of the 
following chain of inequalities, without requiring that = 0: 
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r2(1 + r) ,2 - M- 1 

m= 1 2 m- 1 2 m+l + 2' [r2(1 - r, .2 + (1 - r').; + 

The resulting energy inequality 

M 

m= 1 

1 
m - - 2  0 

M 

m= 1 

1 
&+ 2' v2<-.2+ "2 m 

is stronger than the inequality (18) which we set out to prove. 
Thus we have established the stability of scheme ( 1 2 )  for r 1. For 

r > 1 we do not have stability for any reasonahle choice of norm, since the 

necessary stability condition of Courant, Friedrichs and Levy is violated. 

143. S o w  methods for bounding norms of powers of operators 

In 5541 and 42 it was shown that evolutional difference schemes 

ordinarily can be brought to the form 

up+' = R up + 7pP, 
h 

u o  given 

such that stability will be equivalent to the boundedness, uniform i n  h, of 
the norms of powers of the transition operator 
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Since condition ( 3 )  is equivalent to stability, it follows that any 

method for studying stability is also a method for testing whether or not 

inequality ( 3 )  is satisfied. 
Here we present some approaches to the study of stability already 

encountered in Chapter 8 (but now viewed as methods for bounding the norms 
of powers of operators) and bring out new aspects of these approaches. 

Suppose Ah is any eigenvalue of the operator R and u(~) is the corres- 

ponding eigenvector, u(~) = X (h). Then 

1. Necessary spectral conditions for the boundedness of I IqI 1 .  
h 

% hU 

and therefore I lRPl I 2 IXhlp. Since Xh is an arbitrary eigenvalue, then 
h 

where maxlX I is  the largest absolute value of the eigenvalues of operator 

Rh. 
From ( 4 )  it is obvious (see 815) that, for (3) to be satisfied, there 

must be a circle 

h 

in the complex plane, with constant c independent of h, containing all the 
eigenvalues of operator 

and the results remain unchanged, if we take as Ah not only the eigenvalues 
of the operator \, but all the points of its spectrum. If U' is a finite- 

dimensional space the spectrum of the operator Rh does not depend on one's 

choice of norm, and consists entirely of eigenvalues. This is the most 
important case, which arises naturally in the approximation of differential 

boundary-value problems in bounded domains by difference problems on a net, 

Dh, consisting of a finite set of points. 

necessary for the validity of ( 3 ) ,  independent of the choice of norm. If 
the necessary spectral criterion for stability is not satisfied the problem 

is hopelessly unstable, and the situation cannot be corrected by any 
reasonable choice of norms. An analogous sthiation was investigated i n  
detail for the case of ordinary difference equations i n  §15. 

Let us now clarify the connection between the Von Neumann spectral 
criterion for the stability of the Cauchy difference problem, considered in 

825, and the spectral criterion (5) for the uniform boundedness, ( 3 ) ,  of 
the norms of powers of the operator R We may use for this purpose, for 

example, the difference scheme 

Rh. 
The above considerations do not become essentially more complicated, 

h 

In this case condition (5) is 

h' 
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i uo = JI(X,), 

m = 0, 21, ...; p = 0, 1 ,  ..., [T /T] - l ,  

approximating the Cauchy problem 

au au  
- - _ =  O(x,t), - m < x < m ,  O < t < T ,  
at ax 

Stability of this difference scheme was studied, with the a i d  of the Von 
Neumann criterion, in 625. 

We now write the above scheme in canonical form ( 2 ) ,  defining R 
v = R,,u, and pp via the expressions 

h’ 

Define the norm in U’ by the equation I ( u (  1 = SUP(U~(. 

u = [urn}  = {exp(iam)}, for any real a, belong to the space U i  and are 
eigenfunctions of the operator R * 

h * 

Then the functions 
m 

h 

iam ia(m+l) = ia iam 
R u = ( 1  - r)e + re [ ( I  - r) + re ]e = A(a)u, h 

where 

are the eigenvalues. The stability condition ( 5 ) ,  in view of the fact that 

X ( a )  is independent of T, reduces to the requirement that Ia(a)l 1, which 

is satisfied for all real a if r 1. 

As shown in 625 condition (5) .  in the case of the Cauchy problem for a 
two-level difference scheme in one net function, is not only necessary, but 
also sufficient for stability if the norm is defined by the equation 
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(in this case the functions {exp(iam)} do not belong to the space Ui and, 
consequently, are not eigenfunctions, but the points ( 7 )  still belong to 

the spectrum of the operator Rh). 

operator. Suppose that the M-dimensional linear space Ui consists of 
functions defined at the points P1, P2, ..., P 
our purposes, may equally well lie on an interval or surface, or in a 

space) and that one has introduced in U i  a scalar product which, for any 

pair of functions u and v in Ui, we designate as (u,v). 
that the operator Rh is bounded, uniformly in h, by some constant c * 1’ 

2. Spectral criterion for  the boundedness of powers of a se l fadjo in t  

of a net (a net which, for 
M 

Suppose, further, 

- 
and maps space UL onto some subspace Ui of Ui, of dimension N (M, while on 

the subspace lJG operator \ is selfadjoint, i.e. (%u,v) = (u,Rhv) for any 
pair of functions u and v in Ui. A s  is known from linear algebra, in sub- 

space Ui there exists, in this case, an orthonormal basis 

- 
- 

- 

consisting of the eigenvectors of operator %. 
A N  the corresponding (real) eigenvalues: 

Designate by hl, X 2 ,  ..., 

(10) 

Theorem 1. 
sufficient that 

For bound (3 )  to be satisfied it is necessary and 

maxlXk( 5 1 + c 2 ~ ,  c2 = const. (11) 
k 

Proof. Necessity has been proven in Sect. 1 above. Let us now prove 

sufficiency. 
in 5.) in basis vectors (9): 

Suppose u is in Ui. Expand the vector R,,u = v (where v is 

h 

Then, by (lo), 
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Noting t h a t ,  by Eq.  (8), 

I I V I I  = 

and t a k i n g  account of cond i t ion  ( 1 1 1 ,  from bound (12 )  we deduce (3):  

Below we e s t a b l i s h  some cr i ter ia  f o r  t h e  s e l f a d j o i n t n e s s  of o p e r a t o r  

Rh,  and poin t  ou t  some methods f o r  bounding e igenvalues .  

3. Selfadjointness criteria. We now in t roduce  t h e  n o t a t i o n  

and assume t h a t  t h e  scalar product i n  t h e  space  U' i s  de f ined  by t h e  

equa t ion  
h 

Suppose, f u r t h e r ,  t h a t  t he  ope ra to r  R b = R a ,  i s  g iven  v i a  t h e  

expres s ions  
h '  h 

S 5, is where P 

s e l f a d j o i n t  i f  and o n l y  i f  

and Pk run through whole set of ne t -poin ts .  Opera tor  

In  an i n t e r p r e t a t i o n  independent of t h e  numbering of p o i n t s ,  t h i s  c r i t e r i o n  

means t h a t ,  i n  t h e  computation of b(P) a t  any a r b i t r a r y  po in t  P of t h e  n e t ,  
t he  va lue  a(Q) a t  ano the r  a r b i t r a r y  p o l n t ,  Q ,  must e n t e r  w i t h  t h e  same 

c o e f f i c i e n t  w i th  which t h e  va lue  of a ( P )  occurs  i n  t h e  expres s ion  f o r  b (Q) .  
( t h e  

boundary of t h e  r eg ion )  and t h e  ope ra to r  Rh is given by t h e  expres s ions  

I f ,  among the  n e t  p o i n t s  {P }, one has  s i n g l e d  ou t  some subse t  r k h 
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m 

then on the subspace U; Eq. (16) is equivalent to the following: 

b(Pk) = L’ acksa(Ps), if pk is not in r 
h 

P not in r 

The condition for selfadjointness of the operator R 
then consists, as one can easily see, of the equations 

on t h e  subspace U’ 
h h 

(17) h’ 
P not in I‘ P not in I’ 

h’ k 
a = a  
ks sk’ s 

Thus, for example, the operator b = R a, 
h 

b = (1 - 2r)a + r(akdl + ak+l), k = 1, 2, ..., M-1, 
k k 

b = b  =0, 
O M  

which occurs when the difference analog of the heat equation on an interval 

is reduced to canonical form (2), satisfies coilditton (17), but not 

condition (15) .  

eigenvalues can be written out exactly, as was done in 827 for the operator 
A acting on functions given at the points of a net-segment, and vanishing 

at its endpoints; and also for the operator Axx + A on functions defined 

over a net rectangle, and vanishing on its sides. 

variational methods. It is known that, in this case 

4. Bounds on the eigenvalues of operator \. In certain cases the 

xx 

YY 

To deal with selfadjoint difference operators one can make use of 

Suppose, for example, the operator A + A acts on net functions of space 
Ui, functions which are defined, not on a square, but in a more complicated 
region composed of squares, and which vanish on the boundary of this re- 
gion. 

tain it, and consider the operator A + A acting on the functions of 
xx YY 

Ui’, defined in the net-square and vanishing on its boundary. 
We now extend the definition of each function u’ of Ui so that it be- 

comes a function u’, of U;’, setting the extended functions identically 

equal to zero on all those points of the net-square which do not belong to 
the original region. It is easy to see that for each such function, be- 

cause of the fact that it vanishes on the boundary of the original region, 
we may write the inequality 

xx YY 

Let u s  put the region i n t c i  a square net-region large enough to con- 
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(R u’,u-) (Rhu’*,uc’) 
h , Rh = Axx + A . 

= [ u ” , u ” J  YY 

Therefore, in going from Eqs. (18)  to the equations 

max 
max 

we get numbers, and A ”  which satisfy the bounds 
min max’ 

But in the case of the square reg€on the eigenvalues are known, so that 

’min max 
spectrum of the operator A 

in the original region. 

methods analogous to those for differential equations. For example the 

first eigenvalue of the problem 

and X” are known, and we get bounds (19) on the boundaries of the .> 

+ A 
xx YY 

acting on the functions of U;, defined 

In many cases we may bound eigenvalues through use of variational 

where rh is the boundary of net-region D~ and where, at interior points, 

can only decrease when the variable coefficients, a(x,y) and b(x,y) are 

replaced by the constants 

a = max a(x,y), b = max b(x,y) 
X,Y xBY 

This may be shown by exactly the same methods by which one reaches the 
analogous conclusion for diEEerentia1 equations (Ref. 19). 
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In the case of constant coefficients one may go from the original 
region to a square, and get bounds stmilar to bounds ( 1 9 ) .  Eigenvalues of 

the operator ah + bh in the square region are easy to calculate 

exactly. 
xx YY 

5. Choice of a scalar product. Suppose that the operator Rh, v 5 

Rhu, is given by the equation 

and, for some particular choice of scalar product (u,v) = [u,v] not 

necessarily given by Eqs. ( 1 3 )  and ( 1 4 1 ,  the operators 

selfadjoint 

and Bh are 

[ q u ,  v] [u ,  qv], lBhu, v] z [ u ,  Bhv]. 

Suppose, further, that B > 0: 
h 

[B u ,  u ]  > 0 ,  if u # 0. 
h 

\ = B-lZ is selfadjoint in the sense of the scalar Then the operator 

product 
h h  

In fact 

-1- N 

( B ~ ~ X - ~ U ,  v) = [ B ~ ( B ~  \ I U ,  VI = [A~U, vI = 

- 1- -1- - Bh 
-1 Y 

= [ u ,  Ahv] = [Bh Bhu, Ahu] = [Bhu, Bh Ahv] = (u, B A V) 
h h Bh' 

The above identity in u and v 

means, precisely, that the operator 't, is selfadjoint. 

spectral criterion of Sect. 2 for the boundedness of norms of powers of 

selfadjoint operators. Specifically, one can affirm that the operator 

defined by Eq. ( Z O ) ,  has real eigenvalues Xk, and a complete system of 

eigenvectors $(k): 

Thus the choice o f  scalar product via Eq. (21) allows us to use the 

%I' 

and that disposition of all the eigenvalues X on the segment -1 

is necessary and sufficient for the validity of the inequality 
X & 1 k 
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( 2 3 )  

where the norm of the operator is defined with the aid of the scalar 
product ( 2 1 ) .  

stability theory for a wide class of difference schemes in Hilbert space 
(Refs. 23 and 2 4 ) ,  presents necessary and sufficient conditions for 
stability in terms of linear inequalities between the operator-coefficients 
in these schemes, and also discusses other results. We give, here, only 

two results of this theory. 

[u,v], and let the operator Rh, v = Rhu, u ,  v in Ui, be given by the 
equation 

6 .  The stability criterion of Samarskii. A. A.  Samarskii, in his 

Suppose Ui is a Euclidian space with some scalar product (u,v) : 

( 2 4 )  
v - u  Bh - + 41" = 0, 

where 4, and Bh are selfadjoint operators with Bh > 0. 
norm 1 luJ 1 

Define an energy 

in space u;, setting 
Bh. ,. 

One may now affirm the following 

Theorem 2 .  The condition 

is necessary and sufficient for the validity of the inequality 

llql 5 1 ,  P 2 0. (27)  

Proof. Let us define the selfadjoint operator x, < 5 Bh - '41. 
Then ( 2 4 )  is equivalent to ( 2 0 ) ,  and condition ( 2 6 )  is equivalent to the 

condition -Bh 
- 
4, 5 Bh, i.e. to the condition 

- [Bh~, 111 5 l%u,  ~1 5 lBhU, ~ 1 .  ( 2 8 )  

A s  shown in Sect. 5, above, the operator Rh is selfadjoint in the 

sense of the scalar product ( 2 1 ) ,  and the assertion of the theorem is 

equivalent to the assertion that all the eigenvalues, Xk, of the operator 
R lie on the interval - 1  I A 5 1 if and only if condition ( 2 8 )  is satis- 
fied. Let us now prove this last assertion. 

E q .  ( 2 2 )  with the eigenvector $(k) of operator R , ,  we get 

h 

Suppose condition ( 2 8 )  is satisfied. Computing the scalar product of 
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from which 

PkI = 

Chapter 13 

Conversely, let maxlXkl 5 1. We now show that condition (28 )  is satis- 
fied. Let u = be the expansion of any arbitrary element u, (u 

i n  U i )  in the basis { $ ( k ) } ,  orthonormal in the sense of the scalar product 

( 2 1 ) .  Then 

= I [  ChhkBh*(k), ck$(k)]I = IIBh 1 Ck,k$(k), 1 c~$(~)]) = 

5 1 Ci = (U,U) = [Bhu, u ] .  
Bh 

Y 

Therefore LBhu, u1 21 [Ahu, u] 1 ,  which is equivalent to condition (28 ) .  

theorem is proven. 

