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PREFACE

Much applied and theoretical research in natural sciences leads to
boundary-value problems stated in terms of differential equations. So as
to solve these problems on electronic computers the differential problems
are replaced approximately by difference schemes.

This book is intended to serve as a first introduction to the theory
of difference schemes; it 1is written as a textbook for students of
technical universities, of the Moscow Physico-Technical and Moscow
Engineering~Physics Institutes, and for students in university physics and
mathematics departments. In addition, some sections of the book will
probably be of interest to computations specilalists. Differences in the
interests of readers in the above-named categories have been reflected in
the structure of this book.

This book consists of five Parts and a small Appendix. Any desired
number (two or more) of the first Parts may be taken as a sort of self-
contained introduction to the subject. TIn addition the volume of material
studied may be controlled by including more or less of the material in
small print,* and by the selection of problems to be solved. At the end of
the book we have suggested literature for a deeper study of many questions
relating to the theory and application of difference schemes, and for
bibliographical investigations. A shorter introduction to the theory of
difference schemes can be found in the book listed as Ref. [1l].

In the text, below, direct references to original work will appear
only in those few cases where auxiliary results are cited without proof.

Contemporary computational techniques and accumulated experience allow
us, with the ald of difference schemes, to compute approximate solutions of
problems which are very complicated, and are not amenable to study by other
methods. Assurance that the solution 1s computed correctly is attained:
by applying the same computational schemes to the solution of those few
problems for which exact solutions are avallable; by comparing computa-
tional results with the results of physical experiments in the range of

*A section in small print, in the original Russian appears, here in trans-
lation, as a section set off by horizontal rows of asterisks. Each such
section 1s preceded by a row of six asterisks, and followed by a row of
three.
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parameters for which experiments are possible; and through the aid of other
methods which cannot be considered mathematically rigorous. But an
understanding of essentials, necessary for the construction of appropriate
difference schemes, is achieved by consideration of a series of properly
chosen model problems; problems simple enough for detailed study on some
accepted level of mathematical rigor, but nevertheless capturing one or
another of those features of the original problem which interest us, while
this original problem iIs unaccessible to rigorous study elther because of
its complexity, or for lack of time.

Stressing a mathematically rigorous treatment of model problems, we
have tried at the same time to give the reader a correct picture of the
relation between theory, on the one hand and, on the other, computational
experiments on electronic computers, using difference schemes created for
practical computations.

The appearance of this book was made possible by earlier work by the
authors on [10], and also by the work of one of them on lecture courses
which he presénted for several years at the Moscow Physico—Technical
Institute. The set~up of these courses was strongly influenced by many
fruitful discussions with O, M, Bielotserkovskii (through whose initiative
these courses were started), V. F, Dyachenko, 0. V. Lokutsievskii, R, P.
Fedorenko, L. A. Chudov and E. E. Schnol. Many useful comments were made
by N. S. Bakhvalov and B. L. Rozhdestvenskil after reading the book in
manuscript.

We are sincerely grateful to all of them.

The authors

PREFACE TO THE SECOND EDITION

The second edition differs from the first in: the inclusion of
Chapter 12 on variational-difference schemes; of $47 on the stability of
iterative processes for the solution of non-selfadjoint difference
equations; and of Sect. 10 of the Appendix containing some considerations
on the computational use of the method of internal boundary conditions. In
addition some typographical errors and inaccuracies have been eliminated
and the bibliography has been brought up to date.

The authors



Preface vii

It should be noted that, in the text below, and in the section
entitled "Bibliographical Commentaries”, citations in Russian journals have
been changed, wherever possible, to corresponding citations in English
translations of these journals. In particular, references to the Russian
journals

Akademiia Nauk SSR, Doklady;
Uspekhi Matematicheskhikh Nauk; and
Zhurnal Vychislitelnoi Matematiki I Matematicheskol Fiziki
have been replaced by corresponding references to thelr translations
Soviet Mathematics, Doklady;
Russian Mathematics Surveys; and
U.S.S.R Computational Mathematics and Mathematical Physics,

respectively.

Translator
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INTRODUCTION

Consideration of the problems, both applied and theoretical, of
contemporary natural sciences often leads to differential equations, and
the study of such problems can be considered finished only after these
equations have been solved. In some cases it 1s possible to write their
solutions in terms of well-known elementary functions. As a rule, however,
this is in principle impossible, so that the construction of a solution in
terms of an explicit closed-form expression cannot be considered a standard
method for solving differential equations. One cannot say that this
analytic approach has completely lost its value. -It remains a necessary
and very powerful Iinstrument for the study of simplified, so-called
"model”, problems. The study of carefully selected model problems allows
one to draw some conclusions as to the nature of the behavior of the
unsimplified, original, problem.

But, together with this analytic approach, various numerical methods
are being more and more widely used for the solution of differential
equations. Widespread use of these methods has been made possible by the
appearance of fast computers which can store large arrays of numbers, upon
which.they can perform arithmetic operations in accordance with some given
program. So as to take advantage of the capabilities of these machines the
computational method makes a transition, from the required solution, to a
certain numerical table one needs to construct, and to a sequence of
arithmetic operations for the computation of the numbers in this table.

One might, for example, set out to find some of the leading coefficients in
an expansion of the solution in a power series, or a trigonometric

series. Here we develop the theory of differential equation solution-
methods based on finite differences. The essence of this most versatile
numerical method consists in that one puts, in the role of the desired set
of numbers, a table of values of the solution at the points of a certain
set, ordinarily called a "net". For computation of the required table one
makes use of algebraic equations which approximate, and take the place of,
the differential equation.



2 Introduction

For the sake of clarity, consider the simplest example of a difference
scheme for the numerical solution of the equation

u”(x) + Au(x) = 0,

with the initial condition u(0) = 1. We choose an h > 0, and set out to
obtain, in place of the function u(x), a table of its values

u(0), uCh), u(2h), ..., u(nh), ...

We now replace the derivative by the difference approximation

u(x + h) - u(x)
h

which is permissible if the step-width in the table is taken sufficient
small. After introduction of this difference approximation we get, in

place of the differential equation, the difference equation
+ h) -
E&f____%___ﬂ&fl + Au(x) = O,

which approximates it, and which can be used for an approximate computation
of the required table. To implement this computation we rewrite the
difference equation in the form of a recursion relation

u(x + h) = (1 - Ah)u(x).

Sequentially taking x = 0, h, 2h, ..., we find that

]

uCh) = (1 - Ah),
u(2h) = (1 - Ah)?,

o« . e * e e .

u(Nh) = (1 - an)N.

D R

Setting h = 1/N we get

N
u(1) = (1 - §)

in place of the exact solution

u(l) = e_A.

But, as is well known from a standard course in mathematical analysis, for
h sufficiently small or, correspondingly, for N large enough, (1 - A/N)N
differs very little from e”A. Thus we see that the approximate solution
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gotten via this difference scheme and depending on the step-size, h,
converges, as this step—-size decreases, to the exact solution of the
differential equation.

Another example of a difference equation approximating the same
differential equation

u”(x) + Au(x) = 0,

is obtained by replacing the derivative with the difference expression

u(x + h) - u(x - h)
oh

This equation takes the form

u(x + h) ;hu(x - h) + Au(x) = 0.

For the differential equation

u’“(x) + Au”(x) + Bu(x) = f(x)

one can construct a difference analog by replacing u””“(x), for example,
with the following approximate expression:

u(x + h) - u(x)  u(x) - u(x - h)
h h _ u(x + h) = 2u(x) + u(x - h)

h2

h

The first derivative may be replaced by one of the difference expressions
already used. After such substitutions, and using the centered expression
for the first derivative, we get the difference equation

u(x +h) - 2u(x) +u(x - h) | A u(x + h) - u(x - h)
h2 2h

+ Bu(x) = f(x).
The construction of difference equations is no more difficult in the

case of differential equations with variable coefficients. If, for
example, one wants to compute the solution of the equation

u’(x) + A(x)u(x) = 0,

where the coefficlent, A, Is a function of x, this can be done with the aid
of the difference equation

Eif_i_k%_:_ﬂsfl + A(x)u(x) = 0.



4 Introduction

Difference schemes can treat non-linear equations just as easily, For
example, the equation

u”(x) + sin(xu(x)) =0

can be solved approximately via the scheme

u(x + h) - u(x)

0 + sin(xu(x)) = 0.

From the above examples one may form the impression that the construction
of difference schemes, and the solution of differential equations through
use of such schemes, are matters presenting no difficulties. This is a
deceptive impression.

Already in the simplest cases, even in solving linear equations with
constant coefficients, it happens frequently that a seemingly plausible
difference scheme has a solution which does not converge, as the net is
refined, to the desired solution of the differential equation. Of course,
with such a scheme one cannot compute the desired function with unlimited
precision.

Further, after a convergent scheme is constructed, it is necessary to
compute the solution of the resulting system of algebraic equations for a
large number of values of the unknown function at the knots of the net.
This, in many important cases, is not at all easy. Sometimes it is
possible to circumvent this difficulty by choosing a convergent difference
scheme of different construction, such that the resulting system of linear
equations is easy to solve exactly; in certain other cases methods have
been developed for the approximate computation of the solution of
difference problems to any prescribed level of accuracy.

Everyone who is engaged in the numerical solution of differential
equations should be aware of the difficulties involved in the construction
and use of difference schemes, and should know how to overcome these
difficulties.



Part 1
ORDIRARY DIFFERENCE EQUATIONS

Chapter 1
Difference Equations of First
and Second Order.
Examples of Difference Schemes
§ 1. Simplest difference equations
1. Difference equations. For differential equations of first order

u”(x) + Au(x) = f(x)

we constructed, in the Introductlon, two difference schemes:

BSZ_i;E%,:_Eill + Au(x) = f(x),

u(x + h) - u(x - h)

50 + Au(x) = f(x),

which may be written, respectively, as

~(E—%—éh) u(x) + %-u(x + h) = f(x), (1)

- ;—h u(x - h) + Au(x) +%F u(x + h) = £(x). (2)
For the differential equation of second order
u” " (x) + Au”(x) + Bu(x) = f(x)

we constructed the difference equation

u(x + h) = 2u(x) + u(x - h) + A u(x + h) - u(x - h) + Bu(x) = £(x)

2 2h
which one can rewrite in the form
(1 - Dux - h) - (2 - B )ux) + L+ Bux+n) = £, )
h? h?

hZ
The above examples of difference equations, approximating the simplest
differential equations, each belong to one of the two classes:
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au(x) + bu(x + h) = f(x), (1)
au(x - h) + bu(x) + cu(x + h) = £(x). (2"

If the sequence of points, dividing the x axls into intervals of
length h, 1s numbered from left to right so that x, = x,_; + h, and we

define u = u(x,), f, = f(xy), then our difference scheme can be rewritten
in the form

av b T e “

+ b + = f . 5
aun-l un cun+l n )
In §8§1-4 we will be engaged in the study of difference equations of forms
(4) and (5), but will not ask whether these equations constitute difference
schemes for any differential equations.

In equations (4) and (5) the unknowns, u

h» form a sequence {un}:

ey u u

e S L LI R R L

We will often put thils sequence into one-to—one correspondence with the se-
quence of points numbered by the integers

vee, =3, =2, -1, 0, 1, 2, 3, ...,

a set of points sometimes referred to as a "net".

The sequence {un} may be regarded as a function, u, given at the
points of the net. In this case u  1s the value of the net function, u, at
the point numbered k. 1In Fig. 1 we have drawn the graph of a net function,

u. This graph consists of the

u totality of points (xp, u.) on the
plane Oxu.
PR (Zkqu) Since we have chosen not to
P

o \3 ,/.\\\. consider the connection between

e s difference and differential equa-
» ¢ . Z

0 z tions, we are in no way obliged to

take the distance between nelghbor-
Fig. 1 ing points to be equal to h. We may
choose this distance as we like and,
for example, could set it equal to
to unity, taking x4 to be at the
origin. Then the net functlon, u, will be defined at the points with
coordinates ¥ = k.
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We will assume for simplicity, that the coefficients a, b and ¢ in
Eqs. (4) and (5) are constant. In saying that the equations in question
are equations with constant coefficients we mean that the coefficients are
independent of the index, n; for example, the equation

G H R b =0
is not an equation with constant coefficients.

We will consider only such equations (4) for which a and b are
different from zero. In (5) a and ¢ will be assumed to be different from
zero. The sequence {fn} will be called the "right-hand side™ of these
equations.

If we postulate that the sequence {un} 1s defined at all whole-
numbered points n, — *® < n { =, and put no further restrictions on this se-
quence, then i1t 1s easy to see that Eqs. (4) and (5) have many solutions.
Thus, for example, the equation qu, — u 4 = 0 has, as a solution, u_ = O,

as well as the solution u, = q".

n

In order to single out a unique solution of Eq. (4)

aun + bun+1 = fn’
it i1s sufficient to fix the value of this solutlon at any single whole-
numbered point m, that is to fix uy. In fact Eq. (4) can be written as a
recursion relation

1
Un+l T S{fn - aun),
from which, for n = m, m + 1, ..., one can sequentially define Uitls Upg2s
«ee, 1.e., all u, for n > m. Writing the equation in the other recursive
form

1
u = ;{f - bun),

we can, 1In just the same way, define u, for n < m.
To single out a unique solution of Eq. (5)

aun_1 + bun + cun+1 = fn
it 1s sufficient to assign, arbitrarily, values of u at any two adjacent
whole-numbered points, i.e., for example, to fix the values of u _; and
Upe That this is true immediately follows from the fact that the cited
equation can be rewritten in the following two recursive forms:

1
Untl © E(fn - bun - aun—l]’
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u = i{f - bu_ - cun+1).

2. Order of difference equations. We will repeat once more the
results obtained above, and then formulate the concept of order for
difference equations (4) and (5).

In order to single out a unique solution of Eq. (4)

+ =

aun bun+1 fn

it 1s sufficient to fix the value of u at one point. Such an equation is
called an "equation of first order". To single out a unlque solution of
Eq. (5)

+ + =
at bun cun+1 fn
it suffices to assign values to the solution at two adjacent points. For
this reason such an equation 1is called an “"equation of second order”.

One might, 1in fact, apply the same considerations to the simplest
equation,

= f 0
au o 2 # 0,

the solution of which is uniquely defined without the imposition of any
auxiliary restrictions on the sequence {un}. It is natural to call such an
equation an "equation of zeroeth order”.

The simplest difference scheme (1) for the differential equation of
first order, u” + Au = f, is a difference equation of first order. The
scheme (3) for the second—order differential equation, u”” + Au” + Bu = f,
is of second order.

Scheme (2)

- %F-u(x - h) + Au(x) + %F-u(x + h) = £(x)

for the equation u” + Au = f shows that the order of the difference scheme
may be greater than the order of the differential equation. 1In this
example the differential equation is first order, the corresponding
differential equation -— second.

3. General solution of difference equations. We will now describe
the structure of the solutions of the above difference equations. First we
consider the homogeneous equation

au + bun+1 = 0. (6)
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Let Y, be the solution of Eq. (6) satisfying the initial condition Yp =
1. Clearly u = aYn will also be a solution of the homogeneous equations
for any choice of the constant, a. It isn't difficult to show that any
solution of the homogeneous equation (6) can be represented in this form.
In fact each solution is uniquely determined by it's value at n = 0. But

the solution, Gn’ taking on the given value u., may be obtained from the

0’ -
expression u = aY, if we take the factor a to be equal to uy-

Conslder, now, the inhomogeneous equation (4)

+ =f .
aun bun+1 fn

-—_ * B
Let {un} and {un} be any two of 1it's solutions. Subtracting one of the

equations
a;n + b:;n+1 = fn’
*
au + bun+1 = fn’
~ * -
from the other we see that the difference uy - u =u satisfies the homo-

- - n -
geneous equation (6) au + bun+1 = 0. Therefore any solution {un} may be
written in the form

~ * - *
u =u_ +u_ =u +a¥
n n n n n
with an appropriate choice of the constant, a. It can easily be verified
that, on the other hand, for any arbitrary choice of a the expression u, =
*
u

o + oY, represents one solution of the inhomogeneous equation:

* *
au +bu_ = a(un +ay ) + b(un+1 + “Yn+1)

1

* *
= (aun + bun+1) + a(aYn + an+l) = fn +a 0= fn.

Thus we have shown that the general solution of the homogeneous

equation (6)

aun + bun+1 =0

takes the form

u_ + a¥Y ,
n n

where Y 18 a particular solution of this equation satisfying the initial
condition YO = 1, and o is an arbitrary constant. The general solution of
the inhomogeneous equation (4)



10 Difference Equations of First and Second Order Chapter 1

+ =
aun bun+1 fn

can be represented in the form

*
u = uy + uYn,
where u: is any particular solution of this inhomogeneous equation, and a
is again an arbitrary constant.

By analogous arguments one can prove an analogous assertion also for
difference equations of second order. We will not carry through these
arguments (the reader can congtruct them without difficulty), but only
formulate the final result.

The general solution of the homogeneous difference equation

aun_1 + bun + cun+1 =0 (@D)

may be represented in the form

u, = aYn + BZn,

where Yn and Z, are particular solutions of Eq. (7), satisfying the initial
conditions

3
[}
-O
™
1l
—

while a and B are arbitrary constants.
The general solution of the inhomogeneous equation (5)

+ =
au + bun cun+1 fn

can be represented in the form

*
u =u_ +a¥Y +BZ,
n n n n

where u: 1s any particular solution of this inhomogeneous equation.

All of the results of this section could be repeated verbatim for dif-
ference equations with variable coefficients, but we will not do this so as

not to encumber our presentation with unessential details.
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PROBLEMS

1. Prove that the general solution of the homogeneous difference

equation
+ =
2% bnun+1 °

with variable coefficients a, # 0, by, # 0, can be written in the form u, =
ay,, where y, is any particular solution not identically zero for all n,
and o 1s an arbitrary constant.

2. Prove that the general solution of the homogeneous difference
equation of second order

au +bu +cu =
nn n n+l

n n-1

with variable coefficients aj # 0, ¢, # 0, may be written in the form

n
=ay +
Yn Ya an’

where y, and z are any two particular solutions of this equation for which
the determinant

is not equal to zero.

3. Let y, and 2z, be any two particular solutions of the second-order
difference equation of problem 2. Prove that the determinant

Ya Yokl _ _
z z = YaZatl T V1
n n+l

either vanishes for each n, or is different from zero for all n.
4. At how many consecutive points must one specify values of the
solution of the difference equation

+ + + = f
auv, bun+1 CUnt2 dun+3 n’
a# 0, d# 0, so that there will exist one and only one solution, {un}
taking on the specified values at these points? What must we take as the
order of this equation?
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§ 2. Difference equation of first order

In this sectlon we will derive expressions for the general solution of
the difference equation of first order with constant coefficlents

+ =
au bun+1 fn
imposing fairly weak restrictions on f-
As shown in §1, the general solution can be represented in the form

* * a\"
u =u_ +aY =u + a(— —) s
n n n n b
where u: is any particular solution, and a is an arbitrary constant.

Thus the problem of finding the general solution has reduced to the
problem of finding any one particular solution u;.

1. PFundamental solution. First we will construct the solution for

one particular special form of the given right-hand side

£ = {0, n # 0,
n (1 n-=0.

To designate such a function one normally uses the Kronecker symbol
L 0, n#k,
k 1, n = k.
Then £ = 60,
n 0
The solution of the equation

n

ao + bun+1 = 50

we designate as G;:

- N
aG + b6 = 8p. (1)

The solution G, is called a fundamental solution of the equation

au + bun+1 = fn,
because, as we will see on page l4, in terms of G, one can write particular
solutions of this equation for different, failrly arbitrary, right-hand
sides f .
Thus, we want to find any solution of the following three groups of
equations:
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I. aG + bGn+l =0 for n < ~1.
II. aG0 + bGl = 1.
111, aG_ + bG =0 for n > 1.
n n+l -

Let G, = 0 for n < 0. Then all equations of Group I will be satisfied.
From Eq. II we find that G| = 1/b. The equations of Group IIL may be
rewritten as a recursion equation, (R —(a/b)Gn, from which we find,
sequentially,

We now write out a summary of equations determining G,

0 for n < O,

_iay for n > 1.
a b

This is one solution of Eq. (l). Adding to it the gemeral solution
A(-a/b)" of the corresponding homogeneous equation aup + bugy; = 0, we get
the general solution of Eq. (1):

G = (3)

The fundamental solution (2) falls out of the general Eq. (3) when A = 0.
2. Conditions governing the boundedness of the fundamental

solution. If [a/b[ = 1 then, for any value of the constant A, we get a

fundamental solution, G,» bounded in absolute value both as n + + « and

n + - ® Let us extract, from the general expression (3), a bounded

fundamental solution, G , in the case |a/b| # l. If |a/b] < 1, |-a/b|"

grows without bound as n + = =, Therefore one gets a bounded solution only

for A = 0 (Fig. 2, a). It is given by Eq. (2).
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Fig. 2.

If fa/b, > 1, a bounded solution is obtained only for A = 1/a (Fig. 2,
b):

o)
/l\
ol
S——
=]
IA
<

¢ = (4)

=1
=
=]

IR%
—

3. Particular solution. A particular solution of the equation
au_ + bun+1 = fn (5)

with arbitrary right-hand side may be written in the form of the series
(6)

where G, is any fundamental solution, so long as the series converges.
Let us show this using the equation

n~k n
a6y *+ B6o gy = 8 (= &)

which is obtained from Eq. (1) if, in (1), we everywhere replace n by
n-k. Substituting the convergent series (6) in the left-hand side of Eq.

(5) we get
«© an
+ = =
gt kizm Coxtic * kg?ﬂ k1

n
= k=§u (ac__, +bC _  )f, = k=§m Spf, = £ -
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Series (6) may turn out to be divergent 1f we make no assumptions as
In

to the behavior of the right-hand side, f, of the difference equation.

fact, 1f f, = (-a/b)K, then

n
A(— '%) for n < k,
Cpmkfi =
1 a n
<A - —><- —> for n > k+l,
a b -

and series (6) for fixed n contains an infinite number of identical terms,

all different from zero.
Theorem. ZLet |a/bl %1, let G, be a bounded fundamental. solution and

fy bounded in modulus, i.e., {fkl < F. Then the series

%0 T Z Gn-kfk

L

certainly converges.
Proof. We shall only deal with the case |a/bl > l. Afterwards the

reader can, without difficulty, consider the opposite case.
Under our assumptions each term of the series

Rt ®r a n-k
w = § 6 _f = 7§ [—<— —) ]f
noole M k 'k ken L2 b k

can be bounded above, in absolute value, by a term of the convergeéent

geometric progression

n-k

.

a
b

1 a 0k ’
YA RS

From this follows the convergence of series (6), as well as the estimate

k-n
£ (7

b N
lal - [b]”

F
la a

£ Tal

o
k=n
which shows that the solution (6) is bounded.

Other bounded solutions of the equation

+ b = f
aun un+1 n
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do not exist, since any solution may be obtained from (6) through the
addition of a solution, Gn = a(-a/b)®, of the corresponding homogeneous
equation. The solution {u } must be bounded, since it is the difference of
two bounded solutions; but this 1is possible only for a = O.

PROBLEMS

1. Find the general solution of the equation

Solution. The general solution of the corresponding homogeneous

equation 2u - u = 0 has the form u_ = a2™. We will look for a
n n+l n

particular solution, u;, of the form u: = C5™ with undetermined

coefficient. Substituting u: = C5" into the equation we get

n n+1)

(25" -5"c=5" c¢=-1/3.

Thus
n

5 n
e + a2 .

(Note that, to write the particular solution u: in the form of series (6)
is impossible, since its general term does not tend to zero, and the seriles

diverges.)
2. Find a particular solution u: of the equation

n
Zun U 2.

*
Hint. Look for a solution of the form u = cn + 2"
3. Find particular solutions u: of the equation

2 - = f
Yn un+1 n
in the case where the right-hand side has the following special form:

a) f =1,b) f =n,¢c)f = nZ, d) £ =1+ - nZ.

4, Find particular solutions u: of the equation

if the right-hand side has the following special form:
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a)f =1, b)Y f =n, ¢c) £ = n2.
n n n

§ 3. Difference equation of second order.

In this section we will derive expressions for the general solution of
the inhomogeneous equation with constant coefficlents

au . + bun + cu 4= fn. (1)

In §1 it was shown that the géneral solution has the form
*
u=un+u, (2)

where uz is some particular solution of the given Inhomogeneous equation,
and

u = oY + BZ
n n n
is the general solutlon of the corresponding homogeneous equation

au + bu_ + cu = 0. (3)
n n

n—-1 +1

First we will find an expression for the general solution of the
homogeneous equation (3), and then a fundamental and particular solution of
the 1nhomogeneous equation.

1. General solution of the homogeneous equatiom. Recalling that in
the case of the first—order difference equatfon there exists a solution of
the form u, = q", let us try here also to find a particular solution in the
form of a geometric progression. Substituting the expression u, = q" into
the difference equation, we convince ourselves that it really will be a
solution 1f q 1s a root of the quadratic

a + bg + ce? = 0, (4)

called the characteristie equation. The roots of this equation may be
distinct or multiple. Let us consider these two cases consecutively. If
the roots qy and qy of the characteristic equation are different, we can
find, in the form of a geometric progression, not one, but two independent
particular solutilons:

(1) .0 (2) n
Y 1 Yn T 92
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The linear combination

= _ (1) (2) _ n n

u o =ou 7+ Bun = aq; + Bq, (5)
of these two solutions with arbitrary coefficients a and B also will be a
solution of the homogeneous equation. Let us show that it 1s the general

solution.
In fact any arbitrary particular solution, ;n’ of the homogeneous

equation, taking on at n = 0 and n = 1 any prescribed values GO and Gl’ may
be written in this form. To accomplish this it 1s sufficient to define a
and B via the equations

i.e., to set

Ypdy ™Y U T Ydy
g =——=, Bg=—,
9~ 9 BQ =9

In particular, Y, and Z,, defined in §1 as the solutions of the
homogeneous equation satisfying the conditions

have the form

v - i) n 9 &

noq, - q 9 a, - q; 2’
(6)

7 = 1 qn 1 qn

n 9 -9 19 -a?

From Eqs. (6) we see that these equations are inapplicable in the case
of wmultiple roots q1 = qz. Let us now consider this case.

When q, = q, one particular solution can again be written in the form

u = q?. To find a second, let us make, in Eq. (3), the substitution u,
= ynq?, after which we get for y, the equation

+b + cq? = 0.
-1 T PN T Y
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As is well known, a/c 1s equal to the product, and b/c the sum with

reversed sign, of the roots of the characteristic equation (4). Since both

of these roots are equal to qq,
a_ 2 b__
c =9 o= "2,

as a consequence of which the difference equation may be rewritten thus:

2 - 2 + 2 =0
a1y T 269V, FeaY oy = 0

or more simply:

-2 + = 0.
y yn yn+1

n-1

Rewriting this equation in the form

Yn-1 ~ Ya T Y T Yosr?

we see that the difference Yn-1 = Yn does not change with n. Thus any
arbitrary arithmetic progression is a solution. For us it iIs sufficient to
find any single solution, and we take, as this solution, the arithmetic
progression y, = n. Recalling that we were seeking a u, in the form u, =
ynq? we find that, among the solutions of the equation au, _y + bu, + cupyg
= 0, there is a solution
(2) _ =n
u o= mnqg.
Thus, In the case of multiple roots q1 = 4d3» supplementing the

particular solution u(l) = q"' we have found another, independent,
2) - nql.
The linear combination

particular solution uy

n n
u = aq + Bnq1
with arbitrary constant coefficients is also a solution of the homogeneous
equation, and in fact any arbitrary particular solution may be obtained
from this equation, .appropriately selecting a and 8. In particular, the
solutions Y, and Z,, in the case of multiple roots, take the form

v _ n_ n
n- T T My

M

1
Z =—nq

n 1
n q 1

n-
=nq, ".



20 Difference Equations of First and Second Order Chapter 1

It is interesting to note that Egqs. (7) can be gotten from Eqs. (6},
the expressions for Y 6 and Z, when the characteristic equation has unequal
roots. In that case we had, for Y, and Z,, the equations

-1 _ n-l
v = 92 o - 9 qn_qqql i)
- - - — s
noq,-q 1 g -q "2 “l172 q, - q
n_n
1 n 1 n_ 279
Z == - q + = Q=7 — o °
n Q-9 9% "9 @ ™9

Let us now make q, approach Q5 Then the expressilons

n-1 n-1 n n

QL 9 179
— and —

%79 B -9

tend to certain limits, i.e., respectively, to (n - l)q?-2 and nq?—l. Thus

we see that, in the case of multiple roots, Y and Z, take the form 7.

We have, then, constructed the solutions, Y, and Zn’ in all cases
which may arise when a and ¢ differ from zero. In the process we have
shown that 1t is always possible to write out, in explicit form, any
solution of the homogeneous second-order difference equation in question.

It's interesting to consider in more detail the case where, for real
coefficients a, b, and ¢, the equation a + bq + cq2 = 0 has complex
conjugate roots q; and qp. We will show that, in this case, the general
solution of the homogeneous difference equation (3) may be written in the
following form

n n
i 1y (\B) cos mo+ vy (\2) stn no, ®)

where ¢ 1s determined by the equation

b
2ac

cos ¢ = -

and Y] and Yy are arbitrary constants.
We get, for q) and qp, the explicit expressions

o)

b 2
q1= + 1 1—< > ’
2/ac 2/ac
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% " [_ z.tf,z ) iﬂ;z’zs)z]'

In our case of complex roots, afc > O, |b/(2/§€)' < 1. For this reagson we

a

q =\j§ (cos ¢ + 1 sin ¢),

may write

- b . cos ¢,
2/ac

after which 9 and 9, take the form:

(cos ¢ = 1 sin ¢).

a
N

il
e

We now substitute these values of q; and q3 in Eq. (5).
For a = B = 1/2 we get the particular solution

n
uﬁl) =(,J§> cos né,

1/(21), B = -1/(21), the particular solution

n
u(z) =<J§) sin nd.
n c

A linear combination of these particular solutions, with arbitrary

]

and, for a

constant coefficients y; and vy, gives the general solution, (B), above.
(The fact that it is possible to write, in this form, the particular
solution taking on, for n = 0 and n = 1, any prescribed values can easily
be verified by the reader independently.)

2. General solution of the inhomogeneous equation. Fundamental
solution. Now let us study the Inhomogeneous difference equation

au_ + bun + cu L, < fn’ 9
limiting ourselves to the case (important below) where, among the roots of

the characteristic equation (4), there are none equal to unity in modulus:

|q1| #1, |q2| # 1. First we will look for a solution of the inhomogeneous
equation (9) with right—hand side f, of the special form

h
i
[=c]

=]
1
PEEN
.‘O
=1
n
SD'O
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This solution will be designated as G, and called "fundamental”. We will
look for a bounded fundamental solution, i.e., a bounded solution of the
following group of equations:

. + + = -1.
I aGn_1 bGn cGn+1 0 for n<-1

. + +cG, = 1.
II.  aG_ + b6, + cG =1

. + bG + cG = 1.
IIT aG 1 Gn c o+l 0 for n >

Consider, first the case of non-multiple roots, q; # g3. In this case
the general solution of the hbmogeneous equation (3) has the form

= aq® + Bq"
u = aqy q5¢

For this reason each particular solution of the homogeneous equation I can
be written in the form
..n ..n
Gn = a’q) + B 9, for n <0,
where a” and B” are appropriately chosen constants. So also the particular
solution G, n > 0, of the homogeneous equation IIT may be writen in the
form
.. M .. 1
Gn =a g + B q, for n >0
with corresponding constants a”“ and B"”.

In the above case q, # 55 lql' 1, |q2| # 1 the following variants
are possible:

a) Ja, | <1, la,l > 15
b) layl <1, la,| < 13
e) la,| > 1, la,] < 15
d) fq,] > 1, la,] > 1.

We now construct the bounded fundamental solution G, in case a). From
the boundedness condition on Gn for n + ~ it will be seen that a” = 0, and
from the boundedness condition on G, for mn » = it follows that B°” = 0.
Therefore

B‘q; for n <0,

-

2 q? for n > O.
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For n = O both of the last equations must give one and the same value Gj-.
Hence B” = a””. We choose B” so as to satisfy II:

-1
aB'q2 + bB” + cB’q1 =1,

B’= -L~-

aq, + b + cq,

The denominator of this fraction is different from zero:

-1 -1
aq, + b+ cqy = (aq2 +.b + cqz) + c(q1 - q2) = c(q1 - qz) # 0.

Thus,
1 n
——7 43, 10,
aq2 + b + cq1
Gn =
1 n
qq» n > 0.

B —
+b+
aq , b cq,
We have constructed the bounded fundamental solution in case a) (Fig. 3,a).

ba bn

a) 4) .
Fig. 3.

It should be noted for future reference that, under the conditions

max('al, |b|, lc') >B >0,
(10)
-1 8

a4 l <l-35,

where B > O and 8 > O are certain prescribed numbers, we have the bound

'qll <1l- % ’

4 8 '“'
le | <cgg (1 -5 . (n
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k& &k x kX
To derive bound (11) we note that, by virtue of the first condition
(10), it must be true that either |a| > B/4, 'cl > B/4 or /52 - hac >
VB2 - B2/4 > B/2. Clearly also

-1 -1 -1 ]
aq, +b+ecq = c(q1 - qz) = a(q2 -q, ) = /b? - 4ac,

1

1

2 - 8/2
q]_—qzl?.lqzl - |q1'_>_(]__e/2) ¢ )

- (1-8/2) = 8 253

> 0,
1 -1 -1
‘qz -9 I > 8.