Note that verification of condition (28)  is equivalent to a deter- 

mination as to whether or not all the eigenvalues of the operators Bh - 4, 
and Bh + 4, (selfadjoint in the sense of the scalar product [u,v]) are non- 

negative . 

The 

N 

- 

* * * * * *  

Finally we introduce, without proof, still another stability cri- 

terion, applicable to difference schemes ( 2 4 )  with Bh > 0, 4, = A;I >*O. 

Let us introduce, i n  space U;, an energy norm llulI 

the vaZidity of the inequaZity IpRiI f4, < 1. 

proven without the help of the spectral approach, here inapplicable because 

the operator Bh is not (necessarily) selfadjoint. 

setting ) IuI  I 
4,’ 4, 

1 
1 Ahu I 

Theorem 3 .  The condition B > - TAh is necessary and sufficient for 

Theorem 3 is contained i n  Sect. 4 8 1  of Chapter 6 ,  Ref. 2 3 ,  and may be 

* * *  
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1. Suppose 

b = (  
m 

hM = 0 

Bound on Norms of Powers of O p e r a t o r s  

PROBLEMS 

t h e  o p e r a t o r  R b = R a, is  g i v e n  by t h e  e q u a t i o n s  
h’ h 

Prove t h a t  i n  s p a c e  Ui of n e t  f u n c t i o n s  {a } ,  m = 0 ,  1 ,  ..., M ,  i t  i s  i m -  

p o s s i b l e  t o  d e f i n e  a s c a l a r  product  such  t h a t  t h e  o p e r a t o r  Rh w i l l  become 

s e l f a d j o i n t .  

m 

43 1 
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Chapter 14 
Spectral Criterion for the Stability of Nonselfadjoint 

Bvolutional Boundary-Value Problems 

Here w e  show t h a t ,  from t h e  spectrum of a nonse l f ad jo in t  o p e r a t o r  s, 
of o p e r a t o r s  {Rh} and 

one cannot judge s t a b i l i t y  of a d i f f e r e n c e  boundary-value problem i n  a 
bounded reg ion;  we i n t roduce  the concept of a 

cons ide r  t he  s p e c t r a l  formula t ion  of t h e  ques t ion  of s t a b i l i t y ,  which 

remains meaningful a l s o  i n  t h e  case  of nonse l f ad jo in t  boundary-value 

problems i n  bounded reg ions .  We w i l l  po in t  ou t  a necessary ,  and c l o s e  t o  

s u f f i c i e n t  s p e c t r a l  c r i t e r i o n  f o r  s t a b i l i t y .  

544. Spectrum of a family of operators {R,,}. 

1 .  Need for improvePent in the spectral stability criterion. In 

Chapter 13 i t  w a s  shown t h a t ,  o r d i n a r i l y ,  

va lue  problems may be brought t o  t h e  form 

UP+l = R p p  + 

e v o l u t i o n a l  d i f f e r e n c e  boundary- 

T P P ,  / 
I ua g iven ,  

so t h a t  s t a b i l i t y  on t h e  t ime- in t e rva l  O c t  

uniform ( i n  h )  boundedness of t h e  norms of powers of t h e  t r a n s i t i o n  

T w i l l  be equ iva len t  t o  t h e  

ope ra to r  Rh, i .e .  equ iva len t  

where T is t he  n e t  t imes tep ,  

I t  was e s t a b l i s h e d  t h a t  

Rh, i n s i d e  t h e  c i rc le  

t o  t h e  bound 

T=T(h). 
confinement of t h e  e igenva lues  of t h e  ope ra to r  

i n  t h e  complex p lane  is necessary  f o r  t h e  v a l i d i t y  of ( 2 ) ,  i .e.  f o r  sta- 
b i l i t y .  I n  543 i t  w a s  shown t h a t ,  i n  t h e  case of a s e l f a d j o i n t  o p e r a t o r  

Rh, cond i t ion  (3 )  is not only a necessa ry ,  but a l s o  a s u f f i c i e n t  cond i t ion  
f o r  t he  uniform boundedness ( 2 )  of t he  norms of powers of t he  ope ra to r  
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Rh. 
This same fact was established in 525 for the Cauchy difference 

problem with constant coefficients, for two-level difference schemes in one 

unknown function, with no reference to selfadjointness. But, in the 
general case of a nonselfadjoint difference boundary-value problem in a 

bounded region, the necessary criterion ( 3 )  is very far from sufficient, 
and i s  totally inadequate in dealing with the question of uniform 
boundedness of norms, 11R[l1,  of powers of the operator %. 
shown by the following example. 

This may be 

Example. For the difference boundary-value problem 

$ = 0, p = 0, 1 ,  ..., [T/T], 
uo = lJ(*m 

m 

approximating the problem 

Ut - ux = b(x,t) 

, m = O , l ,  ..., M ; M h = l ,  

u(l,t) = 0, 0 < x < 1 ,  0 < t < T, 

U(X,O) = B(x) 

the natural reduction to canonical form (1) leads to an operator R , ,  v = 

Rhu, given by the equations 

v = ( 1  - r)um + rum+l, m = 0, 1, ..., M-1, m 

vM = 0, r = T/h. 

In matrix form 

R =  
h 0 1. I - r  r 0 ... 

0 1 - r r ... 0 

0 0 O . . .  1 - r  r 
0 0  0 0 0 ... 

. . . .  . . . . . . . . . . . . .  ( 5 )  

The spectrum of the matrix consists of its eigenvalues, i.e. of the roots 
of the equation 

det(% - XE) = 0 or - X(1 - r - = 0. 
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Thus the roots of this equation, = 0 and X = 1, form the spectrum of 

This spectrum lies inside the unit circle 1x1 = the operator % for any h. 
1 for 0 < r( 2. Nevertheless, for scheme ( 4 )  with 1 < rc 2 the Courant- 
Friedrichs-Levy condition is not satisfied, SO that stability. 1 1 $ 1 1  < K, 
is impossible in any reasonable norm. 

* * * * * *  

In fact we will show that, in the case T 2 1 with norm 11u1 I = maxIu,I 
we have the inequality m 

For r > 1 also P > 1, so that as h + 0 and T = rh + 0 the quantity 

max1 lR$l increases exponentially and the condition I ]$ /  1 < K is grossly 
violated. 
m = 0, 1, ..., M, the values up of the function 
P 

To prove inequality ( 6 )  we note that, in the case u i  = 

m 

up = %ua, p = 1,  2, ..., M and m = 0, 1, ..., M-p 
are given by the equations 

= (-i)"'(i - 2r)P, m = 0 ,  I, ..., M-p. 
m 

Theref ore 

so that for these values of p, p = 1, 2, ..., M, 

and inequality ( 6 )  has been proven. 

* * *  

Thus It has been established that the necessary spectral criterion ( 3 )  
for uniform boundedness I IgI I < K, using the eigenvalues of the operator 
Rh, is too coarse when the operator \ is nonselfadjoint: in our example 
it does not detect the instability that occurs for 1 < r( 2. 

Definition of the spectrum of a family of operators. 
linear operator % is defined on a linear normed space Ui. 

2. Suppose the 
We designate by 
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(R } the set of operators \ for all values taken on by the parameter, h, 
characterizing the density of the net. By the nature of difference schemes 

h can have positive values as small as we like. 

family of operators ( \ ] ' *  if, for any positive ho and E ,  one can find an h, 
h < ho, for which the inequality 

h 

The complex number X will be called a "point of the spectrum of the 

has some solution u ,  u in Ui. 

The set of all such numbers X we will call the "spectrum of the family 
of operators (RJ". 

3. Necessary condition for stability. 
Theorem 1.  Suppose that  at  least  one point lo of the  s p e c t m  of the  

I n  t h i s  case it i s  impossible t o  f ind  one constant K ,  

famity  of operators {Rh} l i e s  outside the uni t  c i r c l e  i n  the complex plane, 
so that ( X o l  > 1 -  

the  same f o r  a l l  h ,  such that  

i n  which p runs through the integral values from 0 t o  p0(h), where 
po(h) + 

c > 0 such that, for all h < ho, we have the bound 

as h + 0. 

Proof. Let us first assume that there does not exist an ho > 0 and a 

Under this assumption the assertion to be proven is obvious. Therefore we 

need to consider only the case where there exist values h > 0 and c > 0 
such that, for h < ho, inequality (8) is valid. 

l X o l  > 1. 
satisfy the inequalities 

Suppose l X o l  = 1 + 6 ,  where xo is that point of the spectrum for which 
Given an arbitrary number K, we choose p and E such, as to 

By the definition of a point of the spectrum of a family of operators {%}, 
one can find an arbitrarily small positive h for which there exists a 

vector, u in Uh,which is a solution of the equation 

Let 
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It i s  clear that I I z I  1 < E 1 Iul I. Further, from (10) one can conclude 

that 

Rpu = Xpu + (Xp-lz 0 + XOP-2Rhz + ... + RE-'.). 
h O  

and consequently 

The number h, throughout this construction, can be considered small enough 

so that p will be smaller than po(h). 
Since K was arbitrary we have now proven our assertion that disposi- 

tion of all the points of the s p e c t m  of the family of operators { ~ ~ j  
within or on the boundary of the unit circle 1x1 5 1 is necessary f o r  the 
vatidity of the bound I 1 %  1 I < K. 

tors [%]. 
between the definition of a point of the spectrum of a family of operators 

{Rh/, and the following definition of a point of the spectrum of any 
operator R (a definition commonly introduced in courses on functional 

analysis). 

4. Discussion of the concept of the spectrum of a family of opera- 

We begin by turning the reader's attention to the analogy 

As the operator R, we take the operator \ for some fixed h. 
The point X in the complex plane is called a point i n  the spectrwn of 

the operator Rh if, for any positive E, the inequality 

has a solution, u, belonging to the space Ui, the space on which the 
operator Rh is defined. 

On comparing the definitions of a point in the spectrum of a family of 
operators [ \ } ,  and a point in the spectrum of the operator F$, one may get 
the impression that the spectrum of the family {R } consists of those 

points of the complex plane which are obtained by passage to the limit h + 

0 of the points of the spectrum of 5, where the limit h + 0 is approached 
by all possible subsequences. But, generally speaking, this impression is 

erroneous. 

h 
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Consider t h e  ope ra to r  Rh, v = R u, given by the  equat ions h 

v = (1 - r)u, + rum+l, rn = 0,  1, ..., M-1, m 

VM = 0, Mh = 1 .  

The operator  (11) acts i n  a (M + 1) dimensional l i n e a r  space,  and is char- 

a c t e r i z e d  by matr ix  (5) .  

sists of i t s  eigenvalues ,  i .e. of t h e  r o o t s  A of the  equat ion det(R - XE) 
= 0. We computed these  eigenvalues  i n  Sect.  1; they are = 0 and X = 

1 - r. 
t w o  po in t s  0 and 1 - r, independent of h. 

of ope ra to r s  { R , } ,  as w i l l  be shown i n  645, c o n s i s t s  not  only of t hese  two 
p o i n t s  as, perhaps,  one might expect but ,  i n  a d d i t i o n ,  of a l l  t he  p o i n t s  of 

t he  circle I i  - 1 + rl < r of r ad ius  r,  with c e n t e r  a t  po in t  

(Fig.  27, p. 270). 
l ies i n  t h e  u n i t  circle 1x1 < 1, but f o r  r > 1 t h i s  necessary cond i t ion  f o r  

s t a b i l i t y  i s  not s a t i s f i e d :  < K cannot hold uniform- 
l y  i n  h. 

pT = prh i n  t h e  case r = 3/2 f o r  var ious values  of h. I n  t h i s  case t h e  

It is known t h a t  t he  spectrum of a matr ix  con- 

h 

Thus the  spectrum of t h e  ope ra to r  I $ ,  f o r  any h,  c o n s i s t s  of t h e  
But t h e  spectrum of the  family 

= 1 - r 
For r 5 1 t he  spectrum of the  family of ope ra to r s  { R  } 

h 

t h e  i n e q u a l i t y  I 

I n  Fig. 53 we show p l o t s  of t he  dependence of t h e  values  of I IR:I I on 

spectrum of each ope ra to r  % con- 
sists of both po in t s  X = 0 and 

1 = -1/2, thus ly ing  i n  the  u n i t  
c i r c l e .  This f a c t  predetermines 

the behavior of t he  graph I lRpI  I 
f o r  large values  of pT. The 

value of 11R:I I tends t o  zero as 
p~ + m ,  i .e.  t he  ho r i zon ta l  axis  
is an asymptote (and i n  d e t a i l e d  
algebra courses  i t  is proven t h a t  

t he  norms of powers of a ma t r ix  
tend t o  zero as the  exponent 

i nc reases  i f  a l l  the eigenvalues  
of t he  matr ix  are smaller than 

one i n  abso lu te  value) .  

h 

The f a c t  t h a t  t he  spectrum of 

Fig. 53. 

a family of ope ra to r s  {R , }  is  n o t  
t o t a l l y  contained i n  t h e  u n i t  circle makes i t s  i n f l u e n c e s  f i l t  on t h e  

behavior of t he  values  of I IR:I I as h + 0 i f  pT is  not  too l a rge .  
l a r g e s t  value of llR:l/ on t h e  i n t e r v a l  0 < pT < T (where T is an a r b i t r a r y  

p o s i t i v e  cons t an t )  grows qu ick ly  as h decreases.  

i n s t a b i l i t y  on t h e  i n t e r v a l  0 < t < T, while a t  the  same time t h e  behavior 
of I I R $ I  as pT + m, connected with t h e  behavior of t h e  spectrum of each 
ind iv idua l  ope ra to r  Rh, is of no consequence a t  a l l  in t h e  s tudy of 

s t a b i l i t y .  

The 

But t h i s  signals 
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5. 

Theorem 2. 

Nearness of the necessary s tabi l i ty  criterion to sufficiency 
Suppose the operator R is defined on the normed space 

tl ui, finite-dimensional for each h ,  and 2s bounded uniformZy in h by some 
constant c: 

Suppose, further, that the s p e c t m  of the family of operators {Rh]  lies 
cornptetety inside the ctosed unit  circle 1x1 < 1. 

the bound 
Then for any E > 0 the norms of the powers of the operators R: satisfy 

where A = A(E)  depends only on E ,  and not on h. 

o p e r a t o r s  ( R h /  i n  t h e  u n i t  c i rc le  is not  on ly  necessary  f o r  s t a b i l i t y ,  bu t  
a l s o  gua ran tees  a g a i n s t  "gross"  i n s t a b i l i t y .  I f  t h e  cond i t ions  of t he  

theorem are s a t i s f i e d  t h e  q u a n t i t y  

This theorem means t h a t  d i s p o s i t i o n  of t h e  spectrum of t h e  fami ly  of 

max I IRE1 I 
1 2 P L [TITI 

e i t h e r  remains bounded as h + 0 ,  o r  grows more slowly than  P [T/Tl f o r  any 
base,  p = 1 + E ,  g r e a t e r  t han  un i ty .  

o p e r a t o r s  {R,] l i e s  i n  t h e  c i r c l e  1x1 5 P then ,  f o r  any A s a t i s f y i n g  t h e  
i n e q u a l i t y  1x1 2 p + E ,  E > 0, t h e r e  e x i s t s  a number A = A ( € ) ,  and a h 

such t h a t  f o r  any h < h 

Proof.  We show, p r e l i m i n a r i l y ,  t h a t  i f  t h e  spectrum of t h e  f ami ly  of 

> 0 0 
and any u i n  U h ,  u # 0, we may write 

P + E  

0 

( 1 4 )  1 lRhU - I > A(E) I I U I I .  

Assume t h e  con t r a ry .  Then one can f i n d  an E > 0; a sequence o f  

numbers hk > 0, hk + 0; of complex numbers X k ,  ( A k (  > P + E ;  and of v e c t o r s  

"hk hk 
i n  U such  t h a t  

For l a r g e  enough va lues  of k, f o r  which ( P  + c ) / k  < 1, by 

the  numbers X k  cannot l i e  o u t s i d e  t h e  c i r c l e  1x1 I c  + 1, 
t h i s  c i r c l e  

v i r t u e  of (12)  

s i n c e  o u t s i d e  
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Thus t h e  sequence  X k  is  bounded, and t h e r e f o r e  h a s  a l i m i t  p o i n t  1, 
1x1 2 p + E .  

spec t rum of  t h e  f a m i l y  of  o p e r a t o r s  {Rh},  c o n t r a d i c t i n g  o u r  assumpt ion  t h a t  
t h e  spec t rum l ies  i n  t h e  c i r c l e  1x1 5 P. 

Suppose, now, that  R is  a l i n e a r  o p e r a t o r  c a r r y i n g  some f i n i t e -  

d imens iona l  normed s p a c e  U i n t o  i t s e l f .  And suppose  Chat f o r  any complex 

X ,  1x1  2 r > 0, any u i n  U and some a = c o n s t  > 0, we may w r i t e  t h e  
i n e q u a l i t y  

One can e a s i l y  see from (15) t h a t  t h e  p o i n t  x belongs  t o  t h e  

llRu - Xu( 

Then 

rP+l 
I lRPl l  5 7 .  P = 1, 2, ... 

I n e q u a l i t y  (17)  f o l l o w s  from the f o l l o w i n g  well-known e q u a l i t y :  

(18) Rp ii - -  I 6 Xp(R - XE)-' dX, 
2ni IXI=r 

and from c o n d i t i o n  (16) which i m p l i e s  t h a t  I l ( R  - XE)'ll 1 
i n e q u a l i t y  (13) we set a = ( P  + E ) / A ( E ) ,  r = P + E ,  P = 1 and R = %. 
( 1 7 )  c o i n c i d e s  w i t h  (13). 

l/a. To prove  

Then 

* * * * * *  

I n  c o n c l u s i o n  we i n d i c a t e  a proof  of Eq. (18). S e t  

M u l t i p l y  b o t h  s i d e s  of t h e  e q u a t i o n  up+' = Rup by 

p = 0 t o  p = m .  One t h e n  g e t s  
t h e n  sum o v e r  p f rom 

XU(h)  - xuo = RU(X),  

or 

(R - XE)U(X) = -Xuo, V(X) = -X(R - hE)- l  u', 

From the d e f i n i t i o n  of  U ( X )  i t  is clear t h a t  up is  t h e  r e s i d u e  of  t h e  

v e c t o r  f u n c t i o n  X P - ~ U ( ~ ) :  
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But up = Rpuo, so that the last equation is equivalent to operator equation 

(18). 

* * *  

In this section we have stated the spectral formulation of the problem 
of the stability of evolutional difference schemes, a formulation which is 

meaningful for any evolutional difference scheme which can be put into the 
form 

I up+' = RhuP + TpP, 

in such a way that satisfaction of the condition 

would be equivalent to stability. The schemes referred to here may be two- 

level or multilevel schemes, splitting schemes, etc., for problems on an 
interval, in multi-dimensional or composite regions. 

the spectrum of the family of operators {Rh} lies in the unit circle 
This spectral formulation requires that one determine whether or not 

1x1 5 1. 

545. Algorithm for the computation of the spectrum of a family 
of difference operators on net functions in an interval 

In this section we describe an algorithm for computing the spectrum of 
a family of difference operators { \ }  on the space of net functions (or 
vector-functions) defined over an interval. A s  the norm of the function 
(or vector-function) we take the maximum of the absolute values taken on by 
the function (or the components of the vector-function). 

defined by the equations 
1. TyplCaI exanple. The family of operators {%} , v = \us will be 

This operator Rh occurs in the straightforward reduction of the difference 
boundary-value problem 
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p = 0, 1, ..., [T/T]-l, 
$+' = 0 ,  uo = $(Xm), m = 0,  1, ..., M-1, 

m 

to the form 

uP+l = R up + TpP, uo given. 
h 

Equations ( 2 )  constitute a difference analogue of the differential 

boundary-value problem 

ut - uX = $(~,t), 0 X I  1, 0 t 5 T, 

U(X,O) = $(XI. u(l,t) = 0.  

We have already considered difference scheme ( 2 )  in 2526 as an example 
illustrating the application of the Babenko-Gelfand criterion. It should 

be recalled that, i n  using this criterion, the investigation of the 
original problem, given on an interval, must be split i n t o  the study of 
three auxiliary problems: a problem without lateral boundaries, a problem 

with only a left-hand boundary and one with only a right boundary, for each 

of which one must find all the eigenvalues of the transition operator from 

up to UP+l. 

It turns out that the algorithm for computing the spectrum of a family 

In order to describe the algorithm for computing the spectrum of a 

The operator E, v = Eu, is given on the linear 

of operators {Rh} coincides with the Babenko-Gelfand procedure. 

family of operators { R , ] ,  defined by Eqs.  ( I ) ,  we consider three auxiliary 

operators: E, "R and 'i. 
space of bounded functions u = { ..., u - ~ ,  uo,  u l ,  ...} defined on the 'whole 
net-line -m < mh < m ,  by the expression 

v = (1 - r)um + m = 0 ,  21, ... ( 3 )  m 

This expression is obtained from Eq. (1) by removing the left-hand boundary 
to - and the right-hand boundary to -P, a fact reflected i n  the two-sided 

arrow of the designation of the operator: The operator R, v = 8 u ,  is 

given on the linear space of net-functions u = (uo, ul, ..., urn, ...) de- 
fined on the net half-line xm = mh, m = 0, 1, 2 ,  ..., and tending to zero 
as m + a. It is defined by the equations 

- + 
R. 

v = (1 - r)um + rum+l, m = 0, 1, ... m (4) 
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These equa t ions  are obta ined  from Eq. (1) by moving t h e  right-hand boundary 
t o  + m, a s  i n d i c a t e d  by t h e  mnemonic s i g n  + i n  t h e  n o t a t i o n  f o r  t h e  
ope ra to r :  R. 

+ 
f f 

F i n a l l y ,  t he  ope ra to r  R ,  v = Ru, on t h e  f u n c t i o n s  

u = (  ..., urn, ..., + 0 as m + - 9  

def ined  on the  ne t  h a l f - l i n e  xm = mh, m = ..., -2 ,  -1, 0, 1, ..., M ,  w i l l  
be given by t h e  equa t ions  

These equa t ions  were go t t en  from (1) by moving t h e  l e f t  boundary t o  4, as 

i n d i c a t e d  by the  n o t a t i o n  f o r  t he  ope ra to r :  ‘i. 

We see  t h a t  t h e  o p e r a t o r s  E, 5 ,  and ‘r do not depend on h. 

of d e f i n i t i o n  

( 5 )  a r e  dep ic t ed  i n  Fig. 54.  It w i l l  be shown t h a t  the set of aZZ 

eigenvalues of a l l  three operators constitutes the spectrwn of the famiZy 
of operators { R ~ } .  

i n  926, but we reproduce t h i s  computation he re  because,  be fo re  going  on t o  

a proof of t h e  above a s s e r t i o n ,  we must have c l e a r l y  i n  mind t h e  s t r u c t u r e  

of t h e  e igen func t ions  of t h e  o p e r a t o r s  R,  R ,  and R.  

complex p l ane ,  f o r  which t h e  equa t ion  

The domains 

of t h e  func t ions  u = {urn} f o r  o p e r a t o r s  (11, ( 3 1 ,  ( 4 )  and 

. . +  c 
The e igenvalues  of t he  o p e r a t o r s  R ,  R and R have a l r e a d y  been computed 

* +  f 

F i r s t  of a l l  we examine t h e  n a t u r e  of t h e  s e t  of p o i n t s ,  A ,  i n  t h e  

Eu - xu = 0 

has a bounded s o l u t i o n  u = {urn}, rn = 0, 21, ... 
p r e c i s e l y  t h e  e igenva lues  of t h e  o p e r a t o r  E. 

These numbers X are 
I n  ou r  example t h e  equa t ion  .. 

Ru - xu = 0 h a s  t he  form 

( 1  - r - X)um + rum+l = 0, m = 0, 51, ... 
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Each solution of this ordinary first-order difference equation, as 

follows from $1, can differ only by a constant factor from the net function 
m 

u = q , m = 0, 21, ..., where q is a root of the characteristic equation 
(1 - r - X) + rq = 0. 

the form 

The relation between X and q can also be written i n  

A = 1 - r + rq. 

m 
The solution q, = q 

q = exp(ia), 0 5  a I  2n. 

the solution um = qm is bounded may be obtained from the expression 

is bounded as m + Sm and m + 

Therefore the set of those values of 

only if lql = 

for wh 

ia 
X = l - r + r q = l - r + r e  , 

1, 
ch 

when q = exp(ia) moves over the whole circumference of the circle Iql = 1 
in the complex plane. 

radius r and center at 1 - r (Fig. 26a, p. 269). 

which the equation 

.. 
The point X then moves around the circle A ,  with 

+ 
Let us now compute the eigenvalues of the operator R, i.e. those A for 

has the solution u = (uo ,  ul, . . . , u . . .) tending to 0 as m + +. 
m' 

The equation 8u - = 0 may be written in expanded form as follows: 

( 1  - r - X)u, + rum+1 = 0, m = 0, 1, ... 
Its solution um = qm, m = 0, 1, ..., tends to 0 as m + 

corresponding eigenvalues X = 1 - r + rq, i n  this case, fill the interior 
of the circle x, of radius r, centered at point (1  - r) (Fig. 26,:). 

The algorithm for computing the eigenvalues of the operator R is 
analogous to that for computing the eigenvalues of R. The equation is 

if (q( < 1. The 

+ f 

written expanded: 

( 1  - r - A)um + rum+l = 0, m = ..., 
-XuM = 0. 

Each net function u = {urn) ,  m = M, M-1, . 

-1, 0, 1, ..., M-1, 
(6) 

., satisfying the first of 
these relations, to within a constant factor has, as before, the form um = 

solution 
second of Eqs. (6)' i.e. the equation -XuM - - 0, imposes on the solution 

u = -qm the auxiliary requirement -XuM = -XqM = 0, or X = 0. 
X = 0 lies outside the circle of radius r and center at 1 - r (shown in 

qm, with X and q still connected by the equation = 1 - r + rq. The 
m 

= q , m = M, M-1, .. . , tends to zero as m + -W if 1q I > 1. The 

If the point 
m 
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Fig. 26c) i.e. if r < 112, then to this X there corresponds a q such that 

(41  > 1. The set, k, of those X's for which the equation Su - Xu = 0 has a 
solution tending to 0 as m + --, consists only of this point X = 0. In the 

case r 2 1/2, as follows from the preceding analysis, the equation 'iu - Xu 

= 0 has no solution tending to zero as m + - for any complex (or  real) A .  
The union of eigenvalues of the operators R, R, and 'i is shown for the 

case r < 112 in Fig. 27,a; and for the case r > 112 in Figs. 27b and 27c. 
We now proceed to prove that the spectrum of the family of operators 

{ \ }  coincides with the union, A, of the sets 1, l ,  and b ,  of the eigen- 
values of the auxiliary operators E, 6 ,  and 'i. We need to show that each 

point in A belongs to the spectrum of the family of difference operators 

{Rh}, and that the spectrum contains no other points. 
Let u s  show first that each point X o  i n  A belongs to the spectrum of 

the family of difference operators. For this purpose it is sufficient to 

establish that, for any E > 0, the inequality 

. . +  

has a solution, u,  for all sufficiently small positFve values of h. The 

solution u = (uo, ul, ..., %) might be called a "near-eigenvector" of the 
operator Rh, insofar as the solution of the equation %u - Xu = 0 is, 

in linear algebra, commonly called an "eigenvector". 

to which the point X o  belongs. 

will show that, f o r  any E > 0 and all sufficiently small h, inequality (7) 
has a solution u. 

The construction used in the proof depends on the set, 1, 1, or 15, 
We 

* 
Let us begin with the case X o  in A. 

We turn, now, to the construction of this function u = ( u o ,  ul, ..., 
uM). 
that X o  = (1 - r) + rqo, and the equation (1 - r - XO)vm + rvm+l = 0, 

m = 0, 21, ..., has the bounded solu- 
m 

tion vm = qo ,  m = 0, 21, ... We will 
consider this solution only for m = 0, 1, 
..., M, retaining the designation V. The 

vector 

By definition of the set there exists a qo, lqo) = 1, such 

M 
v = bop vls * * a ,  VM) = (1 ,  q0,  *..s q o L  

Q)j-.$-++- 
clearly, would satisfy the equation 
R v - X v = 0, which in expanded form 
consists of the relations 

(1 - r - x0)v 

h O  

+ rvm+l = 0, m 

Fig. 5 5 .  
m = 0, 1, ..., M-1, 

-XOVH = 0, 
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if not for the fact that the last of these relations is violated. The 

relation -XovM = 0 may be considered as a boundary condition fo r  the 
solution of the ordinary difference equation 

(1  - r - 10)um + rum+l = 0 ,  

m = 0, 1, ..., M-I. 
To satisfy this boundary condition at m = M, i.e. at the right end of 

M 
the interval 0 5 x & 1 ,  we "touch-up'' the vector v = (1, qo, . .., qo) , 
multiplying each of its components, v by the factor (M - m)h. The vector 

thus obtained we call u, u = (uo,  u l ,  ..., %), u 

case q = -1. The norm of the vector u i s  equal to one: 

m' m 
= (M - m)hq . 