From these relations one gets the bound

BO
>
4

aq;1 + b+ cq,

and Eq. (1ll).
' ER

In case b) it follows from the boundedness condition on G,» for n >

- that o = B” = 0, so that
0 for n < 0,
c =
n P POt
o’"qy + B 95 for n > O.
The condition Gy = 0 implies that a”” = ~-B"". We choose the coefficient
a”” so as to satisfy equation II:
.o 1
a’’ = .
9 79

The bounded fundamental solution (Fig. 3,b) in case b) thus has the form

0 for n < O,

n 1

n n
c(ql — q2) (ql qz) for n > 0.

In case ¢), by analogy with case a) the bounded fundamental solution

has the form
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Case d) 1s analogous to case b).
If the roots are multiple, q; = q3, then, in the construction of the

bounded fundamental solution, instead of the equation
_ n 8 n
Un T %y T Py
one uses the equation
- ad® + 8 n
u, = aqy nq;.

In the case 'qll < 1 we get, for Gn’

0 for n < O,
Gn =
1 n-1
o Pay for n > O,
and in the case lqll > 1 we get
1 n+l
-7ty for n £ O,
Gn =
0 for n > O.

Thus we have treated all the variants one may encounter in the
case Iql' 1, |q2' # 1, a# 0, ¢ # 0, and have found that a bounded
fundamental solution exists. From the expression exhibited above one sees
that this solution decreases exponentially for n + *«:

le | < Gp'nl, (12)

where G > 0 and 0 < p < 1 are constants. The constant p may be assigned
any value satisfying the inequality.

0> max[min(|q1|, ﬁ‘J) win(l,l, 1;7)} :

We have examined the question of the existence and form of the
fundamental solution, 1.e., the solution of the inhomogeneous equation
(9). For an arbitrary right-hand side {fn} a particular solution u: may be
written as the sum of a seriles,

N o
u = kzdw 6 fis (13)
so long as the series converges. This can be verified exactly in the same
way as the analogous fact for first—order difference equations in §2. From
bound (12) it follows that series (13) certainly converges if the right-

hand side {fk} is bounded, 'fkl < F. 1In this case



26 Difference Equations of First and Second Order Chapter 1

* * n ®
ul=1 716 £l<¥ Je e+ 1 Je £]c<
n Keso n-k k ~ ke n-k k N n-k k
2 onk o ke 26
<er| T o+ Zp“il_ F. (14)
k== =n+1 P

For Eq. (9), where Iqll # 1 and 'qzl # 1, the solution {u:}, given by Eq.
(13), 1is the only hounded solution for the given right-hand side. If this
were not the case any second bounded solution would be obtained by the
addition of some bounded solution, {;n}’ of the homogeneous equation (3).
But, from the expression for the general solution of this equation, one
sees that for |q1| 1, Iq2| # 1, the unique solution bounded for —= < n
<® is u, = 0. 1In particular, the bounded fundamental solution G, for |q1|
#1, |q2T # 1 is also unique.

We note that, 1f condition (10) is satisfied then, using bound (11),
from (13) it 1s easy to derive

16
< — sup 'f l. (15)
B892 m m

3. Estimate of the fundamental solution in terms of the coefficients
of the difference equation. TIn Sect. 2 we have seen that the character of
the behavior of the fundamental solutlion G, of Eq. (9) depends crucially on

the location, In the complex plane, of the roots, q. and q2, of the

1
characteristic equation

P(q) = a + bq + cq2 =0 . 4)

Especlally important in practice is the case where a, b and c are real

while one of the roots, 4, or q,, 1s greater than, and the other less than
one in modulus:

Yco, 0<¢oc<1. (16)

la,l <o, o,
Here we will point out a convenient necessary and sufficient criterion for

such a disposition of the roots, applicable without their explicit computa-
tion.

Theorem. Of the two roots,q; and q,, of Eq. (4) with real
coeffieients, one is greater than, and the other less than one in modulus
if and only if

lb ~ la + c

8 0 17
bl + la|l + |c Z- > ! an
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for some ©; and further for any 9 such that (17) is satisfied

£} -1 9
la 1 <1 -2, )q2j<1-2. (18)

Proof. We note that

P(1) « P(-1) =(a+c+b)lat+tc-b)=la+c|?2-0b2=

= (la+cl - Ibl)(la + c| + Ibl).

If (17) is not satisfied for any 6 > 0, then the numerator of the fraction
(17) is either equal to zero or negative.

In the first case P(1)P(-1) = 0, i.e., either 1 or -1 is a root of Eq.
(4), and (16) is not satisfied.

In the second case P(1)P(-1) > O, i.e., at the points q = -1 and q =1
the polynomial P(q) takes on values of the same sign. Thus the polynomial
P(q) cannot have, on the interval -1 < q £ 1, just one root; there must be
either two or none.

If there are two, then both are less than one in modulus, and (16) is
not satisfied. 1If, on the interval [-1, 1], there are mo roots, then
either there are no real roots at all, but only complex conjugate roots of
equal modulus, or else both real roots have modulus greater than one, and
(16) is again not fulfilled.

1f, for some 8 > 0, condition (17) is satisfied, then P(-1)P(1) < O,
and the values of P(q) at the ends of the interval [-1, 1] have different
signs so that, on this interval, there is precisely one root. Then the
other root, also real, lies outside this interval, so that for some p < 1
(16) is satisfied. We will now sharpen this last result and, in fact, will
get just the cited bound (18).

From (17) it follows that

2
bl = la+cl > o(Ibl + lal + lcl) > 2lbl + 0 « lal + [6 = ()] « lel.
Therefore
2
bl « (1-3) > la+el+[o- D]+ lel 2

8,2
>lavei-o+ @)Y -
Thus it is clear that the expressions

H-atcl-9) +p(1-9),

P(l -3
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(1= =ascli-D - p(1-3

have different signs so that the polynomial P(q), on the interval
-(1 -8/2) <q<1-28/2, has a root 9> 'qll <1 ~6/2. Clearly the
quantities

-1
4

-

ql ’ q2 -

inverses of the roots of Eq. (4), obey the equation
a +bq +c’(q7)% =0

with coefficlents a” = ¢, b~
(17):

b, ¢” = a, satisfying the same condition

0

o'l = Ja + | _ Il = fa+ef
s Tal+ 1ol T+ fal 1l 2° 7%

Therefore one of the roots qi, q% satisfies the inequality lq" <1 -8/2.
This root can only be qé = 1/q2, which completes the proof of bound (18).
For equations with real coefficients subject to condition (17),
condition (10) and thus also bound (15) are automatically satisfied for the
bounded particular solution,uz, of the inhomogeneous difference equation

9).

PROBLEMS

1. Write the general solutions of equations

un__1 - 5un + 6un+1 =0, n=20,+1, ...,
5

U1 T 7Y, + U = o, n=0,+1, ...,

9un_1 + 3un + Un o 0, n =0, +1, ...

2. Find a solution of the equation

5
u T Y, +u = 0,

n-1 n+l

which 1s bounded for n * +* and takes on the value u, = 1.

3. Write out the thousandth term of the sequence Ugs Ups Ugs eeey the
first two terms of which are equal to one, u, = 1, u = 1, while the
following terms are defined by the recurrence relation
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U S U + u s n=1, 2, ...
4. Find the necessary and sufficient conditions which one must impose
on the roots of the characteristic equation so that the difference equation

au + bu + cu
n

-1 =0, n =0, +1, 2, ...,

n+l
will have at least one nontrivial bounded solution. (The solution u, =0
18 called "trivial”.)

5. Find the conditions which must be satisfied by the roots of the
characteristic equation, necessary and sufficient to guarantee that all
solutions of the equation

au + bun + cu = 0, n=0,+1, ...,
will be bounded.

6. What must be true of the roots of the characteristic equation if
all solutions of the equation auy_j + buy + cuyy; = 0 are to tend to zero
as n > «?

7. Find any particular solution of the inhomogeneous difference
equation

5
u -3y +u =f, n =0, +1, ...,

n-1 n+l n

if the right hand side has the following special form:

a) f,=1. Hint. Look for a solution of the form uj = A.

b) f, = n. Hint. Look for a solution of the firm u: = A + Bn.

c) £, = 3%, Hint. Look for a solution of the form u: = A - 30,

d) frl = cos n. Hint. Look for a solution of the form u: = A sinn
+ B cos n.

8. Construct any bounded fundamental solution of the equation

+ =f .
Yn-1 “n + Yl fn
Do there exist unbounded fundamental solutions of this equation?
9. Construct any fundamental solution of the equation

w1 2un + T fn.
Is there any bounded fundamental solution?
10. Under what conditions on the roots of the characteristic equation
does the difference equation
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aun_1 + bun + cun+1 = fn
not have bounded fundamental solutions?
11. Using the bounded fundamental solution, write out that solution
(ug, up, ..+, uy), of the equation

u -3 u, +u = f n=1, 2, ..., N -1,

which satisfies the condition ug = ¢, uy = ¥, where ¢ and ¥ are given
numbers.

12. Find all the eigenvalues, p, and the corresponding eigenvectors ¥
= {Wm}, m=20,1, ..., M, of the operator Ayy,

A b =0y,

XX

where Axx is the operator which maps each net function, u = {um}, into the
net function v = {vm}, via the relations

1
m T ;;-(um+1 - 2um + um-l) 0<m<H,
Vo = Vi = 0, Mh = 1.
Answer:
4 Tk k) knm
P =" ;;-sinz o Wi =sin 45—, k=1, 2, ..., M-1.
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Chapter 2
Boundary-Value Problems for Equations of Second Order

Boundary-value problems of the form considered here arise when
difference schemes are used for the numerical solution of ordinary and
partial differential equations.

§4. PFormulation of the problem. Good-conditioning criteria.

1. Formulation of the problem. The simplest boundary-value problem

consists in the construction of a net function {“n}’ n=20,1, ..., N,
satisfying the difference equation

au . + bnun + cu = fn’ n=1,2, ..., N -1, (1)
at the internal points 0 < n < N of the net interval 0 < n < N, and taking

on the given values

u, = 6, u. =¥ 2)
on its boundaries. A boundary-value problem for systems of difference
equations will be formulated in Section 7.

Studying the equation a u +bu 4+cu =f , a #0, ¢c #0, we

n-1 nn n ntl n
remarked that, for any arbitrary choice of values of T at any two
ad jacent points, for example for an arbitrary choice of ug and u;, a
solution {un} is determined and, moreover, a unique solution.

It's interesting to consider whether one can uniquely define a
solution if its values are given at two, not necessarily adjacent, points
as in the boundary-value problem (1), (2). The following example shows
that problem (1), (2) may turn out to be unsolveable.

Consider the boundary-value problem

U Ty + U< 0, n=1,2, ..., 299, 3)

u. = 0, u =1 %)
The general solution of Eq. (3), as shown in §3, can be written in the form

n nn
cos 5— + Y, sin +— .

- n
U = v 3 2 3
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From the condition ug = 0 it follows that Y, 0. To satisfy the condition

Uggp = 1 one must fix Yy via the equation

300m
3

u = Y2 sin 1.

300

But this equation 1s unsolveable since, for any vy, the left hand side is
equal to zero, not one.

If, instead of the condition ujgg = 1 we were to set uggp = O
(leaving, as before, ug = 0), then again we would have to take Y; = 0,
while Y5 in this case would be arbitrary:

300w

Y2 sin 3 Y2 *«0=0.

We see that the boundary-value problem (1), (2) may, in general, not have
any solution, or the solution may turn out not to be unique. But, be that
as it may, boundary-value problems are often encountered.

It turns out that there is a rather wide class of difference equations
for which the boundary-value problem (1), (2), not only has always one and
only one solution, but 18 also only weakly sensitive to rounding errors for
given right-hand sides ¢, ¥ and {fn}, i.e., the problem is "well-
conditioned”.

2. Definition of a well-conditioned problem. Ordinarily in studying
difference schemes for the approximate solutions of differential boundary-
value problems one considers not a single, isolated problem, but a whole
family of such problems, arising for smaller and smaller net step-sizes.
The number, N, can then be considered a parameter upon which this family
depends. Refinement of the net corresponds to an increase in N.

We will say that the difference boundary-value problem (1), (2) with
coefficients ap, by, cp, bounded in totality, 'an|, Ibn|, |cn| < K, is
well-conditioned if for all large enough N it has one and only one
solution, {un}, for arbitrary right-~hand sides ¢, ¢ and {fn}, and 1f the
numbers uUp, Uy, ..., uy, constituting the solution, satisfy the bound

gl < ma 1o, [vl, ma I} )
where M is a number not depending on N.

* k k k k &

Sometimes one adjoins to the class of well-conditioned problems also
those problems for which M cannot be taken to be constant, but is allowed
to increase no faster than some given power of N, e.g., M = CN or M = CN2.

Our definition of good conditioning 1s equivalent to one which is
customary in the theory of systems of linear equations, where the measure
of conditioning of a system of equations Ax = g with matrix A is taken to
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lA'lll, the product of the norms of the matrices A

be the quantity IIA" ¢
and A1,
PR

Fulfillment of 1nequality (5) indicates that the sensitivity of the
solution {un} to errors (for example measurement or rounding errors)
occurring in the given right-hand sides ¢, ¥ or {fn}’ does not grow with
increasing N. 1In fact if, instead of ¢, ¥ and {fn}, one were given,
respectively, ¢ + Ad, ¥ + AY and {fn + Afn}, then the solution would change
by {Aun}. This change, because of the linearity of problem (1), (2), is
the solution of the problem

a Au + b Au + ¢ Au = Af , 0<n<N,
n n-l n n n ntl n

Auo = Ad, AUN = AY
and by virtue of (5) satisfies the bound
|au_| < ¥ max{|as], |aw|, max|at_|}.
m

By far not every boundary-value problem (1) possessing a unique solution is
well-conditioned. For example if, to the right-hand-side of the equations

U 5un + 6un_1 = fn’ 0<n<N,

one adds the increments

Af =0, AY = 0, A = €,

the solution {un} will change by the increment

Au = 2@ l_:;lglélf:i Ad
n 1- 3y

Hence
- 1
AuN_IZZ .ie'

The perturbation € for given ¢ has induced, In the solution, a perturbation
which grows rapidly with increasing N. The quantity M in inequality (5)
clearly cannot be taken to grow more slowly than the exponential

(ar3y « 2V
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3. Sufficient condition for a well-conditioned problem.
Theorem. If the coefficients a,, b, and cy satiefy the condition

oo > la ] + le | +8,  s>0, (6)

the problem (1), (2) is well-conditioned and, moreover, the solution {un}
satisfies the bound

lunl < max {'¢|, |¢|, % max lfm[} . 7

m

Proof. We first assume that, for given ¢, ¥ and {fn}, problem (1),
(2) has a solution {un}, and establish that thils solution satisfies (7).
Suppose that the largest of the quantities l“n‘! n=0,1, ..., Nis
'“k,’ If k = 0 or k = N inequality (7) is obvious, since ug = ¢, uy = V.
It remalns to consider the case 0 < k < N, |uk| 2_|“n|' In this case,
taking account of (6), we may write

|b +£ ] <

k' : ’“k' = '"ak“k—l S ] k|

S.IEkl * l“k_ll + lckl * l“k+1' + |fk| 5_(laki + lck|]'“k| + lfkl ’

£, ] £l
'“n| L '“kl < o 1= Tagl = Tegl L—% >

and here also (7) 1s satisfied.

It remains to show that problem (1), (2) has one and only one solution
{“n} for any given right-hand sides ¢, ¥ and {fn}-

Problem (1), (2) may be regarded as a system of N + 1 linear equations
for precisely the same number of unknown quantities-ugp, uy, ..., uy
Therefore it 1s necessary to establish that the determinant of this system
1s different from zero. As we know from algebra, the determinant of a
sv-tem 1s different from zero 1f and only if the corresponding homogenecus
system has only an identically vanishing solution. But for the system (1),
(2) the homogeneous system is obtained by setting ¢ = ¢ = fm = 0. From
bound (7), which has been proven for every solution {un}, it will be seen
that in this case there exists only the trival solution u = 0.

The following condition, also, 1s sufficient to guarantee that problem
(1), (2) is well-conditioned:

g = lagl = lel
T FTa, 7 Te,r 22 % max laglu oyl feg[b 250, (®
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where 6 and B are constants not depending on N or n. In fact from (8) we
get (6) with the constant

s =06(lp | +lal+]c!)>es>0.
For this reason (7) takes the form
Iunl S_max{l¢l, |w', %ﬁ m:x 'fm’}. (€]
4. Criterion for a well-conditioned boundary-value problem with

constant coefficients.
Theorem. In order that the boundary-value problem

au__, + bun + cu o= fn, 0<n <N,

(10)

with constant coefficients be well-conditioned it is necessary and
sufficient that one of the roots, q; and qqs Of the characteristic equation

a+bg+cg?=0 (11)

should be greater than, and the other smaller than one in modulus, i.e.,
that they should satisfy an inequality of the form

layl <1-7, Iyt <1-5, (12)

where 8 ig some positive constant.
If the coefficlents a, b and ¢ are real the criterion for good
conditioning, Bq. (2), by virtue of what has been shown in 3§3, can be put

e LR a»
bl + la| + |c| —

The convenience of criterion (13) consists in that fulfillment of this

into the convenient form:

criterion can be checked without computing the roots 9, and a,-

Criterion (12) will be derived in 486, below.

5. Criterion for a well-conditioned problem with variable
coefficients. Criterion (12), which guarantees a well-conditioned
boundary-value problem for difference equations with constant coefficients,
the criterion formulated in the preceding section, can be generalized to
cover the problem

+ =
anun_1 hnun + cnun+1 fn' 0<n<N, (1)
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uy = 9, u, =9 (2)

with variable coefficients so long as these coefficients vary sufficlently
"smoothly”. We will formulate this generalization exactly assuming that
the coefficients of (1) are bounded in totality, lan| < M, Ibn' <M,

Icnl <M, and that its coefficlents a,, b, and ¢, do not become small,
simultaneously, for any n:

dn = max {'an|, 'bn|, |c '} > B> 0.

n
The constants M and B , above, are not to depend on N or n.

Theorem. Suppose that the coefficiente of problem (1), (2) satisfy
the conditions

w
k - k-2
|a,, - a,| < D| = | , o, ~ | < DI - ,
(14)
o
k -2
|ck - czl S_Dl N , D> 0, w > 0.
Then, to guarantee that problem (1), (2) ie well-conditioned, it is
necessary and sufficient that the roots, 1, and 9> of the quadratic
2 .
an + bnq + cnq 0, 0<n<N, (15)
satisfy a condition of the form
8 -1 8
'q1|<1-§, |q2l<1—~2—, (16)

where § > 0 i@ gome number not depending on N or n.

Conditions (1l4) express the requirement that the coefficients be
smooth. They are fulfilled, for example, 1if

a_ = a(n/N), b = b(n/N), c¢_ = c(n/N),
n n n

where a(x), b(x) and c(x) are any functions defined on the interval
0 <{x <1, and satisfying the Holder conditions:

la(x) - a(x')l S.D'x - x w’
|b(x) - b(x")] < plx - x*|%,
<

lc(x) - c(x’)l D'x - x’lm.
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Equation (15) 1is the characteristic equation constructed for the
difference equation

+ + =
aus_1 bus cuS+1 0

with constant coefficlents a, b and c, coinciding in value with the

variable coefficients a,, b, and ¢, for some fixed n, i.e., a = ay, b = b,
c=cp.
If a,, b, and c, are real coefficients then, by virtue of 383,
condition (16) may be replaced by the easily verifiable condition
b | = la_+ el
17)

o]+ Ja ] + T 12°7 %

where 6 does not depend on N or n.

The validity of criteriom (14), (16) or (14), (17) will be proven in
§6. There also it will be shown that smoothness conditions (14) must not
be ignored.

Note that 1f lan + Cn| = lanl + |cn|, condition (17) 1is identically
the same as condition (8) and guarantees good conditioning even without the
assumed smoothness and rcality of the coefficilents.

6. Justification of the criterion for a well—conditioned boundary-
value problem with constant coefficients. We will now prove the validity
of the criterion, derived in part 4, for good conditioning of the boundary-

value problem

au 1 + bu + cu 1 =f , 0<n N,
(10)

i.e., more specifically we prove the following assertion. In order that
problem (10) be well-conditioned it is necessary and sufficient that the
roots of the characteristic equation

a+bqg+ecq? =0 (11)
satisfy inequalities of the form
0 -1 6
'qllsl_i’ ,qzlsl'-i: (12)
where © is some positive constant.
Sufficiency. We represent the solution of problem (1) as the sum of

two net functions, writing

u =u +4u, (18)
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where {un} is the solution of the problem

au _; + bun + cu = fn’ 0 <n <N,
(19)
U0=¢y UN=¢,
and {; } the solution of
n
au__y + bun + cu T fn’ 0<dn<N,
(20)
u0=0, uN=0.
The solution of problem (19) has the form
- n n
u, = Aq1 + Bq2,
where A and B are determined via the conditions GO = ¢, GN IR H
=N N
T = b qu n o, v - ¢ql n-N (21)
n -1\ 91 1w %2
1= (qa7) - (a9, )

Defining p = 1 - 6/2 we get, from (21),
_ max( ot N-n
lu 1 <2 _(-L.P__ll L max (9], lwl). (22)

Therefore for all N > 2 and n =0, 1, ..., N,

- 2 4
lu I <= max(lol, Iyl) =3 max(lsl, lul). (23)

If n'and N - n are taken large enough the coefficients in inequality
(22) can be made arbitrarily small. For example for n > 6/6, N - n > 6/6

o0 = (1 - 0 (&

Here we have used the well known inequality*

b -1 1,77
AL fall—a" ]+ b{1+5b ) -
a b/ — a+b
A simple proof of the inequality (1 - a~haa + vk ¢ l, a, b, > 1,
may be outlined as follows: gn[(l - a-l)a] = a ¢ gn(l - a_l)

<asCayl=-, a-ah2cel, simtlarly 4+ 5P e,
(Translator's note.)
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for a = 2/6, b = 2. Thus
N—
max(o”, o H((i):*’ 1 <L,
Lo 2N S T g 1O

so that from (22), for n > 6/8, N -~ n > 6/8 we get

5| <% max ([o], |v]) (24)

We now bound the solution {;n} of problem (2). TFirst we

represent u  as the sum

~ *
u =u_+u, 0<n <N,
n n n - 7=

of the solutions of two problems — the problem

fn’ 0 <n <N,

* + b * + * (25)
au u cu =
n-1 n 1 0, n<0orndN,
and the problem
o+ +cu . = N
au’ . bu cu’ 0, 0<n <N,
(26)
A * l__*
uy = "4y, ug = -

*
A bounded solution {un} of problem (25) exists, 1s unique, and 1s subject
to bound (15) §3:

* 16
u, S_;g;'m:x 'fm" (27)
where B ='max(|a|, 'b', lc').
In particular
* 16
u { —— max|f
ol = B8 o I m' ’ 277)
* 16
uy 5};;; m%xlfmi .

For a bound on the solution {u;} of problem (26), a problem of the same
fo:m as (12), we use Eq. (21) and bound (23), simply substituting

-u, and -u for ¢ and ¥:

0 N

'u;l SVg'max(

Now in addition taking note of (277):
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I nI ;;; m;x 'fml. (28)

Combining bounds (27) and (28), Eaking into account that 8 < 2, we get

~

u
n

< ———'max If I (29)
B3

Consequently, for the solution {un} of the original problem, combining
bounds (23) and (29), we get

< 128 max lfm| + % max (| ¢/, Tyl). (30)

B83 m

u
n

|u
n

Bound (30) guarantees good conditioning, fu,l < M max(l¢l, {wl, maxlfml),

|
n
where one may take for M
Wl 8
B@3
In the case n > 6/6, N - n > 6/8, one can sharpen bound (30) using, in
place of inequality (23), inequality (24):

128 1
v, S;;max [£a] + 5 max(lel, Tvl) 31)
or
|un| < M, max |fm| + % max([¢l, lvl), 31°)
m

where M; depends only on 6 and B, not on N. Estimate (31) will be used in
§6.

Necessity. We note, first, that if condition (12) is not fulfilled
for any positive 0, than the roots of the characteristic equation

P(q) =a+ by —cq?2 =0

are, in modulus, either both less than one, or both greater than one, or at
least one of them 1s equal to one:

1) la)] <o <L, lag] <o <1, (32)
2) Iqll >p> 1, lq2| >p>1, (33)
3) lq1| = 1. (34)

We will show that, in all three cases, good conditioning is absent.

* k & & &k %

For this purpose in all three cases we construct functions, {un},
which solve a problem of the form
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+ b + = 0 N
aun_1 un cgn+1 fn, <n<N,
(35
ug = g = 0
and satisfy the inequalities
max |un| > MN max Ifml, (36)
n m
where My is a quantity growing without bound as N *» <. .

In case (32), assuming for the sake of definiteness that a # a5, we
postulate that

n n
4 T > 0<{n<{N-1,
0, n = N.
Then
sl 2 o] = o - ] >

The right-hand side {fn} of problem (35) is

o0, for n # N - 1.
f = au + bu + cu =
n n-1 n ntl c(qN _ qN), forn=N- 1.
1 2
Hence
max‘f ’ = If ’ < ZICIDN- (38)
o m N-1] —

Comparing (37) and (38), we see that in (36) we must take
- N NJ°
2|clp p

so that My grows exponentially with increasing N. Case (33) 1is analogous
to (32).

The case q; = qp = q can be treated by setting u, = nq", 0 {n<N-1,
uy = 0, with corresponding modifications in the following steps.
(Translator's note.)
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If (34) 1s satisfied we set

n . aon
u = q sin N 0

IA
o
I~
=

Then, clearly,

R

max,u ' > . (39)
al 2
n

For 'fn, we get the bound

|fn‘ = |aun_1 + bun + cun+1| =
n—-1 n o+l nn n-1 (n - )7 nn
= = A - o =] +
(aq1 + bq1 + cqy ] sin N + aq (sin N sin N ]

(n + Dn

- 1)n ul
+ cq?+1(sin —~ sin %%]' = n (= D sin 2

n-1
aqy (si N N

]+

4 eq™ otn BEDT _gin M ¢ (fa] 4 fe]y T (40)

From (39) and (40) 1t follows that inequality (36) 1s satisfied 1f

N
My = Zn(lal + e -
Thus good conditioning is absent, if we require of a well-conditioned
problem that M be independent of N in inequality (5).

7. General boundary-value problem for a system of difference
equations. Problem (1), (2) 1s only the simplest boundary-value problem
for an equation of second order. We now state without proof necessary and
sufficient conditions for a well-conditioned general boundary-value problem
involving systems of difference equations on a net interval (V. S. Ryaben'kii,
Computational Mathematics and Mathematical Physics 4, 2, p. 43 (1964)).

A boundary value problem is, basically, a search for a vector-function
{un}, n=20,1, 2, 3, ..., N, satisfying the conditions

k

0
k>=:-k A ntnik = T kg Sm SN =k, an
0

2k 2k,

2 au =9¢, 2z 8

u = 9. 2")
o 11 foo LN
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Here Ak,n 1s a square matrix of some order m > 1; u, and f are vectors of
this same dimensionality; the o,y are matrices, each with m columns and
r > 0 rows; the By are matrices with m columns and s > 0 rows; ¢ is a given
r—-dimensional vector; ¥ is a given s—dimensional vector.

Problem (1°), (2°) is well-conditioned 1if it has a solution for
arbitrary {fn}, ¢ and ¥, with

mix,,unli Ay | max{‘|¢!|, |’w||’ mix,'fj"}’

where M does not depend on N.
With respect to coefficients A, ., we will postulate that
E]

Ak,n = Ak(%]’

where Ak(x) is a matrix, defined on the interval 0 < x < 1, and satisfying

on this interval the smoothness condition
w -
HAk(x)—Ak(x‘)”gnlx—x’ , D>0, w)>o0. (147)
Further, we will assume that
a(x) = maxHAk(x)H > B> 0.
k
Given these restrictions then, to guarantee that problem (17), (27) is
well-conditioned it 1s necessary and sufficient that each of the following

conditions, 1°-3°, should be satisfiled:
1° Among the roots i and v of the equations

%o k,+k
det A, (x)u =0
k = —k
0
k
0 ky—k
det 3 A (x)V =0
k = -k

none are equal to one in modulus, while each of the roots u and v of these
equations satisfies one of the following four inequalities:

|u|<1-%, |v|<1—%,
|t <1 -2, ,v_l, <1-2,

where @ > 0 does not depend on x.
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2° The dimensionality, r, of the matrices a4, is equal to the number
of roots u the moduli of which are less than unity, and the dimensionality,
s, of matrices B4 1s equal to the number of roots v the modull of which are
less than unity.

3° Among the solutions {un}, n > 0, of the problem

k0
0
2k0
igo aiui =0

and among the solutions {“n}’ n > 0, of the problem

%o
k}; . A (Du =0, -®<n <N -k,
0
o
B.u =0
j—p 1 N-1

none are bounded except the trivial solution.
This last condition, 3°, can be put into the form of a requirement
that certain determinants, with elements independent of N, must not vanish.
We 1llustrate the above criteria by studying theilr application to the

problen

where ¢ and B are given; herem = 1, r =1, g = 1, kO = 1. The roots of

the equations

0-2u+p2=0 and 0 v ~2v+1=29

are equal to
= 2, vl = 1/2 (\J2 = ),

None are equal to unity in modulus, and condition 1° 1is satisfied.
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Condition 2° 1is also satisfied, since the number of scalar boundary
conditions on the left- and right-hand boundaries are equal, r = s = 1, and
equal to the number of roots u and v which are less than one

In modulus.
Let us now determine for what values of a the problem
0 - - 2u + =
u . u o tuo, o, n>l1,
auo uy = 0,

has no nontrivial, bounded solution. The general form of the solution of
the problem

0+ u - 2u +u = 0, n>0
n-1 n n+l
1is
n n 0
Uy T eyt oMy, n20, ST
From the boundedness condition we find that cy = 0. Therefore
) n_ s for n = 0,
Ua T 1% 0, for n > 0.

Taking account of the condition aug — u; = O, we see that for a # 0 there

are no nontrivial solutions, while nontrivial solutions do exist for a
Now we determine for which B the problem

= 0.
(O - =
uog 2url + un 0, n < N,
- =0
ue BuN_1
has no bounded nontrivial solutions as n + — @, The general solution of
_ _ -n _ -n _ n
0+ u 2url tu = 0, n <N, is u =gV c1(1/2) c12 . It
is bounded for n + - «,
that

From the boundary condition uy - Buy_; = 0 we see

N N-1
c12 - 8c12

=22 -® =0
and a nontrivial solution, ¢y # 0, exists only for B = 2.

Thus the above boundary-value problem is well-conditioned for any
a#*0and B? 2. If a=

0 or 8 = 2 the problem is not well-conditioned.
IR ]

45
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PROBLEMS
The difference boundary-valﬁe problem

au + bun + cu = fn’ 0<n <N,
*)
uy - auy = ¢, u_ - Bu =9

will be called "well-conditioned” if it has one and only solution for any
N, and if the quantities uy, uy, ..., uy, constituting the solution {un},
satisfy the inequality ’unl < M max (|¢|, |¢|, max Ifml), where M does not
depend on N. o

1. If both roots, 9 and q,, of the characteristic equation a + bq +
cq2 = 0 are less than (greater than) unity in modulus the difference
boundary-value problem (*) cannot be well-conditioned. For simplicity take
9, # ¢ Prove.

2. If at least one of the roots, qj, qj, of the characteristic
equation 1s equal to one in modulus, then the difference boundary-value
problem (*) cannot be well conditioned. Prove.

3. 1f Ja | <1, Ja,| > 1, but
1 - aql =0 or 1 - qu = 0,

then problem (*) cannot be well-conditioned. Prove.

4. To guarantee that the difference boundary-value problem (*) is
well-conditioned it 1s necessary and sufficient that one root of the
characteristic equation be smaller than one in modulus, |q1| < 1, while the
second 1s greater than one, and that 1 - qql #0, 1 - qu # 0. Prove.

5. The problem with constant (complex) coefficients

+ + = = +
av bun eu o fn’ n 0, +1,

with arbitrary periodic right-hand side
foin =

has, for all sufficiently large N, the periodic solution {un}, UN = Yy,
satisfying the bound

'unl £ M max |fm|,
m

where M does not depend on N or {fn}, if neither of the roots of the
characteristic equation, a + bq + cqz, is equal to one in modulus. Prove.
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§5. Algorithm for the solution of boundary-value
problems — forward elimination, back substitution (FEBS).

1. Description of forward elimination, back subatitution (FEBS).* Ue
now describe a simple, convenlent method for the solution of the difference
boundary-value problem of the form considered in §4:

a +bu +cu =f , 0<n <N,
nn n

nun-l nt+l n
(L
u0 =6, u_ = V.

It is one variant of Gauss elimination and 1s called "forward elimination,

back substitution (FEBS)".
Let us write the equation ug = ¢ of system (1) in the form

u, + K

Ug = Lyso¥ T Ky

where L1/2 = 0 and Ky/9 = ¢. From the equation

alu0 + blu1 + clu2 = fl’

corresponding to the system (1) equation with n = 1, we eliminate uy with

+ K . We then write the result in

the aid of the equation u 1/2

0 = L2™
the form solved for uq,

u, + K

Uy = Lyspuy TRy 0

introducing the notation

L. . A
=% =%
3/2 b1 3/2 b1
The relation u = L3/2u2 + K3/2 can now be used to eliminate u1 from the
equation
azu1 + bzu2 + cyuy = f2’
*

This method is often referred to, alternatively, as "Cholesky
factorization”. However, because of the way the method is presented
here, this name seems Inappropriate. One is then forced back to the
akward name "forward elimination, back substitution” which, because it
will be used so frequently below, it seems adviseable to abbreviate.