In Fig. 55 we have plotted the function v = Tv,} and u = fum] in the 

0 

Let u s  now evaluate the norm of the vector w = (w o, wl, ..., wM), de- 
fined by the equation w 5 Rhu - h0u. 

we get the following expressions: 

For the coordinates of the vector w 

m+ 1 lwml = 1(1 - K - ho)(M - m)hq: + K(M - m - l)hqo 1 = 

= I[(1 - r - X o )  + rqo](M - m)hq: - rhqO m+ 1 I = 

m m+ 1 
= 10 (M - m)hqo - rhqO I = rh, m = 0 ,  1, ..., M-1, 

IWMI = 0 - lo ' 0 = 0.  

Thus it is clear that ) l w l  1 = rh, and for h < E / r  the inequality )lwl 1 = 

(lRhu - X0ul! < E I ( u ( 1  is satisfied. 

point ho in A belongs to the spectrum of the family of operators { R , } .  

Now we show that, if the point X o  belongs to one of the sets h or  

1, then it is a point of the spectrum of the family of operators { F i , } .  

Suppose, for concreteness, that lo is i n  h. 
h the equation 6" - Xov = 0, which in expanded form consists of the 

equations 

This completes the proof that the 

Then by definition of the set 

( 1  - K - x ~ ) v ~  + rvm+l = 0 ,  m = 0 ,  1, 2, ..., 
m 

has the solution vm = qo, 1q,1 < 1 ,  m = 0 ,  I ,  ... 
We will consider this solution only for m = 0 ,  1, ..., M, setting 
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and will calculate, for this net function u ,  whose graph in the case q = 

1 / 2  is shown in Fig. 56, the norm of the vector W E  Rhu - Xou. From the 

equation 

m+ 1 
Iw,l = 1(1 - r - A )qm + rqo I = 0 ,  m = 0 ,  1, ..., M-1, 

0 0  

it follows that 11wII = lqolM = )q 
then IlwII = )1Rhu - Xoul) < E = EpIuII, since IIuII = 1 .  

x, 1 and f r  belong to the spectrum of the family of difference operators. 

not belonging to the sets 1, h or f r  
not belong to the spectrum of the family 

{%}. 
there exists a number A > 0, not depending 
on h, such that, for any function 

u = (uo, u l ,  ..., I++), we may write the 
inequality Fig. 56.  

If h is so small that qAih < E ,  

Thus it has been shown that, in our example, all the points of the sets 

Let us show now that any point A 0' 
does 

Specifically, we will show that 

/y 

I lRhU - 'OUl I 2 1 .  (8) 

Then for E < A the inequality 1 lRhu - Xoul 1 < € 1  IuI 1 has no solution, and 
the point X o  does not lie in the spectrum. 

inequality (8) takes the form 

If we define f \u - Xou, 

It is this inequality which we will derive. The equation %u - Aou = f 
will first be written in the expanded form 

We will regard these relations as equations for u ,  and think of f as a 
given right-hand side. 

a sum, setting 

Next we write the solution u = {urn} in the form of 

u = a  + B m ,  m = O , l , .  .., M, (11) m m  
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where the a 
following equation: 

are the components of the bounded solution a = { a  } of the m m 

(1 - r - iO)am + ram+l = F = 
m 

0, if m < 0 

fM, 
0, if m,M. 

if m = 0, 1, ..., M-1, 

Then, by virtue of linearity, the vector 6 = {6m}, whose components enter 
into Eq. (Il), is the solution of the equation 1 (13) 

(1 - r - XO)B + r6m+l = 0, 

- A $  = f  + X a  

m = 0, 1, ..., M-1, m 

O M  M OM' 

To prove bound (91, which for the given choice of norm can be written 
in the form urn < (maxlfml)/A it is sufficient (since um = a 

establish bounds of the form 

+ Bm) to m m 

where A1 and A are constants. Let us begin with bound (14). Note that 
Eq. (12) is an equation of first order of the form 

2 

aam + = Fm, m = 0, 21, ..., 
where a = 1 - r - )to, b = r. 
where we arrived at the bound 

An equation of this form was discussed in 12, 

In the example considered here 1.1 - b( > A0/2, where 6o  is the 
distance from the point X o  to the set K + 1 + A. Inequality (161, there- 
fore, implies ( 1 4 ) ,  the inequality we set out to prove. Bound (15) follows 

from (131, written i n  the following form 

f M + X a  0 M m-M 
40 ' $ = -  

m -  l o  
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where qo is defined by the relation ( 1  - r - x o )  + rqo. 
point X o  does not belong to the set A ,  and therefore lies outside the 
circle with radius r and center at 1 - r. But in this case lqol > 1 .  
Further lx 1 = 

belong to the set 1 + 1 + 1. 
the already-demonstrated bound (141,  we get inequality (15): 

By assumption, the 

> 0, since if it were true that X o  = 0, then X o  would 0 
Thus, using Eq. (171, and taking account of 

And thus it has been shown that the spectrum of a family of operators {R } , 
h 

defined by Eq. ( l ) ,  coincides with the union of the sets 1 + 1 + 1 in the 
complex plane. 

* * * * * *  

2.  

Theorem. 
Algorithm for computing the spectrum in the general case. 

Let t h e  operator %, b = %a, a,b i n  Uh, be given by the  
equation Bhb = Aha. where 
finite-dimensionaz l inear  nomned space uh, with vaZues i n  some Zinear 
normed space Fh. 
bounded uniformly i n  h, and that  the  operator Bh has a uniforrnZy bounded 
inverse B~ : 

those A, in t h e  cornpZex plane, for which the operator 4, - XBh has, f o r  a22 
s u f f i c i e n t z y  srnaZZ h ,  an inverse operator uniformZy bounded i n  h. 

The proof is obvious, and we will not present it here. 
Suppose, now, the operator Rh, v = R u ,  is given by the difference 

and Bh are Zinear operators, defined on a 

Suppose, f u r t h e r ,  tha t  the  operators 4, and Bh are 

-1 I I \ I I ,  I I B ~ I I .  IIB;'II < C. 
I n  t h i s  case the  spectrum of the  family  {Rh] excZudes those and onZy 

h 
re la t i ons 

and, moreover, that the problem 
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is well conditioned. 
It will be assumed that 

where $(x) and B (x) are square matrices, defined on the interval 0 c x  
1,  and satisfying, on this interval, the smoothness conditions (14) 64: 

ai, bi, ai and Bi are rectangular numerical matrices not depending on M. 
In this case the theorem i s  applicable, and the spectrum of the family of 

operators { \ }  consists of all those A's for which the difference boundary- 
value problem 

k 

is  ill-conditioned. To determine whether problem (20) is well-conditioned, 

for each A one can use the criterion of Sect. 764. 

PROBLEMS 

1. Prove that for the family of difference operators { \ } ,  v = %u, 

given by the equations 

v = (1 - r)um + rum+l, m = 0, 1, ..., M-1, 
m 

VM = 0, Mh = 1, 

and considered in this section, the spectrum does not change if the norm is 

defined, not by the equation I lu \  I = max)uml, but by the equation 
m 

2 112 I l u l l  = (h 1: lUml 1 ' 
m 
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2.  Prove t h a t  t h e  spectrum of the  fami ly  of d i f f e r e n c e  o p e r a t o r s  

( R h \ ,  v = R u,  given by t h e  equa t ions  
h 

I v m = ( 1  - r + yh)um + r u  m+l, m = 0, 1, ..., M-1,  

VM = 0, Mh = 1 ,  

45 1 

does not depend on t h e  va lue  of t he  cons t an t  Y, and co inc ides  wi th  t h e  

spectrum cons t ruc t ed  i n  t h i s  s e c t i o n  f o r  Y = 0. 

g iven  by the  equa t ions  
%l', 

3 .  Compute the  spectrum of t h e  fami ly  of o p e r a t o r s  {%}, v = 

I v = (1  - r )um + r(um-l + m = 1, 2 ,  ..., M-1, 
m 

I auo + bul = 0, % = 0, Mh = l , m  r = cons t ,  

where a and b a r e  g iven  numbers. Consider t h e  case  la1 > Ibl and la1 < 
Ib l .  

546. The kernels of the s p e c t r a  of families of o p e r a t o r s  

* * * * * *  

Suppose t h a t  l$, r e f l e c t s  t h e  l i n e a r  normed space  Ui, of dimension N ,  

N = N(h), i n t o  i t s e l f .  

RN and UN, so t h a t  t h e  n o t a t i o n  w i l l  i n d i c a t e  t h e  d imens iona l i ty  e x p l i c i t -  

l y .  It is t o  be assumed t h a t  N + m as h + 0 .  

Here we cons ider  t o  what e x t e n t  t h e  spectrum of a fami ly  of o p e r a t o r s  

{ \ ]  depends on t h e  choice  of  a sequence of norms I I 1 I 
and, thus ,  t o  what e x t e n t  t h e  s p e c t r a l  c r i t e r i o n  f o r  t h e  boundedness of t h e  

norms of powers of t h e  o p e r a t o r  % (Theorem 1 of 5 4 4 )  is i n v a r i a n t  w i th  
r e s p e c t  t o  t h e  choice  of norm. 

A s  r ega rds  t h e  fami ly  of o p e r a t o r s  [RN} we w i l l  p o s t u l a t e  t h a t  t h e  

e igenvalues  of a l l  t h e  o p e r a t o r s  RN a r e  bounded i n  t o t a l i t y ,  i.e. l i e  i n  

some c i r c l e  

We will w r i t e ,  i n  p l ace  of Rh and Ui, r e s p e c t i v e l y ,  

i n  t h e  spaces  UN N 

Clea r ly ,  f o r  t h e  v a l i d i t y  of cond i t ion  (1) i t  i s  s u f f i c i e n t  t h a t  t h e r e  

e x i s t  a t  least  one sequence of norms, 1 1.1 I N ,  such t h a t  t h e  i n e q u a l i t y  
I l R N l  1 < c' = cons t  w i l l  be s a t i s f i e d .  

n a t u r a l :  

t r a n s i t i o n s  from l e v e l  t o  l e v e l ,  and a r i s i n g  i n  t h e  course  of t he  

cons ide ra t ion  of e v o l u t i o n a l  d i f f e r e n c e  boundary-value problems. Let u s  

now go on t o  t h e  d e f i n i t i o n  of t h e  concept of t he  k e r n e l  of a spectrum, 
which w e  w i l l  use  t o  formula te  the  r e s u l t s  of t h i s  s e c t i o n .  

Thus i t  i s  clear t h a t  bound ( I )  i s  

i t  is s a t i s f i e d  f o r  t h e  f a m i l i e s  of o p e r a t o r s  [%}, e f f e c t i n g  
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Suppose we are given: some sequence of norms 1 ) *  1 I N ,  a number a i n  

[0 ,1] ,  and an i n t e g e r  k L 0 .  

which the  i n e q u a l i t y  I lRNu - xu1 1 < a N 

t h e  no ta t ion  f o r  t h e  norm, t h e  s u b s c r i p t  N w i l l  be omi t ted .  

(w i th  a i n  t h e  i n t e r v a l  [O , l ] )  we d e f i n e  t o  be t h e  fo l lowing  set ,  A(a) ,  i n  

t h e  complex plane: 

Denote by A(a,k,N) t h e  set of p o i n t s ,  A ,  f o r  

In  N -k 1 1 ~ 1  I has a s o l u t i o n  u i n  UN. 

De f in i t i on .  The k e r n e l ,  of index  a ,  of a fami ly  of o p e r a t o r s  [%} 

A(a) f n n [ 1-1 A(a, k, N) 
k>O s>O N > s  

Here 

~ 

u A(a, k ,  N) hs (a ,  k )  
N > s  

Is t h e  s e t - t h e o r e t i c a l  c losu re  of t h e  union of sets A(a,  k ,  N) f o r  a l l  

N > s; f u r t h e r  

i s  t h e  i n t e r s e c t i o n  of a l l  s e t s  A ( a ,  k )  whi le  

n A(a, k )  = h ( a )  
k>O 

i s  t h e  i n t e r s e c t i o n  of a l l  sets A(a, k ) .  

the spectrum of the family of operators {RN},  and is closed. 

0 
t h e  fami ly  of o p e r a t o r s  [RN},  then  n e i t h e r  does i t  belong t o  t h e  k e r n e l .  

I n  f a c t  t h e r e  i s  an E > 0 and an No such t h a t ,  f o r  a l l  N > No and any u i n  

UN, t h e  i n e q u a l i t y  I lRNu - Xoul I 
i n  t h e  c i r c l e  [ A  - Io1 < 7 E 

a l s o  s a t i s f i e d .  Therefore  f o r  N > N no t  one set A(a, k ,  N) c o n t a i n s  a 

po in t  of t h e  c i r c l e  11 - xol < 
f i r s t  a s s e r t i o n  of t h e  theorem. To prove t h a t  t h e  k e r n e l  A(a) i s  c losed  we 
no te  t h a t  t h e  A ( a , k )  a r e  c losed  by cons t ruc t ion ,  and t h e  set A(a), as t h e  
i n t e r s e c t i o n  of c losed  s e t s ,  is  a l s o  c losed .  

ope ra to r s  {RN},  i f  t h e  ope ra to r  RN+l, v = R N + l ~ ,  is g iven  by t h e  equa t ions  

Theorem 1. The kernel h(a ) ,  a in CO,ll, is completeZy contained in 

Proof. We w i l l  prove t h a t ,  i f  does not  belong t o  the  spectrum of 

€ 1  1111 I is s a t i s f i e d .  But then  f o r  a l l  h 
1 1 

t h e  i n e q u a l i t y  I lRNu - xu1 I 2 7  € 1  IuI I is 
1 0  

E. But t h i s  imp l i e s  t h e  v a l i d i t y  of t he  

Example. Let us compute t h e  k e r n e l  A(a),  a i n  [0,1], of t h e  f ami ly  of 

I v = ( 1  - r ) u n  + run+l ,  n = 0, 1, ..., N-1,  

VN = 0 ,  

and the  norm by the  equa t ion  ( l u l l  = l l ( u o ,  u l ,  ..., uN)II  = m a x l u n l .  

w i l l  show t h a t  A(a) c o n s i s t s  of t h e  po in t  = 0 ,  a long  wi th  the  c losed  
c i r c l e  of r ad ius  ar, wi th  c e n t e r  a t  1-r: 

We 
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In  f a c t  X = 0, as we s a w  i n  1142, i s  an  e igenvalue  f o r  a l l  o p e r a t o r s  

RN, so t h a t  i t  belongs t o  a l l  t h e  s e t s  A(a, k ,  N ) ,  and t h e r e f o r e  t o  t h e  
ke rne l .  

real CL > 0 and real  b > 1 f o r  which we may w r i t e  

Fur the r ,  f o r  any X o  l y i n g  s t r i c t l y  i n s i d e  c i r c l e  ( 3 )  t h e r e  i s  a 

N -k The i n e q u a l i t y  1 (RNu - Xou( 1 < a N 

enough N,  has t h e  s o l u t i o n  

1 Iu1 I, f o r  any f i x e d  k and a l l  l a r g e  

It fo l lows  t h a t ,  f o r  a l l  l a r g e  enough N,  t h e  set  A(a, k ,  N )  c o n t a i n s  t h e  

po in t  X o  and, t h e r e f o r e ,  t h i s  po in t  is a l s o  conta ined  i n  A(a).  Thus t h e  

i n t e r i o r  p o i n t s  of c i r c l e  ( 3 )  belong t o  t h e  k e r n e l  A(a) ,  and i n  view of t h e  

f a c t  t h a t  t h e  ke rne l  is c losed  i t  must a l s o  con ta in  the  boundary of c i rc le  

( 3 ) .  
I f  t h e  po in t  X o  # 0 does not  belong t o  c i r c l e  ( 3 ) ,  i.e. 

, 1 - , + a ' i a  0 e , a , O ,  b = 1 - 2 6 ,  6 > 0 ,  

then ,  w r i t i n g  out  t h e  Green's f u n c t i o n  f o r  t h e  f i r s t - o r d e r  d i f f e r e n c e  

equa t ion  ( § 2 ) ,  i t  is  p o s s i b l e  t o  e s t a b l i s h  t h a t ,  f o r  any i n  t h e  c i r c l e  

I X  - X o I  < min[ I x o ( .  a r / ( l  - 6 ) ] , f o r  a l l  l a r g e  enough N and a l l  u i n  UN,  
w e  have t h e  i n e q u a l i t y  1 lRNu - Xu1 1 > a I ( u (  1 .  
of t h i s  c i r c l e  do no t  belong t o  the  s e t s  A(a, k, N) i f  N is l a r g e  enough 

and, t h e r e f o r e ,  n e i t h e r  can they belong t o  t h e  union of t h e i r  c l o s u r e s  
A ( a ,  k ) ,  nor  t o  t h e  ke rne l  A(a).  

of t h e  two p o i n t s  X = 0 and X = 1 - r ,  and t h e  k e r n e l  A ( 1 )  co inc ides  wi th  

t h e  whole spectrum of t h e  f ami ly  of o p e r a t o r s  {RN},  computed i n  5 4 5 .  

g e n e r a l  cons ide ra t ions .  

N It fo l lows  t h a t  t h e  p o i n t s  

Note t h a t  t he  k e r n e l  A(0) of index  a = 0 i n  t h e  above example c o n s i s t s  

A t  t h i s  po in t  w e  conclude our  d i s c u s s i o n  of t h e  example, and r e t u r n  t o  

D e f i n i t i o n .  The ke rne l  A(0) w i l l  be c a l l e d  t h e  "abso lu te  ke rne l " .  

Theorem 2 .  

The proof fo l lows  from t h e  f a c t  t h a t ,  f o r  a = 0, t h e  set A(a, k, N) 

The absolute kernel of the family  of operators {RN} does 
not depend on the choice of the sequence of norms 1 I 1 I N .  

c o inc ides  f o r  each N with t h e  set of e igenvalues  of t h e  o p e r a t o r  %, which 
does not  depend on t h e  norm i n  t h e  space  U 

N '  
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Theorem 3.  under condition f 1 )  the  sequence of  norms, I ( .  I 1 , can 
always be so chosen that  the s p e c t m  of the  family  of operatora ?RN} w i l l  
coincide with i t s  absolute kernel. 

Proof. We will demonstrate the construction of norms whose existence 

is asserted by the theorem. Choose a basis in the space UN in such a way 
that the transformation matrix RN, i n  this basis, will be in Jordan form, 
with the absolute values of all off-diagonal elements smaller than 1 / N .  

Introduce a scalar product, and the associated norm, stipulating that the 

basis is orthonormal. If xo is an arbitrary point not belonging to h ( O ) ,  
and E > 0 is the distance from this point to the set A(0) (closed by virtue 

of theorem 1) then one can verify that I IRu - xoul 1 2 2 I IuI I for all N > 
8 / ~  and all u in U N ,  so that X o  does not belong to the spectrum of the 

family of operators {s}. 
Thus, if the spectrum of the family of operators {%} does not coin- 

cide with its kernel A(0)  of index a = 0 for the given choice of norm, as 

in the above example ( 2 )  with norm I lul I = maxlunl, then by choosing 
another sequence of norms one can get as a spectrum the narrower set A(0).  

However, i n  the theory of difference schemes one uses norms which are 

not completely arbitrary. 

We designate by 1 1 .  I I c  the norm equal to the maximum of the absolute 

values of all components whych constitute a net function (OK vector 

N function) in UN. Now we single out a class of sequences of norms [ ( 0  1 1  
for which there exists a positive integer, s ,  depending on the sequence, 
and such that for all large enough N 

Clearly the norm 1 1 .  I I c  
dealing with difference equations will, as N increases, form sequences 
belonging to class ( 4 ) .  

choice of norm sequences from among those sa t i s fy ing  requirement ( 4 1 .  

itself, and all the norms we have encountered in 
N 

Theorem 4.  

The proof follows immediately from the definitions. 

Let us now consider the family of operators, { R , ] ,  defined by Eqs. 

The kernel A(a) of index a i n  L O J 3  does not depend on the 

(18) and (19) of 845, making the supplementary assumption that the matrix 
coefficients 4, and Bk are constant: 
For this family of operators we may state the following important 

If i n  the spaces u i  = UN, i n  which the  
operators Rh = RN ac t ,  one introduces the norms I 1 1 1 

N 
A ( l ) ,  wi th  index a = 1, of the  s p e c t m  of operators { % I ,  coincides with 
the  whole spectnun of t h i s  family .  

From this theorem and theorem 4 it follows that, for any sequence of 
norms satisfying ( 4 ) ,  the spectrum of the family of operators {RN} contains 
the spectrum of the family of operators {RN} obtained through use of the 

%(x) 5 %(O), Bk(x) 5 Bk(0). 

Theorem 5. (A.  V. Sokolov). 

, then the kernel 
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norm 1 ( *  I I c  ; which spectrum in turn may be computed by the methods used in 

2145. Therefore, if the spectral condition for the boundedness of norms of 

powers of the operators % (i.e. theorem 1 of 844)  is not satisfied for the 

norms 1 I *  I l c  , then it will not be satisfied for any other choice of a 
sequence of norms from among those subject to condition ( 4 ) .  

line of reasoning, and we will not present it here. 

N 

N 

The proof of this theorem of A. V. Sokolov involves a very complicated 

547. On the stability of iterative algorithms 

for the solution of nooselfadjoint difference equations 

The solution of stationary problems via the time-evolution of a steady 

state may be regarded as a sort of iterative process, and the results 
obtained on successive time levels as successive approximations. In 635 we 

considered, as an example, the Dirichlet difference problem for the Poisson 

equation. 

ference problem. Correspondingly, in the approach to steady state it was 
possible to expand the error in a complete orthogonal system of eigenfunc- 

tions. Via arguments based on the eigenvalues one could draw conclusions, 

simultaneously, about the rate of error reduction and, as well, about the 

influence of roundoff errors committed at intermediate time-levels. 

It turns out that, in solving nonselfadjoint difference equations by 

For a vanishing solution on the boundary this is a selfadjoint dif- 

the time-evolution method the situation, generally speaking, is differ- 

ent. An instability may develop, in this case, in spite of the convergence 

of the iterative process, as a result of a strong sensitivity to roundoff 
errors. Here this phenomenon will first be defined more precisely, and 

then discussed. In our discussion the concept of the spectrum, and the 

kernels of the spectrum, of a family of difference operators will turn out 

to be useful. 

Let 

u = R u + f  
N N  

be a family of linear equations (a "difference equation") in some unknown 

element u of an N-dimensional linear normed space UN, a family depending on 
the positive integer parameter N. We will consider the iterative process 

urn+' = \urn + fN, m = 0 ,  1, ..., ( 2 )  

for computing the solution U. It will be assumed that all the eigenvalues 

1 = Ak(N) of the operator % are smaller then 1 in absolute magnitude, k 
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i.e. that the well-known criterion for the convergence of process ( 2 )  i s  
satisfied, with 

Suppose, now, that computation ( 2 )  is carried out approximately, with 
some number, p = q + a, of significant digits, i.e. via the equation 

where 6 is an arbitrary element of UN with 116,) 1 5 1. m 
k' We now choose a positive integer q and require that, for arbitrary 6 

116,11 5 1, k = 0, 1, ..., 
- 
lim (Iu -?' ' [ I  5 10-'11uII. 
m w  

( 6 )  

Inequality ( 6 )  guarantees that one can calculate the solution u, using 

Eq. (51, with an error not exceeding one i n  the q'th decimal place (in the 
sense of the norm in UN). 

To satisfy condition (6) it is necessary that the number a of 
"extra decimal digits" in Eq. 151 satisfy the inequality 

Lemma. 

(1 - 10--4)$ 5 loa,  

and sufficient that it satisfy the inequality 

( 1  + lO-q)@ 5 lo", 

where 

We leave the proof to the reader. 

Note that the existence of $ = @(N) follows from condition ( 3 ) .  Below 
we will mean, by the symbol a = a(N), the smallest integer which guarantees 

that requirement ( 6 )  is satisfied. From the lemma it is clear that such a 
number exists, is non-negative, and depends on q either weakly or no t  at 

all. 

"stable" if there exists a constant C, independent of N, for which 
Definition. A convergent iteration algorithm ( 2 )  will be called 
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a(N) < C; ( 7 )  

a convergent iterative algorithm will be called "weakly stable" if there 

exists a constant C, independent of N, f o r  which 

but the algorithm is not stable. Finally, a convergent iterative process 

will be called "unstable" if it is neither stable nor weakly stable. 
Example. We write the equation 

i n  the form 

u = (1 - 2r)un + run+l + rf,, n = 0, 1 ,  ..., N-1, 
(10) 

UN = 0. 

treating r as a parameter. One iteration algorithm ( 2 )  for Eq. (10) 

proceeds as follows: 

so that the operator RN, v = %u is defined by the equations 

v = (1 - 2r)un + run+l, n = 0, 1, ..., N-1, 
VN = 0. 

This operator has, as can easily be seen, only the two eigenvalues A (N) = 

1 - 2r and h2(N) = 0. 

r < 1 .  

the algorithm is stable, while for r > 213  it is unstable. In fact if 

r < 2 1 3 ,  then 

1 

Inequality ( 3 )  is satisfied and iterative process (11) converges for 
We will take, as a norm, ( 1 ~ 1 )  = max(un), and show that for r < 213  

n 

max(vn( max( ( 1  - 3r(, ( 1  - rl)max(u,(, 
n n 

so that ((RN(( (max((1 - 3 r ( ,  (1 - 1-11 = P < 1. 
1/(1 - p ) ,  and by virtue of the lemma bound (7 )  holds for C = -2l.n(l - p ) .  

Therefore +(N) 5 
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Now suppose 

see that in 

then, that 
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that r > 2/3. In (11) let fn = 0, u: = 

this case uz  = (1 - 3r)m(-1)n, n = 0, 1, ..., N-m. 

1 % ( 1  2 pm, m = 1, 2, ..., N-1, where P = 11 - 31-1 > 1. 

It is easy to 

It follows, 
There- 

fore b(N) > p N ,  and we find from the lemma that c( = N tg P ,  which proves 

instability. 

weakly stable. 

Thus the spectral convergence criterion ( 3 )  for the iteration algo- 

rithm does not determine its stability. The spectral criterion and sta- 
bility conditions are properly formulated, not in terms of the disposition 

of the spectra of each of the operators R ,  but in terms of the location of 

the spectrum and kernels of the spectrum of the family of operators {R,}. 
In fact under the assumption that the family of operators { R  } is uniformly 
bounded, IIRN1\ < C,  it is easy to verify the following assertion. 

Lemma. In order that, for a22 Zarge enough N, the iteration algorithm 
( 2 1  be convergent, it is sufficient that the radius, P ,  of any kernel of 
the spectrum of the family of operators { R N }  be strictZy Zess than unity. 

stable it is necessary and sufficient that the spectrum of the famiZy of 
operators { R N ]  lie strictly inside the unit circte. 

In order that the iteration atgorithm ( 2 1  be convergent, and 
either stable or weakty stable, it is sufficient that the radius, P, of the 
kerneZ A ( 1 )  of the spectrum of the family of operators {%} be strictly 
Zess than unity; in order for a convergent iteration aZgorithm ( 2 1  to be 
unstabZe it is sufficient that the radius, P ,  of this kernel of the family 
of operators {%} be strictZy greater than unity. 

In 846 it has been shown that the kernel A ( 1 )  of the spectrum of the 

family of operators { R N ]  does not depend on the choice of norms from among 
those of class ( 4 ) § 4 6 ,  a natural class of norms for difference equations. 
From this it follows, in particular, that if the operators % are 
uniformly-in-N contracting, 1 (RN( 1 5 p < 1, so that the spectrum (and thus 

also the kernel A ( 1 )  of the spectrum) of the family of operators {%} lies 
i n  the circle 1x1 5 P 

remains stable (strongly or weakly) in any other norm ( 4 ) § 4 6 ,  in which the 
operators 5 may no longer be contracting. 

In the above example the spectrum of the family of operators consists 

of the circle I X  - (1 - 2r)l 5 r and the point A = 0, coinciding with its 
kernel A ( 1 ) .  
< 2/3, and its instability for r > 2/3  can, therefore be based on spectral 
criteria as well as on the theorem. 

One can show that for r = 2/3 the iteration algorithm ( 1 1 )  is  

N 

Stability criterion. In order that the iteration aZgorithm 121 be 

Theorem. 