(Translator's note.)
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corresponding to n = 2. We agaln write the result of this elimination in a
form explicit with respect to Uy,

u, = L5/2u3 + K5/2'

The above elimination process can be continued for n = 3, 4, ...
Substituting

u u +

o1 = Pae1/2% t Ka-172

in the equation

au 4 + bnun + cnun+1 = fn’
we get
- -cn + fn " anKn-IZZ
Yn b +al U1 Tb_ +al )
n nn-1/2 n n

n-1/2

Hence it is clear that the coefficients obtained in the course of the
elimination process

u

n Ln+1/2“n+1 t Kn+1/2

can be computed via the recurrence relations

-C

L - —_n_
3
ntl/2 bn+ anLn—l/Z
(2)
K - fn " anKn-IZZ
ntl/2 b o+tal /o

The last of the relations obtained in this way has the form

Uer T Me12% Y K-t

Since uy = Yy, it is now possible to compute uN—l:

u 2¢ + K

N-1 = Un-1/ N-1/2°

The other unknowns W95 Yy_3s etc., are determined, respectively, from the
equations
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u =

+
N2 = In-asotn-1 t Kgeasoe

UN-3 T Dy-ssane2 T Kyess2
and so on, until u, 1s determined.

Let us review, briefly, the basic features of the process just
described. First one calculates the coefficients Ln+l/2’ Kn+1/2 in order
of increasing n (forward elimination) via the recurrence relation (2), with
Ll/Z = 0 and KI/Z = ¢ given. Then the computation of the unknowns, un, is
carried out, also recurrently, in order of decreasing n (back substitu-

tion), through use of the equations

Lﬁﬁw,

} 3
n=N-1,N-2, ..., L.

of system

Uy T Dorrs2tnen ¥ Karay2e

Note that to compute, via FEBS, the solution Ugs Ups eeey Uy
(1), consisting of M1 equations, one must execute arithmetic operations
whose number is larger only by a finite factor than the number of
unknowns. To solve an arbitrary linear system of N equations with N
unknowns by Gauss elimination ordinarily requires a number of arithmetic
operations of order N3. Such a reduction in the number of arithmetic
operations, through solution of (1) via FEBS, has been attained by
successful exploitation of the detailed structure of this system.

In §7 it will be shown that when solving, via FEBS, a boundary-value
problem (1) satisfying one of the good-conditioning criteria

bl >la |+ lc|+38, §> 0, ')
n - n n
or
lbnl - Ianl - |cn|
BT+ TaT+Te 28>0 d=max(lal, I ], le 1] >8>0,
n n n
or

Ibnl ~ Ian + cnl
RERrRER RS d >8>0,
n n n
w
_ k - 4 _ )
lay azlib’ N I’ Ity bzISD, N "
w
le, = ¢,l £ D'k ll . D > 0, w> 0,
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discussed in §4, the expression by + aplp-_y/2» which must be used as a
divisor, cannot vanish; and, further, the computational errors don't
accumulate and don't produce errérs increasing with increasing N in the
computed solution.

These two noteable properties of FEBS — the small number of arithmetice
operations required and the weak sensitivity to computational errors, make
FEBS a very useful computational algorithm.

2. FExample of a computationally unstable algorithm. For the solution
of a well-conditioned difference boundary-value problem (1) various
algorithms could be used. We have described the FEBS algorithm, which has
the advantages that it requires a small number of arithmetic operations and
is computationally stable. We now describe another, still simpler,
algorithm which, however, 1s computationally unstable and practically
unuseable for large N.

Given Uél) = ¢, U§1)= 0, we find the solution U(l) = {Ugl)},
n=20,1, ..., N, of difference equation (1). Naturally, in general
Ugl) #¥ ¢, Given USZ) = ¢, ng) = 1, we compute the solution u(2) = {ugz)}.
This solution also does not satisfy the right-hand boundary condition. Now
we postulate that

= aU(l) + (1 - a)U(Z)

n n n °

n=0,1, ..., N. (5)

Clearly for any o the condition uy = ¢ is obeyed and Eq. (1) is
satisfied. We now choose ¢ such as to satisfy the condition
2)

uy = oUél) + (1 - 0)U§ =9,

that is we set

(2)
¥ = Uy

0 = —
(1) (2)
Uy~ ~ Uy

and get the required solution of (1) from Eq. (5).

If the calculation were carried out on an ideal (necessarily
imaginary) machine exactly, then this would be a good algorithm. But we
now show that it's sensitivity to rounding errors for a well-conditioned
problem (1) grows rapidly as N * @®. For this purpose we take as an example
a, =1, by, = -26/5, ¢, =1, £, = 0.

Condition (4) for a well-conditioned problem is satisfied. 1In this
case the exact solution of the difference boundary-value problem is given
by the expression

5N—n - 5n—N s _ 5-M

¢+ b. (6)
- N _ N

u
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For Ugl) and ng), by virtue of (5) §3, we have

1) _ ¢ n_ ¢ 2-n
U= v s
(2) _5-¢ n _ 25 N -n
v, =g TS + [5 57 {5 ~¢)]5 .
Note that the values of max Un(l) and max Uiz) grow like sN. For this
n

n
reason, for large N, in the computation of Ugl) and ng) the calculated

numbers will go out of the allowed range. But suppose this didn't happen,
and that we have computed {Ugl)} and {ng)} and ¢ exactly. Suppose that
the only rounding error is an error, €, incurred in computing 1 - o. Then

via Eq. (5) we get, in place of {un}
{un + Aun},

where Au, = eUﬁz).
The error {Aun} for n ~ N will have the form

and for a fixed relative error €, committed in the computation of 1 - g,
will quickly grow and “"swamp” the exact solution {un} which, according to
Eq. (6), remains bounded.

The method just described is called the “"shooting method”.* 1In other
gituations (see §20) it may turn out to be stable and completely effective.

PROBLEMS

1. How must one change the FEBS algorithm so as to use it for
computation of the solution {un}, 0 {n N, of the difference equation

+ + = 0
au bnun cnun+1 fn’ <n<N,

with boundary conditions of the form

The same method 1s often referred to as "marching”. (Translators
note.)
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if a and B are different from zero?
2. In computing the solution of the problem

au . + bnun + eu T fn’ 0<n<N

it would have been possible to carry out the elimination in the direction
of decreasing n. Write out the recursion relations for the computation of
the coefficients K L

n+l/2’
gsubstitution relations

/2 of the corresponding elimination-

u + K

Ul T Ln+1/2 n n+1/2° n=N-1,N-2, ..., 0.

3. Subjecting the coefficients a , b, and ¢, of the difference
equation to the constraints a, > 0, ¢y > 0, =b, > a, + ¢ + 8§, show that
the FEBS coefficient Ly-1/2» occurring in the solution of the problem

u, = ouy + ¢, 0<a<,

+bu + =
au . nun cnun+1 fn’ 0<n<N,

Ugp T Pug 9,
satisfies the inequality O S.Ln-1/2 £ 1. How does this fact influence
error—-accumulation in the back substitution? 1Is it possible, here, that a
denominator in the forward elimination recursion relations will vanish?

4. Which variant of FEBS should one choose for the computation of the
solution of the preceding problem if a = 10, B = -0.5? 1In answering,
consider the danger of dividing by zero in the recursive computation of the
coefficients in the FEBS equations.



53

Chapter 3
Basis of the FEBS Method™

§6. Properties of well-conditioned boundary-value problems.

Here we prove the criterion, formulated in 584, for good conditioning
of a difference boundary-value problem of the form

+ b + = N
2n"n-1 n'n T Catadl fn’ 0 <n <N,
(1)
u0=¢’ u =‘p

and establish several properties of well-conditioned difference boundary-
value problems, so as to use these properties in §7 to provide a foundation
for the FEBS algorithm.

1. Bound for the solution of a boundary-value problem with perturbed

coefficients. Consider a problem of form (1)

+ + - f <n <
%1 bnun “nn+1 n’ psnsa, a

where p and q > p + 2 are integers. The fact that we number the components
of the solution from p to q, and not O to N, is not essential, but turns
out to be convenient later. As regards the coefficlents, we assume that
they are bounded in totality: lanl, lbnl, 'cnl < M;, and M; does not
depend on N or n.

Suppose that problem (1”) is solveable for arbitrary ¢, ¢ and {fn},
while the quantities Ups Upyls oees Ugs constituting the solution, satisfy
the 1inequality

q

'unf < Ml m;x lfm( + M2 max ('¢|, ’w[], (2)

where M1 and My are positive constants, Mj; > Mp, M; > L.

The material of Chapter 3 is not used in the following chapters, and
may be omitted on first reading.
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Consider the problem

au g + bnun + I fn, p<n<aq,
(3)
u = u = .
p 6, q v
If we postulate that the perturbations in the coefficients, ;; - ag,
bn - bn’ ¢, = €, are not too great, or more precisely
~ 1
a - a, < el 6M1 ,
~ 1
b -b ' el —, (4)
n n 6Ml
c - <<
“a " %n & 6M1 ’

then the perturbed system (3) will have the following four properties:
1° Problem (3) will have a solution {:n} for any right-hand side.
2° The solution [G;} will satisfy a bound of form (2), but with 2M;
and 2My, respectively, in place of M; and My:

~

u SZM1 max Ifml + 2M2 max (lol, Tvl). (5)

m

3° The coefficients ;;, B; and E; will satisfy the bounds

1 ~ 1
< Ianl + 6M1’ 'bn' < Ibnl + 6M1,

~

c
n

a, < |cn| + gﬁ; .

4° The solutions {un} and {G;} will differ only slightly from each
other, and more precisely

~ 2
u - < 5[6M1 max |fm] + 6M M, max (o], |¢|]]. (6)

m

Property 3° is obvious. We will prove 2° and, from it, derive 1°.
Suppose that system (3) is solvable for some right-hand sides. For these
given right-hand sides we will define

~

H = max |u
K k
and will get, for ju, the inequality
W< M max ||+ 24 max(1l, [yl). (7

m

For this purpose we rewrite (3) as follows:
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n n-1 + bn n “n'ntl fn * (an - an)un—l *

0 <n<N, (8)

From this expression, and from bounds (2) and (4), comes the inequality

3
n S.Ml(mzx |fm| + Bﬁ; ]+ M, max(|¢l, lvl) <

1
<5 u+ M omax lfml + M, max(|¢l, 1vl).

m

1

Solving this latter inequality with respect to u, we get (7) and, hence,
(5).

From inequality (5) it follows that the homogeneous system
corresponding to problem (3), and oEFained from it by setting ¢ = ¢ = £
0, has only the vanishing solution u, = 0. Thus the determinant of

coefficients of (3) is different from zero, and problem (3) has one and

only one solution for any arbitrary right-hand sides. Properties 1° and
are proven. It remains only to prove property 4°, i.e. inequality (6).
Subtracting, term by term, Eq. (1) from Eq. (8), we get
an(un—l - un—l] * bn(un - un) * Cn(un+1 - un+1) =
= (an - an)un_1 + (bn - bn)un + (cn - n]un+1’ 0 <n <N,
vy T ug = 0, ug < ouy = 0.
Applying (2)
u Toa S'Ml m;x (am - am)um_1 + (bm - bm]um + (Cm Cm)um+1' s
from which, now applying (4) and (5), we derive
u -u X Mle[B .M m;xlfml +3 .M, max(|¢l, 1wl)],
i.e., inequality (6).
Now consider the problem obtained from (1”) by perturbing, not only
the coefficients, but also the right-hand-sides
au + bnun + C oy = fn’ p<n<gq,
&)
a = ¢, u = ¥

P q

55
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One can show that

~
u - u
n n

'fm‘ + omm max( [3], |¥])] +

2
S_€[6M1 max 1M

m

(10)

+ M2 max (l$ - ¢|, 'E - ¢I) + Ml m;x

?m - fm
We will only sketch an outline of the proof, which can easily be carried
out following this outline.

First changing only the right-hand sides and leaving the coefficlents
unaltered we see, with the aid of (2), that each u, changes by no more than

Ml max
m

%; - fml + M2 max ('$ - ¢|, l$ - wl)

Then changing the coefficlents in the equation system with the altered
right-hand sides we find that, by virtue of property 4°, the components u,
change by an additional amount not exceeding

¥m + 6M M max ,¢' 'w,)],

E[ﬁM% max
m

which, indeed, leads to bound (10).

We now derive, from those consequences of inequality (2) which have
already been discussed, one further consequence. Suppose that for the
solution of system (1°) we have, for some A > 0, p + A < n < q - A, the
bound

!un' < Ml max |fm' + Mi max ('¢': Iw')
m m
Then the solution of the perturbed system

a u + b u_ + Y

n n-1 nn ntl fn’ p<n<aq,
¢, uq=¢,
subject to the conditions
a -a g—bl T -] cec o (11)
’ ’ = - ™
n n n n n 24“% 6M1 ’
satisfies, also for p + A < n < q - X, the inequality
~ 1
u E_ZM1 max lfml + (Ma + ? max |¢| |¢|). (12)
m

To convince ourselves of this we define the auxiliary net function {vn} as
the solution of the system
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av +bv +cv
nn n

aVn=1 =0, p<n<aq,

nt+l

v =6, v o=,
P q

For p+A<n<q-2

lv | <M max (lol, |u]). (13)

Next we use, for a bound on ,Gn - vnl, inequality (10), from which it
n i

follows, taking account of (11), th

~
u - v
n n

< efeMd max le | + oMy max (o], [v])] + mex le] <
< max (o], 1vl) + 2 max e |-

Now, through use of (13), we immediately get inequality (12).

Note. It is important to stress that the quantity € in bound (4),
defining the limits within which one can perturb the coefficients without
violating solveability, and also the coefficients in bound (5) on the
solution of the perturbed problem, and in bounds (6) and (10) on the
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deviation between the solutions of the perturbed and unperturbed problems -

all these quantities depend only on the coefficients My and M; in bound
(2). The specific values of the coefficients of the difference equation,
and the number of points q — p + 1, in themselves play no role: their
influence acts only through the agency of the constants M) and M; which
render bound (2) valid.

2. Proof of the criterion for good—-conditioning. In 5§4 we
formulated criteria for a well-conditioned problem (1) with coefficients
satisfying the smoothness conditions

w w
A R L R e
(14):
w
Ick-cglgnlk;l, D> o, w> o0,
along with the conditions
dn = max('anl, lbn', 'cnl) >B >0,

(147)

hJﬁ%’ hJﬁﬁ’ hJi%'



58 Basis of the FEBS Method Chapter 3

To guarantee that problem (1) is well-conditioned, given (14) and (147), it
i8 necessary and sufficient that the roots of the quadratic

2 .9
a + bnq + c q
satisfy the inequalities
8 -1 8
lay] <1 -3, ’q2’<1—2, (15)

where 6 > 0 does not depend on N or n.

The necessity of this criterion can be proven by roughly the same
methods as were used, in 4§4, when dealing with the case of constant
coefficients, and we will not stop to consider this question further.

To prove sufficiency we will use the criterion, discussed in 6§4, for
a well-conditioned difference boundary-value problem

+ bu + =
au__, u tew fn’ p<n<agq,

(16)

with constant coefficients, where p and q, q > p + 2, are arbitrary
integers. In contrast to what was done in §4 we number the components of
the solution {un}, not with n= 0, 1, ..., N, but with the numbers n = p,
p+1l, ..., q, which changes nothing essential. Problem (16) always has a
solution and, moreover, for all n such that p < n < q, bound (30) §4 1is
valid, 1.e.

fa l <My m;xlfml +u, max([¢], [¢]),  p<n<a, (17)

and, for n such that p + 6/6 < n < q - 6/98, we have bound (31) §4:

lu | <my max [e |+, max ([o], [v]), (18)
where
128 4 Y
17 2 My =% My =% -

We will choose € such that

— (19)
24M21
and take N large enough so that the inequality
1/w
24| 24|p
D—N—e- e, i.e. N>6__E (20)
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1s satisfied.
We proceed, now, to prove that problem (1) is well-conditioned.
Consider a boundary-value problem of the form

au . + bnun + cu .= fn’ p<n<aq,
(21)
up = ¢, uq =9,
where p and q are arbitrary, given, integers such that 0 < p, ¢ { N,
q2>p+ 2. In the special case p = 0, q = N this problem becomes identical
with problem (1), and in general it is obtained from problem (1) by
“truncation™ ~-- 1.e. by discarding the equations for n { p and n > q, and
fixing u and u . We will show that, given any N obeying condition (20),
problem (21) hag one and only one solution for any arbitrary right-hand
sides, and further that the quantities {un}, p < n £ q, satisfy a bound of
the form

lug] < M max (6], |v], max|e,]), (22)
m

where M is some constant depending on B and 9, but not on N, p or q.

We consider separately the case q -~ p £ 24/8 and the case
q-p > 24/8.

If q - p 5_24/6, then the coefficients of problem (21), for any k and
£ such that p < k, 2 < q, will (by virtue of the smoothness conditions,
(14), and the fact that N obeys (20)) satisfy the bounds

w
< g,

w
<D

w
<D

a

- 4-p 24
e S N oy

b, = b, | <, le, = ¢l <e.

k
These coefficlents are "almost™ constant, and differ by no more than £ from
the coefficients of problem (16) choosing, as a, b and ¢ in (16), the
coefficlents apy), bpyp and cpyg- The solution of problem (16) satisfies
bound (17). Here £ is chosen according to Eq. (19), satisfying requirement
(4). Therefore to bound the solution of problem (21) one can use
inequality (5):

256 8
u_| S;Em:x le | + g max({el,lu]). (23)

N.

Suppose that, for some fixed ©, ¥ and {fn}, there exists a solution {un},
p {n <q. Choose a sequence of integers, p = NO <N < .ooo < Np = gq
that the inequality

We consider now the case q — p > 24/8 for example for p = 0, q

, Such

6 _ 12
T M "N <5 (24)
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will be satisfied. The solution of the problem with constant coefficients

avn_1 + bvn + cvn+1 = fn’ Nk—l <n< Nk+1’
(25)
v = ¢, v = ‘pa
Ni-1 N1
where
a=a_, b=b_ , c=c_,
N N N
for n = Ny, by virtue of the inequality
6 6
Ny ¥ 5 <N <Ny ~ @
satigfies bound (18)
u £ M, max 'fm| + Ma max(|¢kl, |¢k'),
k m
where
128 1
= =22 M o= —.
1 B3 ’ 2 5
The problem
23 -1 + bnun + Catnt1 T fn’ Nk—l <mn< Nk+1’
(26)
u = ¢) u = w
N1 Ner1

can be considered a perturbed version of problem (25), while the coef-
ficlents of (26), by virtue of the inequality Nk+ - N A < 24/8, differ by
no more than € from the coefficients of problem (25). Bound (12) can now
be used for the solution of the perturbed problem. For n = N, one gets

<

uNk+1‘) -

1
S_ZM1 m:x 'fm' + [Mé + ZJ max[

u ’
Nk—l'

< 2M u u

1
£+
lm;xlml zmax(

).
Nk-ll’ Nk+1|

Consequently

max
0<k<r

u
N

max Ifml +%max Llel, lwl, max
k

m 0<k<r

<M

N
k

1 1
< 2M a f + = ma; + 5 ma ¢ vl
AT mmx , m' 2 5 ¢ kx< . uNk 5 o x({¢], lvl)
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Hence

max

0<k<r .
Now, for any arbitrary n, we find N,_; and Ny 41 between which it lies and
use bound (23):

U,

< 4ﬁ1 max ‘f ' + max (’¢l, 'Wl)'
k m n

I

u

el 41

2M1 m;x lfml + 2M2 max(

u )
Nk—l I

I~

M) m:x Ifml + 2M2[4M1 m;x Ifml + max(l¢’, 'W')] <

5_(2M1 + BMIMZ) m:x Ifm, + 2M, max( |¢], |v])- (27)

Bound (27), obtained for q — p > 24/6, by virtue of (23) remains valid also
for q — p £ 24/8. Problem (21) is solveable for any arbitrary right-hand
sides since, as can be seen from bound (27), for ¢ = ¢ = fy = 0 there
exists only the trivial solution.

We have completed the proof that, glven the smoothness conditions (14)
and conditions (147), condition (15) 1s a criterion for good conditioning
of problem (1). The following example shows that the smoothness condition
(14) cannot be ignored.

It's easy to verify that the difference boundary-value problem

+bu +c¢

an"n-1 nn nntl T 0, 0<n <N,

uy = 0, u_ =0,

i
-

where aj = 1, b, = (—l)n, c, = and N = 6N1 has, for any positive integer

N,, the nontrivial solution

L
sin %— . if n is even,
u =
-cos El R if n is odd.

Consequently this boundary-value problem is not well-conditioned, despite
the fact that

lb | - 'a + c '
- it lagl = 1o, = le,l =1
To T +Ta,l + e ] 3° @nl = IPql = 0G0 = 5
i.e.
1 -1 1
lq1|<1 3 |q2|<1_g'



62 Basis of the FEBS Method Chapter 3

3. Properties of a well-conditioned problem. We now formulate the
results obtained in §4 and in section 2 above, on good conditioning of
problem (1), in a form convenient for use in the investigation of FEBS in

§7.

In order that the difference boundary-value problem (1) be well-
conditioned it 1s sufficient that one of the following three criteria be

satisfied:
first eriterion:
lbnt > Ian{ + ,cn| + 8, § > 0;

second eriterion:

o] = Ja ] - le,]

b + |a + |c
n n n

y e ]) >8> 0

al> le

>8>0, d = max('anl, |

third eriterion:

lbnl + ,an + cn,
M>d >B >0,

To [+ a [+ e 2% 2d, 2

where it is assumed that the coefficients are real and satisfy the

smoothness conditions (14)

w
» lbk - bg' < le ; :

w

k'l, D> 0, w > 0.

N

|ck - cgl <D

If either of the first two criteria is satisfied problem (1) is
solveable for N > 2 and for arbitrary right-hand sides, and if the third is
satisfled then problem (1) is solveable for all large enough N and
arbitrary right-hand sides. Also, for these same large N, in addition to
problem (1) all truncated boundary-value problems of form (21) are also
solevable.

The solution {un} of the original problem and the solutions {un} of
all truncated problems satisfy the bound

|un| < M max (|¢|, '¢|a m:x |fm|)» p<n<q,

where M does not depend on N, p, or q.
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§7. Basis for the FEBS method in well—conditioned
boundary-value problems.

Now we are ready for the study of the FEBS method, described in §5.
Suppose one is required to calculate the solution of the difference
boundary-value problem

a +bu +¢ =f , 0<dn <N,

u u
n n-1 nn n n+l n

u =4, uo= ¥, €D

by I5 1, fe | < .

With respect to this problem we postulate that it itself, and all problems
derived from it through truncation

au +bu +cu = f
nn n

n n-1 n+l1 n’ p<n<a,

u =¢’ u =lp’
P q

have a solution for any arbitrary right-hand sides, and moreover

lugl < max (fo}, |v], max £ 1) (2)

In studying the FEBS algorithm we will use the fact that, by virtue of
the bounds (4) and (5) of 1§6 the difference problem with perturbed
coefficients

au + bnun + €Uty fn’ 0<n<N,
o =6, my =, (3)
a -a P -b ¢ -c < eX L
n nl’ n nl’ n nl = 6M

as well as all problems derived from (3) by truncation, have solutions {;n}
for arbitrary right-hand sides, and further

Gn < 2M max (|¢|, l¢l, max lfm'). (4
n

1. Bounds on the FEBS coefficients. Here we show that, in computing
the FEBS coefficients, one never is led to divide by zero, and we arrive at
bounds on the FEBS coefficlents, bounds valid for the original problem (1),
as well as the perturbed problem (3). For this purpose it is sufficlent to
consider only the perturbed problem, since the original problem is a
special case of the perturbed problem (for e = 0).
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Congider the following truncated system

It is solveable. From it we deduce u From Kramer's rule for the

2-1°
solution of a system of linear algebraic equations it follows that up _y may
be written in the form

- 221 ~

ug_y = L+ Y Ayf  + A4 = Luy +K, (5

1=1

where L and Ai depend only on ;n’ %n and Zn' As a consequence of bound (4)
(valid for any ¢, ¥ and {fm}, and therefore for ¢ = 0, £f; = 0, ¥ = 1) it
follows that

~

U1

| =

= ¢ = 0 it follows that

’ < oM,

and taking ;l

] -

Gl-l < 2M max (!¢', m;x 'fml].

It is convenient to assign to I and X the index £ - %-and to write the

above relations and inequalities in the form

Uee1 = Leogzate T Remyyoe

(6)
|Ll_1/2| < 2M, %y _1 /2] < 24 max (]6], max e 1)

A relation of this form was obtained in the development of FEBS in

§5. From Kramer's rule (5) it will be seen that Ll—1/2 is uniquely
determined by a., bn and c,» while Kp_1/5 1s uniquely determined by ¢, £,
a, bn and e, (0 <n < 4%). Hence it follows that the coefficients Lo-1/2
and KE—1/2 coincide with the FEBS coefficients obtained in §5 where we
wrote out, for these coefficients, the recursion relations

Lij2 = 0, Kyya = ¢.
~ ~ @)
. ) ) < CE 3Ky
L4+1/2  ~ ~ 4 L4+1/2  ~ ~ :
by *aleliy2 by * 8l

Of course this last assertion 18 valid only 1if the recurrence formulae are
meaningful, i.e. only if none of the denominators in these expressions
vanishes.
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We now show that, in fact, none of the denominators does vanish.
Suppose that we have shown that it is possible, via Eqs. (7), to
compute

Li72s Lasas «oes Looyyo
2> 1;

Ky/72> Kyzas -os Kgq/9,

we now verify the validity of these equations also for LE+1/2 and K£+1/2.
For this purpose it is sufficient to show that
b, +3a,L > Lo (8)
g T %M-1/2) 2

Consider the system of equations

2
J

0=0
P 53 +°n = = cer, R-
aiui—l + biui + ciui+1 0, i 1, 2, . 1,
. . f 9
agup g Fhyy ey, =L
3,.. = 0.
2+1 J

As concerns the solution of thls system, we know that it exists. From the
first £ (homogenegus) equations it follows that ;1—1 = Ll—l/z;l' From (4)
it follows that 'ull < 2M. From the only inhomogeneous equation contained
in system (9) it follows that

(alLl-l/Z + bl]ul =1.

For this reason

— < oM,
’bz + a£L1—1/2|

which indeed proves bound (8), together with the fact that recurrence
relations (8) and bound (6) are meaningful.

2. Estimate of the influence on computational results of rounding
errors comitted in the course of the calculation. We will now solve
problem (1) by the FEBS method. In real computations at each step of the
computational process one commits computational errors induced by
roundoff. For this reason the real computational process 1s governed by
the equations

65



66 Basis of the FEBS Method Chapter 3

L2 =0 Kija = %00 )
~,
L = + 2 , 2=1,2, ..., N-1,
2+1/2 alLl_l/z +b, 2+1/2
L (10)
f, ~a kK
2 T 3%/
K L A i T KR, , L =1, 2, ..., N-1,
2+1/2 ang_I/Z + bz L+1/2
UN =V + \)N’
- + £ = N-1, N-2, ..., 1. J
U = Lovi2%a T ey Ve N1, N2, .ee,

Suppose that all computational errors are subject to the bounds

|%g41/2] <6 Pepryal <85 vg| <8
with sufficiently small § so that
§ ¢ —1
6M2 (2M + 1) I

We will show that in this case in the FEBS equations (10) none of the
denominators will vanish, and will estimate to what extent these errors
will distort the computational results.

We 1ntroduce the notation

Ky72 = Kyy9s Kovi72 * Ve = Kea/00 > 0.

Clearly the collection of equations (10) may be rewritten thus:
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= X = N
Lija =% K2 = ¥ %00
. Coe (et T N0 e -1 2 1
2+1/2 agly 179+ By ’ S e ’
2 _fz’az(Kz—l/z'“l—1)+K .y -
% B + -
+1/2 3t 172 7 % s+1/2 ¥ Ve 10
= (agly1/a + B )(kgpgyn + V) ~a&y )y r
ale172 * P
=1, 2, oo, N1,
i e
2 =nN-1, N-2, ..., 1, J

Y = Lorzo%esr Y o2
and these equations may be regarded as the basis for a computational

procese designed for the solution of the difference boundary—value problem

~ o~ ~ ~ A~ ~ I
au 4 + bnun + C U < fn’ 0<n <N,

=t uy =

with the following perturbed right-hand sides and coefficients:

~ A
b=t
£oo= gy +apvey + (g ) + o)k 0 + )
(11)
= v v,
ag =g, bg=by, ¢ =g = (agly 1y F b )hy . J

We will show that

~

1
e = el < MM+ 18 <o (12)

The proof is by induction on £. For £ =1
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~

ey = eyl = agryyy + b)ag ) = (e 0+ B )0y ] <6 <
< MM+ 16 < g -

Suppose that for k = 1, 2, ..., 2-1 inequality (12) has already been
proven. In the computation of Ll/z’ L3/2, -++, Lg_1/2 one uses only

a; = a, bi = bi’ and Ei for 1=1, 2, ..., -1. Therefore we can affirm,

by virtue of (6), that 'L | < 2M and that, consequently,

2-1/2

~ 1
ey = cql = |-laghy_1/p + Bydhgyyypl SO - M+ M8 <o,

This completes the induction.

Thus it has been shown that, if & < 1/[6M?(2M+1)], then the
inequalities

~ 1 ~ 1 ~ 1
ap -~ el =0 g, Ibn - bn' =0 <% lcn - el <%m o
are satisfied and, thus, bounds (6) and (8),
tgo1/al <2,
1 a3
byt byl = '32L2—1/2»+ byl 2 55 »

are valid. We see that, Iin executing the computational process implied by
(10), we are never called upon to divide by zero.
Now from Eq. (11) for ¢, fl’ Y, and from bound (13), it follows that

13 - o] <8, [v - v] <s,
[E, - £, < M6 + (1 « 2M + M)28 = M(4M + 3)8.

Thus, committing at each step of the computational process an error no
larger than 6§, § < 1/[6M2(2M + 1)], we can, by the process described, solve
the problem with perturbed coefficilents and right-hand sides.

These perturbations do not exceed M*§, where

M* = max{2, (4M + 3)M}

depends only on M while, in addition, the perturbations in the coefficients
don't exceed 1/(6M).

Such perturbations of the coefficients and right-hand sides lead, as
is shown by bound (10) of §6, to errors in u, Dot exceeding M**§. Here Mk*
once again depends only on M. (If M =~ NT, then M* = N2¥ M#* =~ N3T, go
that the error in the solution will be N3T§,)
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If M, and thus also M**  is independent of N then making, in the
course of the FEBS computations, an error of order 8§ at each step (the
number of such steps being proportional to N) we get in the final solution
an error no greater than const °* §.

Thus the influence, on the result, of an error committed in any single
step of the calculation does not grow with increasing N. Further even the
cumulative influence of all errors committed during all steps of the
computation also does not grow.

This noteable property of FEBS has, indeed, been a main reason for its
wide use.
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Part 2
DIFFERENCE. SCHEMES FOR ORDINARY DIFFERENTIAL EQUATIONS

Part 2 of this book 1s devoted to the construction and the study of
difference schemes for ordinary differential equations. In the course of
this study we introduce the concepts of convergence, approximation and
stability, basic in the theory of difference schemes and general in
character. Familiarity with these concepts, acquired in connection with
ordinary differential equations, will permit us later, in the study of
difference schemes for partial differential equations, to concentrate on
the numerous peculiarities and difficulties characteristic of this most
variegated class of problems.

Chapter 4
Elementary Examples of Difference Schemes
In this chapter we consider introductory examples of difference
schemes, intended only to give the reader a preliminary acquaintance with

the basic concepts of the theory.

§8. The concept of order of accuracy and of approximation

71

1. Order of accuracy of a difference scheme. This section is devoted

to the question of the convergence of solutions of difference equations,
with refinement of the net, to the solutions of the differential equations
which they approximate. We limit ourselves, here, to the study of two
difference schemes for the numerical solution of the problem

et au=0, 0<x<1,
(1
u(0) = b.

Let us begin with the simplest difference scheme, based on the use of the
difference equation

u(x + h) - u(x)

= + Au(x) = O. (2)

We now subdivide the interval [0, 1] into steps of length h. It 1is
convenient to take h = 1/N, where N is an integer. The points of
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subdivision will be numbered from left to right, so that x, = nh, n = 0, 1,
«e+, N. The value of u obtained, via the difference scheme, at point x,
will be denoted as u,. We fix an initlal value, ugy. Suppose that ug = b.
From difference equation (2) one gets the relation

= (1 - Ah
u (1 )un—l’
from which we find the solution of Eq. (2) subject to the initial condition
ug = b:
0

(x,/n)
u = (1~ A" b=(1-a) " b (3)

The exact solution of problem (1) has the form u(x) = b exp (-Ax). It
takes on, at point x,, the value

u[x ) = be . (4)
n
We now estimate the error in the approximate solution (3). At point X,
this error 1s
(xn/h) -Ax

8(x)) = [(1 - an) ~e " (5)
We are interested in the rate at which G[Xn)'decreases as the number of
subdivision points increases or, equivalently, as one decreases the step-
width, h(= }é?, of the difference net. To bring this out we represent

X

(1 ~ Ah) n in the form

X X X 2.2
£ - a2 [-an 4 & X+ o(nd)]
(1 - Ah] = e = e =
h
-Ax A2 2 x 2 -Ax A%hx
= [e {][ e 2 n] eo(h ) =e ° [1 + 7 LU O(hz)] [1 + O(hz)] =
-Ax A%x  -Ax
=e "+n-—5Te "+o(n).