1, then iteration algorithm (2) is stable and 

The assertion regarding the stability of algorithm (11) for r 

To compute the solution of a (nonselfadjoint) equation 

ANu + f N  = 0 

one may try to construct an iteration algorithm of the form 
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B urn+' = BNum + (%urn + f N )  
N 

Here the operator BN must be so chosen as to be easy to invert numerically, 
and so that the spectrum of the family of operators {BilAB] will have a 
radius, p ,  smaller than one, and as small as possible. By virtue of the 

bound 1 IR/11 5 C ( E ) . ( P  + E l r n ,  (Eq. ( 1 3 ) § 4 4 )  where E > 0 is arbitrary and 
C ( E )  does not depend on N, this last condition guarantees rapid conver- 
gence; and by virtue of the stability criterion, formulated above it also 
guarantees the stability of iteration algorithm ( 1 3 ) .  
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APPENDIX 

METHOD OF INTERNAL BOUNDARY CONDITIONS 

* * * * * *  

I n  t h e  theo ry  of boundary-value problems f o r  a n a l y t i c  f u n c t i o n s  ( i . e .  

f o r  t h e  s o l u t i o n  of systems of Cauchy-Riemann equa t ions )  and a l s o  f o r  t h e  

s o l u t i o n  of more g e n e r a l  systems of p a r t i a l  d i f f e r e n t i a l  equa t ions ,  one. 

sometimes a p p l i e s  t h e  method of s i n g u l a r  i n t e g r a l  equa t ions .  This  method 

c o n s i s t s  i n  t h e  r educ t ion  of t h e  boundary-value problem t o  a n  i n t e g r a l  

equa t ion  with t h e  i n t e g r a l  t aken  over  t h e  boundary of t h e  r eg ion  under 

cons ide ra t ion .  I n  a d d i t i o n  t o  t h e  g iven  boundary cond i t ion ,  one a l s o  makes 

use  of consequences of t h e  system of d i f f e r e n t i a l  equa t ions  i t s e l f ,  of t h e  

r e l a t i o n s  which must be s a t i s f i e d  by f u n c t i o n s  (and t h e i r  normal de r iva -  

t i v e s )  on t h e  reg ion  boundary so t h a t  i t  w i l l  be p o s s i b l e  t o  c o n s t r u c t  a 

s o l u t i o n  of t h e  equa t ion  by ex tend ing  t h e  domain of d e f i n i t i o n  of t h e  func- 

t i o n s  i n t o  t h e  r e g i o n ' s  i n t e r i o r .  I n  t h e  case  of a n a l y t i c  f u n c t i o n s  t h e  

necessary  r e l a t i o n  is  t h e  classical  Sokhotski-Plemelj  c o n d i t i o n ,  which may 

be developed from t h e  Cauchy i n t e g r a l  formula 

by going t o  t h e  limit where z t ends  t o  t h e  boundary y. In t h e  case  of a 
d i f f e r e n t i a l  equa t ion  of second o rde r  t h e  cor responding  c o n d i t i o n  f a l l s  ou t  

of Green ' s  formula,  expres s ing  t h e  s o l u t i o n  a t  each po in t  of t he  r eg ion  i n  
terms of va lues  of t h i s  s o l u t i o n ,  and of i t s  normal d e r i v a t i v e ,  on t h e  

boundary. To o b t a i n  t h i s  cond i t ion  one must a l s o  go t o  the  l i m i t  where a 

po in t  i n s i d e  t h e  r eg ion  tends  t o  i t s  boundary, making use of t h e  p r o p e r t i e s  

of p o t e n t i a l s  of s imple  and double  l a y e r s .  

t o  t h e  above-described method, which reduces  boundary-value problems f o r  
p a r t i a l  d i f f e r e n t i a l  equa t ions  t o  i n t e g r a l  equa t ions  a t  the  boundary. The 

r o l e  of a u x i l i a r y  boundary cond i t ions ,  analogous t o  t h e  Sokhotski-Plemelj  

cond i t ion ,  i s  t aken  over  by i n t e r n a l  boundary c o n d i t i o n s  evo lv ing  from t h e  

d i f f e r e n c e  analogue of t h e  i n t e g r a l  formula of Cauchy (o r  t h e  d i f f e r e n c e  
analogue of Green's formula) .  

1. Class of systems of difference equations. W e  w i l l  be concerned, 

he re ,  w i th  boundary-value problems f o r  g e n e r a l  systems of d i f f e r e n c e  equa- 

t i o n s  wi th  cons t an t  c o e f f i c i e n t s  which, i n  v e c t o r  n o t a t i o n ,  t a k e  t h e  form 

The method of i n t e r n a l  boundary c o n d i t i o n s  i s ,  i n  concept ,  analogous 
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where n = (nl, n2, ..., n ) and k = ( k l ,  k2, ..., ks] are multi-indices, 
the 4, are quadratic matrices, f is given and un is the desired vector- 

function, while K is a finite set (a "stencil"). We will suppose that 

system (1) satisfies the following algebraic condition: the characteristic 

matrix 

A(S) 1 $Ek, (2 )  
k in K 

k l  kS 
(where Sk 
not degenerate identically in 5: 

( E l  , ..., S s  ), and El, ..., S S  are complex parameters),, is 

This restriction is a natural one: one can show that i n  the case det A ( 5 )  

: 0 Eq. (1) has no solution for any finite (in n) right-hand side fn. 
2. Fundamental solution. The matrix function G will be called a 

"fundamental solution of system (1)" if it simultaneously satisfies the 

following two equations: 

1 Gn-kAk = 6 i E .  
k in K 

( 4 ' )  

Lemma. Let Q(S,, ..., St) be an arbitrary polynomial in an arbitrary 

number t of complex arguments, a polynomial not identically equal to 
zero. 
that Q ( s , ,  ..., ct) + o if lE1l = rl, ..., Ictl = rt. 

Then it is pO88ible to Ch008e radii, rj, of CiPCleS 15 1 = r so 
j j' 

We carry out the proof by induction on the number of arguments, t. 
For t = 1 the number of roots of Q(S1) = 0 i s  finite and the assertion is 
obviously true. Assuming that it has been proven for t = p we now esta- 

blish that the assertion of the lemma is also true for t = p + 1. Expand 

the polynomial Q(El, ..., Sp+l) i n  powers of 5p+l: 

Q ( S l ,  ..., 5p+l! = Qo(S,, ..., 5 + ... + Q,(C,, ..., E,), 
P P  

where M I s  some positive integer, and Qo(5 , ..., sp) does not vanish iden- 
tically. Choose rl, ..., r such, that Qo[Sl. ..., Sp) # 0 for 

P 
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l C l l  = ri, ... l S p l  = rp. 
Now by taking r great enough one can arrive at a situation such that 

for 15.1 = r 

This is possible by our  induction assumption. 

P+l 
j = 1, ..., p+l we have Q(t;,, ..., CPtl) # 0. 

j '  
Tieorem 1. The m a t r i x  G defined by the  equatzon 

n' 

i s  a fundmentat soZution. 

det A ( 5 )  # 0 if (Ej( = rj. 

the properties of residues we find that 

Here the r are chosen, in accordance with the lemma, so that 

This theorem may be proven by direct substitution. 

j 

Taking account of 

3. Boundary of net-region. Consider Eq. (1) on some bounded set 

where Do is an arbitrary net-domain of definition of the right-hand side 

fn. Then the region of definition of the solution u is the set D, 
generated by the point n+k when n and k independently run through the 
points of D, and K respectively. With each r in 

D we associate a subset K 
subset consisting of all those k in K for which 
r-k is not in Do. 

dary" I' the set of all those points r in D for 
which Kr is non-empty. 

simplest difference analog of the Poisson 

equation 

of the set K, a 

We designate as the "boun- 

For example for the 

Lu z u n -1,n + un1,n2+1 + u  nl+l,n2 + 

1 2  

x x x x x x x x x  ;___Ti X X 

X X 

x x x x x x x x x  

the set Do consists of those points (n,h, n2h) which fall inside the 

square lxll 5 1, Ix 1 < 1; the set K of the five vectors (l,O), (O,l), 2 -  
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(-l,O), (0,-I), (0,O); the set D of the totality of all integer-points of 

the square lnll < N ,  In2( 

In2) = N. 
crosses in Fig. 57. 

N, except for the f o u r  corner-points In1/  = 

The boundary r consists of two layers of points, marked by 

Difference analogs of Cauchp and Cauchy-type integral formulas. 

Let Bn be an arbitrary matrix-function such that right-hand 
4. 
Lemma. 

multiplication of this function is meaningful for any n'th order square 
matrix defined at all points of an integer-net. Then one may write the 
following identity: 

Proof. The vector-function un, n in D ,  may be written in the form 

u = I: 6;un. 
 tin^ 

The left- and right-hand sides of identity ( 7 )  depend linearly on U.  

Therefore to prove this identity it is sufficient to verify its validity 
for the vector-function 

for each fixed t in D: 

( r in r ( k in Kr '-r+KAk) vrD n i n D  k i n K  '-n+kAk) 'n - 

where 

1 for t-k in Do, 

0 for t-k not  in Do. 

6t-k = 
D 
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Theorem 2. Let t un} ,  n in D, be an arbitrary solution of Eq. (61,  
while G is any arbitrary fundamental solution. Then 

un, for n i n  D, 

0, for n not in D. 
(8)  

Proof. We multiply both sides of Eq. ( 6 )  on the left by the matrix 
and sum over all n i n  Do. 

Consequences. 

Theorem 3 .  

G 

get Eq. (8). 

by its vaZues on r and may be constructed from these values via Eq. 8. 

defined on l’, and let Gn be any fundamental solution. 

Using identity (7),  and then Eq. ( 4 ’ ) ,  we 
t -n 

Every sozution {u,} of Eq. 1 6 )  is completely determined 

Let {v } be an arbitrary vector-function, of dimension m, 
Then the equation 

f n in D, ( 9 )  u =  ’ ( ‘n-r+kAk).r + if Gn-m m’ 
0 r i n  r k i n  Kr 

gives a solution of Eq. (6). 

Eq. (91, we find that 
Proof.. Applying the operator L to the vector-function {un] defined by 

Let u s  now calculate the right-hand side. By virtue of ( 4 )  we have 

E, for n = r - k, 
LGn-r+k = I  0, for n f r - k. 

But by the definition of the set Kr the point n = r-k does not belong to 

Do,  so that the first term on the right-hand side of Eq. ( 1 0 )  is the n u l l -  
vector. The second term is, clearly, equal to f so that Lun = fn, and 
the theorem I s  proven. 

functions @ ( z )  in the bounded region d with boundary Y :  

n’ 

Equation (8) is analogous t o  the Cauchy integral formula for analytic 

Here the roles of analytic functions, of the boundary region and the Cauchy 

integrand 1/[2ni(c-z)] are taken over, respectively, by the solutions of 

problem (61 ,  the boundary r of the net-region D and the expression 
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( 1 Gn-r+kA,): this expression takes into account, via set Kr within 
k in K, 

1 
which the summation is carried out, the structure of the boundary near the 
point r in r. 

of the Cauchy type. Equation (8) is analogous to Green's formula for the 
Laplace equation. 

Eqs. (11) and (8): the Cauchy integral formula is valid only strictly 
inside region d, while (8 )  is valid at all points of D, including its 
boundary points. There is an analogous difference between Eq. (9) and 
Green's formula. 

It is natural, in this case, to compare Eq. (9) with integral formulas 

We underscore, however, the following essential difference between 

5. Internal boundary conditions. 
Theorem 4 .  Suppose Gn i s  some fundamental solut ion of E q .  (I). If a 

giuen vector funct ion ( u  I ,  giuen on r ,  f i . e  wi th  r i n  r /  i s  t o  be extend- 
abZe ouer the  whole bounded net-region D so as t o  cons t i tu te  a soZution of 

Eq. (61, it i s  necessary and s u f f i c i e n t  t h a t ,  for a l l  n i n  r 

Proof. If {ur}, with r in I', is to be extendable over D so as to form 
a solution tun}, n in D then, applying Eq. (8) to this solution, and then 
considering the resulting equation only for n in r ,  we verify that (12 )  is 

satisfied. Conversely, if {ur}, for r in l', satisfies Eq. ( 1 2 ) ,  then we 
take vr 
of ( 1 2 )  therboundary values of this solution { u  } ,  r in r ,  coincide with 
the given boundary values. 

Theorem 4 ,  just demonstrated above, gives u s  justification to call 

Eqs. ( 1 2 )  "internal boundary conditions": these conditions are not imposed 

externally, but are a consequence of the differential equation itself. 
If Eqs. (8) and (9) are regarded as analogs of Cauchy and Cauchy-type 

integral formulas, then the internal boundary conditions can be thought of 

as analogous to the Sokhotski-Plemelj conditions, by which a function $(z), 
given on the boundary, Y ,  of a region d in the complex plane, may be 
extended over the whole region d to form an analytic function. 

system ( 6 )  which implicitly takes into account the "potential jump" on the 
boundary r ,  and tends to internal boundary conditions ( 1 2 ) .  

internal boundary conditions in a form different from ( 1 2 ) .  We will 

designate by Ur the linear space of all net vector-functions u 
in r ,  and by UG the subspace of those among them which may be :xtended over 
all of D to form a solution tun}, n in D, of the homogeneous equation cor- 
responding to Eq. (6). 

u and construct a solution {u 1 ,  n in D, via Eq. (9). By virtue 
n 

Equation (8) may be considered as a difference-Green's-formula for 

6. Boundary projection operator. It is possible to write the 

= {ur}, r 



Method of Internal Boundary Conditions 467 

Define a linear mapping P, ur  = PvT, of space U r  into itself, by the 
following equation: 

Theorem 5. Operator P is a projection operator, projecting Ur onto 
U; . 

Proof. In fact, for any vr in U r ,  by theorem 3 the element ur = fir 

belongs to U;. 

theorem is proven. 

The operator P, defined by Eq. (13) ,  we will call the "boundary, pro- 

jection operator". With its help internal boundary conditions (12), in the 
case fn 5 0, may be written i n  the form 

If vr is in UG then, by theorem 2, we get Pur = ur .  The 

It should be stressed that the boundary projection operator depends on the 

choice of a fundamental solution G . 
7. General boundary-value problem. Given the stated consequence of 

theorem 2, we see that each solution of Eq. (6) may be reconstructed from 
its values on the boundary r .  This fact gives u s  the justification to 

define the general linear boundary-value problem for Eq. (6) as a boundary- 
value problem of the form 

Lu 1 qcun+k = fn, n in D ~ ,  
k in K 

Lu, = $, $ in @, 

where L is some linear operator mapping the space Ur onto a linear 

Natural difference schemes approximating the first, second or 

boundary-value problems for the Poisson equation, for example, may 
be written i n  form (15). 

(15) 

space 0. 

third 

easily 

The name "general boundary-value problem" is somewhat arbitrary: one 

can find difference boundary-value problems which are not of form (15) .  

This is true, for example, of natural difference schemes for differential 

boundary-value problems in which the order of the differential equation is 
lower than the order of the differential boundary conditions. 

Basic idea of the method of internal boundary conditions. 
Suppose, for simplicity, that fn 0. Between the difference boundary- 
value problem 

8. 

and the problem 
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ur  - Pur = 0, llur = @ ( 1 7 )  

there is a very close connection. Specifically, by Theorem 2 the boundary 

values ur  = {ur} (with r in r ) ,  for each solution tun} (n in D) of problem 
(16 )  must satisfy Eq. (17) .  
of problem (17)  must, by theorem 4 and the stated consequence of theorem 2, 

be extendable uniquely, over all of D, to form a solution of problem 
(16 ) .  The basic idea of the method of internal boundary conditions 

consists in the passage, from the original boundary-value problem (16) ,  to 

the system of equations ( 1 7 )  on the boundary I'. Progress is achieved in 

this way for two reasons. First, because the number of unknowns in p,roblem 

(17 )  is small compared with that in (16 ) .  Second, because of the special 

form of system (71, whose structure contains the boundary projection 
operator as a built-in integral component. 

that the internal boundary condition u r  - Pur = 0 is "almost degenerate", 

and that therefore problem (17)  is ill-conditioned regardless of the form 

of operator 1, so that the passage from problem ( 1 6 )  to problem (17 )  is 
connected with the loss of computational stability. 

space U r  (and therefore also in space 0 within U r )  the norm 1 1 .  I I ,  then 
prove a theorem showing that, in the transition from problem (16)  to 

problem (17), there is no loss of computational stability. 

Theorem 6. 
and, moreover, that 

Conversely, each solution ur = {ur} (r in l') 

9. Stability of internal boundary conditions. One may, perhaps, fear 

Assuming that space 0 is contained in space U r ,  we will introduce in 

Suppose that problem (17)  has a solution ur for an @ in @ 

where c does not depend on @. 
U r .  Introduce the notation 

Further let vr be any arbitrary element of 

- 
vr - Pv = 7, Lvr = @. ( 1 9 )  r 

Then v is subject to the bound r 

If we regard (19 )  as an equation which determines vr, then bound (20) 
signifies that the sensitivity of the solution of problem (19)  to perturba- 

tions '3; of the right-hand side of the internal boundary conditions is 
characterized by the constant c of bound (18), i.e. by the sensitivity of 

the solution to perturbations in the right-hand side of the given boundary 

condition lur = 4 .  
Proof. Define 



Method of Internal Boundary Conditions 469 

By theorem 5, zr = Pvr, with Pvr in Uc. Therefore 

- - *  
z r  - Pzr  = 0 ,  k z  = k ( u r  - $1 = $ - e* .  r 

i.e. zr satisfies an equation-system of form ( 1 7 )  and, by virtue of (18), 

is subject to the bound 

- 
From this bound, taking account of the identity zr  = vr - $, we get Eq. 

(20). 

10. Supplementary i d e a .  We now develop an idea which is useful for 

the computational solution of boundary-value problems for partial 

differential equations, an idea applicable to the following problem. 

sufficiently smooth boundary Y, as the solution of the Dirichlet problem 
Suppose the function u(x,y) is defined in some domain, d, with a 

and one is required to determine the derivative 

an 

directed towards the inward normal. Such a problem arises if, for a 
temperature u I y  = a(s) on the boundary, Y, one wants to find the steady- 
state heat-flux through the boundary. 

of definiteness, that the whole length of the boundary Y is 2n. We set out 

to determine the function 

Let s be the arc-length along the boundary Y and assume, for the sake 

approximately, in the form of a partial sum 

k 
b(s) = 1: 

j =O 
(aj cos j s  + 8 .  sin j s )  

J 

of its Fourier series. To determine the coefficients a and 8 we will use 

the method of internal boundary conditions. 

Given h > 0, we construct the net 
j j 
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and the difference equation 

+ u  + u  - 4u = 0. 
un 1 +l,n2 n 1 -l,n2+ Un1,n2+1 n 1 2  n -1 "1"2 

Assign to Do = D: all points of the net which, along with their four 
neighboring points, belong to dUY. One can then define the net region D = 

Dh, its boundary r = rh and the internal boundary condition ur - Pur = 0 .  

function 

The idea proposed here is that the function U I  = a(s) and the 
Y 

written in the form of a series with undetermined coefficients, be extended 

by Taylor's formula from the boundary, y ,  into the adjacent band containing 
the boundary, rh, of the net-region; the undetermined coefficients 

would then be chosen so as to minimize the residual which develops when the 

extension of the function, u(x,y), from the boundary into the near-boundary 

region, is substituted into the boundary conditions. 

Comparison of the rnethod of internal boundary conditions with the 

method of singular integral equations. At the beginning of this Appendix 

we pointed out the analogy between the method of internal boundary condi- 

tions and the method of singular integral equations, an analogy which is 

not quite complete. Here we compare these methods, refining the analogy 

and bringing out explicitly the essential differences. 

singular integral equations for boundary-value problems, for example for 

the problem 

11. 

For purposes of comparison we first describe the idea of the method of 

a2u uu = 0, x = (xl, x2) in d, > + - -  a2 

ax; ax; 

where u = const > 0 and d is a bounded region with Y as its boundary. 

Boundary condition (22) connects the solution u = uo(x) on the region- 
boundary with its derivative along the inward-pointing normal au/aW = 

ul(x). 
Let us first write out the classical Green's formula for Eq. (21): 

The coefficients a. and al are given operators. 
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where g(x) is the fundamental solution of Eq. (21) tending to zero at 

infinity. Now let x tend towards the boundary Y. Using the properties of 

potentials of single and double layers we get, on the boundary Y ,  a rela- 

tion of the form 

connecting the solution u(x) with its normal derivative au/av  = u,(x) on 
the region-boundary; here b and b are known integral operators. The 

transition from problem (21), (22), to the equivalent system of equations 

(23), (24), for the functions uo(x) and u,(x) defined on the b0undar.y Y, i s  
precisely the essential feature of the method of singular integral 

equations. 

0 1 

For comparison let us now consider the method of internal boundary 

conditions as applied to 

the difference analog of 

Unl-l,n2 + Un1,n2+1 

the following general boundary value problem for 

Eq. (21) in a square net-region 

- (4 + U)Un = 0, (25) 
+ un 1 2  +l,n + Un1,n2-1 1 sn2 

-N < nl, n2 < N, 

Lur = +. (26) 

We will write the internal boundary condition ur - Pur = 0 in a form 

which will be useful below. It is easy to verify that Eq. (9) in this case 
may be rewritten in the form 

where Q, is the set of all points, r ,  lying on the sides of the square )rill 
= N, In21 = N, i.e on the outer layer of the two-layer boundary r of the 
net-square region (Fig. 57), and A is the difference analog of the 

derivative along the inward-directed normal. 

Green's formula (23) in the absence, on the right-hand side, of the 
"singular term" 

for all n in D, but only for n in Do. 

arrive at the internal boundary conditions ur  - Puy = 0. 
are obtained from (27) if n runs over, not the whole region D, but only the 
points on the boundary r ;  they may be written as two systems of equations 

We note that Eq. (27) would be completed analogous to the classical 

6:ur. However i n  this case Eq. (27) would be valid, not 
It would then be impossible to 

These conditions 
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u =  1 
n 

r in 

corresponding, 
and the points 

respectively, to the points n, n i n  Qo, of the outer layer, 
n i n  r\Qo of the inner layer of the double boundary r. As 

-, i n  Eqs. ( 2 8 )  and ( 2 9 ) ,  we take a bounded fundamental the function GI, 
solution. 

i.e. the system of equations ( 2 8 1 ,  ( 2 9 1 ,  is algebraically equivalent to 

each of the subsystems, ( 2 8 )  or ( 2 9 ) ,  taken separately. 
Subsystem ( 2 8 )  is analogous to integral relation ( 2 4 ) ,  so that the 

difference analog of problem ( 2 2 ) ,  ( 2 4 )  is problem ( 2 7 ) ,  ( 2 8 ) ,  but not the 

problem 

One can show that the internal boundary condition ur - Pur = 0, 

specified by Eqs. ( 2 7 ) - ( 2 9 ) ,  which is considered i n  the method of internal 

boundary conditions. 

conditions ur - Pur = 0, i.e system ( 2 8 ) ,  ( 2 9 ) ,  and subsystem ( 2 8 )  alone. 
The internal boundary conditions 

There is an obvious difference between the internal boundary 

ur - Pu = 0 r 

contain the extra equations ( 2 9 ) .  In this sense the difference-internal- 

boundary-conditions 

ur  - Pu, = 0 

are similar, not to integral relation ( 2 4 ) ,  but to the Sokhotski-Plemelj 

conditions for analytic functions. These latter take the form of two real 

relations connecting two real functions, but they are not independent, and 

the manifold of pairs of functions satisfying the Sokhotski-Plemelj condi- 

tions depends on one real arbitrary function. 
We note that the internal boundary conditions 

ur - Pu, = 0 

have an advantage over the equivalent subsystem ( 2 8 )  i n  that within their 
structure they contain the boundary projection operator. Thanks to this 
circumstance the problem 

au, = $I, ur - Pur = J, 

is stable, in the sense of theorem 6 ,  with respect to perturbations of the 

right-hand side JI. In the general case one can, by striking some of the 
equations from among those constituting the system ur - Pur = 0, produce a 
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subsystem algebraically equivalent to the original equation-set, but no 

longer having this stability property. 

One can show that, in our example (25) ,  ( 2 6 ) ,  instead of 

ur - Pur = 0 

it is more convenient to use, not subsystem (28), but subsystem ( 2 9 )  which 
is stable and, in contrast to subsystem (28), consists of independent 

equations; its rank is equal to the number of equations it contains. 

boundary conditions, and the method of singular integral equations like the 

Sokhotski-Plemelj conditions, is not complete. 

Moreover there is not a complete analogy with the classical method of 

integral equations in which the function sought is not itself the solution 

of the original problem (21), ( 2 2 )  on the boundary, but is some auxiliary 
density of the potential of a single or double layer. 

In conclusion we note that we use the expression "method of singular 

integral equations" because the Sokhotski-Plemelj condition contains a 

singular integral. In the example of this section condition ( 2 6 )  contains 
a convergent improper integral. 

Thus in the above example the analogy between the method of internal 

* * *  
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BIBLIOGRAPEICAL COllEIENTABIES 

Ch. 1, 551,2. 

Ch. 2, 55. The author first was introduced to the FEBS method and its 

One can become acquainted with the general theory, of 
linear difference equations, for example, by reading Ch. 5 of Ref. 7. 

underlying theory, as applied to several classes of difference boundary- 

value problems, in 1953 via the manuscript of an article by I. M. Gelfand 
and 0. V. Lokytsievskii, entitled "The forward-elimination, back substitu- 

tion method for the solution of difference equations". (See, for example, 

Ref. 10.) There exist variants of the FEBS method, designed for the compu- 

tational solution of difference boundary-value problems not considered in 
this book. Various results along with a bibliography, will be found in 

Refs. 4 ,  15, 23, and others. 

elimination, back-substitution, the good-conditioning property of differ- 

ence boundary-value problems was proposed by N. s. Bakhvalov. Some steps 

toward realization of this idea were taken in the presentation of FEBS in 

Ref. 10, and then by V. V. Ogneva (U.S.S.R. Comp. Math. and Math. Phys. I, 
#4 (1967)) who is responsible for the idea of considering the truncated 

systems. A modified presentation of this work will be found in Ref. 8. 

value problems, as presented in 56, uses the thesis work of Bagisbaev, a 
student at Novosibirsk University who is responsible in particular for the 

example showing that the coefficient-smoothness conditions cannot be ig- 

nored. 

Ch. 3. The idea of using directly, as a basis for forward- 

The mathematical theory of good-conditioning of difference boundary- 

Ch. 6, 5119,20. One can acquire a more detailed familiarity with 
methods for the numerical solution of ordinary differential equations 
through Ref. 4 ,  and through the literature cited there. 

tions with discontinuous coefficients are constructed by A. N. Tikhonov and 

A. A.  Samarskii in their theory of homogeneous difference schemes, and are 

presented in one of the chapters of Ref. 23. 

spect to rounding errors, for given initial conditions, was first described 

Difference schemes for some important classes of differential equa- 

Ch. 7 521. The concept of stability of difference schemes with re- 
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by J. Von Neumann and R. D. Richtmeyer i n  1950* i n  work devoted to the 

computation of gas-dynamics discontinuities. The first overall system for 

determining stability and approximation, i n  which convergence is a conse- 
quence of approximation and stability, was proposed by V. S. Ryabenkii, 

Soviet Math., Doklady,e, 1/6 ( 1 9 5 2 ) ,  in the case of the difference analog 

of Cauchy's problem for partial differential equations. 

The system of basic definitions adopted i n  this book, and the theorem 

stating that approximation and stability imply convergence, are close to 

those proposed by A. F. Filippov, Soviet Math., Doklady, 100, #6 ( 1 9 5 5 ) .  
See also Ref. 22 or Ref. 10. The main difference consists in that we use a 

more universal definition of approximation. 

for which approximation and stability guarantee convergence. Among these 

the best known i s  the system of definitions of P. D. Lax, proposed i n  1956 
(see, for example, Ref. 20) .  In Lax's theory he considers difference 

schemes for nonstationary problems but postulates that the difference 

schemes act, not i n  the space of net functions, but i n  the same function 

space as the differential equations. With this (supplementary) assumption 
it is demonstrated that, for an approximating difference scheme, stability 

and convergence take place simultaneously. This equivalence theorem of Lax 

is one of the concrete forms of the more general construct of L. V. 
Kantorovich, Russian Math. Surveys 2, issue 6 ( 1 9 4 8 ) .  

proposed and developed a stability theory applicable to a whole wide class 

of difference schemes (see  Refs. 23 and 24, and $43 of this book). 
New results, along with a bibliography and surveys of work on the 

stability of difference schemes, may be found i n  Refs. 10, 15 and 20-28. 

It should be said that in the 1928 work of R. Courant, K. Friedrichs 

and G. Levy (see Russian Math. Surveys 5 ( 1 9 4 0 ) )  and i n  much other work 

where the method of finite differences is used to prove the existence of 
solutions of differential equations, the authors proved inequalities which, 

in modern terminology, could be interpreted as stability i n  one norm o r  
another. However the concept of stability developed in connection with the 

use of difference schemes for the computation of approximate solutions 

assuming that these solutions exist. Therefore stability is usually 
studied i n  weaker norms than those used for proof of existence. Note that 

the method of finite differences was first used to prove the existence of 

solutions of partial differential equations in 1924 by L. A. Lyusternik 
(see Russian Math. Surveys 5 (194011, i n  work which dealt with Laplace's 
equation. 

There exist other natural systems of definition of the basic concepts, 

In the last few years A. A. Samarskii, jointly with A. V. Gulin, has 

~ ~~ _ _ _ _ ~  ~~~ ~ 

*J. von Neumann and R. D. Richtmeyer, "A Method for the Numerical 
Calculation of Hydrodynamical Shocks, J. Appl. Phys. 3 13 ( 1 9 5 0 ) .  
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Ch. 7, 3022. The method presented here for the construction of 

difference schemes, was proposed i n  the works of: P. L. I. Brian, 
A.1.Ch.E. J. L(1961); J. Douglas, Num. Math. 4 (1962); J. Douglas, Trans. 