-Ax Azxn -Ax
u = be +hb - e "+ oo(n2), (3°)
so that
A?xn --Axn
8(x ) =hb——e + o(h?) = oh), (6)
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i.e. the error (5) tends to zero as h + 0, and the magnitude of the error
is of the order of the first power of the step-size.

On this basis one says that the difference scheme has first-order
aceuracy (which is not to be confused with the order of the difference
equation, defined in §1).

Let us now solve problem (1) with the aid of the difference equation

u(x+ h) - U(X - h)
2h

+ Au(x) = 0. @)

This is not as simple as it may seem to be at first glance. The problem is
that the above scheme is a difference equation of second-order, i.e. it
requires the assignment of two initial conditions (u(x.) = 0 and u(xl) =
u(h)); while the equation to be integrated, Eq. (1), is an equation of
first order, and for it we need only the condition u(0) = b. It is
natural, also in the difference scheme, to set uy = b.

It isn't clear, however, how one should choose . To shed some light
on this question we use the explicit form of the solution of Eq. (7) (see
§3 Eq. (6)):

l n (8)

where
/ h
q; = 1+A2h2—Ah—1-Ah+A—-2—+O(h“),

212 (9
Ach

q, = (—1)(1 + Ah + —2> + 0(h%).

The Taylor expansions, (9), of the roots of the characteristic equation
allow one to develop an approximate representation of ql and q2 We carry
out a detailed derivation of such a representation for q1

/h) *a
(X /h) 2+.2 (xn
ap =9 =[1—Ah+“21+°(hh)] -

212
e[l - A+ 224 o(n4)]

Since fn(l + 2) = z - 22/2 + z3/3 + 0(z2"),

A3n3
+ o(h“)]= -Ah + S==+ o(h*).

2,2
zn[l-Ah+A‘2’

Therefore
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"

3.3
= [-an + Ah 4 o(n)] -Ax A3k
q, = e = e [1 + h?

6 —6—“] +o(n3). (10

We will not carry out the completely analogous computation for q;, but
go directly to the result:
Ax

a0y = (D% "+ o(n?) (1)

Putting the approximate expressions for q? and q; into Eq. (8) we get

S o S W e b B &=
n 9~ 9 1 49y 2
3
q,u. - u —Ax A’x  -Ax
=20 1 [e T w2 LU g O(ha) -
9, = 4, 6
q.u, — U Ax
-0 Loy )e ™4 oo(n?)]. (12)
979

All further conclusions will be obtained through study of this expression.

We note that 1f the coefficient (qzu0 - ul)/(q2 - ql) tends to the
finite 1limit b as h + O then the first term, (qzuo - ul)qul/(q2 - ql), on
the right~hand side of Eq. (12) tends to the desired solution of problem
1.

Since

Ax
n
Ax e for n even,

_13y" n 2

(-1) [e + o(n )]_—>h+0 ‘
Axn

-e for n odd,

1.e. does not converge to a definite limit, then to guarantee convergence
to a limit, as h » 0, of the second term on the right-hand side of (12),

qquny — U Ax
42 1 h™e ™+ o(n?)], (13)
B9

it is necessary to require that the expression (qlu0 - ul)/(q2 - ql) tend
to zero as h * O.

Let us, then summarize what has been said.

So that the solution of the difference equation

u(x + h) - u(x - h)
2h

+ Au(x) = 0

should converge to the solution u = b exp (-Ax) of the boundary-value
problem (1), it 1s necessary that the conditions
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q,u. — u qnu - u
—%—2:—3—1 + 0, —2'—9:———l + b. (14)
2~ Y 979

be satisfied. Recall, further, that we chose to set ug equal to b.
Condition (14) gives us a hint as to how we can assign u;. It turns out
that it 1s sufficient that u; *+ uy as h » 0. 1In fact 9, + +1, and ay + -1
as h » 0 and, therefore, as h + 0

f1% " M, 2% 7%, .
9 79 9979
2. Speed of convergence of the solution of the difference equation.
We now go on to a study of the speed of convergence for different specific
choices of Uy = u(h).
To determine u(h) it 1s natural to make use of the Taylor series
expansion of the solution of the differential equation u” + Au = 0. Using

the fact that u” = —-Au, we rewrite the Taylor series expression thus:
u(xl) = u(0) - hAu(0) + o( h?) = u(0)(1 - Ah) + o(hn2).

This equation 1s satisfied by the exact solution of the differential
equation. In the approximate solution, limiting ourselves to two terms of
this expansion, we can set

u1 = uo(l - Ah).

If we have decided to take only one term we let

In the first case we commit, in the initial value u;, an error of order hz,
in the second —— an error of order h.

Let use examine the speed of convergence in each of these two cases,
for each of these assignments of initfal values.

Assume

u. = b, uy; = (1 - Ah)b. (15)

Then (see Eq. (9))

1% 71 _ [1 - an + o(h?)]b - (1 - ARYb _ o(h?)
9279 -2 + o(n?)

qu_ -u [-1 - ah - f;ﬁi +o(n*)]b - (1 - An)D
— = =b+0(h2)-
92 79 -2 + o(n*)

(16)
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Returning to Eq. (12), we easily come to the conclusion which has been our
goal

...Axn
u_ = be + o(h?). (17)

This conclusion may be stated as follows. If the initial value uy 1s
given correctly to order h2, then the error in the solution will be order
hz, i.e. the difference scheme will be accurate to second order.

It can be shown that, even i1f we take, for uy, its exact value
b ¢ exp (-Axl), accuracy greater than order h? cannot be attained in the
solution. We advise the reader to prove this assertion as an exercise. It
1s easy to show also that if, for uy, we take not precisely b, but any
quantity of the form b + O[hz], the speed of convergence will still be
second order.

We now proceed to consider the second formulation of initial
conditions we have set out to study. Suppose

Now
q,u = u - 2 -
1o_q1=[1 Ah + o[H?)]b b=%Ahb+O(h2],
979 -2 + o(n?)
q,u. . — u - 2 -
20 1 _-[1+ an + o(n)]b b=b+%—Ahb+0[h2)
9 "9 -2 + o(n?)
and, consequently,
'q u, - u -Ax qu. - u Ax
w =20 Lo myom2)] - L0 L ()e 4 o(n2)] -
n 9 - 4, 9 ~ 9
1 -Ax
= [b+ 3 anb + o(n?)][e " +o(n2)] -

Ax
- (-1)"3 anb + o(n?)][e "+ o(r2)] =
-Ax e—Axn _ (_l)n e n
2

=be "+ Ab

h + o(h?).

Thus 1if the error in initial values 1s of order h, then the error in the
solution will also be of order h.
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Let us now summarize what has been said. We have seen that the
difference scheme examined earlier,

u(x + h) -~ u(x - h)

h + Au(x) = 0,
as compared to the scheme
+ h) -
wx + h) - u(x) })1 u(x) + Au(x) = 0,

can give faster convergence, and more precisely convergence with remainder
terms of order h2, rather than order h as in the second of these schemes.
In order to attain second order accuracy one must, having taken an exact
Ug» choose a uy differing from the exact solution of the differential
equation at point x = Xg + h by a quantity of order h?. It can be shown
that u_ also need not be given exactly, but also may contain an error of
order h?. The speed of convergence 1s not thereby diminished. Refining
the initial values up to order h® and higher does not result in an increase
in the accuracy of the solution. '

If the initial values are given with errors of order h, then the
solution will contain an error of this same order.

3. Order of approximation. It is interesting to consider just what
it is that renders the scheme

ulx + h) - ulx) h])] =90 L () = 0

less accurate than the scheme

u(x + h) = u(x - h)
2h

+ Au(x) = 0.

These schemes differ in the approximate expressions

u(x + hz - u(x) and u(x + h)2; u(x ~ h)

used for the derivative, du/dx, at point x. Tt is natural to assume that
in the first scheme the derivative has been replaced by a less accurate
expression than in the second. And this 1s, in fact, true. Let us
substitute, for u(x + h) and u(x - h), their Taylor series expansions

2 3

ux + h) = u(x) + u (Xh + 0" (x) ‘2‘—+ u (%) ‘6‘—+ o(n*),
2 3

u(x - h) = u(x) - v (x)h + u""(x) }2‘— - u" "7 (x) :—+ o{n*).

Using these expressions we get
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u(x + h) ~ u(x)

h = u’(x) + u " (x) % + O(hz),

: _ 2
u(x + h) th(x h) = u(x) +u (%) g— + O(hq)!

{i.e. in the first case we have an approximation to the derivative of only
first—order accuracy, and in the second -~ of second order.

The examples we have considered might lead one to think that the order
of convergence of solutions of difference equations can be taken to be
equal to the order of approximation of the derivatives in the differential
equation. It turns out, however, that in such a very general form, this
hypothesis 1s untrue.

On those difference schemes for which it's validity will be proven it
will be necessary to impose an essential restriction —-- the requirement of
stability. The necessity of this requirement will become clear as we
consider the examples in the following section.

§ 9. TUnstable difference schemes
1. Techniques for approximating the derivative. We now again
consider difference schemes for the approximate integration of the simplest
differential equation u” + Au = 0. As we have already seen, to construct a
difference scheme approximating this equation it suffices to replace the
derivative, u”, by some sort of approximating difference expression. Thus
we have examined gchemes in which the derivative u” was replaced by

u(x + h) - u(x) u(x + h) - u(x - h)
h or 2h .

It is clear than any expression of the form

u(x + h) - u(x - h)
s 7h

+ (- u(x + h; - u(x)

will also approximate u’(x). In fact let us substitute into this
expression the Taylor series for u(x + h) and u(x - h):

u(x + h) = u(x) + u (x)h + 0(h?) ,
u(x - h) = u(x) - u (x)h + 0(h?).

We then get
u(x + h) = u(x - h) u(x + h) - u(x) -
¥ Zh h

[u(x) + u”(x)h + 0(h?)] - [u(x) - u” (x)h + O(h?)]
= U h +

y + u” (x)h + 0(h®)] - u(x)
h

+ (1 - w)

+ (1~ W) (ulx = u*(x) + 0(h).
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Using thils sort of approximation for the derivative one can derive a whole
family of difference schemes depending on a numerical parameter.
These schemes will have the form

u(x + h) - u(x)
h

u u(x + h) - u(x - h)

7h + (1 -w

+ Au(x) = O. (L
To each value of the parameter u corresponds one such scheme. It was the
study of those particular schemes for which u = 0 and u = 1 to which §8 was
devoted.

2. Example of an unstable difference scheme. We now consider one
more scheme of this form, obtained from (1) with u = 4:

4 u(x + h) - u(x - h) _ 3 u(x + h) - u(x)

+ = 0. 2
o o Au(x) (2)
This scheme may be rewritten thus:

~2u(x = h) + (3 + Ah)u(x) - u{x + h) = 0. 2”)

As In the examples considered earlier, we compute the solutilon on the
interval [0,1], subdivided by the points of the difference net into N equal
steps, each of length h = 1/N. The coordinate, xn, of a point of the net
is defined as X, = nh = n/N.

The solution of the difference equation may be written In the explicit
form

9 n a1 n [ 1 n 1 ‘n}
u =u = q, - = q,] +ul- - q, * - q, | » (3>
n O[qz a1 9y - q 2] W oay-q 1 ay-q) 2

where q, and are roots of the characteristic equation
1 13

-2 + (3 + Ah) q - q% = O.

Let us compute 9y and q2:

3+ ah - /1 + 6Ah + A%h2 _

94 2

3+ Ah + /1 + 6Ah + A%H2

4 = 2

1 - Ah + 24242 + o(nd),

(4)
= 2(1 + Ah) + 0(h?).

We will use, for q? and q;, the approximate expressions
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(x_/n) ~Ax
q? =1 ~-an+om®H)]"=[1-an+0om?H] T =e T+ o),
n (xn/h)
q; = [2(1 + AR) + o(h2)]™ = [2(1 + Ah) + o(h?)] = (5)
(x /n)  Ax
=2 " [e "+om].
Substituting Eq. (5) into (3) we get
Qyun — U ~Ax qiun - U Ax (x_/n)
w =20 e Miom] 2l Chom]a ™ . (6)
n g, -4q q - q

Before considering what limit un will tend to as h + 0 we must indicate how
we will fix the initial values, ug and uy, of the difference solution.

Just as in §8 we will look for a solution satisfying the condition
u(0) = b, 2nd take as difference starting values uy = b and u = b(1l - Ah).
We substitute these starting values into Eq. (6) and simplify each term
separately.

The first and second terms, respectively, take the forms

u. ~u —-Ax

q_z_g__l,[e "+ o(h)] =

-Ax -Ax
_[2+0(h)b - (1 - AWb n _ n
- T omT = Tt = o] [e + 0(h)] = be + o(h),

q,u. —u Ax (x /h]
10 lie "yom)2 ™ -

9 T 9

Ax (x_/n)

_ 2,2 3 - -
- [ - Ah+ 28°h" + OChT)b = b(1 ~ Ah) (n o(h)] 2 =

[1 + 0o(h)] - [2 + O(h)]

Ax (x_/n)
= - 24%n%ble "+ o)) 2 * .
Thus we get
-Ax_ Ax_ (x_/n)
u = [be + o)) + [-242be "+ o(h)]n2 2 .
For x = x = const, as h *+ 0 the first term of this expression tends

to b exp(-xx), 1.e. to the desired solution. Therefore 1f the whole
expression for u, 18 to converge to this gsolution it i1s necessary that the
second term should go to zero: but as h > O this term tends, not to zero,
but to infinity. In fact -2A%b exp (Axn) + 0(h) tends to the finite,



§9 Unstable Difference Schemes 81

()
nonvanishing, 1limit -2A2p exp(Ax], and h? 2

than any positive power of 1/h.

tends to infinity faster

We have shown that a difference scheme approximating the differential
equation can have a solution not converging, as h + 0, to the solution of
the differential equation. One might think that the fault lies, here, in
an insufficlently accurate choice of ug - But we will now show that there
will be no convergence even if we take u to be exactly equal to the
solution of the differential equation at X =X, + h, that is if we set
u, = u, exp(-Ah) = b exp (-Ah). Let us begin by simplifying the expres-

1 0
sions occurring in Eq. (6):

Q2“o L] [2 + O(h)]b - be—Ah

q, - q, [ZFom - [1Fomy Pt oM,

9% ~ ¢ 2,2 3 -Ah

170 1 _ [1 - Ah + 2A%H% + O(h®)]b - be R

4 "9 - [1 + 0(h)] - [2 + O(h)] = - 57 A°h*[b + O(h)].

Substituting these expressions into (6) we get

—Ax

u =[be “+om] -] Cxa/n)

3 Axn n
Abe "+ o(h)]n? 2 . (7

2
The second term on the right-hand side of this equation again tends to
infinity, while the first remains bounded. Therefore the whole solution of
the difference equation also tends to infinity.

The reason that difference scheme (2) doesn't converge as h + 0, as we
have seen, is the fact that it can have solutions which grow quickly as the
step-size h decreases, even if the starting values are completely
reasonable.

Such difference schemes are called "unstable™. Naturally, they are
unsuitable for the numerical solution of differential equations.
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Chapter 5
Convergence of the Solutions of Difference Equations as a
Consequence of Approximation and Stability

In Chapter 4 we showed by example what is meant by the approximation
of a differential problem by a difference problem, and what constitutes
convergence, thanks to which the solution of the differential equation can
be calculated approximately through use of the difference scheme. We
became familiar with the phenomenon of instability, which can render the
difference scheme divergent and useless for computation. Analysis of the
behavior of the solutions in these elementary introductory examples,
intended only to give the reader a preliminary acquaintance with
fundamental concepts, was based on explicit expressions for the solu-
tions. Such a display of explicit solutions was made possible only by a
special choilce of examples.

In this chapter we gilve rigorous definitions of convergence,
approximation and stability. We show that proofs of convergence need not
be based on the analysis of explicit expressions for solutions. Such
proofs can be split into the verification of approximation of the
differential problem by the difference problem, and verification of the
stability of the difference problem.

§ 10. Convergence of a difference scheme

1. Concept of a net and a net function. Suppose that a differential
boundary-value problem is given on some interval, D. This means that one
is given a differential equation (or system of equations) which the
solution must satisfy in the interval, D, and auxiliary conditions on u at
one or both ends of this interval. The differential boundary-value problem
will be written in the symbolic form

Lu = f, (1)

Where L is a given differential operator, and f is a given right—hand

side. Thus, for example, to write the problenm

du i X

= = cos X, 0<x<1,

1+ u? (2)
u(0) = 3,
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in form (1) we need only take

du b3
— 4+ — 0<x<1
_)dx + 1+ v’ SX2
Lu =
u(0),
cos x, Oix_<_1,
f =
3.
The problem
42 _
280+ 2 =7k, 0<x<1,
dx?
u(0) = 2, (3)
du(0) _
dx !

can be written in form (1) if we set

d%u

—(rxz-—(1+x2)u, 0<x<1,
Lu = {u(0),
du(0)
dx ’
’x, 0<x<1,
f=(2,
1.
To put into form (1) the problem
2
$u (1 + xz)u =/x¥1, 0<x<1,
ax? - T
u(0) = 2, 4

u(l)

]
-
-

with boundary conditione at both ends of the interval 0 < x < 1 one must
take

2
d—;—(1+x2)u, 0<x<1,
dx

u(0),

Lu

u(l),
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Yy x+ 1, 0<x<1,
2,
1.

h
L1}

The boundary-value problem for the system of differential equations

dv

E+wi=x2-3x+1, 0<x<1,
d
d—:+—1——(v+w)=cos?‘x, 0<{x<1,
1 + x2
v(0) = 1,
w(0) = -3

can be written in form (1) if one takes u to be a vector function,

u = (v,w)T,* and sets

Lu = 1+ x?

-3.

In all these examples we have considered problems formulated

on the

(5)

interval 0 { x {1, and not on some other interval, only for the sake of

definiteness.

85

We will assume that the solution, u(x), of problem (1) on the interval
0 <{x <1, exists. In order to calculate this solution by the method of

finite differences, we must first of all choose, on the interval D, a

finite set of points which, in totality, we will call a "net" and designate

by the symbol Dy,; then we set out to find, not the solution, u(x), of

problem (1), but a table, [u], of values of the solutlon at the points of

the net Dh' It is assumed that the net Dy depends on a parameter, h > O,

which can take on positive values as small as desired. As the "step-size”

*Here and below the superscript T designates the transpose of a vector.
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h goes to zero the net becomes steadily “finer". For instance one might
gset h = 1/N, where N is some positive integer, and take, as the net Dy, the
1 5 = 2h, ..., Xy = 1. The desired net
function [u]y, in thls case takes on, at the points x; = nh of the net D,

totality of points Xy = 0, x, = h, x
the values u(nh) which, for brevity, we denote as uj.

For the approximate computation of the table, [“]h’ of solution-—
values, in the case of problem (2), one could use, for example, the system
of equations

2
1 + un (6)

obtained by substituting, for the derivative du/dx at the points of the
net, the difference approximation

du u(x + h) - u(x)
dx h "

(h) = [uéh), ugh), ey ugh)), of system (6) 1is defined on
the same net as the desired net function [u]y. It's values u (h)

The solution, u
» Uy s
99 N are consecutively calculated from
(6) for n =0, 1, ..., N-1. For the sake of brevity, in Eq. (6) we omit
the superscript h on u and, as a rule, will also do this in analogous

ceny Uy T, at the points X1 x cery X

situations everywhere below.

In the case of problem (4), in order to determine a net function,
u(h), approximating the table of solution values [u]y, one can use the
difference scheme

u - 2u_+u
ntl n n1 (1 +x%)u =/3 +1,
2 n’ n n
h
n=1, 2, ..., 81, (N
ug = 2, uy = 1.

This scheme is obtained by substituting, at the net-points, for the
derivative d2u/dx? occurring In the differential equation, the difference
approximation

a%u o u(x + h) - 2u(x) + u(x - h)
dx? G

. (8

To compute the solution u(h) of problem (7) one may use the FEBS
algorithm described in §5.

Still another difference scheme which might be used to compute the
solution of problem (5) takes the form



§10 Convergence of a Difference Scheme 87

-v
ntl T rxvw =x% -3 + 1,
h nnn n
1 1
I LS (v +w ) = cos®x . n=20,1, ..., N-1
h 1+ x2 n n n ’ ’ ’
*n (9)
Vg = 1,
Vo = -3.
Here uéh) = (véh), w(h))T = (1, —3]T is given. For n = 0, from Eq. (9) one
can determine u{h) = (v{h), wih))T. In general, knowing u(h) = (véh), w(h))T,
- - (h) (h) (h),\T
k=0,1, ..., n, one can, taking k = n, compute Ul - (vn+1, wn+1) .

In the above examples the net, D, , consists of points separated from
each other by a distance h. Clearly one could have disposed the N+1 points
of the net Dh’ h £ 1/N, on the interval [0,1] not uniformly, but in such a
way that X = o, X, = Xg + hO Xy = % + hl’ ceey Xy = 1, where the h,,
n=0,1, ..., N-1, are not all equal, but max hn + 0as h=1/N+ 0. The
knots of Dy could be so distributed that the desired table, [u]h, of the
solution u(x) would be most detailed for fixed N (or h = 1/N) in those
subintervals where u(x) varies most rapidly. These subintervals are
sometimes known beforehand from physical considerations, or from
preliminary crude calculations. Information on the rate of change of u(x)
ishalso generﬁted in the course of the sequential calculation of L

Uy s eewy u T, and this information may be taken into account in choosing

the next net-point X 41

We confine ourselves to the examples already discussed as illustra-
tions of the concept of a net, and of an unknown net function (or vector-
function) —— a table of values of the solution [u]y. 1In addition we note
only that, in the role of the desired table, [ul]},, of solution-values it
isn't necessary to consider a net-function coinciding with the solution, u,
at the net-points. It is possible to establish a correspondence between
the function and the function-table 1in other ways. For example one may
take, as the required table of u(x), 0 < x < 1, the net function [u]y
defined at the points x = h/2, 3h/2, ..., 1 - h/2, by the equation

1 x+h/2
luly, =+ x~£/2 u(E)dE .

This way to set up a correspondence 1s convenient in the case where
u(x) is not a continuous function, but 1t is known that it's integral over
any interval exists. Such a situation may occur for example, if one 1is
dealing with a generalized, discontinuous, solution for which the integral

1
f uz(x)dx
0

exlsts.
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Everywhere below, barring statements to the contrary, we will assume
that u is a continuous function and take [“]h to be the net function
coinciding with u at the net-points.

We are concerned with the computation of the net function [u]y,
because, as the net is refined, i.e. as h + 0, it becomes a more and more
detailed table of the desired solution u, of which it gives us an
increasingly more complete representation. Via interpolation it is
possible, with increasing accuracy as h + 0, to construct the solution
everywhere within D. Clearly the accuracy with which this can be done, for
a given number and distribution of points of the net D,, depends on
additional facts concerning the solution (like, for example, bounds on its
derivatives), and also on the distribution of the points of net Dy.

We confine ourselves to such passing comments on the construction of
the function, u, from the table [u], . More detailed consideration of the
construction of a function from tabular values constitutes the subject
matter of the theory of interpolation. We will concern ourselves only with
the construction of the table [u]y and, by convention, consider that
problem (1) has been solved exactly if the net-function [u]h has been de-
termined. But, of course, we will not succeed in computing [u], exactly.
Instead of the net function, [u]h, we will look for another net function
u(h), which “"converges” to [u], as the net is refined. For this purpose
one can make use of difference equations.

2. Convergent difference schemes. We will be concerned with methods
for the constuction and study of convergent difference schemes throughout
all of this chapter. But first of all we must give a precise meaning to
the requirement that u(h) > [u]h, the convergence requirement that we will
impose on difference schemes. For thils purpose we consider a linear normed

space of functions defined on the net Dy,+ The norm lfuh'lU of a net
h

funetion up in Uh is a non—-negative number which measures the deviation of
the function uy from u = 0. We recall that the linear space, R, is said to
be "normed” if each element, x, of this space is put into correspondence
with a non—-negative number |'x|l and, moreover, the following three norm-
axioms are valid:

1° [1x]] >0, x1n &
2° IlXxl| = IX' . "xl‘, where x 1s in R and X is an arbitrary number;
3 [1=+5l] < [l=xl| + |5]], for x, ¥ tn R.

The norm can be defined in various ways. One can, for example, take
as the norm of a function the exact upper bound of the modull of it's
values at the net points, i.e.

||uh||Uh = sup Ju, (x| (10)
n
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It uf® is a pair of functions, as in (9), then as a norm, in analogy
with (10), one can take the upper bound of the moduli of both functions on
their respective nets.

If u(h) consists of functions defined on the net x = 0, h, 2h, ..., 1,
then one frequently uses a norm defined by the equation

N
llu“‘>lluh=(h I Ju |2)V?

n=0
This norm is analagous to the norm

1
ueol] = (f [uex) |2ax) /2

for functions, u(x), square-integrable on the interval 0 < x £ 1.
Everywhere below, if nothing is said to the contrary, we will use norm
(10).
After the introduction of a normed space, Uh, the concept of a

(h)

deviation between one function and another becomes meaningful. If a and

b(h) are two arbitrary net functions in Uh’ then the measure of their
deviation from each other is taken to be the norm of their difference, i.e.

the quantity

l'a(h) _ b(h)”U .

Now we can proceed to a rigorous definition of a convergent difference
scheme .

Suppose that, for the approximate computation of the solution of the
differential boundary-value problem (1), 1.e. for the approximation
computation of the net function [u]h via Eq. (1), we have constructed a
system of equations which we will write symbolically, by analogy with Eq.
(1), in the form

Lhu(h) = f(h). (1)
Difference schemes (6), (7) and (9), for differential boundary-value
problems (2), (4) and (5) respectively, may be taken as examples of this
differencing process.

To write scheme (6) in form (11) we may set

u - u
o+l n, __oh n=0,1, .., N1
h » » ’ » ’
(h) _ 1+ u?
Lhu = n
UO,
(h) cos nh, n=20,1, ..., N-1,
£ z
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Scheme (7) may be written in form (11) 1if we take

u - 2u +u
n+l n n-1 + [1 - (nh)zlun, n=1,2, ..., §-1,
(h) n*
th.l E Uy
u

Finally we write (9) in form (11), taking

h
Lhu(h) - RO
LB
v - Vv
= (JE%T—3+-th$%, n=0,1, ..., N-1,
w - W
- )l o, L (v. +w), n=0,1, ..., N-1,
n n
ﬁ h 1 + (nh)?
= | vy
= { v,
(rh)2 - 3nh + 1, n=20,1, ..., N1,
(h) cosznh, n=20,1, ..., N=-1,
f =
1,
-3,

We see that system (11) depends on h, and must be treated separately
for each h corresponding to each of the nets, Dh’ and net-functions [u]h,
which are of Interest to us. Thus a difference boundary-value problem is
not a single system, but a family of systems depending on a parameter, h.

It will be assumed that, for each sufficiently small h, there exists a
solution, u , of problem (11), belonging to the space U, .

We will say that the aolution w(h) of the difference goundary—value
problem (11) converges, as the net is refined, to the solution of boundary-
value problem (1), if

1w, - u(h)llUh >0 as h>o. (12)
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If, in addition, the inequality
h k
H[u]h - )'IU <ch, (13)
h

is satisfied, where ¢ > 0 and k > 0 are constants not depending on h, we
will say that convergence ig of order hk, or that the difference scheme has
k'th order accuracy.

In §8 we considered two difference schemes for the problem

d
£+Au=o, 0<x<1,

u(0) = b.

The estimates obtained there for the difference, 8(x) = u(xk) - uﬁh),
between the exact and approximate solutions show that the first of these
schemes converges with order h, while for the second convergence 1s order
h2.

The requirement that it be convergent is the fundamental requirement
which will be imposed on difference scheme (1l1) for the numerical solution
of the differential boundary-value problem (1). When this requirement is
met then, with the aid of difference scheme (11), the solution u can be
computed to any prescribed accuracy, i1f h is taken small enough. We have
rigorously formulated the concept of convergence and have come up to the
central question: 1i.e., how does one construct a convergent difference
scheme (11) for computation of the solution of differential boundary-value
problem (1)? The above examples supplement the considerations of Chapter
1, and give some idea as to the simplest method for the construction of
such schemes: one must choose a net, and substitute difference expressions
for the derivatives. However, as we have seen, for one and the same
differential boundary-value problem one can get different difference
schemes (1l1), choosing different nets Dh’ and replacing the derivatives by
various difference approximations. We have already seen in §9, through the
example of the simplest ordinary differential equation, that a difference
scheme may be unsuitable for computation.

3. Proof of convergence of a difference scheme. For the moment we
will not concern ourselves with the problem of constructing difference
schemes, but will pose a sli%ggly different problem. Suppose that a
= f

difference scheme Lhu(h , which we have reason to hope is conver-

gent, so that

(h)
[u], —u + 0 as h+ 0
" h ’IUh

has, somehow or another, already been constructed. How can one test
whether it 1s, in fact, convergent or not?



92 Convergence, Approximation and Stability Chapter 5

(h)

Let us assume that difference scheme (1ll1) has a unique soclution u
in Uh. Ifzhgn substituting the net function [u]h [[u]h in Uh), in
place of u , into the left-hand side of (11), it turns out that (1l1l) is
satisfied exactly then, 1In view of the uniqueness of the solution, we would
have [u]h= u(h), i.e. %g§a1 c?nvergence. The solution, u(h), of the

= f would then, in other words, coincide with
the required net function [u]h, which we have agreed to consider the exact

difference problem Lhu

solution.

However, as a rule one will not succeed in constructing (11) in such a
way as to be exactly satisfied by [u]h. When [u]h is substituted into Eq.
(11) some sort of residual will form:

L[], = e 4 geM (14)

If this residual 6f(h) "

(11) more and more closely, then we will say that the difference scheme
= f approximates the boundary-value problem Lu = f on the

tends to zero"” as h * 0, so that [u]h satisfies Eq.

solution, u, of this latter problen.

In case of approximation, 1.e. i1f the difference scheme approximates
the boundary-value problem, one may suppose that Eq. (14), which is
satisfied by [u]h, 1s gotten from (1l1) through the addition of some (small
for small h) increment, &f , to the right-hand side f( . Therefore, if
the solution, u , of problem (ll1) is stable with respect to perturbations
of the right-hand side f , 1.e. changes little for small changes of the
right-hand side, then the solution u(h of problem (11) and the solution
[u]h of problem (14) will differ little from each other, so that from
approximation

Gf(h) +0 as h> 0

follows convergence

u(h) > [u]h as h+ 0.

The approach we have indicated, by which to test the convergence of
(12), consists in that one splits this difficult problem into two which are
simpler: first, test whether problem (1) is approximated by (1l1), and then
determine whether problem (11) 18 stable. But here 1is, in fact, an indica-
tion as to how one might construct a convergent difference scheme for the
solution of problem (l1): one must construct an approximating difference
scheme; from among the many possible methods of approximation one must
choose one such that the difference scheme turns out to be stable.
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The above general plan for the study of convergence, naturally,
assumes the introduction of rigorous concepts of approximation and
stability, such that one can prove a theorem stating that, from approx-—
imation and stability, follows convergence. The above definitions of
approximation and stability are not rigorous. To define agproximation one
must first state more precisely what is the residual, 6f(h , in the general
case, and what is meant by its magnitude; and to define stability one must
give a precise meaning to the assertion that “to a small perturbation of
the right-hand side corresponds a small perturbation of the solution of the
difference problem Lhu = f(h) ,

Strict definitions of approximation and stability will be the prin-
ciple topics of §11 and §12, respectively.

PROBLEMS

1. Divide the interval [0,1] into N parts, separated by the points

x. =0, x cee X = 1, in such a way that

0 X

1° *20 N-1* *x§

xn+1 T

e T e T 49
Xn *n-1

and determine whether it is possible to use a sequence of such nets with
N + » (where q is a constant not depending on N) for the approximate
solution of the problem

u;(;)u==10 }

with the aid of the difference scheme

u(h)(xn+1) - u(h)(xn)

X -x
n+l n

- u(h)(xn) =0 (h= %)

u(h)(xo) = 1.