Amer. Math. SOC. (1958); and S. K. Godunov, Difference Methods for the 

Solution of the Equations of Gas Dynamics, Novosibirsk (1962) ( i n  Russian). 
The two-dimensional variant of the predictor-corrector Lax-Wendroff scheme 

(Ref. Z O ) ,  considered i n  this section, was proposed for gas dynamics 
problems by L. A. Chudov. (See the review article by G. S. Roslyakov and 

G. F. Telenin in the collection "Computational Methods of Gas Dynamics" 

Moscow, Moscow University Press, issue 2 (1963) ( i n  Russian)). The idea of 

the Runga-Kutta method was used by V. V. Rusanov (preprint, In-t prikl. 

matematika AN SSSR(1967, in Russian)) for the construction of difference 

schemes of third-order accuracy for gas-dynamics calculations. 

L. A. Chudov (article in the collection "Some applications of net 

methods in Gas Dynamics", Vol. 1 "Flow in the boundary layer", Moscow State 

University Press, (1971) (in Russian)), has, for equations of parabolic 

type, constructed a difference scheme of Runge-Kutta type with second-order 

accuracy and good smoothing properties. Predictor-corrector schemes are 

used in many gas-dynamics calculations. See, for example, Ref. 1. There 

are, i n  addition, other methods for the construction of difference schemes 
(see Refs. 4 ,  13, 19-28). 

using differential approximations for the study of difference equations was 

first noted i n  the 1950's by A. I. Zhukov (communications of a seminar of 
the Institute €or Applied Math), who proposed the example used here. The 

theory of differential approximations, i n  which one studies the asymptotic 
and group properties of interesting classes of difference equations, was 

constructed by N. N. Yanenko and Yu. I. Shokin, Sib. Matem. Zh. 10, #5 
(1969); Chislennie Metodi Mekh. Sploshnoy Sredi 2, #2 (1971) (in 

Russian). The same class of problems was addressed by N. N. Kuznetsov, 

Soviet Math., Doklady 200, 65 (1971); Soviet Math., Doklady 3, #2 (1972); 

U.S.S.R. Comp. Math. and Math. Physics 2, 112 (1972). 
Ch. 8, 1926. The idea of freezing coefficients at interior points was 

proposed in the above-cited article of Von Neumann and Richtmeyer (see 
comments on 121). 

Ch. 8, 5025. So fas as is known by the authors, the possibility of 

Ch. 8, 2526. The criterion of K. I. Babenko and I. M. Gelfand was 
reported in their paper, authored jointly with 0. V. Lokutszevskii, and 

presented at a conference on functional analysis i n  1956 in Moscow. See 

also Ref. 2 and the comments, below, on Ch. 14. 

cients in finite Fourier series, wich is very economical in the number of 
Ch. 8, 927. There exists an algorithm for the calculation of coeffi- 
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arithmetic operations, and is commonly called the "Fast Fourier Trans- 

form." See, for example, Refs. 4 or 5.* 

nonstationary difference equations by 0. A. Ladizhenska. With the aid of 

this apparatus she found a convergent implicit difference scheme for equa- 
tion-systems hyperbolic in the sense of Petrovski. 

first example of a convergent implicit difference scheme (0. A. Ladizhenska, 
author's summary of dissertation, Leningrad State University, March 1949,  
i n  Russian. See also Ref. 13.) .  

journals and collections of papers one constantly finds new work on compu- 
tational methods applied to the mechanics of continuous media. 

Ch. 10. The alternating direction scheme ( 1 2 )  832 was constructed by 
D. Peaceman and G .  Rachford i n  1956 (see, for example, Refs. 5 or 28) .  
Splitting scheme ( 7 )  931 was proposed by N. N. Yanenko, Soviet Mathematics, 

Doklady 125, 66 (1959) .  
structed for many of the basic problems of mathematical physics. See, for 

example, Refs. 5, 15, 23, 27 and 28;  also the monograph by E. G. Dyakonov 
entitled "Difference Methods for the Solution of Boundary-Value Problems, 

Part 1 (1971)  and Part 2 (1972)" ,  (Moscow State University Press, in 

Russian) and its bibliography. 

tion of this method with the Ritz variational method, has been proposed and 

used for the computation of eigenvalues of strongly-elliptic operators, and 

for the solution of Laplace difference equation i n :  G. P. Prokopov, 
U.S.S.R. Comp. Math. and Math. Phys. 5, I1 ( 1 9 6 8 ) ;  S. K. Godunov and G. P. 

Prokopov, U.S.S.R. Comp. Math. and Math. Phys. 2, #2 ( 1 9 6 9 ) ;  S. K. Godunov, 

V. V. Ogneva and G. P. Prokopov, in "Partial Differential Equations", a 

collection of papers, proceedings of a symposium dedicated to the 60th 

birthday of academician C. L. Sobolev, 1970 (in Russian). The original 

locally one-dimensional scheme was proposed by I. V. Fryazinov, U.S.S.R. 
Comp. Math. and Math. Phys. l3, #3 (1973) .  

Ch. 10, 533. Relating to the method of super-particles of 0. M. 
Belotserkovski and Yu. M. Davidov, and to its applications, aside from the 

work cited in 833 see Ref. 3; also the text of the review paper by 0. M. 
Belotserkovski and V. E. Yanitsko given at the Fourth U.S.S.R. Conference 

on the Dynamics of Rarified Gases i n  1975 at Zvenigorod ( i n  Russian); and 

the text of the lecture given by 0.  M. Belotserkovski at the Von Karman 

lectures in Brussels, 1976. 

most economical computational solution method is the fast Fourier transform 

Finite Fourier series were, apparently, first used for the analysis of 

Apparently this was the 

Ch. 9. See Refs. 1-3, 9 ,  13 ,  14 ,  21, 26 and their bibliographies. In 

At this point splitting schemes have been con- 

A variant of the alternating direction method, obtained via combina- 

Ch. 11, 334.  For the Poisson difference equation i n  a rectangle the 

*Also, for example, "The Fast Fourier Transform," E. 0. Brigham, Prentice 
Hall (1974) .  (Translator's note.) 
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(see the comments on $27). Many authors, starting with L. A. Lyusternik in 

1924, have worked on difference schemes for the Laplace and Poisson equa- 
tions in regions with curvilinear boundaries. See, for example, Refs. 4, 

16, 23 and their bibliographies. 

Error estimates, expressed directly in terms of the initial condi- 
tions, have been obtained for a series of schemes approximating the Dirich- 

let and von Neumann problems, and the mixed boundary-value problem for the 

Laplace and Poisson equations in a rectangle, a rectangular parallelopiped 

and certain triangles. See E. A. Volkov, Tr. Matem. in-ta im. V. A. 

Steklova, 74 ( 1 9 6 6 ) s  (1969) (in Russian), and I. A. Sultanova, U.S.S.R. 

Comp. Math. and Math. Phys. 11, 85 (1971), with bibliography. 

also established (Tr. Matem. in-ta im. V. A. Steklova, 117 (1972) (in 

Russian) that, if the difference operator at the boundary net-points 

satisfies a certain adequacy condition with respect to the standard five- 
point Laplace difference-operator, then the solution of the Poisson differ- 
ence equation extended from the net onto a closed region with curvilinear 

boundaries will, for smooth enough initial data, approximate to second 

order in the net step-width the solution itself, and all its derivatives up 

to and including the n'th, for arbitrary n. 

We also mention, in particular, an error bound for a difference 
solution of the Poisson equation obtained by E. A .  Volkov (Tr. Matem. in-ta 

im. V. A. Steklova, 117 (1972) (in Russian) i n  a situation where the 
Laplace operator is not approximated to second order in the number of net- 

levels, a number which grows without bound as the net is refined. This 

bound is, at the same time, stronger than a uniform second-order bound 

since it implies an additional Falling-off of the error near the boundary. 

as limits of solutions of nonstationary problems as t + m was first used, 

in the 1930's, by A. N. Tikhonov. 

One of the approach-to-steady-state difference schemes for the treat- 

ment of supersonic gas flow around immersed bodies was proposed by s. K. 

Godunov, A. V. Zabrodin and G. I?. Prokopov, U.S.S.R. Comp. Math. and Math. 
Phys.1, 86 (1961), (see Ref. 9).  It is interesting to note that the argu- 

ments relating to the stability of this scheme, described in the work of K. 
A. Bagrinovski and S .  K. Godunov (Soviet Mathematics, Doklady, 115 83 
(1957)) make use of the splitting of the difference operator. There now 
exists a whole series of works, by many authors, directed towards the com- 

putational treatment of stationary problems via the establishment of a 
steady state. 

the Poisson difference equation was indicated by Lyusternik (Tr. Matem. in- 

ta im. V. A. Steklovag (1947) (in Russian)). 

Ch. 11, 136. Chebyshev polynomials have been used for optimizing sets 
of iteration parameters i n  various problems, starting with the works of 
A .  A. Abramov, M. K. Gaburin and Flanders and Shortley, all appearing in 

about 1950. 

E. A. Volkov 

Ch. 11, 535. The idea of considering solutions of stationary problems 

One of the first effective methods for accelerating the solution of 
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New results, bibliographies, and review papers written from various 

points of view, relating to iterative methods for solving elliptic differ- 
ence-boundary value problems, can be found in Refs. 5, 16 ,  23 and 28. Also 

in the monographs "Iterative Methods for the Solution of Difference Analogs 

of Boundary-Value Problems of Elliptic Type", E. G. Dyakonov, Kiev 
(1970) :  "Iterative Methods and Quadratic Functionals," G. I. Marchuk and 
Yu. A. Kuznetsov, Novosibirsk, Nauka, Siberian Section, 1972 ,  both i n  
Russian; and in the review paper by R. P. Fedorenko, Russian Mathematical 
Surveys 3, #2 ( 1 9 7 3 ) ,  as well as other works. 

difference schemes is contained in the work of R. Courant (Courant R., 

Bull. her. Math. SOC. 2, #1 ( 1 9 4 3 ) ) .  
culations of structural strength, various realizations of variational- 

difference schemes were often used without theoretical justification, under 

the name "finite-element methods". 

Ch. 12. The basic idea underlying the construction of variational- 

Independently, in engineering cal- 

The monograph by L. A. Oganesyan, V. Ya. Rivkind and L.  A. Rykhobetz, 

entitled "Variational-Difference Methods for the Solution of Elliptic Equa- 

tions" (in Parts l and 2 of Tr. seminara PO differents. uravneniam, In-t 
fiziki i matemateki AN Litovskoy SSR, issue 5, Vilna, 1973  and issue 8, 

Vilna 1974, (in Russian)) is devoted to a systematic presentation of the 

foundations of the theory of variational-difference schemes, and of some of 

its applications. This monograph was used in the preparation of Ch. 12. 
See also, for example, Refs. 12,  18 and 25. 

At the present time variational-difference schemes have been imple- 

mented in the form of well-developed programs on fast computers, for a 

whole series of problems in the theory of elasticity. See, for example, 

Ref. 12. There are also numerical implementations of the projection- 
difference method for some other (not only elliptic) problems. A series of 

recent works has been collected in "Variational-Difference Methods in Math- 

ematical Physics, Novosibirsk, 1974 and Novosibirsk, 1976 (in Russian). 
Ch. 13, 242. Stationary solutions are often used to elucidate the 

character of convergence close to boundaries. See, for example, S .  K. 
Godunov, Matem. Sb. 7 ( 8 9 ) ,  3 (1957 ,  in Russian). 

F. Fillipov. 

Ch. 13, 4143. Here we have used Sect. 416,  of Ref. 22 ,  written by A. 

Ch. 13, 5243. The choice of scalar product (u,v) via Eq. ( 2 1 ) ,  

apparently, was first proposed by N. Min'o in 1953 ,  for the special case of 

the difference analog of the heat-equation with variable coefficients, and 
then presented in more general form in 815 of Ref. 2 2 ,  which also contains 

a modified presentation of the above-cited work of N. Min'o. 
Ch. 13, 6543. The first of the Samarski stability criteria introduced 

in this section is  obtained from theorem 5, section 661 ,  Chapter VI of Ref. 
23, if, instead of Hilbert space, one considers Euclidean space, and sets 
p = 1. See also See. 791,  Chapter VI of Ref. 23.  

Bh 
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Ch. 14, 544. The concept of the spectrum of a family of operators was 

introduced in Ref. 10 where in particular the authors, with the help of 
this concept, derived the criterion of K. I. Babenko and I. M. Gelfand for 
stability of nonstationary problems on line-segements. There it was also 

shown that disposition of the spectrum of a family of operators in the unit 

circle is necessary for stability. 

1 2  (1969). 

operators was introduced by Ryaben'kii, Soviet Math. Doklady, 185, #2 
(1969). There, also, the author formulated theorems 1-4. 

and Bk was published in Soviet Math., Doklady, 208, #2 (1973). 
the general cases of matrix coefficients is contained in his article, Tr. 

Mosk. matem. obsch. 2, Moscow State University Press, 1976 (in Russian). 

Ch. 14,  847. Here we present a paper of V. S. Ryaben'kii, Soviet 

Math., Doklady 193, #3 (1970). 

Appendix. The method of internal boundary conditions (MIBC) was pro- 

posed by V. s. Ryaben'kii, Doctoral Dissertation, In-t prikl. matematiki AN 

SSSR (1969) (in Russian). In Sects. 1-9 and 11 we present part of a paper 
by V. S. Ryaben'kii, Math. Surveysz, #3 (1971). 

describes some applications of MIBC to the study and computational solution 

of boundary-value problems in simple and compound regions. 

Ryaben'kii at a conference honoring the 70'th birthday of academician I. G. 
Petrovski, held at Moscow State University (January 1976). 

Russian), proved the existence of a fundamental solution which grows, for 

He also constructed the so-called cyclic fundamental solution, which 

Theorem 2 was derived by V. C. Ryaben'kii, Soviet Math. Doklady, 9, 

Ch. 14, 846. The concept of the kernel of the spectrum of a family of 

The theorem of A. V. Sokolov for the case of scalar coefficients Ak 

A proof in 

This paper also 

The content of Sect 10 was published i n  a report presented by V. S. 

Appendix, Sect. 2. A. Ya. Belyankov, Matem. Zametki 2, #5 (1975, in 

= n: + ... + n2 + m ,  no faster than some power of (In( I. 

allows one to construct internal boundary conditions and makes possible an 

effective construction technique based on the fast Fourier transform. See 

his article in the collection "Problems of Mechanics and Mathematical Phy- 

sics" (in Russian) dedicated to the memory of academician I. G. Petrovski, 

Nauka, 1976. 

SSSR, 1973, in Russian) used their own variant of MIBC for the 
computational treatment of a nonlinear heat conduction problem. 

A. V. Zabrodin and V. V. Ogneva (preprint, In-t prikl. matematiki AN 
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