Does the maximum of the step-sizes x - x tend to zero as N * =?
1) n
Hint. It is simplest to consider the case q > 1, and to convince

oneself that

(/M
lim u ( ) =,
Npoo W
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§11. Approximation of a differential boundary~value problem by a
difference scheme

1. The residual Gf(h). We now give a precise meaning to the concept
of approximation of boundary value problem (1) §10

Lu = f, (1)

on the solution u, by difference scheme (11) §10

Lhu(h) - M, (2)

For this purpose one must state more precisely what is meant by the
residual &f

- () (h)

Lh[u]h = f + §f s (3)
which forms when the net function [u] , the table of values of the required
solution u, 1s substituted into Eq. (2); and one must make a precise
statement as to its magnitude. h
Convergence of the magnitude of Gf( )
as the definition of approximation.

to zero, as h *+ 0, we then take

We start with the consideration of an example of a difference scheme
for the numerical solution of the differential boundary-value problem

2
E_E_+ a(x) g§‘+ b(x)u = cos x, 0<x<1,
ax?
u(0) = 1, (4)
u” (0) = 2.

As our net D, we take, as before, the set of points x = nh, n=0, 1, ...,
N; h = 1/N. As a difference scheme for the approximate computation of [u]h
we use the equation-set

u -2u +u u ~-u
n+l n n-1 + a(x ) n+l n-1 + b(x ]u -
h2 n 2h n’ n
= cos x , n=1, 2, ..., N-1,
(5)
ug = 1,
u, - u
1 0
= %

obtained by substituting, for the derivatives in (4), the approximations
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u(x + h) - 2u(x) + u(x-h) _ d%u(x)

’

h? dx?
u(x + h) - u(x - h) o du(x) (6)
2h dx °
u(h) - u(0) _ du(0)
h dx °
The difference scheme (5) takes the form (2) if one defines
un+1 - 2u +u -1 u 1 " u -1
n 4 a(nh) o L b(nh)u_ ,
h2 2h n
h
I‘h“( ) ug
“1 7%
h ]
€]
cos nh,
f(h) = 1,
2.

To compute and bound the magnitude of the residual, Sf(h), which

arises when [u]

By Taylor's formula we have

h2
u(x + h) = u(x) + hu"(x) + 5
hZ
u(x - h) = u(x) - hu"(x) + 5
h2
u(x + h) = u(x) + hu"(x) + 7
h2
u(x = h) = u(x) - hu'(x) + 5
hZ
u(x + h) = u(x) + hu"(x) + 5
Here 51, 52, 53, 54

Hence

is substituted into (2), we refine Eqs. (6).

w0 + w5,

W - B (sy),

u’* (x) +-‘6’—3 wT(x) + % ),
w(x) - %3— u (%) + '2‘—: e,
w(Eg)

and 55 are certain points in the interval [x—~h, x+h].
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u(x + h) ~ u(x - h) h2 3

h = u’ (x) +*i—2- [u“'(El) + u“‘(gz)]s

u(x + h) = 2u(x) + u(x - h) _
o =

W2 o (4 4
v + g7 D) + P b @

u(x + h) - u(x . h ..

st h) 2 w0 gy + B ur(gg). )
2. Computation of the residual. We will assume that the solution,

u(x), of problem (4) has bounded derivatives up through the fourth. By

virtue of (8) one can write

u(x + h) - Z:EX) + u(x - h) + a(x) u(x + h) ;hu(x - h) +

2
+ p0outn) = LR 4 D 4y +

dx
4 4
oOley) + 0 w o (8) v (gy)
+ n? 3 4 + a(x) L 2
24 12 :
Therefore the expression
Lh[u]h =
( u(xn + h) - 2u(xn) + u(xn - h) .
hZ
u(x + h) - u(x - h)
+ a(xn) o o L + b(xn)u(xn), n=1, 2, ..., N-1,

u(0),

u(h) - u(0)
h

can be rewritten thus:
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4 4
uM(ey) + (e,
~cos x_ + h? +
n 24
rsy) +w(5) ]
J + a(xn) L v 2 ], n=1, 2, ..., N-1,
Ly fuly =
1+ 0,
u (&)
(2 +h—
or
L lul, = My 6f(h),
where
[u(“)(53) +a®(g)  wrlg) +u(sy)
h2 + ]
24 12 ’
Sf(h) = 0, 9)
u (&)
h— .

It 1s convenient to regard f(h) and Gf(h), given by Eqs. (7) and (9),
as belonging to a linear normed space Fh, which consists of elements of the
form

(n=1, 2, ..., N-1),

KON (109

¥y

where ¢1, ¢2, ceny ¢n—1’ and algo wo and wl are arbitrary ordered sets of
numbers; one can take g to be the totality of net functions ¢ , n =1,
2, «.., N-1, along with the ordered pairs of numbers wo and wl. The
summation of two elements of the space Fh, and the multiplication of the
elements of g by a common factor, are carried out term by term. Clearly
in the example under consideration F, is an (N+1)-dimensional linear
space. The norm of Fh can be introduced in many ways. If we introduce a
norm in Fh via the equation

Hg(h)“Fh = max(,\bol, "\b]_” mralx'(bn,)!

i.e. take as a norm the maximum absolute value of all components of the
vector g(h) then, by virtue of (9), we get
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[Jos™]), <o, (11)
h

where C is some constant depending on u(x), but not on h.
From this equation it follows that £ ) tends to zero as h - 0.

In the equation Lhu = f h which we have taken as an example, (and
which 1s written out in detail in Egs. (5)) Lh canhbe regarded as an
operator. This operator maps each net function v = v, ,n= 0, 1, ...,
N, in the linear space of functions defined on the net Dh’ into an
element g of form (10), also in the linear space Fh, via the equation

v -2v_+v v -v
ntl n n-1 nt+l 1
2 + a(xn) h + b(xn)vn R
(h) _
th = v
Y17 Y%
5 .

Also in the general difference boundary-value problem (2) we will adopt the
convention that the right-hand sides of these scalar equations, which we
have written collectively in the symbolic form

are components of a vector f(h) in some linear normed space Fh' Then we
can regard Lh as_an operator mapping each net functionm, u(h) in Uh’ into
some element f of Fh. In this case the symbol Lh[u]h is meaningful, and
represents the result of the operation L  on the net function [u]h of Uh’
an operation yielding an element of the space Fh.

The residual Gf(h) = Lh[ h] - f(h) belongs to the space Fh’ being the
difference of two elements of this space. By the "magnitude of the
residval” is meant ]lﬁf ]’

3. Approximation of otdgr h .

Definition. We will say that the difference scheme L u(h) = (h)

approximates the problem Lu = f on the solution u if |l6f(h)“F > 0 as
h + 0. If, moreover, the inequality

lor ™1 < e,

is satisfled, where ¢ > 0 and k > 0 are constants, then we will say that
the approximation ig of order HK, or order k with respect to the magnitude
of h.
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The fact that u Is a solution of problem (1) gives Information ahout
the function u, Information which one can use for the construetion of
system (2), and also to verify approximation. For this reason in the
definition of approximation we refer to problem (l1). We stress, however,
that the above definition of approximation of the problem Lu = f on the
solution u, by the difference equation Lhu(h) = f(h), does not rely on the
equation, Lu = f, which determines the function u. One might have said
simply that the scheme u(h) = f(h) agrees to order hk with function u,
making no mention of the origin of this function. In particular if the
function u is, simultaneously, the solution of two completely different
problenms, L(l)u = f(l) and L(Z)u = f(z), of form (1), then one and the same
o) L p(B)
approximate each of these problems on their common solution u.

4. Examples.

Example 1. Difference scheme (5), In view of bound (11), approximates
(4) to first order in h. Scheme (5) can easily be refined, however, so
that the approximation becomes order W. To accomplish this we note that
all components of 6f k except the last tend to zero like h2 (and the next
to last 1s actually exactly equal to zero).

difference scheme, simultaneously either does or does not

Only the last component of the vector Gf(h) (i.e., the residual

arising from the substitution of [u] 1Into the last equation,

(ul - uOJ/h = 2, of system (5)) tends to zero more slowly and is, in fact,
first order 1n h. This annoying clircumstance 1s easily eliminated. By
Taylor's formula

N 2
ah) = w0 _ oy + 2 w0y + I v o) -

h .. W
2 + 7 U 0) + g u (£), 0<g < h,
But from differential equation (4) we find that
u” " (0) = -a(0)u" (0) - b(0)u(0) + cos 0 = -2a(0) - b(0) + 1.

Therefore, replacing the last equation of (5) by the equation

u - u
—l—h—ﬂ -2 - ; [2a¢0) + b(0) ~ 1], (12)
we get for f(h), in place of (7), the expression
cos x_,
h
AR B

2 ——;[23(0) + b0y - 1].

It then turns out that
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4 4
D)+ u(g,)

h2 P vas
ﬁ[ 2 + (u (51]+u (52]]]’
Gf(h) = ,
h2 L.
U (&)
and ||6f(h)||F < Clhz, where C, is some constant not depending on h. The

approximation now becomes second-order in h.

We stress that, for the construction of difference boundary condition
(12), we used not only the boundary condition of problem (4), but also the
differential equation itself. One may say that we have, in effect, used
the boundary condition

u”(x) + a(x)u"(x) + b(x)u(x)lx= = cos x!x=

0 Q’

which is a consequence of the differential equation.
Example 2. We examine the order of approximation of the difference

scheme
u - u
+ -
(h) _ =
Lhu = uy = b, 2
u1 =b

on the solution, u, of the problem

du = 2
ax + Au 1 + x4,
(14)

u(0) = b.

A similar scheme was considered in $8 even before the introductlon of a
rigorously—defined conc?gg of approximation.
Here the role of f is played by
1+ xg , n=1, 2, ..., N-1,

AL Y

b.

Further
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u(xn + h) - u(x - h)

>4 n + Au(xn], n=1, ..., N~1,
Lely =1 woy,
u(h)
or
du(x ) 2
[ dx“ + Au( )] +-Eg»u"‘(5n), n=1, ..., N-1,
L ], = §uCo),
dU(EO)
u(0) + h el

Since the solution, u, satisfies the equation

du(xn)
——a;——-+ Au(xn) =1+ xi,

(h)

the residual 6&f takes the form

The approximation of problem (14) by scheme (13) is of first order im h.
One 1mmediately sees that the components of the residual, as in example 1,
are of different order im h. The difference equation

u - u

nt+l n-1
2h

+Au =1+ xﬁ, n=1, 2, ..., N-1, (15)

upon substitution of [u]h, is satisfied with residual hzu"’(En)/6, a term
of order h2. The first boundary condition

ug = b (16)

on substituting [u]h, is satisfied exactly, and the second
=b 17
uy 17

== with residual, hu’(EO), of first order in h. The error of the
approximation 1s estimated via

max lu“’(x)', max 'u’(x)l.
0<x<1 0<x<1
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In the example under consideration the exact solution

Ax + 1+ x2 - e-Ax _ 2x

u(x) = u(O)e— x P
A

allows us to estimate these maxima in terms of u(0) and A:

-Ax
max lu‘(x)l = max Au(O)e_Ax + Ez_ixés___ .2 <
Sxil Sxil AZ_
<luoy] [al(1+ ™) + -2+ Ly (1+ ™,
[a] &
max lu"’(x)' = |[uo) +‘%]A3e_Ax <
0<x<1

< [Jucoy] [a]® + |a]2](1 + ™).

In more complicated cases it is necessary to limit oneself to coarse
bounds on these derivatives, based on the theory of differentiability of
the solutions of ordinary differential equations with smooth right—hand
sides.

5. Splitting of difference schemes into subsystems. For a detailed
description of the character of approximation it turned out to be con-
venient to talk, not about the whole difference scheme (13) of form (2),

all at once, but separately about subsystems (15), (16), and (17). These
subsystems (of which the latter two each consist of a single equation) can
be put, respectively, into the following symbolic forms:

0 (hy ()

eput™ o W) (18)
ziu(h) = f{h) , (19)
liu(h) - M, (20)

In order to accomplish this one must take
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u u
0 (h nt1l n—1
2 u( ) oh + Aun, n=1, 2, ..., N-1,
1 (h) _
gL (M ugs
2 (h) _

(h) _

£ =0,
(hy _

£, = b.

For convenlence, also in the general case difference scheme (2) is often

split into two or several subsystems

8 _ ()

T 2

QR (R _ L (h)

h R ?
so that

0 (h) (h)
Apu £o

L u(h) - gr u(h)’ f(h) - f(h),
h r
R (h) (h)
Qh u s fR .

It is convenient to consider the right-hand side, fih), of each sub-
system lgu(h) = fih), as an element of the normed space F(r). And it 1is

also convenient that the norms in space Fh and in spaces Fgl), Faz), ey

FﬁR) should be coordinated so that

(0
r

(b
£ =
Het™) |Fh max

(r)*
N

Splitting (2) into subsystems (21), we will always assume that (22) is

satisfied.

The convenience of splitting Lhu(h) = f(h)

the fact that one can then consider separately the order to which each

103

into subsystems consists in
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subsystem approximates the solution of problem (1), Lu = f. This order is

taken to be the order with which the norm, lldf h)|l ( ) of the residual
(h)

Gf o

(h)

fu, = £¢ ()

(r)
N + 8f

decreases as h * 0. Thanks to the coordinated choice of norms (22)5
order of approximation of the whole difference scheme, Lhu = f(h
the solution u of the problem Lu = f, 1s equal to the order of decrease of

the norm

o=l

(ry)
F O

of the residual Gf(h)

slowly. o

where r, is that r for which the norm decreases most
In example 2, when system (13) 1s split iInto subsystems (15)~(17), or
(18)~(20), the space Fh conslsts of the net function féh) = {f } with

n
(h)|| = max |f ', defined at the points x = nh, 0= 1L, 2, ...,

N-1, while spaces F(l) and F(z) are one dimensional and consist of numbers
with norm 'Ial‘ = l ' Equation (18)

norm ||f

(0) (h) _ _(h)
Eh u = fO s
agrees with groblem (14), on the solution u, to second order, the

equation 2 1 = f? corresponds exactly to (l4) while the equation

2(2) (h) _ f2 is correct to first order. To raise the order of
approximation of difference scheme (13) from first to second order in h, it
suffices to "improve” only the boundary condition lé u = b. We note

that

2
(2)[u]h = u(h) = u(0) + hu” (0) + ;—-u"(i).

We now take into account that u(0) = b and that, by virtue of (1l4),
u”(0) = -Au(0) + 1 = —-Ab + 1.

Setting

22 u(h) =u

(h)
h £,

=b - hAb + h, i.e. = b - hAb + h,

we achleve satisfaction of the boundary condition



§11 Approximation of a Difference Scheme 105

1£2)[u]h = u(h) = fgh) + o(n?),

i.e. we attaln agreement, to second order in hz, with the boundary
condition

lﬁz)u(h) = £{M (£ = b - hav + b) (23)

of problem (14), on the solution u. Thus the difference scheme (15), (18),
(23), approximates problem (l4) to second order in h.

The splitting of difference scheme (2) into subsystems (21) is simply
a convention, adopted solely to facilitate discussion. Thus, for example,
system (13) could have been split into two subsystems with difference
equation (15) assigned, as before, to the first, and both boundary
conditions (16) and (17), to the second. We would then write, symbolically

2O _ )

(1) (h) _ _(h)
lh u = f1 ,

where

uO,

LR

uy,
With this splitting, however, as opposed to the splitting (15)-(17), or
(18)-(20), we would have lost the ability to refer concisely to the fact
that the first boundary condition, upon substitution of [u]h, is exactly
satisfied, and the second — only to first order in h.

6. Replacement of derivatives by difference expressions. In the
above examples we constructed difference schemes by replacing derivatives,
in the differential equation, with difference expressions. This is a
perfectly general approach which allows one to construct, for any differ-
ential boundary-value problem with a smooth enough solution u(x), a
difference scheme with any prescribed order of approximation.

& k X Kk

In fact, let us show that the derivative dk/dxk, of any arbitrary
order k, can be replaced by a difference expression such that the error
induced by this replacement, for a smooth enough function u(x), will be of
any prescribed order, p, in the step-~width, h, of the difference net. For
this purpose we will use the method of undetermined coefficients,

We will write an equation of the form

LGOI

k
dx 5= -8

asu(x + sh) + O(hp) (24)
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and try to choose the undetermined coefficients, a , 8 = —S;s T8 + 1,
cees By (independent of h) in such a way that the equation will be valid.
The limits of summation, 8y 2 0 and Sy > 0, can be chosen arbitrarily
provided that the order, s, + s_, of the difference expression
h-k ¥ asu(x + sh) satisfies the inequality sy + s, >k+p-1. By
Taylor's formula

2 .2
u(x + sh) = u(x) + sh duéx) + (sh)” d7u(x) +
X 21 dXz

oo

. (Sh)k+p—1 dk+p_1u(x) .\ (Sh)k+p dk+pu(E)
S (k+p-1) xk+p—1 (k + p)! dxk+p

d

Let us substitute thls expression, In place of u(x + sh), into (24) and
collect like terms. We then get

k
du(x) _ .-k du(x) h
—5 = h [u(x) Z as+—d;——ﬁz sa  + ...
dx
- 41—
R RALRTC W LR S e ]+
e ~ —
Ll (& +p - DI s
k+p
g e dTu(Ey)
+ (k + p)! s a4 dxk+p )

Equating coefficients of like powers hs, s = -k, =k+l, ..., p~l, on

the left- and right—hand sides of this equation, we get the following
system of equations for the as'

H

La =0 )

k-1
2 8 as = 0, L (25)
k
2 s a_ =k!,
s
k+1
z s a_=0,
8
+p=—
2 sk P 1a = 0.
8
o
If 8 + 8, = k + p - 1, then the above k + p equations form a linear system

of this same number of unknowns ag. The determinant of this system
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1 1 e 1

-8 -8 + 1 ves S5

k+p-1 _ k+p-1 k+p-1
(-s,) (s, + 1) ok

is the well-known Vandermonde determinant, and is different from zero.
Thus there is a unique set of coefficients, a, satisfying system (25). If

) + 5, 2 k + p then, clearly, there will be many such systems of

coefficients, age
Thus, for example, there is a unique first-order difference expression
of the form

h_l[aou(x) + alu(x + 1,

approximating du/dx, accurate to first order in h. It is given by the
relation

du _ulx + h) = ulx)
ax - ™ + 0(h).

Likewise there is a unique first—order difference expression of the form
-1
b [a_julx = h) + agu@o)],

approximating du/dx to first order in h:

du _ u(x) - u{x - h)
= n + 0(h).

dx

Among second-order difference expressions of the form
h—l[a_lu(x = h) +ajulx) +aulx + h)]

there are infinitely many which approximate du/dx to first order in h, but
only one 1s of second order accuracy. Solving system (25) in this case we

see that, for a =1/2, a, = 0, a = -1/2
du _u(x+ h) - ulx - h) 2
dx 2h + O(h )°

If we want to approximate d2u/dx2 to order hZ, then k = 2, p = 2, and
it is necessary that s
of the form

1 + S > 3. Therefore among difference expressions

b 2(a_gulx = h) + agu(x) + a,uCx + h) + ajulx + 20)) (26
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there 1s only one that has the desired properties. Solving system (21) for

the coefficients a_js g a; and a, ve find that

i.e we get the equation (already often used above)
d?u(x) _ u(x + h) - 2u(x) + u(x - h)
ax? h?
* %k

+ o{n2).

7. Other methods for constructing difference schemes. The
replacement of derivatives by difference expressions is not the only, and
often not the best, method for constructing difference schemes. Later we
will devote §19 to some other methods, leading to the most widely-used
difference schemes. Here we limit ourselves to a discussion of examples.

The simplest difference scheme
u -u

hy —Eilﬁ—~—5 - e(x_, un) =0, n=0,1, ..., N1,
Lhu =
uy = a.

called "Ruler's scheme,” approximates the problem

gﬁ - 6(x,u) =0, 0<x<1,
@27

u(0) = a

to first order in h. For given u s ou is computed from the expression

) +1
Ui T Uy + hg(xn, u J. The scheme

un+1- un 1 -
(h) _ h - 7[G(xn’ un) + G(xn+1, “)] = 0,

u, = a,

0
where ;n =u, + hG(xn, un), is called the "predictor-corrector Euler

scheme”. It is in fact, one of the Runge-Kutta schemes, with second-order
approximation, which will be discussed in detail in §19. If u_ 18 already

n
computed then, in this scheme, by Euler's method we compute the value

u = u +h6(x , u),

and then carry out a refinement of this G, setting
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h -
U T, + i[G(xn’ un) + G(xn+1, u]],

PROBLEMS

1. Verify that the predictor—corrector Euler scheme approximates
problem (27), on a smooth solution u(x), to second order in h.

§12. Definition of stability of a difference scheme.
Convergence as a consequence of approximation and stablility

1. Definition of stability. Suppose that, for the approximate
solution of the boundary-value problem

Lu = f (1)

we have constructed the difference scheme

Lhu(h) _ f(h)’ (2)

which approximates problem (1) on the solution u to some order hk. This
means that the residual §f

L [u], = LTI

which appears when the table, [u]h, of values of the solution u, is
substituted into Eq. (2), satisfies a bound of the form

Iléf(h)lth <o, )

where C1 is some constant not depending on h. It is easy to verify that
the difference scheme

n+l n-1 n+l n _
4 m 3 ™ + Aun = 0,
h
Lhu( ) n=1l, 2, ..., N-1,
uy =b
approximates

du
K+Au—0,

u(0) = b,
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on the solution u, to first order in h. However, as was shown in §9, the
solution u h , obtained via this difference scheme, does not tend to
[u]h as h » 0. -

Thus, generally, approximation is not sufficient for convergence.
Stability 1is needed in addition.

Definition 1. We will call difference scheme (2) stable if there
exists numbers, h. > 0 and § > 0, such that for any h < h0 and any

s(h) in Fh’ Ile(h "F < é, the difference problem
h

(h) (h)

+ e (4)

s

=f

Lhz
obtained from problem (2) through the addition to the right-hand side of a
perturbation € , has one and only one solution z(h); and moreover, this
solution deviates from the solution, u h , of the unperturbed problem (2)

(h) _  (h)

by a net function z u , satisfying the bound

BRI TP P T (5)
| ”Uh < th

where C is some constant not depending on h.

Inequality (5) signifies that a small perturbation, e(h), of the

right-hand side of difference scheme (2) evokes a perturbation, z ) u(h),
in the solution which is uniformly small with respect to h.

Suppose the operator mapping Uh into Fh is linear. Then the above
definition of stability is equivalent to the following:

Definition 2. We will call the difference scheme (2), with linear
operator Lh gtable, if for any f(h) in Fh, the equation Lhu(h) = f(h) has a
unique solution u in Uh’ and

™11y <elle™1, 6)
h h

where C is some constant not depending on h. We now prove the equivalence
of both definitions of stability for a linear operator L .

First we establish that, from the stability of difference scheme (2)
in the sense of definition 2, follows stability in the 2ense of defini-
t%ﬁn 1. Suppose the linear problem (2), for all h < h0 and arbitrary
f in Fh’ has a unique solution satisfying bound (6). Subtracting Eq.
(2) from Eq. (4) we get

*Apparently the requirement h < h, 1s implicitly assumed in definition 2.
(Translator's note.)
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ROBIRCNEINCY

L ( ,
from which (by wvirtue of (6)) (5) follows for any e(h) in F
follows stability in the sense of definition 1.

Now we will show that stability in the sense of definition 1 implies
stability in the sense of definition 2. By definition 1, for some
h, > 0 and § > 0, and for arbitrary h < ho, with € in F h such that

b and from (5)

l'e(h)"F < &, there exist unique solutions of the equations
h

LN CO RO
h
Lo o
h
Set w(h) H z(h) - u(h), and subtract the above equations term by term. We
then get
h h
L™ = M,

where, moreover, from (5)
h) h)
MLy <ol 1™ e,

It is clear that, if we change the notation for the solution and right hand
side of the equation Lhw(h) = e( , this last result can be stated thus:
for arbitrary h < h, and f(h) in Fh’ llf(h)l|F < &, problem (2) has a

unique solution u(h . This solution satisfies bound (6). But then 1t must

be true that Eq. (2) has a unique solution u(h), and that bound (6) is

satisfied, not only for all f(h) such that I]f(h)'lF < §, but also in

h
general for all f( ) in F(h), 1.e. we have stability in the sense of defi-
nition 2.

In fact let llf(h)'|F > 8. Let us demonstrate existence and

uniqueness of a solution, as well as the validity of (6), in this case.
Let

h h
2] 2™,
NOW h_ ~(h) KON h_ (M)
8 8

(h)

For u we get the equation

L g

with
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~(h) § (h) )
£ = — £ =—=< 6,
|| Ith zllf(h)'lF l' 'th 2
h

(h)

= ;(h) has a unique solution, and moreover

~(h) ~(h)
u < C||f .
|l lluh 2 Il |th

Therefore Lh:

By virtue of the equations establishing the relation between u(h) and
;(h), and between f and ¥(h), it follows from the above inequality that
problem (2) has a unique solution, and that bound (6) is valid for
arbitrary f in Fh.

2. Connection between approximation, stability and convergence. We
show, now, that from approximation and stability follows convergence.

Theorem. Suppose that the difference scheme Lu = f(h approxi-

mates the problem Lu = [ on the solution u to order hk, and ig stable.

) (h) _ ()

Then the solution, u* ’, of the difference problem Lyu aonverges

to [u]h, satisfying the bound
(h) k
[fruy, - w Huhg (cc )n’, ¢))
where C and ¢, are the numbers entering into bounds (3) and (5).

Proof. Define € h = 6f h , [u]h z z . Then bound (5) takes the
form

(h) (h)
[uu] —u < Cc||s¢€ .

Taking note of (3) we easily get Eq. (7), which was to be demonstrated.
As an illustrative example, we prove the stability of Euler's
difference scheme

Unel n

) (8)

x = nh, h = 1/n, for the numerical solution of the differential boundary-
value problem
du
E—G(x’ u) = ¢(x), Osxslv
(€))
u, = Y.

We will assume that the function, G(x, u), of two arguments, and the
function ¢(x), are such that there exists a solution, u(x), with bounded
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gecond derivative. 1In addition, we suppose that G(x,u) has a bounded
u-derivative
G

3;, <M, (10)

We suggest that the reader verify that the difference scheme (8)
approximates (9) on the solution u(x) to first order in h. (The difference
equation represents the differential equation to first order, and the
boundary conditions u, = Y 1s exact.) We define the norms

II“(h)I'U = max '“n" l'f(h)||F = max{[v], maxl¢(xm)|}
h n h m

and proceed to verify the stability of difference scheme (8). Let us write
this scheme in form (2), setting

+1
) - dx , u ), n=0, 1, v.., N-1,
L u
h
Uy
#(x ], n=01, ..., N-1,
NN
V.
The problem
L ) ()
h
has the explicit form
o+l zn
T -6lx, 5 z) =¢(x) +e, n=0,1, ..., N-1,
(11)
z, = Y+ e,
where
€, n=20,1, ..., N-1,
e(h) n
€.

Let us subtract, from Eqs. (l1), the corresponding Eqs. (8), term by
term. We define
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and note that

ag(x , £ )
h
G(xn’ Zn) - G(xn un) = nau - Y T Mﬁ )wn’

where £ 1s some number between z and u . We then get the following
n n

system of equatlions determining w(h) = (wo, Wis eees Wy oeey wN]:

w - W
+1 n h
—‘l—h——Mi )wn=r—:n, n=0,1, ..., N-1,
(12)
W= E.
0
(h)

Taking account of the fact that M

N < M by virtue of (10), and that
nh < Nh = 1, we get

(h)
)

o b= [+ ™)w +he | <+l | +nle |

I~

(FaN

(1 + M2 fw |+ nee+ e |+ ble |

1A

<(L+ Mh)z,wn-ll + 2h(1 + Mh)”e(h)HFh <
<1+ M)dw _2| + 3h(1 + Mh)ZHe(h)HF <

h
<+ ™ u | + (na + ™ [e™] ] <

(aS

a )™M e P, <
h h

(e

201+ "™ < ae 1M

h h
From the demonstrated inequality

M h
oy | < 2"
h
follows a bound of form (6)
ey <21y,

signifying stability with constant C = 2 exp(M). By virtue of the above

theorem, difference scheme (8) is convergent to first order in h.
Now let us study the convergence of difference scheme (7) §10
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- 2u +
Yl Un v

ol _ (14 x2_=4/1+x_,
h2 n’ n n

13)

for the differential boundary-value problem (4) §10.

That problem (13)
approximates (4) §10 to second order in h is obvious,* since

u(x + h) - 2u(x) + u(x =~ h) _
he

Next we set out to verify stability.
linear.

.- hZ (4)
uw?(x) + 77 u ()

The problem under consideration is
Therefore proof of stability consists in that one establishes
existence of a unique solution of the problem

u - 2u +tu
otl n o+l 2
-1+ = = evy N-
) (1 xn)un 8 n 1, 2, , N-1,
uy =@ (14)
Uy =B
for any {gn}, a and B, and derives the bound
max |uni ¢ cmax Ignl, lal, I8l1). (15)
n n
A problem of form (14) was considered in $§4 (see p. 34). There, for the
problem

+ + =
anun_1 bnun Cnun+l 8>

We note that, if we were dealing with the solution of the equation
u’’ - [1 + xz)u = /x,
differing very little from the one considered here, then we would not be

able to deduce approximation, since |u””“(x)| would, in the given case, be
unbounded (prove, rigorously, that u”““(x) is unbounded).

115
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on the assumption that
gl > lagl + legl +6, 650
1t was shown that a unique solution exists, and that

|un| < max ['al, Is|, % max |gm|] . (16)
m
In the case of problem (14)

a =—, ¢ =-— , ’bn, ==+1+x> 'anl + [cnl + 1.

2
h2
Therefore bound (16) implies bound (15) with C = 1. Stability has been
proven.

We note one detall which can be useful in proving convergence through
verification of approximation and stability. Suppose difference scheme (2)
is split into the two subsystems

(0) (h) _ _(h)
Eh u = f0 , (17)
(1) (h) _ _(h) -
lh u = f] 177)
so that
SO NOY M,
L™ = L) _ se(h)
Egl) u(h), fih), Gfih).

Assume, further, that difference scheme (2) approximates problem (1) to
order hk, i.e. Eq. (3) is satisfied. Suppose that, in addition, subsystem
’

(177) agrees with problem (1), on the solution u, exactly, 1.e. Gfgh) =0

with 0 1in Fh :

. seM,

se(M - (18)
0.

In such a case, for convergence of the solution, u(h), of problem (2) to

the required net function [u]h (i.e. for the validity of bound (7)), it is

sufficient that (5) be satisfied, not for all arbitrary € in F,, but

'h)
only for all e of the form

L(h)

e 10 (19)
0,
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where 0 is in Fih). A proof of this conclusion colncides verbatim with the
proof of the above convergence theorem. The reader can easily verify that,
for a linear, ? irator, Lh’ the requirement that bound (5) be satisfied
only for all ¢ of form 519) is equivalent to the requirement that bound

(6) be satisfied for all f of the same special form

(h)
£ >

(m _ Yo
0,

with 0 in Fél).

For example, in proving convergence of difference scheme (13), it
would have been possible to make use of the fact that both boundary
conditions,

u, = 2,
RIRL { 0 } - (D)

- h
ug = 1

upon substitution of the tabulated values, [u]h, of the solution of problem
(4) 8§10, are satisfied exactly:

(n ) u(0) = 2,
't luly
u(l) 1.

Therefore the proof of inequality (15), signifying the stability of
difference scheme (13), could have been carried out, not for an arbitrary
right—hand side

L n=1, 2, ..., N-1,
RO

u’
B,
but only for a right-hand side of form

n
RO

>

o o 0

>

where we have taken a = 0 and 8 = O.

In problem (13) we dealt with the proof of the stability-inequality
even without taking account of this simplification. In more complicated
problems (for equations with partial derivatives) tne above considerations
will sometimes prove useful.
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To end thls section we underline the fact that the overall glan of the
proof of convergence of the solution of the problem L, u =f to the
solution of Lu = f, via verification of approximation and stability is very
general in character. In the role of the equation Lu = f we can put any
functional equation, not only a boundary value problem for an ordinary
differential equation. In itself it is not important what sort of problem
is solved by the function u. The equation Lu = f 1s used only as a basis

(h) _ (M)

for the construction of the difference equation Lhu £ . These

considerations will be clarified below, in 3.

kR k kR
3. Convergent difference scheme for an integral equation. We now
construct and study a difference scheme for computing the solution of the

integral equation

1
Lu = u(x) ~ | R(x,y) u(y) dy = £(x).
0

We will assume that Jx(x,y)] < p < 1.
For a given N we set h = 1/N and seek to obtain a table of the solu-
tion, [u]h, on the net x = nh, n=0, 1, ..., N. To arrive at a dif-

ference scheme we approximate the Integral in the equation

1
U(X ] - I K (X ’ y} u(y) dy = f(x )’ n = O, 1! cet N)
n 0 n n

by a sum, using the trapezoidal integration formula. We recall the
structure of this formula: for any function, ¢(y), twice differentiable on
the interval 0  y < 1, we may write

1 %9 by 1
(f)¢(y)dy=h(2—+¢1+¢2+...+¢N_1+2—], h=x,
where the error is O(hz). After the above replacement of the integral we

get
K(x , 0]
) _ n (h) (h)
u h 7 uy + K(Xn h] uy + ...
K(x 1)
(h) n’ (h)
cee + K(xn, yN_l)uN_1 o uy | = f(xn], n=20,1, ..., N. (20)

h)

This system of equations can be written in the form Lhu( = f(h) 1f we

define
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8o £(0)
(hy _) & (my _ ) £
L, u = £ =
h
1
8y £(1),
where
K 0 K
=™y gy O o™ s k(x, n)u™ 4 +—~——(x“’ 2 ulh?
n n 2 0 n’ 1 vt 2 N ’
n=20,1, «.., N,
) (h) _ (h) ) - )
This scheme Lhu = f approximates the problem Lu = f, on the solution

u, to second order in the step-size h, since the trapezoidal quadratuzﬁ)

formula is accurate to second order. We now verify stability. Let u =
(uo, Uy eees uN) be any solution of system (20) and let uS be one of

those components of the solution whose modulus is no less than that of any

other:

lu | = max |u |.
s m
mn

From the equation of system (20) numbered n = s, it follows that

K(x N 0] K(X , 1]
|f(xsj| = uéh) - h(———§—~__ uéh) + K(XS’ hJu(T) .+ ___§§___ uéh)>l >
2 ‘Uih)‘ - h(—§+ o+ ... +p +-§) uih)‘ = (1 - Nhp) uéh)‘ -1 - uih)‘-
Therefore

1

oM 2= R C S He™p, . @o

HaP . = max,u(h)l -
U m 1 -
m h

h

From this it follows, in the special case f(xn] = 0, that system (20)
has no nontrivial solzﬁ%on, and therefore has one and only one solution for
any right-hand side f . Inequality (21) signifies stability, since it is

equivalent Eﬁ)(é) ?%gh constant C = 1/(1 - p). The solution, u ’, of the
problem L u = f , by virtue of the convergence theorem, satisfies the
inequality

(h)

o] < A2,

||[u]h - u(h)llu = max |u(mh) - u
h m

where A is some constant.
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§13. On the choice of a norm

The concepts of convergence, approximation and stability, introduced
in §§10-12, are meaningful if, in one way or another, norms have been
introduced in_the spaces Uh and Fh’ to which belong, respectively, the
solution, u , and the right—hand side, f , of the difference scheme

for the approximate computation of the solution, u, of the differential
boundary-value problem Lu = f.
We now discuss to what extent the choice of norms, in the spaces Uh

and F is arbitrary. We begin with the norm e ,'U s, whose value mea-

h)
sures the deviation of the approximate solution, u , from the net
function [u] , i.e. from the tabulated values of the solution u.

In all the examples we have considered we have used the norm defined

by the equation

(h)
Nz 11y = max
h k

zih)l . 69

The maximumhis taken over all points of the net, Dh,'on which the net
function z in U_ is defined. We could, of course, have taken

h
(h) (h)
1z [l,, = h max |z , (2)
Uh K k
or
(h) 1 (h)
[z 11 =~ max |z l s 3)
Uh h k k
or even
(h) -1/h (h)
He | =2 max |z .
Uh k k '

This latter norm may seem to be useful since, using this norm, the scheme

for solving the problem
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u” + Au = 0, 0<x<1,

u(0) = a,

cited in §9 as an example of an unuseable scheme, is now convergent. In
fact by virtue of the equation

—Ax 3 Ax x /h
u{nh) - u = ae no_ w = - [E'Azae L O(h)] n22 o+ o(h),
which follows from (7) §9, the quantity
||[u]h - u(h)IIU = 2_1/h max |u(mh) - u;h)|

h m
tends to zero as the net 1s refined. But it is clear that the approach of
this quantity to %ﬁgo does not,(g% any reasonable interpretation, imply
that the error, z = [u]h - u 7, tends to zero, insofar as the differ-
e?7ﬁ, u(nh) ~ u_, is allowed to increase very rapidly (almost like
27""), as it does, in fact, in this example. Norms (2) and (3) also are
not to be recommended since they also inadequately characterize the error
[u]h -u .

It is customary to choose a nmorm in the space Uh in such a way that,
as h tends to zero, it will go over into some norm for functions given on

the whole interval, i.e. so that

lim |[(ul [V = llull, (4)
hs0 h Uh U
where || - ilU is a norm in that space of functions, on the given interval,

to which u(x) belongs. The norm

||Z(h)||U = maxjz
h ]

)

satisfies this requirement, if we take as U the space of continuous
functions 1n which

IIUIIU = max ju(x)},
0<x<1

and let the net function [u]h coincide with u(x) at the points of the net.

h h)|?
1My, = oy |2 (5)
h m

The norm
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is also reasonable. It satisfies condition (4) if we take, as U, the space
of continuous functions with norm

1
ully = /f u?(x) dx,
0

and define the net function [u]h, as before, to colncide with u(x) at net-
points.

In the case of a discontinuous solution u{x) which, however, is
square-integrable, we may take as U the space of square-integrable

1
[ully = \/; u?(x)dx,
0

but define the value, u of the net function [u]h, not by the equation

functions with the norm

u = u(nh) (which may not be meaningful), but by the expression

x +h/2
1 n
u Ty f u(x)dx.
xn~h/2

Then also for the discontinuous function we will have

1
1im || [u) = |f u?dx.
o 1oy, JO

It 1s clear that convergence

(h)
lim [ul,, = u =0
h*0 " h Ith

in the sense of norm (1), 1.e. uniform convergence, Implies convergence in
the sense of norm (5), 1l.e. convergence in the mean, but uniform conver-
gence does not follow from convergence in the mean. Therefore, from among
the various reasonable norms satisfying condition (4), one chooses that one
in which one can prove the convergence of the particular difference scheme
under consideration. For this choice there is no general prescription.

In the case of ordinary differential equatlions and the corresponding
difference equations, which we are studying in this chapter, it is
generally satisfactory to use norms (1) or (5), or a norm of the type

L)

z;h)" m;x m+1h m . 6)

llz(h)|| = max | max
1))

h m
which takes account of the change in the net function from point to
point. Equation (4) 1s satisfied for this norm, 1if, as U, we take the
space of continuous and differentiable functions with norm
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[Tully = max [ max Juex) |, max. ]u’(x)l] .

0<x< 0<x<:

In the case of partial differential equations and the corresponding
difference schemes 1t 1s sometimes convenlent to use quite contrived norms,
designed for specific problems.

Let us proceed, now, to consider the choice of a norm in the(ggace Fh’
w?ich contains the right-hand side‘of the difference equation Lhu =
f . We underscore that convergence of the difference scheme
“[u]h - u(h)|‘U + 0, for the selected norm || . “U does not depend on

the choice of a norm " . nor is it even relevant whether amy such

5 »
norm has been chosen. It 1is :ecessary to consider Fh as a linear normed
space only in order to reduce the convergence proof, and verification of
the order of accuracy of the difference scheme, to a verification of some
order of approximation, and verification of stability.

We will discuss the choice of a norm in Fh assuming linearity of the
difference scheme Lhu(h) = f(h). This will be done only to avoid unessen-
tial complications.
the difference

D,

approximates the problem Lu = f on the solution u to

Suppose that, for some cholice of norm, ]] -)

scheme Lhu h f(h)

some order h , and is stable. Then by virtue of the convergence theorem

the difference scheme Lhu = f 1s convergent, with order of accuracy
h :
h k
1wy, - uf )IIU < cht. N
h
Recall that approximation means the satisfaction of an inequality of the
form
(h) (D k
I, fu1, - £ lth PER (8)
Stability means that the problem Lhu(h) = f(h) has a unique solution for
any f in Fh, and moreover
a1, <oyl 1e M 1ED. (9
h h
If we choose another norm, 'l . ,lF , defining
h 2 h 1
1118 = w10, 10

then, obviously, inequalities (8) and (9) are replaced, respectively, by
the inequalities
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'ILh[“]h - f(h)||§:) L Chk+1

(11)

ST STROIIOY
,’u Uh AN " ',Fh

Thus approximation will no longer be of order k with respect to the step-
size h, but of one higher order, k+l. Judging by these facts, one might
mistakenly conclude that the order of accuracy of the difference scheme is
not h , but h ° The trouble is that inequality (9) no longer signifies
stability which, for the new choice of norm, is generally lost.
If instead of (10) we had introduced the norm Il . l|;2) via the

h

equation
(hy(2) 1 (h) (L)
He g =5 e g7
Fh h Fh
then, in place of (8) and (9), we would have gotten, respectively,

|l a1, - f(h’llf,:’ <ot (12)

(h) (h)(1(2)
[ lthsczhllf |th- (13)

Inequality (13) guarantees stablility since C2h can be replaced by a
constant, C2, not depending on h, thereby only strengthening the
inequality. 1Inequality (12) indicates approximation of order k-1 with
respect to the step-size h.

2
1P

Thus, having chosen the norm ll . , We would only be able, on the

basis of the convergence theorem, to guarantee k-1'st order accuracy for
the difference scheme Lhu = f( , one order lower than 1s guaranteed by
inequality (7). This loss of information on order of accuracy has occurred
because of a poor choice of norm in the space Fh.

So as to determine, correctly, the order of accuracy of a difference

scheme one must choose the norm, I' . "F , In such a way that the order of

approximation 1is as high as possible, while stability is still not lost.
For this choice of norm there 1s no general rule.* Further, 1t is not
always possible to choose a norm in such a way as to give both
approximation and stability; otherwise, contrary to what was shown via the
example in §9, every difference scheme would be convergent.

*We have in mind, here, also the case of difference schemes for partial
differential equations,
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We will present, however, one general consideration which may help us
choose a norm correctly in the linear space Fh. In choosing the norm

|' . ‘lF one must take account of the nature of the continuous dependence
h

of the solution of the differential boundary-value problem, on which the
difference scheme L u L f( ) was based, on the right-hand side f.

For example, in the case of the problem
du _
E;'+ Au = $(x), u(0) = a, 0<x<1
when one introduces the increments §4(x) and 8a, into the right-hand side
and the boundary condition, respectively, the solution u(x) changes by an
amount,8u(x), of the same order of magnitude.

Now let us consider the difference schemes

U o

n D+ oa o= 9(x ), n=0,1, ..., N-1,

(h) h n n
Lhu = . =

O r

such that
¢(xn)y n = 0’ 1) - ’ N-ly
RO
a.

The norm in Uh, as usual, will be given by the equation

L
m

™) = max
' Uh m

Stability can be expected only if the norm

o(x )

Ne™), = "
‘ Fh a

depends in some substantial way on both ¢(xn) and a. The norm, for example

may have the form

h
™1, = nax(lal, max lo,]]- (14)
h m
Stability in this norm was proven in §12, where a more general, nonlinear,
problem was considered.

One cannot expect stability 1f a norm is chosen, let us say, according
to the equation
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HE™ Y1, = max[nlal, max o I],
h m

where a enters more and more weakly as h decreases.

Stability in the sense of this norm would signify that u(h) depends
more weakly on a than does the solution, u, of the differential equation.
On the other hand for small h, by virtue of convergence (and convergence
would follow from stability, since we already have approximation) the
solution of the difference equation differs little from the solution of the
differential equation; it must change, therefore, when the initial value,
a, changes, by about the same amount as the solution u(x).

More concisely: for the given choice of norm the problem

u -u
ntl n
— +Au = b, n=20,1, ..., NI,
iy = 0
approximates the problem
Uy au = 6(x) u(0) = a
dx ?

o?hghe solution u(x) for any a. Thus, given stability, the function
u , not depending on a, would have to canverge to the solution u(x)
whatever the value of a. But u cannot converge simultaneously to
different functions u(x).

In the case of the difference scheme

N
u - 2u_ +u u - u
nt+l n n-1 + A n+l2 n-l +Bu = o,
h2 h n
n=1, ..., N,
15
- (15)
u, = a,
u, - u
1 0 _
h = b.
J

for the problem

2
A0y a Qe - a0,
dX2 dx

u(0) = a,

du(0) -

dx b

from these same considerations the norm
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#(x,)
”f(h)HFh = i
Fh

must depend, in some essential way, on ¢, a and h. It may have the form

™1, = maxffal, [], max o], o
Fy "

m

but one cannot expect stability 1if one chooses, as a norm, let us say, the
quantity

HeM™ 1], = max{{al, nlb], max o ]].
h m

Let us now rewrite (15) in a somewhat different form:

u - 2u_ +u u - u
n+l n n-1 nt+l n-1 _
2 + A o) + Bun = ¢(xn)
h
h
Lhu( ) . uy = a, (17
u, = a + bh,
so that
¢(xn)) n = 1) 2, .., B-1,
f(h) = ja,
a + bh. h
The norm in Fh must now be introduced, for any given g( ),
v
m
(h) _
g = )
by an equation of the type
h B -a
I'g( )I'Fh = max['a" _l_h—l- H max'¢ml], (18)
m

where lB - a! enters with increasing weight 1/h as h + 0. 1In fact a change
in a or B of order h is equivalent to a change in u, or u, of order h; but
thean lul - uol/h changes by a quantity of order 1. Such a change, 1f the
scheme 1s stable, implies a change in the solution of the equation

- + -
un+1 2un Yn-1 Ynt+l Ya-1

h2
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by a quantity of order 1l; clearly an 0(l) change in u, - uol/h is

analagous to a change in the right-hand side of the condition du(0)/dx = b,

a boundary condition of the differential problem, by a quantity of order 1.
One cannot expect stability if the norm is defined by

h
He™1lg = maxlfal, |8], max|v, |1,
h m

i.e. as it was defined earlier when we used the space F, in conjunction

h
with difference scheme (15). The order of approxiamtion of schemes (15)
and (17), with norms (16) and (18), respectively, 1s the same for both
schemes -- first order in h. The stability of schemes (15) and (17), with

norms (16) and (18), will be proven in §14.

§14. Sufficient condition for stability of difference schemes
for the solution of the Cauchy problem

Below we will show how to study the stability of difference
schemes Lhu = f for the solution of differential problems with
initial conditions (Cauchy problems). We do this via consideration of
typical examples of difference schemes approximating the problems

%%»+ Au = ¢(x), 0<x<1,
Lu = (L
u(0) = a,
V4 Av + Bu = p(x) 0<x<1
dx 3’ - _’
¥ L oy + Dv = q(x) 0<¢x<1
LuEL(:)= ax v q(x), sx< 1, (2)
v(0) = a,
w(0) = b,
d%u du
— + A = + Bu = ¢(x), 0<x <1,
2 dx = 82
dx
Lu = u(0) = a, (3)
du(0) _
dx b.

If the concept of stability of the difference scheme Lhuh = f(h) is to
have any meaning one must define the linear normed spaces Uh and Fh. The
first space contains the table [u]h in Uh’ which we are to calculate, i.e.
the table of the function, u, which solves the differential problem; to the
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second space belongs the right hand side, f(h) in Fh’ of the difference
scheme.

We recall that the difference scheme Lhu(h) = f(hz )with(%%near
operator Lh’ is said to be "stable” if the problem Lhu = f has a

unique solution u in Uh for any £ in Fh and, moreover, the condition

Na® i1, <ete™ir,
h

is satisfied.

In solving the Cauchy problem the net function, u(h)
computed in moving, sequentially, from one point of :he difference net to
another, ne%E?borinﬁﬁ)point. If we can get s bound on the growth of the
solution, u = {un }, after each such move (or, as it is commonly
called, each "step” of the computational process), we will have at our
disposal one of the most widely used methods for the study of stability.
It 1s this method which we will develop here.

1. Introductory example. We begin with the simplest, and by now
thoroughly familiar, difference scheme

s 1ls ordinarily

Lue® ={n-0,1, ..., 81, (h=1/0), 4)

for the solution of problem (1). This scheme may be written in the
recursive form

Wl T a1 - Ah)un + h¢n, n=0,1, ..., N-1,
(5)
uy = a,
from which it follows that
u = (1 - Ah)uo + h¢0,
_ _ 2 -
uy = (1 - a2 + m(1 - an)ey + ¢ ],
1 — an3 = A2 -
uy = (1= ah)3ug + b1 - an)%ep + (1 - Ao, + 8, ], 6)

u = (1 -amPy + h[(1 - A" e + (1 - Ah)“'2¢l ot )

We will define norms in the spaces Uh and Fh’ respectively via the

equations
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||u(h)l| = max u(h) ) (7)
U ocmn ' I
[
||f(h)||F n = max[lal, max |¢m|]- (8)
h a 0<m<N
Fy al

Now we use the fact that the expression (1 - Ah)n is bounded for
n {N=1/h,

(1 - an% <c. (9)
From Eq. (6) for u, with the aid of inequality (9), we conclude that

lu | < ¢ lugl + nNcy mix o ! =

(n)
max |6 | < 2¢c [ 1], . (10)

= cllal +C
m h

1

Since n is arbitrary, n =0, 1, ..., N, it follows from (10) that

(h) (h)
Iy IIUh_g 2¢, I1f Ith , (11)

and stability is proven.
2. Canonical form of a difference scheme. At this point we introduce
new notation, setting

W= Tm Ry=(L-AR), o =0 (12)

Now inequality (5) may be rewritten in the form

(13)

Y+l © Rhyn + hpn’ }
Yo given.

Using notation (12) we repeat all the above calculations. Equations (6)
now take the form

yl = Rhyo + hpos
B2y, + hlRypg + 0y ),
Ry, + h[R20) + Rop; + 0, ], (67

L T T L L T )

-1 -
o™ Rato * (R Ry

Y2

<
w
]

<
]
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Hence
max lyn| < max R:l . [|y0| + hN max |pn‘]-
n n n
The norms || e ||U and || - IIF are glven, now, by the equations
h h
a1y = max 1y I, 79
h n

e = max [1ygl, max Ip 1] (8

h n

Thus, noting that Nh = 1, one may write

a1, < max [RE] <2 1M
h n h

The proof of stability will be complete if one establishes the

boundedness, uniform in h, of the totality of numbers RE', i.e. 1f one

proves that

,R}‘:’ <c, n=1, 2, ..., N. (97

|al

Hea-ammca+ lal mVce® =,

Rh

which completes the proof.
Writing the difference scheme in form (13) made it possible to reduce

the stability proof to the computation of a bound for 'REI. This is
convenient. Indeed we will put all other difference schemes for the
solution of initial-value problems into the canonical form (13), taking for
Yoo P and Rn the different expression appropriate to each problem.

For example let us write in form (13) the difference scheme

Vatl ~ Vn
7 + Avn + Bwn = pn, n=0,1, ..., N-1,
W -w
+
ntl i v +Dw = q_, n=20,1, ..., N-1,
(h) - h nomom
L. u = (14)
h
Vo = @
\ vy = b,

approximating Cauchy problem (2) for the given set of differential

equations. Here
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P, n=20,1, ..., N-1,
f(h) ~ 9, n=0,1, ..., N-1,

a

b

We will write the difference scheme (l14) in the form

[‘v’:i] '[::L (s B>[vn]

h C DJ)'w
n

L)
2)

is a 2x2 matrix. We now cast this vector difference equation into the form
of a recursion relation

- 3
Vi1 1 - Ah - 80 \{ 'n - Pn
= + h s
Vot - Ch 1 - Dh L Q, ?
VO a
¥ b J

If we define

n 1 - An -Bh Py

y. = u = s = P p = .
L ) " - ¢ch 1 - Dh g

then the above recursion relation takes on the required form (13).

3. Stability viewed as the boundedness of the norms of powers of the
transition operator. We first make a remark which is equally applicable to
all equations of form (13), regardless of the dimensionality of the linear
space, Y, which contains the vectors Y and 0, and of the form of the
linear operator Rh: Eq. (67) follows from (13).

If, in the space Y containing Pn and ¥, ome introduces some norm

1] lly, then Eq. (6°) implies the bound
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Rn-l

N TN TR [P T

v Y
(15)

yglly + bl

n
Hy < ||

* & & x * %

We recall that the norm, ||T|], of the linear operator T, mapping some
linear normed space Y into itself, is defined by the relations

JlTx!]
Htll = suap —— or [Tl = sup [Tx!1.
x in Y {ixll fix}l=1, x in Y

From these relations, and from the properties of the norm of a vector, it
follows that

Pt < TITh » ilxil,
[{xTll = IAl < JITll, where A is any arbitrary number,

m m
Nl < el
The first two of these equations have been used to get bound (15).

* & X

From (15), clearly, it follows that

max ||y ||Y

< max ”R“” [y Il, + ¥ max Ile [l.]. (16)
oy 0 Y Toenen TR TONY n ¥

0<ndN

Suppoge that the difference scheme Lhu(h) = f(h) has been cast into
the canonical form (13), and assume that the norme introduced in the

spaces Uh’ Fo and Y are chosen such as to satiefy the inequalities

(h)
a0, <6y max My Hg,

h 0<ndN
(h)
lyglly < &M e | )
(h)
leglly < el 1E ™ -

Then for etability
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(h) (h)
[la ||Uh <clif ||Fh (18)

it 18 sufficient that the norms, "Rﬁ“ , of the powers of the operator

Y ,
R, be uniformly bounded with respect to h, i.e. that

Moreover, as the constant C entering into the definition of stability, Eq.
(18), one can take the quantity

n
Rh

< Cq, n=1, 2, ..., N.
v 3

2
C = 20203.
The proof of thls assertlon consists of the following chain of obvious
inequalities, written so as to take into account conditionms (17) and (18),
as well as the fact that Nh = 1:

I~

(h)
lu lluh < ¢, max |y Il

C2 max
n n

Jea Lo + <) ”f(h)”ph <

(h)
< c,Cqle, +cyl IIf ||Fh,

or

Ha™11  <c 1My .
Uh —_ Fh

4. Examples of investigations of stability.
Example 1. We turr now to an analysis of the stability of difference
scheme (l4) for a system of differential equations. Norms in U and Fh

h
will be introduced via the equations

Ilu(h)fl = “n = max[max v |, max lw ]
U W n’ n
h n U n n
h

Pa

HeMyy, = a4, = vax{lal, (bl, nax {p I, max lq_[].
h a n n
b F
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As we have seen, after introduction of the notation

n 1 - Ah - Bh Py a

w -Ch 1-Dh q b

this system of difference equations takes on the canonical form (13).
We introduce a norm, in the two-dimensional space, Y, to which

Yy and oL belong, setting

e

Ny 1y = @ - max[lyfll)" y§z>’] .

n

Y

h? Fh and Y turn out to satisfy condition (17). Therefore to
verify stability it is sufficient to show that

|

Note that, for the vector norms we have chosen in Y, the norm of any linear

The norms in U

RE <M, n=1, 2, ..., N, M = const.

Y

operator

11 12
T =
a1 22
is given by the equation
M) = max [le 0+ Tep,0, Tey 1+ Te, 1], (19)
since
max Hrxll, = IlT]]
Y
[1x][=1 y

is attained for at least one of the two vectors

By virtue of Eq. (19) for |IT|| we get
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1 - Ah - Bh
”Rh”v‘ H( - Ch 1-l)h)“Yi

< max|1 - An| + [Bhl, |1 - Dh| + lchl] = 1 + Cc”h.

Consequently,
IR:H g_ltRhH;g(1+c‘h)NgeC = M, n=1,2, ..., N,
Y
and stability is demonstrated.
Example 2. Consider the scheme
u -u
+1 -1
“Zh“ +hu =0, n=1, 2, ..., N-1,
uy = o (20)
u, = B8,

which, for a = a, B = (1 - Ah)a + h¢0, approximates the Cauchy problem (1)

to second order in h. We introduce the norms || * IIU and || ° I,F via
the equations h h
h
™1y = max |,
n
h n
n
h
He®™, =il |« = wax[lal, 18], nax l¢_I].
n
h n
8 F
h

In order to study stability we will try to put the difference scheme
into form (13) so as to reduce the stability proof to the derivation of a
bound ||R§||Y < C. Let us first rewrite difference equation (20) in the
form

Uy T U T ZAhun + 2h¢n.

What prevents us from rewriting it in form (13) is the fact that it

connects not two, but three successive values: » In order

u ., u,u
n-1 n’ nt+l
to overcome this difficulty we will set
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Now the palr of equations

u =u

nt+l n-1

- 28hu_ + 2ho_,

137

(21)

gives the components of vector Yo in terms of the components of vector

Yn-1?
“nt1 -2ah 1 i_ “n
u, . ) 1 0 Lun‘l
We have now written (20) in form (13), where
-2Ah 1
Rl 1 o) 7

yO_

[2¢

[(1 - Ah)a + ho, ]

a

n

29

n

Let us introduce a norm in the two-dimensional space Y, to which Y and Py

belong, via the equation

L

Then the norms

(h) (h)
™1, ™, ey,

h h

as can easily be seen, satisfy condition (17).
n | ‘ (—ZAh 1 )
Y 1 0/

<1+ 20anhH" <

n

| A

[3ll, < L=,

e2|A|,

proves stability.

= max(lal, IBD).

Therefore the bound
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Example 3. Let us study the stabllity of the difference scheme
- +
Ynt1 2un “a-

u - u
1 ol ~ Yn-1 - )
h2 +A 2h + Bun - ¢n'
n=1,2, ..., N=1.
> (22)
uy = a,
u - u
1 [¢]
h = b’ )

which, for a natural choice of normsS approximates the Cauchy problem
(3). The norms Ifu(h)lfu and I'f(h !

| will be defined by the equations
F
h h
h
Na™11, = max Ju ],
h n
(23)
]
n
h
e™y o = |1 a = max|lal, Ibl, max I |].
F n
h b n
F

h

So as to bring the scheme in question into the canonical form (13) we
set, as in example 2,

u +1
n
v, = . (24)
u
n
Then the components of the vector 1)
Ya
T L@
Yn
are uniquely determined by the components of Y17 by virtue of the given
difference scheme, through the relations
1y __2

- 2, (1) _2 - Ah (2) 2
Yn#l ~ 2 ¥ Ah [(2 Bh) Yn 7 Yn +h ¢n+1 ’

(25)
(2) _ (1)
Yobl ~ Yn -
Thus
yn+1=%yn+hpn, n=0,1, ..., N-2,
where
4 ~ 2Bh? _2 - Ah 2h®__
¥ + +
R, - Z + An 2+ah pr1=2+Ah w6
1 4}

0

Chapter 5
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Through use of the condition uy = a, (ul - uo)/h =b (see (22)) we

calculate the vector Yo?

a + bh
v = [ , 27
a

and thus complete reduction of the given difference scheme to form (13).
It is easy to see that, if the norm of the vector [ ¢ ] is defined as
max(|al, |Bl), it will not be such a simple matter to prove stability with

this operator R,, since lthll ~ 2, and l[RhI[n + @, For this reason the

h?
norm in space Y will not be defined as in example 2. In fact we will take

e ].

B -«
h

'Yh = max [|al, ’

We have attached the subscript "h" to Y so as to stress that the norm now
depends on h. TFor this choice of norm the quantities ||u(h)||U s
h
I'f(h)ll » e Il and [y, |1 satisfy relations (17). It remains to
Fh n Y 0 'L
show that the conditions l]R;IlY <C, n=1, 2, N, are satisfied. We are

already familiar with Eq. (19), relating the norm of an operator to the
elements of 1ts matrix if the norm in Y is given by

1G5

Let us now reduce the computation of the norm in Y

| - H(lih —1?h> (5]

= max [lal, 18].
Y

h to the computation in

Hl

. - g,

where

1 0
§= <1/h —1/h> :

Next we show that, for any arbitrary linear transformation, T, acting in
space Y, we have the equality ||T||Y = IISTS-lllY. In fact,
h

[rt1l], = HorGl] - flons™ s3] -

h Y ¥

Further
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Mrxily [1sTs  sx]|
h Y
HTHY = max ———— = max __n_s_;ﬂ._=
h x ||x||Y x in y Y
h -
lstsThvll, _1
= max ——— = }lsTs HY
vinyY ||V||Y
Now we note that
n n
n n_-1 -1 -1
IR =’ss“=”(ss) <HSRS .
nily, Rh ¢ Rn ¢ =~ 1% ¢
h
Siuce
-1 _ /1 0
5 - (1 _h))
then
2B 2 - Ah
a1 L-g3m?® 2+ an "
i S Ut S, Lo
2 + Ah 2 + Ah
Therefore

HSR 5'1H <1+ Ch,
h -

where C {s some constant, independent of h, chosen to satisfy the coudition

2B |2 - Ah I
- +
1+Ch2max['1 2+Ahh| 12+Ahh,
2B 2A
2+Ahh‘+l1 2+Ahh”‘

In particular, for small enough h this condition is obviously satisfied by
the quantity C = 1 + 2[A] + 2|B].
Thus

I ¥, SVI’SRhS-l

which guarantees stability of the given difference scheme.

n
Ry

n
<+ emt < el n=1, 2, ..., N,
Y
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*x %k kx k k &

5. Non—uniqueness of the canonical form.

The reduction of a difference scheme to the canonical form (13) can be
accomplished in many ways. Setting y; = Tyn where T is an arbitrary linear
transformation in the space, Y, to which Yo and Pu belong, we go over to
the new notation

-

Yntl Rhyn + hpn'

(137)
y6 given.
Here R” = TR T 1, p” = T © =T
ere Ry = TRyT 5 Py = 0y ¥ = Tp- U
If, in example 3, Instead of taking v,z a , Wwe had defined
n
- u
n
y, = - s
n ntl Yn
h

we would have arrived at a version of the difference scheme in form (13)
with

1 h 0
Ry =1 _ oms 2 - hA - 2n%B )° Pn = 2, :
7+ WA 7+ hA 7+ hA ‘ntl

For the choice of norm in Y given by the equation

l05

= max (lal, |B[)

Y

Eq. (17) would have been satisfied. The boundedness of ‘ R: is obvious:
Y
RY| < 1R % < 1+ em) < ef,
h v~ h''Yy —

where C 1s chosen from the condition

208 | . |2-hA~2h2BI)=

1+ChZ_max(1+h,2+hA| T TE

2(1al + [B|n) )
_ n}.

2 - |afln
There 1s also some freedom 1n the choice of the dimensionality of
u

+l

u
n

= max (1 + h, 1 +

space Y. It would have been possible, 1in place of Yo = [ ] , to take,

let us say,
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un+2
L S I

u
n

but in the glven example this would not have simplified the study of
stability.

Let us now summarize the above considerations. From the examples we
have considered one sees that, to Ilnvestigate stability of the difference
scheme Lhu = f for the solution of the Cauchy problem with constant
coefficients, it 1s convenient to put this scheme into form (13);

y = Rhyn + hpn, n=20,1, ...,

n+l
Yo given.

If, in the space to which Yo and Dn belong, one has introduced a norm
such that the eonditions

(h)
Ha 70, < ¢y max y I,
h n
h
e 11 < e, 1™, (28)
(h)
IPUREATLA TN

are satisfied, then it ie suffiecient for stability that the norms of the
powers of the operator Ry, be bounded uniformly in h,

lR:”i%, n=1,2, ..., N.
For this to be true it 1is sufficient, clearly, that the inequality
lthH <1l+C"h,

be satisfied with C” independent of h. In this case the constant C in the
definition of stability

(h) (h)
P20 < elle T

h h
can be taken 1in the form

2
2C3e (29)
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PROBLEMS

1. Prove the stability of the following difference schemes for the
solution of the problem u” + Au = ¢(x), u(0) = a. Find the constant, C, in

the definition ||u(h)|| < Cllf(h)ll of stability.
Uy~ Fy

Undl T Y
a) — + A(nh) u = ¢n, n=20,1, 2, ..., N-1,

if IA(x)I_ﬁ M = const, and norms are introduced via the equations

a1 = max lu ), HE™ = max[lal, max 14 1]
n F n
h n h n
u - u
n+1h n ., Au " o,
b) I n Norms =~ as in a.
u, = a.
- u u + u
+
o n+1h n, .m0 2“1=¢[(n+%)h], n=0, ..., N-1,
uy = a,
(h) - (h) - 1 ’
I'U ”U = max Iun') ”f ”F - max(!a" max ¢[(n + Z)h] )-

h n h n

2. Solve problem 1 under the assumption that

a

RS
u = (2) is a vector;
u
n .
A Al
A= All A12 1s a matrix;
21 22
4 "’511)
a = and ¢ = are vectors.
2 n

)
¢n

Norms are given in the form
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||u(h)||U = max( uil)l + Iuiz)lJ,
n

h

(h) -
£ ”Fh = max [la1| + la

3. Bring into the canonical form yn+

2', mix (|¢i1)| + |¢£2)')], lAij(x)l <M.

1 Ry + hp , Yo given, the
difference equation

- +3 ~ 4
) 2un+1 Y Yn-1 -5 =6 n=1. 2
h u n’ s 2y eeay
setting
nt+2
yn = un+1 )

u

n

§15. Necessary spectral criterion for stability

In §14 we showed that the reduction of a difference scheme for the
solution of the Cauchy problem with constant coefficients

Lhu(h) - (W (1)
to the form
Y1 = Rhyn + hpn, n=0,1, ...,
(2)
yD given

can be used to prove stability: under certain conditions (conditions (17)
§14) the bound
I Y

is gufficient for stability.
Here we will show that this bound (3), under certain natural condi-

n
Ry

<c, n=1,2, ..., N, (3)

tions, is necessary for stability. We will also show that, regardless of
the choice of norm, for the validity of bound (3) it is necessary that the
spectrum of the matrix Rh’ i.e. the set of all roots of the equations

det(R - AE) = 0, )

h

lie in the circle

A} <1+ Ch, (5)



§15 Necessary Spectral Criterion for Stability 145

where C does not depend on h.

We proceed now to carry out the indicated program.

1. Boundedness of the norms of the powers of the tramsition operator
necessary for stability. The methods we have described for reduction of
difference equations to the canonical form (2) are such, that if the right-
hand sides of the difference equations vanish, then pn 1s also identically
equal to zero.

Suppose the constants Ml = Ml(h) >0 and M, = Mz(h) > 0 are so chosen

2
that
h
N )IIU 2 M max Iy I, (6)
h n
and, under the condition that Dn z 0,
(h)
Hyglt 2m, 1M )

h
Then, for vanishing right—hand sides of the difference equation (or system
of difference equations) Eq. (2) takes the form

and therefore

. (8)

Further, by virtue of (6) and (8)

h n
TN nax IRhyOH. 9

h
From the definition of the norm of a linear operator it follows that,

in a finite-dimensional space, one can always choose a vector, Ygs SO that

n n
for given n Rh Yo , = ’Rh ' ’yo ‘. Therefore for some Yo (depending
on ,
n _ n .
max IRhy0|1 = max Rh'l l'yo’|.
n n Y

For this choice of Yo by virtue of (9) and (10) we get

Ha® 11, > ) max
h n

From the latter bound it follows that, if difference scheme (1) is
stable, the constant C” in the definition of stability

|R;‘H < Hyglh 2 MM, max HREH . ||f(h)i1Fh- (6%)

(n) et
Hat™11, <eniet™y
Uh Fh
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certainly must satisfy the bound

- @

c Z_Mlnz max
n

Hence it 1s clear that, if the nomms {1u™ )y, 11eM 1) and |1y || are
h h )

80 coordinated that conditions (6) and (7) are satisfied, then condition
(3) is necessary for stability. Condition (3) 1s equivalent to the
statement that the solution, {yn}, of the homogeneous equation Yobl = Rhyn
satisfies, for any Yoo the inequality

[y 11 ¢ lygll, n=1, 2, ..., N. (11)

In examples 1 and 2 of §14 1t was possible to take the numbers
M1 and M2 independent of h (in fact equal to 1), as the reader can easily
verify. This fact indicates the naturalmess of the formulation chosen
there.

In example 3 of §l4, for difference scheme (22), using Eq. (24) and
norms (23), the condition llu(h)IIU 2 M, max Ilynll can be satisfied only

n
i€ M) < h/2. But 1f we change the choice of morm ||u(h)||U , defining
h
u -u
llu(h)!l = max | max |u_|, max —otl o , (12)
U n h
h n n

then we can set M, = 1 and M, = 1, and bound (3) is necessary for sta=-

bility. With this change in norm condition (17) of §14, under which bound
(3) suffices for stability, is still satisfied.
2. Spectral criterion for stability. To bound "Rgll it 1s possible

to use the eigenvalues of the matrix Rh’ i.e. the roots, A, of the equation

- AE|| = O.
detHRh I

If XA is an eigenvalue, then there exists an eigenvector, y, such that
Rhy = Ay. Therefore

n n n n n n
= A = |A A .
Rpy = Aps Ry ATyl R > 1A
Thus 1if |RE | is to be bounded it 1is necessary that the powers

of the eigenvalues, [A|®, n =1, 2, ..., N, should be bounded. In turn if
this {8 to be true all the eigenvalues must lie in the circle

1Al <1+ ch (13)
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in the complex plane, where c does not depend on h. In the contrary case,

for an arbitrary ¢ and some sufficiently small h

|

The above criterion for the boundedness of the norms of powers,

1/h _ _(1/n)n(l+ch) 5 ec(1-(ch/2)) 5 o/2

Rﬁ” > MY > (1 + ch)

n
Rh

terms of the location of the spectrum (i.e. the totality of eigenvalues) of

in

2

the operator Rh’ clearly does not depend on the choice of norm in the space
on which Rh operates.

The spectral stability criterion (13) also does not depend on the
means by which scheme (1) is put into form (2). If this reduction is
Te1 " BLYL + hel with yT = Ty, R; = TRhT_ s
where T is an arbitrary nonsingular linear operator, then the spectra

-

performed differently, i.e., y

of Rh and R; will coincide. 1In fact
1}

1

det(R; - AE) = dEt(TRhT— - AE) = det[T(Rh e

= det T det(R, — AE)det T_1 = det(R, - AE).

h h

Therefore the equations det(Rh - AE) = 0 and det[R; - XE) = 0 have the same
roots A.

x & & & & %

3. Discussion of the spectral stability criterion. Above it was
shown that, 1f norms are chosen in accordance with conditioms (6) and (7),
the location of the spectrum of the operator R, in the circle

h
Ry L1+ ch, (13)
is necessary for the boundedness of ' Rg and, moreover, also necessary

for stability.

Suppose condition (13) is grossly violated so that for a sufficiently
small h > 0 there is an eigenvalue, A, substantially greater than 1 in
modulus, let us say

1_
Al > 1 +n E.

where € > 0 does not depend on x. Then the difference scheme (1) is

h
unstable for any reasonable choice of norm !lu(h)lIU and |I|€ )|| even

F »
if one doesn't limit the freedom of cholce of these gorms via conditions
(6) and (7).

This assertion cannot be called a theorem, 1f for no other reason than
the fact that it 1s based on the term "reasonable”, which has not been
precisely defined. But we will now explain what we mean.
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For any reasonable choice of norm, llu(h)IIU , one can choose a

h
positive k1 such that for all sufficiently small h

k
Ha™p1 > 0 Y max Ju | (14)
h n n

In the contrary case it would not be possible to satisfy Eq. (4) §13:

1lim [u] = [lull .
e [[1an, ] - Il
h
Further, for any reasonable choice of norm llf(h)llF , one can so choose a
k,> 0 that, for all sufficiently small b, h
-k
h 2
£ )IIF <h °F, (15)

h
(h) of

space Fh- In the contrary case difference scheme (1) cannot approximate

where F denotes the maximum modulus of the components of element f

the problem Lu = f on the solution u: indeed we have seen that the
components of the residual 6f which develops when [u]h is substituted
into the left-hand side of the approximating difference scheme (1), tend to

zero no faster than some power of the step-width, h.
We now bring difference scheme (1) into form (2), defining for this

y = [:n+1] ’ l

n

purpose

Lo

| = max (lal, 1811 (16)
Y
For the sake of definiteness we assume that the difference scheme under
consideration connects three consecutive points, LEEEL and LI

If the right~hand side of the difference equation, on which scheme (1)
1s based, 1s taken to be equal to zero, then for some r > 0 we will have

max [ fugl, lugl] = ||yo||Y2 n'F, (17)

since the relation connecting u, and Uy and entering into the difference

1
scheme, has the form
Uy = a, Yg T
or 4 =u
u, = b, 1 0o,
1 h = b,

or something similar.
It is now clear that we can always make the imequalities (6) and (7)

r+k
valid by setting Ml(h) = h 1, Mz(h) =h 2. In fact (see also (l4) and

7))
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k k
h 1 N
[ lu 'lU > h * max Iun| = h ~ max ||yn||.
h n
k, -k r+k
2 2
Hypll 2 0°F = v'n 2(n 2F) 20 2110 .

h

Thus inequality (6°) takes the form

T+k_+k
My >0 0 2 ma [fR2] - 1e ™y >

h n h
r+k_+k L RV ()
>h (1+n '} It l|F .
h

This implies instability since, for any r, k , k

1 9 and € > 0, as ome can

easily see,

r+k_ +k 1/h
T > = as h > 0.

With this we conclude our exposition of arguments showing that if, among
the eigenvalues of the matrix R, there are roots obeying the inequality
[X] >1 +n -E, then the difference scheme is unstable for any reasonable
choice of norms.

Let us now use the necessary spectral criterion for stability (13) to
show that the scheme considered in §9 is really unstable. In §9 a rigorous
investigation of instability could not be carried out, if for no other
reason than the fact that there we still did not have at our disposal any
precise definitions.

The difference scheme under consideration approximates the problem

u’ + Au =0, 0<x<1,
(18)
u(0)

a

and has the form
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4 ot ;hu“°1 -3 u“+1h- ‘o, A =0, n=1, 2, .o., N4,
uy = a, 19
u, = (1 - Ah]a.
u
setting Y, = [un+1], we bring scheme (19) into form (2), where
n
W CIM D s

The eigenvalues of the matrix Rh are the roots of the quadratic
equation det(Rh ~ AE) = O:

The first root Xl(h) tends to 2 as h + 0, so that for small h

3
A = .
A >3>1
Therefore it is impossible to expect stability for any reasonable choice of
norm.

In particular, 1f we introduce norms via the equations

Ha™11 = max lul,
h n
d)n
e, = | e = oax [lol, 181, max [0 |],
h B F n
h
(D
= n - (1 (2)
Wl = | | o [|] = o el 52D
Y v

we satisfy both conditions (6) and (7), thereby making (3) an inequality
necessary for stability. But .!R:l’ > (3/2)" + © 4f n = 1/h, h + 0, and
stability is absent.

As we have seen, gross violation of the necessary spectral stability
condition (13)
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X[ <1+ ch,

for example the presence of an eigenvalue, X*, of the operator Rh,

satisfying the bound
1-€
[A*¥] > 1 +n

testifies to an Instability which cannot be corrected by any choice of
norms.

We must stress, however, that location of the spectrum of the
operator R, in the circle |A] ¢ 1 + ch still does not guarantee
stability. Stability in this case may depend on a successful choice of
norms, as we see by the example of the following difference scheme, which
was already considered in §14 from a slightly different point of view.

The difference scheme for the solution of the problem u”” = ¢(x),
u(0) = a, u"(0) = b will be written as follows

u - 2u +u
ntl = n-l ¢, n=1, 2, ..., 81,
h
uy = a
— = b.

u
Setting = ol we put this scheme into form (2), where
Yn u P!

h¢ a + hdb
R = (0 7}) p =[ n] =[ ]
ho ‘1 o0’ n ol Yo a
Both eigenvalues of the matrix R, are equal to one. In the case ¢n =0
the solution, {un}, of this problem has the form
u = u + [ul - uo)n, n=20,1, 2, ..., N.

We now use two sets of norms:
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(2)
Yn

),

SRR EATEEE (P

(h)
o™ 00, = mzx ||yn||Y,

h
¢n
(h) _ _ .
E; ||Fh = Z i = maXL||yO||Y, mzx |¢m|J,
h
T
n
2) ,,yn,,Y = max ‘yn " - h ’
h

(h)
[lu IlUh = mzx ||yn|| ,

(h)
[1£ Ith = maX[[|y0||Yh m;x I¢ml]'

The reader will easily convince himself that, in both cases, condi-
tions (6) and (7) are satisfied, as well as (28) §14, which has the effect
that stability is equivalent to the bound
n

h

<gc, n=1,2, ..., N=1.

If one chooses norms according to prescription 1) this bound is

violated. Thus, for example, taking y, = [?], ||Y0|| =1, we get
n+1 n
M L N TP T T | E | I

for n = 1/h, h > 0.
Choosing norms by prescription 2) we do have stability: for any

u
arbitrary Yo = [ul] we have
0

u0 + (ul - uo)(n + 1)

n

uy + (ul - u

alf, = Il - ’
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But n + 1 < 1/h, and therefore

all, = egsoll, < oot + 2] < ool
h h h
and
Rell < 2, n=1, 2, ..., N-1.

In practice one often limits oneself to a check as to whether the
necessary spectral stability criterion is satisfied. If it is satisfied,
further tests of the utility of the scheme are carried out by running
experimental computations using this scheme, not troubling oneself with the
explicit construction of norms. More will be said about this approach in
§18.

PROBLEMS

1. Suppose that the second-order difference equation au _ + bu +

n
= ¢ has been reduced to the form y =Ry + h¢ via the substi-
n n+ n n

s | 1 "h

tution

- l: un+l:l
Yn u *
n

Show that the roots of the characteristic equation a + b + c¢A2 = 0 and the
eigenvalues of the matrix Rh coincide.

2. Write the second-order difference equation au -1 + bun + " ¢n
in the form y =R y + hp with the aid of the substitution
ntl h'n n
n+2
yn T Cenr |
u
n

Is this reduction unique? Show that the eigenvalues of the matrix Rh are
the roots of the characteristic equation a + bA + cA? = 0, plus the

root A = 0, so that satisfaction of the spectral stability criterion

1Al <1 + ch does not depend on the choice

u
Ui+l - nt+2
Yu T | u or Y, Uy .
n
u
n
@) (2> -
3. Suppose the eigenvectors v and v of the 2x2 matrix Rh’ cor
responding to the eigenvalues Xl and Xz respectively,
) _ (13 2y _ (2)
R v = le , R v = sz ,
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tend as h + 0 to different, noncollinear, orientations. Then the

conditions_|ll| <1+ch, I\ | <1+ ch are not only necessary, but also

2

sufficient for a bound of the form I’RE, <{C,n=1, 2, ..., N 1if

= max [la], [81].
Y

iss

Prove.
§16. Roundoff errors

1. Errors in the coefficlients.
If the difference scheme

(h) (h)

L. u = f

h (1)

approximates the problem Lu = f on the solution u and is stable, then we
have convergence. But whatever difference scheme we have in mind, no
matter how carefully it is designed, it is never implemented exactly
because of roundoff errors in the given coefficients and the right hand
sides.

Suppose, for example, that one is required to solve the problem

u" '+ Au=cosx, 0<x<1,

u(0) = a
via the difference scheme
u -u
n+l n
-——H—+Aun=cos L n=20,1, ..., N=1,
(2)
u, = a

Values of cos X, a and A, and of the coefficient 1/h, will be given with
roundoff errors of one sort or another. In the general case we are
dealing, not with (1), but with the difference scheme

h h
AR N A M S A (3
where A(h)Lh and A(h)f(h) are errors in the assigned values of the
operator Lh an?hgight-hand slde f(h), induced by roundoff. For scheme (2)

the operator A Lh has the form
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A(h)(%)(v v )+ (A(h)A)vn, n=0, 1, «oo, N1,

(A(h)Lh)V(h) _ o+l

0 v.
(h) (B 0
The error A f is given by the expression

A(h) cos X n=20,1, ..., N-1,

(h) .(h)
A f =
A(h)a.

Here A(h)M is the error committed in determining the quantity M.

So as to avoid purelg technical difficulties, we limit ourselves to
the case where L, and A(h Lh are linear, and the space Uh is finite-
dimensional, as in the above scheme (2). Under these assumptions we ask
what sort of roundoff errors are permissable, and how the precision with
which one specifies the difference scheme must increase as the net is
refined, i.e. as h tends to zero.

Theorem. If a stable difference scheme (1) approximates the problem
Lu = f on the solution u to some order h¢:

(h) k
Mo, tul, - £ IIFh i»ch ,

then under the conditions

NTMEITIN

1
h (4)

LI
h

(h).  (h)
[1aYL v I <c
h Fh -
[la

difference scheme (3) also approximates the problem Lu = f to order nk, and
is also stable.

Thus, under conditions (4), the order of accuracy of the difference
scheme (3), by which the computation is actually carried out, is hk and
colncides with the accuracy of the intended scheme (1).

Assuming that the norm |} * IiU is chosen according to condition (4)
§13, i.e. so that h
lim {l{u 11 = |lul]_,
h>0 h Uh i)

the quantity ||[u]h||U remains bounded as h + 0, ||[u]h||U <PKL =,
We will define h

ghu(h) - Lhu(h) & (ahy Y™,

F(h) L (h) (B ()



156 Convergence, Approximation and Stability Chapter 5

and convince ourselves that the scheme Egu(h) = F(h) 18 of order hk. In
fact we have

NE ful, - ¥(h)lth = g fug, - £ 4 (A g - A(h)f(h))lth <

(n (r) (h) _(h)
< Hgtony = £+ 1P+ 1

< eh® + o P + e nt ¢ Th

To prove the above theorem, we will make use of the following well~-
known

Lemma. Let A and B be two linear operators mapping eome finite-
dimensional linear normed space X into another linear normed space G.
Suppose, further, that for every g in G there existe a solution z in X of
the equation

with
Hxlly < ellgll, (5)
and also that for any x in X we have the inequality
9
lBxllg < 11xlly, 6
with some e and q, ¢ > 0, 0 < q < 1. Then the equation
(A+B)x=g
has a unique solution for any g in G, and
~ S
Hxlly 5_3—:—3 el €))
Proof. Note that X and G have the same dimensionality, since

otherwige Ax = g would not be solveable for every g in G. Further,

i1f Xq 1 any solution of the equation

(A + B)x0 = g,

then
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Ax_ = g - Bx

0 0’

-1 -1
Xy = A g - A on,

where A_lg and A-leO are solutions of the equations Ax = g and Ax = on,

< a7t +||A'1B ” <
[1%o]], < 114 "elly (x,) .

9
Cellgllg + ¢ 1%

<ellgllg + ellBxgll, <

OIIX °
Hence

c
||x0||X < T-4 ||g||c-

From the latter inequality it follows, that if g = O, the equation
(A + B)x = g has only the trivial solution x. = 0; thus there exists a
unique solution for arbitrary g in G, and bound (7) is valid.

Proof of the theorem. We will use the lemma and take as operators A
and B, respectively, L and A )L . The existence of a solution of the
problem Ax = g, together with bound (5), are equivalent to the stability of
scheme (1). Bound (6) is valid, by virtue of (4), for any positive q so
long as h is small enough.

The solveability of the equation (A + B)x = g for any g in G, jointly
with bound (7), are exactly equivalent to the stability of difference
scheme (3).

We note that the restriction (4) on roundoff errors is perfectly
reasonable for a stable difference scheme: if, on decreasing h, we want to
obtain a solution accurate to hk, i.e. with a number of significant decimal
digits of order 2n(l/h), then also the coefficients of the difference
scheme will have to be given more and more accurately, increasing the
number of figures to which they are given also at a rate of order #n(1l/h).
Such a rate of increase is ordinarily perfectly attainable, since &n(l/h)
is a slowly growing function. If one decreases the step-size, not
increasing the number of significant figures with which the coefficients
and right-hand sides are given, then there will be no improvement at all in
the accuracy obtained.

2. Computational errors. After the difference scheme is given it is
still necessary to compute its solution, u h . Suppose we can solve the
difference equations exactly. Then, if the difference scheme we are using
approximates the differential equation and is stable, we know that for a
small enough step-size the solution u will differ little from the
desired exact solution [u], . Moreover it is completely immaterial by what
sequence of actions (or “"algorithm") the computation of u is carried
out, since the outcome of the computation does not depend on details of
this sequence.
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But, in reality, having chosen some algorithm for the computation of
the solution u we will, at each step of the implementation of this
algorithm, commit roundoff errors which will influence the results of
subsequent computational steps. For fixed h and a finite-dimensional
space Uh the algorithm consists of a finite sequence of arithmetic
operations. The result of each arithmetic operation (the computation of a
sum, difference, product or quotient) depends continuously on the quan-
tities on which the operation is performed. Therefore, carrying out the
computations with a "large enough” number of significant figures, we can
calculate u to any prescribed number of decimal places. The number of
"spare” figures which must be carried in the computation so as to get a
prescribed number of figures in u(h depends both on the algorithm chosen,
and on h. Thus, for example, it was shown in §7 that, when solving a well~-
conditioned boundary-value problem by FEBS, the number of required extra
significant figures does not increase at all as h * 0. Sometimes a
seemingly reasonable algorithm for the solution of a stable problem may
require a rapidly increasing number of spare figures, a number proportional
to 1/h. An example of such an algorithm was presented in 28§5. With
decreasing h this number will, generally, have to grow. An algorithm in
which it grows too rapidly is considered unstable and, from a practical
point of view, unuseable for computation. The study of the stability of
algorithms 1s complicated. An example of such a study is the establishment
of a basis for the FEBS method in §7. But in the simplest cases one can
manage to understand how many spare figures are required, relying only upon
information on the stability of the difference scheme, and on the theorem
proved in section 1, above, dealing with the possibility of specifying the
difference scheme approximately.

Suppose, for example, that we carry out a calculation according to the

scheme

(h)

u (x + h) - u(h)
h

() 4 4™y = £M iy,

(h)

Determining u (x + h) from the recurrence relation

dix+ny = o™ - an) + M

and computing with a finite number of significant figures we may have
allowed, into u (x + h), some error 8. It is convenient to suppose that
the error was introduced, not in the value of u(h)(x + h), but in the
right-hand side, f( , used in the computation; i.e. to consider that we
calculated u (x + h) exactly but used, in place of f(h (x), the quantity
f(h (x) + 8/h. Since such errors are committed at each point x, the value
of & must be taken to depend on x, so that § = 8(x). Thus in this example
the computational roundoff error can be thought of as an ervor, 8(x)/h, in
the specification of the right-hand side. The difference scheme under
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consideration is a first-order approximation and is stable. Therefore if
we are not to spoll the order-h convergence, we must perform the

computation with increasing accuracy and, in fact, in such a way that

(h) (h) _ §(x)
A f =4

be of order h.

This requires that 6(x) be of order h?. Such an accuracy may be
attained by computing u h with a number of extra significant figures
increasing, as h * 0, like Zn(l/h).

Through this example we have shown that, in simple cases, roundoff
errors committed in computing u to an accuracy proportional to hm can be
considered errors in specification of the right-hand side f . From the
theorem proven above it follows that, for stable schemes, these errors do
not prevent convergence, and convergence without loss of order of accuracy,
if the number of significant figures carried in the computation slowly
grows, like ¢ Zn(l/h) where c¢ is some constant.

§17. Quantitative aspects of stability

We begin by considering the familiar example of difference scheme
(L

for the differential boundary-value problem
u’ + Au = 0, u(0) = 1.
Its solution has the form

-Ax A%x -Ax
u = e T +h LU ooy O(hz)

(see (3”) of §8; we are taking b = 1). Expression (6) of §8

A%x -Ax
8{x ) =h—==¢e ™+ o0(hn%)

represents the remainder term, i.e. the error committed in replacing the
value, exp (-Axn), of the exact solution of the differential equation

by the solution, vy s of the difference problem. The remainder term tends
to zero like the first power of h; this scheme is accurate to first

order. The choice of a step-width, h, depends on the accuracy we want to
attain. Clearly the modulus of the ratio of the error to the exact
solution, IG(xn)/u(xn)l, must in any case be less than unity if the

approximate solution is to be considered accurate at all.
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Let us consider for what values of h this condition is satisfied. 1In
the expression for 6(xn) we will neglect the term O(h?) and examine the
ratio of the error, 5(xn), at point xn, to the exact solution

A%x ~Ax
8(x.) n Le T A%x
n
Ry =h

u[an -Axn

We will take A = 20 and examine this ratio at the point x = 1. Then from
the condition 18(1)/u(l)]| < 1 we get

h< 0.2 x 1073,

Now we determine what step-sizes are required for the integration of this
same problem, u” + Au = 0, using a scheme of second-order accuracy

u - u
+ Au_ =0
n
u =1, (2)

u, =1 - Ah,

if, again, A = 20 and we again set it as our goal to satisfy the condition

(1)
u(l)

<1 (3)

The solution of this problem has the form (see Eq. (12) of §8 for b = 1)

~Ax | 2Aax_ -3 -Ax A2 Ax
u =e Tt n? ——Illz—Aze 11\"(-1)114—6 n +O(h3).

The error, therefore, has the form

2Axn -3 -Axn 0 A2 Axn
= hl | T a2 - a_ 3
5(xn) h 13 Ae + (D). + o(hd).

Let us neglect the term 0(h3), write out the ratio of the error, G(x ), to
the exact solution u(xn) = exp(-Axn), and determine the step-size, h, from
condition (3). This step-size will turn out to be so small that, if we
arbitrarily take a second as a computing time for scheme (1), the required
time for scheme (2) will be four days!

The point 1s that an evaluation of the practical utility of this or
that scheme for the solution of a given problem must be made, not solely on
the basis of the power of h iIn the expression for the error, but also
considering the coefficient of this power of h.
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Now we will try to understand how one can judge the utility of some
glven difference scheme, Lhu ) = f(h), from a study of its stability. For
the sake of brevity we will take the operator L, to be linear. We recall
(see §12) that a difference scheme 1s called "stable” if, for any
f in Fh’ 1t has a unique solution u(h) in Uh’ satisfying the bound

™11, <ens™i .
h h
Proving, in §12, a theorem stating that approximation and stability

imply convergence we got, for the error z = [u]h - u , the inequality
h k
||z( )II < cc.h,
u — 71
h
in which Clhk represents a bound on the approximation error:
(h) k
ML ful, - £ Ith Lch.

Suppose the approximation error C hk iﬁ small. From the bound for
Ilz( )IIU one can see that, if ||[u]h -u )IIU is to be small, it is

still necgssary that the coefficient C, characterizing stability, should
not be too large.

Therefore, if we wish to determine the utility of this or that
difference scheme for the solution of some particular problem it does not
suffice to know that the scheme is stable. We must also know the
approximate value of the coefficient C, of which one can form some idea
either by the methods indicated in §§14 and 15, or by experimental
computations, or by some indirect approach.

Let us calculate, for example, the coefficient C implicit in
difference schemes (1) and (2) for the solution of the problem
u” + Au = ¢(x), u(0) = 1, a problem which we discussed at the beginning of
this section. First we consider the scheme

u = u
“+1h 24 A = ¢ n=0,1, ..., N-1,
u0=a
with norms
h
M1y = max to 0 1™ = waxllal, max 1o 17
h n h n

We reduce this scheme to the form
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= R + hP
Yl hn n’
y0 given,
= = - o =9 , = . -
setting y U, Rh (1 - Ah), N ¢n Let ]]ynll |yn| Then condi

n
tion (17) of §l4 is satisfied:

(h)
a4, < ¢, max HynH,

h n
(h)
e 11 < e 1™, (5)
h
(h)
Hygll < eyl ™1ty
h
where, in fact, we can let C, = 1.

Further, obviously =(1 - Ah)n. For this reason we can set

&
h

C =2 maxll, (1 - an)"]. Hence

2, if A>0,
C = .
2(1 - Ah)", if A < O.

We now show that the quantity C cannot be taken substantially
smaller. The norms have been chosen such, as to satisfy conditions (6) and
(7) of § 15:

h
Ha®™ 11 >, max [y 11, ()
Uh 1 n n

and for ¢ =0 (D = OJ also
n n

h
Nyl > m 11e™ 11, )
0 2 F
h
where we can set Ml = M2 = 1. Therefore the constant C must, as was
established in 8§15, satisfy the bound C Z»MIMZ R; H
1, 1f A D> 0O,

c> .
(1 -an)?¥, 1f aA<o.

Now we evaluate the constant C, in the definition of stability

(h)IIF , for difference scheme (2). Let us first write
h

h
™1, <elle

this scheme in the form
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y = Rhyn + hpn, n=20,1, ...,

n+1
Yo given,

setting, for this purpose,

= un +1 - 2¢n
yl’l u ) pl’l = ’
n 0
_{-2ah 1 _| (1 - ah)
Ry = ( 1 0> ’ Yo = [ 1 1 .

We choose the norms

(h)
a7 = max Ju I,
Uh n n
n
Hf(h)” = a = max [Ial, lBI, max |¢n|J;
n
y(l)T
_ n _ (L (2)
||yn||_ (2 = max ,yn l, Yo
y
n |

Conditions (5) - (7) are then satisfied, with C, = M, = M_ = 1. Therefore

2 1 2
by virtue of what has been said in section 3§14 we may take, as the

constant C, the quantity C = 2C§ max R: RE

§15, we cannot decrease this value of C by more than a factor of 2:
certainly it must be true that

= 2 max but, by (6”7) of

n n
sz%mw hJ'=mx %”.
n n

An upper bound on the value of max I'REII was obtained in §14:

N
N e

n
Rh

Thus we may set

- 2e2lAl )L/n,

> 2(1 + 2|aln
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REH > IMm,
where A 1s the larger (in modulus) of the two eigenvalues of the matrix

Rh. Solving the equation det:(R_h - XE) = 0 we find the eigenvalues

A lower bound for maxI‘R: can be gotten from the condition

242 .

A =1-an+ Azh +o(h?) =1 - an + o(n?),
212

A\, = -1 - an - Azh + o{h?) = -1 - ah + o{n?),

so that

max (1A, 13,1) =1+ |aln + o(n?),

1/h
max

n

+ O(h).

'Rzll > (1 + 1aln)
Therefore the above constant C = 2e2'A| certainly cannot be replaced by a
number smaller than (1 + IAIhJI/h s elAl’ i.e. it cannot be decreased
substantially.

For A = 20 we see that, for the first scheme, C = 2, but for the
second C > &2 2 108,

For A = 1 or A { 0 the two schemes do not differ fundamentally in
their stability properties; the constant C is approximately the same for
both schemes. It is easy to understand the mechanism by which, for A >> 1,
the constant C for the second scheme
becomes much larger than unity, Ayn
whereas for the first C = 2. A>0

The general solution of
the homogeneous equation
U T (1 - Ah)un =0,
corresponding to scheme (1),
is Gn = aq”, where q 1s the root of

the characteristic equation
q-(1-4)=0,q=1-ah Fig. 4
(Fig. 4). The general solution of

the homogeneous equation

u + 2Ahun -u
corresponding to scheme (2), 1s

n n

u = ag, + Bq,,

where q. and q, are the roots of the characteristic equation
1 2 4
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q% + 24hq - 1 = det(Rh - qE} = 0,

2,2 ‘
q =1 -Ah+A—2h—+ o(h?),

q, = -1 - Ah - é;bi + o(hz).
The root q1 is "similar" to the root 1 = Ah, and to it corresponds the
solution q?, similar to the solution qn of the first equation. But the
Zﬂ "parasitic” root,
N q, = -1 - Ah + O(h‘), produces a
quickly=-growing “parasitic”
solution q; (Fig. 5), which gives

rise to a large value of C.

7”::' yfl
ga ‘

g A 7 A<

J \\“////ﬁ\\\\‘z? Vi

Fig. 5. Fig. 6

For negative A we have q > 1, 9, >1, qul < 1. The solutions
qn and ql, corresponding to the roots q and q,, grow about equally fast,
while the parasitic solution q2 is damped, not influencing the stabllity
properties of the second scheme (Fig. 6).

We note that, for A <K 0, a large value of C 1is unavoidable in any
difference scheme approximating the problem u” + Au = 0, u(0) = a. 1In
fact, for small h the solution of a stable difference problem is similar to
the solution of the differential problem to which it converges as h + 0.
But the solution of the differential problem, u = U exp(-Ax), 1is such that
max|u(x)| = |u0| exp (-Ax), 1.e. max |u(x)| exceeds the modulus, |u0|, of

the starting value u by the very large factor exp (-A).

»
We must also noge that a large coefficient C not only makes it
necessary to compute with a small step-size, but also to carry out the
calculation with a large number of significant figures.
In fact we showed, in §16, that roundoff errors may be treated as

errors in the specification of the right-hand sides, errors whose magnitude
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is given by terms of the form Clhk. An increase 1in these errors induces an
increase in the coefficient Cl’ which for large C can (by virtue of (4))
have a catastrophic effect on the accuracy of the result.

Before concluding this section we would like to warn the reader
against any misleading impressions about difference schemes of second-order
accuracy, misleading impressions which may have been generated through
consideration of the above example. It was not at all our intention to
condemn all such schemes in describing the inadequacies of one of them.

The reader will find it very useful to study, independently, the scheme of

second order accuracy

If one attempts, for A = 1, to achieve an accuracy such that the error,
§(1), is smaller than u(l) = exp(-A), one will find that this scheme puts
much weaker restrictions on the step-size, h, than the first-order-accurate
scheme (1).

In addition we sugpest that the reader calculate what step-size 1s
required to integrate the problem u” + u = 0, u(0) = 1, so as to compute
u(l) with an error no greater than 1073, If one carries out this
calculation for schemes (1) and (2), considered at the beginning of this
section, 1t will be seen that the first-order-accurate scheme (1) requires
a significantly smaller step-size than second-order-accurate scheme (2).

Thus the effectiveness or Ineffectiveness of this or that scheme will
depend, not only on the scheme itself, but also on the problem to which it
is applied.

§18. Method for studying stability of nonlimear problems.

The methods developed above, in §§14 and 15, for the study of
stability, were specifically designed for difference schemes with constant
coefficients. Therefore it may seem that it is impossible to use the
material presented in these preceding sections for the analysis of schemes
to integrate even the gsimple equation du/dx = G(x,u), for a fairly general
function G. This is, however, not true.

Suppose the desired integral curve of the equation

= = G(x,u) (1)

passes through the point with coordinates x = Xgs u = ug. Near these points

we have
Glxyuy » 28 (g )+ 2EOOW (- x ) & lxg, ), @)
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and therefore Eq. (1), to a certain accuracy, may be replaced by the

simpler
du _
I " Au = $(x), 3)
where
9G(x,u)
A du B ?
0
u=u,
9G(x,u) - 9G(x, u)
d(x) = G(xo, uo) + 35 } [x xo) - Uy Tu - .
x=x0 :xo
u=u, u=u,

It is plausible that schemes which we propose to use to solve Eq. (1)
should satisfactorily integrate Eq. (3), approximating Eq. (1) close to
some point which lies on the integral curve. Of course for different
points of this curve the values of the coefficlent A, obtained from the
original equation by the linearization methods just described, will differ
from each other. Therefore, after choosing one difference scheme or
another, we must test 1t on Eq. (3), not with only one value of A, but with
a whole set of such values, adequately sampling the range of variation
of 3G/du along the integral curve. In the overwhelming majority of cases
encountered in practice, such an investigation turns out to be good enough
to bring out all the scheme's weaknesses and strengths, having some bearing
on the character of the convergence of the approximate solutions which it
produces.

Precisely the same method of constructing model problems can be
applied also to systems of equations, and to equations of higher order.

In practice the solution of the Cauchy problem, for ordinary
differential equations with no special peculiarities, 1s accomplished by
one or two, falrly general, well-tested schemes for which, on present-day
computers, there are standard programs. If it becomes necessary to solve,
with very high precision, a problem of a special type, then one uses one of
the many speclal schemes adapted specifically for such special problems,
regorting to the more general schemes when one 1s concerned with a

different problem area.
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Chapter 6
Widely-Used Difference Schemes

§19. Runga-Kutta and Adams Schemes

Here we present some widely-used difference schemes for the solution
of the Cauchy problem defined by the first-order differential equation
d
& - 6x, w =0, 0<x<1,
1)
u(0) = a.

Below in section 4 these schemes will be generalized to systems of first-
order equations, to which one can reduce the general case of equations and
systems of any order.

We will take, on the segment 0 < x { 1, the net of points

0= vee =1 = nh =1
X, < X, < x, < < Xy < xy » x = nh, h /N,
and construct difference schemes for the approximate determination of the
table, [u]h, of the solution-values on this net.
The simplest scheme in widespread use 1is one we have already met.
This 1s the Euler scheme

'
«Q
~

»
c
—
H
[
)
i
[
I
.
=
)
-

Lhu(h) = h n’ n )

possessing first-order approximation (and accuracy). Computation via this
scheme has a simple geometric interpretation. If u has already been com-
puted, then the computation

un+1 = un + hG(xn, un)

is equivalent to a shift from point (xn, unJ to point ( in

Entl? un+1)’
plane Oxu, along the tangent to the integral curve, u = u(x), of the
differential equation u” = G(x, u), passing through the point (xn, unJ.
Among the schemes with higher-order approximation, the most widely
used are the different variants of the Runga-Kutta and Adams schemes, which

we describe and compare.
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1. Runga-Kutta scheme. Suppose the value, U of the approximate
solution at point x has already been found, and one is required to compute

= + h. L wri t
U at point X a x h. We choose an integer and te the
expressions

kl = G[xn, un),

k, = c[xn +oh, u + uhkl),

-~
]

c[xn + Bh, u_+ Bhkz),

e s & w4 e e s s e s = s e

k, = G[xn + Yh, u_+ Yhi, ).

Then we set

) ——H——-(plk1+...+plkl)=0, n=20,1, «.., N-1,

The coefficients @, B, ..., Y, Pis Pys wres Py will be chosen such as to
give, for the given £, approximation of the highest possible order. Know-
ing u one can compute kl’ ceny kl’ and then

u =u + h[plk

T+ +...+p2k).

1

The simplest Runga-Kutta scheme 1is the Euler scheme (& = 1). The
Runga-Kutta scheme

“ntl T Ya 1
™ o -z (k, + 2k, + Zky + kA) = 0,
Lhu = n=20,1, ..., N-1, (3)
uy = a,

where

1

k2=c(x +-2}l,u +l—(1—h),
ky = (x + 3, u +§E),
k4=G[xn+h, un+k3),
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has fourth-order approximation.
The Runga-Kutta scheme
u -u
ntl n 2a - 1 1 _
) h e T S TR
Lhu = n=0,1, ..., N-1 (4)
u, = a,
where
= = + -—
Ky G(xn, unJ, k, G(xn oh, u_ ahkl],

for any given @ has second-order approximation.
We prove only the assertlon about scheme (4). The proof of the
assertion about scheme (3) is analogous, but more complicated.

* k& & % Xk *

The solution, u(x), of the equation u” = G(x, u) satisfies the
identities

%% = G(x, u(x)),

d?u _ 4 .3, 3
2 @ Tt e

Therefore it follows from the Taylor formula
u[x + h) - u(x ]
o n LU u‘(xn) + %’u"[xn) + 0(h?)

for the solution u(x), that

h
F - le +7(,&+EG —x = o(n?). (5)

u=u(xn)

But, expanding the functlons of two variables in powers of h by Taylor's
formula, and retaining only terms of first order, we get
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20 - 1 1 2 = 1 1 =
Sk g ky = Y—5— G + 35 6(x + oh, u + ahc) =
X=X X=X
n n
u=u(xn) u=u(xn)
2 - 1 1 3G 3G 2 _
=5e—6 +33 e + 3 Oh + 37 ohG + o(h )Jx=xn =
u=u(x )
n
_ h (9G il 2
=C+3 (5; + e G) } + 0(h*). (6)
*n
u=u(xn)

Therefore 1f one puts into the left-hand side of (4), in place of u and
L respectively, the values u(xn] and u(xn+1) of the solution u(x), one
gets an expression which agrees with the left side of Eq. (5) up to terums
0(h%). Therefore this expression, (4), is of second order with respect to
h. Since the initial value u, = a is given exactly we have now proven that
scheme (4) has second-order approximation.

* k &

To obtain u + by the Runga-Kutta scheme, with u given, one must
evaluate the function G(x, u) £ times. The computed £ values are then not
used any further.

2. Adams schemes. In the Adams schemes, one variant of which we will
now describe, computation of the next value, Uot1e requires the evaluation
of G(x, u) only at one point, regardless of the order of approximation. In
addition it 1s necessary to carry out a small number of subtractions and
additions which require much less time than one evaluation of even a
slightly complicated function G(x,u).

We adopt the notation

Vif = V(VE )= VF -VE o =f -2f  +
n n n n-
V3f - 9V2f = f - 3f .+ 3f - f
n n n n- n

and write G_ = G(xn, un). Let us write out explicitly some of the

difference equations used in Adams schemes for the computation of L
if U Uy e have already been computed:
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u - u
n+l
- LU ¢ =0, n=0,1, ..., N-1, %)
u u
“+}11 -G -lvcn =0, n=1, 2, ..., N-1, (8)
u - u
+1 1 ’
1 . n-Gn-EVGn-—i—zlen=0, n=2,3, ..., N-1, (9)
u - ua
n+l n _ 21 _5 2 _3 3 _
h 6 -7, -7z V6, -5 V6, -0 (10)

n=3, 4, ..., N-1.

The first of these equations 1s the difference equation of Euler. If one
substitutes into the left-hand sides of Egs. (7)-(10), in place of

Uoprr U Upgeces the values u((n+l)h), u(nh), ... of the’exagt solution
then residuals will appear, in Eqs. (7)-(10), of order h, h4, h? and n*
respectively.

* & x % % &

The Adams formulae may be obtained as follows. Suppose u(x) is the

solution of the equation

d
E% = G(x, u).
Define
6%, u(x)) = F(x).
Then
x_+h x_th
n n
u[xn + h) - u(xn) = f u dx = f F(x) dx.
X x
n n

From the theory of interpolation it is known that there is one and only one
polynomial, Pk(x, F), of order no higher than k, taking on at the k+l
points X, X s e X the given values F(xn], F(xn_l), ceny F(xn_k]

-1
respectively. This polynomial Pk(x, F], for a sufficiently smooth function
F(x), deviates from F(x) on the interval X £x< Xoth by a quantity of
order h , so that
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max|P, (x, F) - FGol = o(n**). (11)
The Adams difference formula has the form
u -4 xn+h
n+l n _1 _
o o I P (x, F)dx = 0. (12)
X
n
Inserting Iinto the left-hand side, in place of
u G( y U )

u X
n’ nt+l’ n-s’' n-s

the corresponding values

u(x ]’ “(xn+1)’ G(x ’ u(x )]

n

we get a residual of order hk+1:
+

u(xn + h) - u(xn] 1 *n h

| n -t xf P (x, F)dx| =
n

(x +0) -u(x) *nth | n+h
= n n “ % [ Fodx |+ % [ [Frtx) - Pk(x,F)JdX <
*a *a
<0+ max|F(x) - Pk(x, F)| = O[hk+1)

For k = 0 the interpolating polynomial
Po(x, F) = G(xn, un) = const

and Eq. (12) transforms fnto (7).

For k =1
P.(x, F) = L [(x - X )G - [x - x ]G J.
17 h n~1’"n n-1
Further
xn+h (x - x ]2 xn+h (x - x ]2 xn+h
L [ pyx F)dxgl____"L G R S G =
h x 1 4 h2 2 n h2 2 n-1
n X x
n n
1 (4n® B 1 n? 1
ST S T Gt Gt
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Thus Eq. (12) becomes (8). Analogously for k = 2 and k = 3 we get, from
(12), Eqs. (9) and (10) respectively.

Ak &
To use scheme (7) 1t suffices to know u_ = a. To start computing via
scheme (8) one must know, beforehand, not only u_ = a, but also u . Scheme

(9) requires the use of u and Uy while for scheme (10) we need four

, U
values, {.e., u., u, u gnd & . These values may be found by the Runga-
Kutta method; or by Euler's scheme with small step-sizes; or perhaps by
expansion of the solution in a Taylor series about the point x = 0. The
need for speclal starting procedures is ohe of the disadvantages of the
Adams schemes, as compared with the Runga-Kutta schemes. The advantages of
the Adams schemes, already noted earlier, 1s the fact that in the compu-
tation of U given the values of Gs’ VGS, ceey VkGS already found in the

calculation of u,u , +++, one needs to compute only one value of the

function G, i.e. Gn z é(xn, un], and to carry out a few subtractions in-
volved in the evaluation of VG , ..., VG .

Thus the advantage of the Adams methods over the Runga-Kutta methods
consists in the smaller computational effort required for each step. The
basic disadvantages are: the need for special starting methods, and the
fact that one cannot (without complicating the computational equations)

change the step size h, x = x + h, in the course of the computation,

starting from some point ;+} This latter fact 1s important in those cases
where the solution and its derivatives on some parts of the interval change
quickly, changling slowly on other parts.

If such a situation develops during the computation a Runga-Kutta
subroutine, for example, might be brought into play to decrease the step-
size automatically, or to Increase the step-size over smooth parts of the
solutlon-curve so as not to do unnecessary work. Evidently the most
sensible approach 1s to use both the Runga-Kutta and Adams methods,
automatically switching from one to the other during the computation.
Using this approach one must start via the Runga-Kutta scheme. The
computer program must contaln provisions for automatic control of the step-
size, which will be adjusted so as to maintain the required accuracy.
Moreover a certain degree of conservatism must be incorporated into the
step-slze control mechanism; one must call for a change in step-size only
when there 18 a very pressing need for such a change. If 1t turms out
that, after computation of several successive values of u by the Runga-
Kutta scheme, no step-size change occurs, then it 1s appropriate to switch
automatically to the more economical Adams method. As soon as 1t again
becomes necessary to change the step-size the computational program must
agaln go over to the Runga-Kutta scheme, etc.

So as to monitor the adequacy of the step-size one ordinarily carries
out, in parallel, computations with some given step-size, and with another
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half as large. Within the required accuracy limits the solutions must
colncide. Otherwise the step-size must be decreased. It 1s also necessary
to provide some sort of test which will determine whether it is possible to
increase the step-size.

3. Note on stability. For the problem u” + Au = 0, linear and with
constant coefficient A, the Runga-Kutta equations turn out, after elimi-
nation of kl’ k2, «es, to be first-order difference equations,

u - ath)u = 0.
n

ntl
The root of the characteristic equation A - a(h) = 0 is A = a(h).

In the case u = u[xn) one gets a value of u which agrees with the

+ n+l
exact solution u[xn + h) up to order nP , where p is the order of approxi-

mation. Since
_Ah .

A%p?
u(xn + h) = u[xn]e = u[xn](l - Ah + 5 - ...],
and
LI a(h)un,
then
A= ah) = e APy o(nP*).
Thus

JA(h)] < 1 + c¢h.

The powers An(h) behave "correctly”: they grow 1f A < 0 and the solution
of the differential equation grows. They decrease 1f A > 0 and the
solution exp{~Ax) decreases.

In the case of the Adams scheme (8)

Yntl " Yn

n =0 (13)

A -

Therefore

A, =1 - Ah + O(h?),
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Thus the solution u_ = AT behaves, as h + 0, like u(x ) = exp(=~Anh)
. n 1 n n ’
while the "parasitic solution" A, which enters because of the use of a
second~order difference equation, tends to zero since IXZI = 0(h), and thus
does not affect stability.
It will be useful for the reader to compare scheme (13) with the

second-order scheme (2) of §17:

u -u
n+l n-1 _
T + Aun = 0.
For 1t
" AZh? 3 2
A1=1—Ah+2 + 0(h>), X2=-1-Ah+0(h).

The "parasitic root"”, Xz, for positive A is greater in modulus than the
root Al’ and it is just for this reason that a large constant appears 1in
the stability bound for this scheme, and that the scheme (as established in
§17) 1is not applicable for large A.

4. Generalization to systems of equations. All the above schemes for
the numerical solution of the Cauchy problem for first order differential
equations (1) automatically generalize to systems of first-order
equations. To see this, in the notation of (1)

du
dx

1t
o

- G(x, u)
u(0) = a

we must Interpret u(x) = ;(x) and G(x, u) = é(x,ﬁ) as vector functions,
and a = a as a given vector. 1In this notation, then, the Runga-Kutta
schemes (3) and (4) and the Adams schemes (7)-(10), preserve their meaning
and applicability.

For example the system of equations

dv ;
ix (x + v2 + sin w) =0,
dw
H‘FXW—O,
v(0) = a,
w(0) = a,

may be written in the form
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dx
u(0) = a,
if we take
- v(x)
u(x) = [ w(x) )l
ya
- - X+ ve + sinw
G[x,u) [ -V ))
- 81
a = .
2
The equation for ;n+1 in the Euler scheme
un+1 = un + hG[xn, un)

may be written out in detail thus:

v =v +h(x +v¢ +sinw
nt+l n ( n n n)’

= + - .
Yarl T Y h( xnvnwn]

All the arguments about order of approximation, presented between the
asterisks on pp. 173-175, also preserve thelr validity. In (6), however,
we must take, as the derivative of the vector G(Gl, vesy Gk] by the vector
u[ul, . uk), 1.e. 3G/3u, the matrix

3 3

w oo
e 3

% Yk

Any arbitrary system of differentlal equations, solved for the leading
derivative, may be reduced to the system of first-order equations
du _ = =
ax = G(x’ U]
via changes in the dependent variables. How this can be accomplished is
clear from the following example. The system
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d%v

S 4 stn(xv” + v2 +w) =0,

ax?

dx
v(0) = a,
v'(0) = b,
w(0) = ¢

will take the required form if we set

0 (0 = vx),

dv
Uz(x) = a )

u3(x) = w(x).

We then get
du1

TR0

2

——% + sin(xu + ui + u3)

ul(O) = a,
u2(0) = b,
u3(0) = c.

* % % k& k %

3 ’ 2 2 2
™ +./x u1 u2 u

d -
—E-+ \fxz + v o+ (v )2 + wl

0

o,

179

Note. Runga-Kutta difference schemes have been developed which can be
applied directly to second-order equations, without preliminary reduction

of these equations to systems of first order.

* % &

§ 20. Methods of solution of boundary-value problems

One example of a boundary-value problem is the problem
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yoO o= £(x, ¥, ¥7), 0<x<1,

(1)

y(0) = Y y(1) = ¥

0’ 1
with boundary conditions on both sides of the interval 0 £ x 1, the
interval on which we must determine the solution y = y{(x). Using this
example we will systematically develop some methods for the numerical
solution of boundary-value problems.

1. The shooting method. In §19 we pointed out some convenient
methods for the numerical solution of the Cauchy problem, e.g. a problem of

the form

y' o= ix, ¥, ), 0<x<1,
(2)
- dy _
y(0) = ¥y, 9 - tan,
x=0

where YO is the ordinate of the point (0, YO) from which the integral curve
emerges, while a ig the angle which the integral curve makes with the Ox
axls as it leaves the point (O, YO) (Fig. 7,a). For fixed Y0 problem (2)
takes the form y = y(x, @). At x = 1 the solution y(x, @) depends only on
8

y(x, o)l = y(1, ).

x=1
Using what has just been sald about the solution of the Cauchy problem
2), we can now reformulate problem (1) as follows: find the angle,

a = a , such that the integral curve emerging from point (0, YO)’ at an

angle o from the abscissa, will arrive at the point (1, Yl):

y(l, @) =¥ . (3)

ylhea)

—1

I
|
azp }
I
]
i

4

Fig. 7.
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The solution of problem (2) for this a = a* coincides with the desired
solution of problem (1). The whole problem reduces, then, to the solution
of Eq. (3) (Fig. 7,b). Equation (3) is an equation of the form F(a) = O,
where F(a) = y(1, a) - Yl' It differs from the ordinary equation only in
that the function F(a) 1is given, not as an analytic expression, but via an
algorithm for the solution of problem (2).

Just this reduction of the process of solution of boundary-value
problem (1) to the solution of Cauchy problem (2) constitutes the essential
feature of the shooting method.

For the solution of (3) one may use the method of interval-halving,
the chord method, the tangent method (i.e. Newton's method), etc. For
example, using the method of interval-halving we find values of uO and al
such that the differences

y(1, @) =¥, and  y(1, o) -1

have opposite signs. We then take

a + a
_ 0 1
a, = ,
and compute y(l, az). Next we calculate a3 from one of the expressions
a + a a_ +a
a =1———2 r a:L.—z
3 7 ° 3 7

depending on whether the differences
- a -
Y(l’ (!2] Yl or Y(l’ 1) Yl

respectively, have different or identical signs. Then we compute y(l, a ].
This process continues until the required accuracy, Iy(l, a ) - Yll < €,
has been attailned. "

Using the chord method we would start with 00 and al’ computing
successive ai by the recurrence relation

F(an]
%1 T % T Flo ] - Fla__J [an - un-lJ’ n=1,2, ..
n n-1

The shooting method, which reduces the process of solution of
boundary-value problem (1) to the computation of the solution of Cauchy
problem (2), works well in cases where the solution y(x, &) doesn't depend
“too strongly” on a. In the contrary case it becomes computationally
unstable, even 1f the solution of problem (1) depends on the given data
"reasonably”.

Let us clarify what 1s meant by the words in quotation marks via the
example of the following boundary-value problem:
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y°° - a%y = 0, 0<x<1,
(1)
y(0) = ¥,, y(1) =Y,
with constant a’. This problem has the solution
- -a(2- -a(l- -a(l+
o - o ax_ o a(2-x) . e a(l-x) _ o a(1+x) .
v 2a 0 -2a I
1 ~e 1 -e

The coefficients of YO and Yl’ with 1lncreasing a, remain bounded
functions on the interval 0 { x { 1; for all a > 0 they are never greater
than one. Therefore small errors in the assignments of YO and Y1 lead to
equally small errors in the solution. Let us now consider the Cauchy
problem

y'© - a’y =0, 0<x<1,
(29

y(0) = ¥ y7(0) tan a.

0’
Its solution has the form
aY + tan @ aY , - tan o
ax 0 -ax
e F e
If in fixing tan @ we make an error £, then the value of the solution at
x = 1 will increase by

Ay(1) =;—aezl - ea )

For large a the subtracted term in Eq. (4) 1is negligibly small, but
the coefficient of € in the first term, exp(a)/(2a), becomes large.
Therefore the shooting method as applied to the solution of (1), although
a formally valid procedure, for large a becomes practically unuseable.
This brings to mind the considerations of 2§85, where we presented an
example of a computationally unstable algorithm for the solution of a
difference boundary-value problem.

2. The FEBS method. For the solution of the boundary-value problem

vy - p(x)y = £(x), 0<x<1,

y(0) = Y, y(1) = ¥,

when p(x) >> 1 one can use the difference scheme

- +
ym+1 2ym ym-l

he
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and solve the difference problem by FEBS. If p(x) > O the conditions for
applicability of FEBS are satisfied, as the reader can easily verify.

3. Newton's method. The shooting method, applied to the solutions of
well-set boundary-value problems may, as we have seen, turn out to be
unsuitable because of numerical instability. But the FEBS method, even
formally, can be used only for the solution of linear problems.

Newton's method reduces the solution of a nonlinear problem to that of
a series of linear problems, as follows. Suppose we know some function
yo(x), satisfying boundary condition (1) and roughly equal to the desired
solution y(x). Let

y(x) = yo(x) + v(x), (5)

where v 1s a correction to the zeroeth approximation yo(x). We substitute
(5) into Eq. (1) and linearize the problem, setting

y (%) = ya'(X) + v (x),

£lx, Yo + v, ya +v7) =

3 (x, v, ¥7) of (%, v., v7) . .
» I Jp v+ ;y‘o’ 0 v+ O(vz +|V)lz)-

= f(x: in Y6) + ay

Discarding the remainder term O[V2 + IV'IZ), we get a linear problem for

the correction ;(x):

V= p(x)VT + q(x)V + #(x),
(6)

where
3f(x, Yno y‘) af(x, Yo Y‘J
_ o] 0 _ 0 0
p(x) = 3y7 s q(x) = 3y >

,a

ox) = £(x, y55 v5) - ¥4 -

Solving the linear problem (6) analytically, or by some numerical
method, we find an approximate correction ;, and take

¥y Fye(x) v
as the next approximation.

The above procedure may be applied to a nonlinear difference boundary-
value problem, generated as an approximation to problem (1).
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Part 3
DIFFERENCE SCHEMES FOR PARTIAL DIFFERENTIAL EQUATIONS.
BASIC CONCEPTS

Above, in connection with difference schemes for ordinary differential
equations, we defined the concepts of convergence, approximation and
stability. We proved a theorem stating that, if the difference boundary-
value problem approximates the differential problem and is stable then, as
the net is refined, the solution of the difference problem converges to the
solution of the differential problem. In this theorem we have an indica-
tion as to how one can develop a convergent difference scheme for the
numerical solution of a differential boundary-value problem: one must
first construct approximating difference schemes and then, from among them,
select those that are stable.

The definition of convergence, approximation and stability, and the
theorem connecting these concepts, are general in character. They are
equally meaningful for any functional equations. We 1llustrated them via
examples of difference schemes for ordinary differential equations and for
an Integral equation. Here we 1llustrate some basic methods for construct-
ing difference schemes, and testing their stability, taking as examples
difference schemes for partial differential equations. Study of these
examples will reveal many important and basically new circumstances not
encountered 1in the case of ordinary differential equations. Principle
among these are: the great varlety of possible difference nets and methods
of approximation, the instability of most randomly-chosen approximating
schemes, the complexity of stability investigations, and the difficulties
involved in the computational solution of difference boundary-value
problems, difficulties which can only be overcome by substantial special
effort.

Chapter 7
Simplest Examples of the Comstruction and
Study of Difference Schemes

§21. Review and Illustrations of Basic Definitions

1. Definition of convergence. Suppose one is required to compute an
approximate solution, u, of the differential boundary-value problem

Lu = f, (1)
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posed in some domaln D with boundary I'. One must then, for this purpose,
choose a discrete set of poilnts D, (i.e. a net) contained in D + I'; intro-
duce a linear normed space, Uh’ of functions defined on the net D, ; and,
finally, establish a correspondence between the solution u and the func-
tion [u]h in Uh, the required table of the solution u. For the approximate
computation of the table [u],, which we have agreed to treat as the exact
solution of problem (1), we must, on the basis of problem (1), construct a
system of equations

L oM o g )
h
for the function u(h) of Uh' such that we will get convergence
ff[u]h - u(h)IIU +0 for h* 0. (3)

h
If the solution of the difference boundary-value problem (2) satisfies the
inequality

Hia), - o™, <ok,
h

then we say that convergence is of order k with respect to h.

The problem of the construction of a convergent difference scheme (2)
can be split into two parts: the construction of a difference-scheme (2)
approximating problem (1) on the solution, u, of this latter problem, and
the verification of stability of scheme (2).

2. Definition of approximation. Let us recall the definition of
approximation. If this concept 1s to have meaning one must introduce a
norm in the space, F_, containing the right-hand side f(h) of Eq. (2). By
definition, difference scheme (2) approximates problem (1) on the solution
u if, in the equation

(h) (h)

= + 8
Lh[u]h f f
the residual, Gf(h), which develops when {u] 1s substituted into the
difference boundary-value problem (2), tends to zero as h + 0

(hy . G TR
e, = Ty, - £, 0.

If

ee™yy < enk,

h
where C does not depend on h, then the approximation is of order k with
respect to h.
Let us construct, for example, for the Cauchy problem
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Ty Tt ),  -medx<m, 0L,
()
ulx, 0) = ¥(x), - @< x<w,

one possible approximating difference scheme. Problem (4) can be written

in form (1) if we set

du du

B Tl el - @ x <K@ 0<t<T
Lu =
u(x, 0), -® < x <o,
P(x, t), -2 x <9 0<e<lT.
f =
Y(x), =@ x <o,

As the net Dh (Filg. 8) we take the set of intersection points of the

lines
x =mh, t=nf, m=0,+1, ... n=0,1, ..., [T/T],

where h > 0 and T > O are given numbers, and [T/T] is the integral part of
the fraction T/T. We will assume that the step-size T is connected to
step-size h via the relation T = rh, where r = const, so that the net Dh
depends only on the single parameter h. The desired net function is the
table [u]h = {u(mh, nT)} of values of the solution u(x, t) of problem (4)
at the points of the net D .

h
A
______________________ Z:]‘
. =nr
- z
a =
Fig. 8.

Let us now proceed to the construction of a difference scheme (2)
approximating problem (4). The value of the net function u at the
point (xm, tn) = (mh, nT) of net D, will be denoted as un. We arrive at a
scheme (2) by approximating the derivatives 3du/dt and 3u/9x by the
difference relations
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du L ulx, t +7) - ulx, t)
at T ’
X,t
€]
ggl LJu(x+ h, t) - ulx, t)
a H]
X X, t h
This scheme has the form
un+1 - un un S
m m m+1
- - —= = $(mh, n1),
m =0, +1, ...; n=20,1, ..., [T/t]-1, )

uﬁ = Y(mh), m=0, +1, ...

The operator Lh and the right-hand side f(h) for scheme (5) are given,
respectively, by the equations

otl o n _.n
u u ) LN u
T h ’
L u(h) =
h m=0, 1, ...; =n=20,1, ..., [T/1]-1,
u_, m =0, +1, ...,
(h) ¢(mh, nt), m=0, +1, ...; n=20,1, ..., [T/T]-1,
f =
b(mh), m=0, +l, ...
Thus f(h) consists of the pair of net functions ¢(mh, nT) and Y(mh), one of

which 1s given on the two-dimens{onal net
(xm, tn) = (mh, nT), m=0, H, ...; n=0,1, ..., [T/T]-1
(see Fig. 8), and the other on the one-dimensional net
(xm, 0) = {mh, 0), m =0, 1, «..

Difference equation (4) can be solved for uz+1, giving

un+1 = (1 - r)u; + ra”

- oy T Té(mh, nT). (6)

Thus, knowing the values u;, m=0, +1, ..., of the solution u(h) at the

net-points for which t = n7, one can calculate u$+l at the points for which
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t = (n+ 1)T. Since the values uz at t = 0 are given by the equation
v o= Y(mh) we can, step by step, compute the values of the solution u h at
the net-points on the lines t = 17, t = 2T, etc., l.e. everywhere on D .

We will now go on to find the order of approximation attained by
scheme (5). As F, we can take the linear space of all pairs of bounded
functions g(h) = Y¢n ] ]T, defining

m, m
U™, = max 1671 + max (v [
Fh m,n n m o
As has already been noted in §13, the norm used in the treatment of
approximation can be chosen in many ways, and the choice is not
inconsequential. At this point it will suffice to take as a norm the upper
bound of the modulus of each of the components making up the elements
g h), of the space Fh. It 1s just this norm which we will use everywhere
below.

Let us assume that the solution u(x, t) of problem (4) has bounded

second derivatives. Then by Taylor's formula

u(xm + h, tn) - u(xm, tn) 3u(xm, tn) 32u(xm + £, tn)

h
= + -
h Ix 2 3x2 ’
) )
u(xm, tn + T) - u(xm, tn) ) Bu(xm, tn) LT 3 u(xm, tn + n)
T N ot 2 32 ’

where & and N are certain numbers, depending on m, n and h, and satisfying
the inequalities 0 < £ < h, 0 < n< T,
With the aid of Eq. (7) the expression

Lh[u]h = T h
u(xms 0)

can be rewritten in the form

2
au--a_u +l Bu(xm, tn+n)
Tt x < 2
Ly ey =

u(xm, 0] + 0

*) If the max!¢0! or max|¥ ] is rot attained, then we take, here, the least

upper bound supf{¢l| or sup|¢m|-
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or
(h) (h)
Lh[u]h = f + 8f ,
where
2z 2
. 9 u(xm, tn + n] i D-B u(xm + £, tn]
el - z at? 2 ax?
0.
Therefore

82u

32
||5f(h)|| < | sup|=2| - — + sup
Fh - 3¢2 2

1
N

Thus the above difference scheme (5) has first-order approximation with

Ix:

respect to h on a solution, u(x, t), with bounded second derivatives.

3. Definition of stability. We now review and illustrate the defi-
nition of stability. Difference boundary-value problem (2), by definition,
is stable if there exists numbers 8§ > 0 and h. > O such, that for any
h < hO’ and any Of h in Fh satisfying the inequality ||6f(h)||F < §, the
difference boundary-value problem h

L) () ()

hZ

has one and only one solution which, moreover, fulfills the condition

h h h
N2 - o™y cannss™
h h
where C 1s some constant, independent of h.
In §12, where the concept of stability was introduced, it was shown

that, for a linear operator L the above definition is equivalent to the

h’
following:

Definition. Difference boundary-value problem (2) is stable if there
exists an hp > 0 such, that for h < hy and any f(h) in Fy, it hae a unique
solution and, moreover

™11, <ette™, )
h h
where C ig some constant not om h or on f{h).

The property of stability may be regarded as a uniform-in-h
sensitivity of the solution of the difference boundary-value problem (2) to
a perturbation &f of the right hand side.

We stress that in view of the above definition stability is an
internal property of the difference boundary-value problem. The definition
is formulated independently of any connection with a differential boundary-



§21 Review of Basic Definitions 191

value problem, and In particular, with no reference to approximation or
convergence.

However, i{f the difference boundary-value problem approximates a
differential boundary-value problem on the solution u, and the difference
gcheme ig stable, then we have convergence, i.e. (3). Further, the order
in h of the rate of convergence coincides with the order of approximation.

The proof of this important theorem was presented in §12.

Let us now show that difference scheme (5), for r < 1, is stable. The
norm || ° IIU will be defined by the equation

h
Na™ 11 = sup 11u™] = nax sup [l .
U m m
h m,n n m
while the norm |} ||F will be interpreted as above: for g(h) in F,
h
¢g, m=0, #l, ...; n=0,1, ..., [T/T],
h
g( )
wm’ =0, +l, ...,
we take
||g(h)||F = max 1¢;f + max |¢m| = max lmax |¢;i + max |¢m|].
h m,n m n m m
The difference problem
un+1 - un un _ un
m m m+1 m n
- - P = ¢m’ m=0, +1, ...;
5
n=0,1, ..., [T/T], G5
0
u = Wm, m =0, 1, ...,

which differs from problem (5) only in that ¢$ and ¢m are arbitrary right-
hand sides which, generally, do not ceincide with ¢{(mh, nT) and ¥(mh), will

now be rewritten in the form

ntl _ n n n

w o= (1 r)um + v + T¢m' )
0 (67)
u = Wm.

Since r <1, (1 - r) > 0. In this case we have the bound

n
Ul

> £ max
m

'(1 - r)u; + ru$+1| 5_[(1 -r) + erax ( u;

=max<

n

n
TS | Y

u

mn ’
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Using this bound we derive, from (67), the inequality

n

o (6”7)

n
u | + T max
m

m,n

n n
u | + T max |¢ | < max
m m| =

< max
m

Note that, in the case ¢2 z 0, it follows from (6”") that max u:| does not

increase with increasing n. This property of the difference scheme is
conventionally called the “maximum principle”. For the sake of brevity we
will sometimes use this name for the whole inequality

ntl

< max
n AS

n
o2 .
m

n
u ' + T max
m

m,n

The right~hand side of this 1nequality does not depend on m, so that on the

+
left-hand side one may write max u;+1|, in place of u; 1 , thus arriving
at the inequality

max un+1‘ < max un‘ + T max ¢nl .
m - m m
m m m,n
Similarly we get the 1nequalities
max Iunl < max un-l‘ + T max ¢n,,
m| — m
m m
max ull < max uO' + T max ¢n' .
m| — m m

m m m,n
Adding these inequalities term by term, and finally combining like terms,

we get

n
o7

max ug+l|_i max ui' + (n + 1)T max
m m m,n

from which immediately follows

max

n
07| <

un+1' < max |¢ | + T max
n - m
m m,n

(h) (h) (h)
< HeMH, + e, =@+ olie g .
- Fh Fh Fh

The 1lnequality we have just derived

max un+1' < (1 + T)|If(h)||
m - F
m h
is valid for all n, so that it remains valid 1f, in place of max un+1|,

we write max max 'ugl - f|u(h)llu H n

n m h
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™1, < a+ o™i . ®
h h

This inequality, (9), implies the stability of linear problem (5),
since, obviously, the solution of (6”) for arbitrary bounded ¢; and wm’
exlsts and is unique. The role of the constant C in inequality (8) is
taken on, here, by the number 1 + T.

One must not think that, in itself, approximation of the differential
boundary-value problem (1) by difference boundary-value problem (2) guaran-
tees the stability, and therefore the convergence, of (3). We convinced
ourselves of this in §9 with the aid of a specially constructed example of
an approximating, but divergent, difference scheme.

In the case of partial differential equations failure of randomly
chosen approximating difference schemes 1s the rule, and the choice of a
stable (and therefore convergent) difference scheme is the constant concern
of the computations specialist.

We recall, for example, that the proof of the stability of difference
scheme (5) was carried out under the assumption that T/h = r <1. 1In the
case r > 1 the difference problem (5) still approximates (4), but our
stability proof fails. We now show that in this case the solution, u(h),
of the difference problem (5) does not converge to the solution, u(x, t),
of the differential problem (4), which means that the difference scheme
cannot be stable since stability would imply convergence.

Suppose, for the sake of definiteness, that ¢(x, t) = O, so that also
¢(mh, nT) = O; further, let T = 1. The step-size h will be chosen such,
that the point (0, 1) in the plane Oxt belongs to the net, i.e. such that

the number

L
rh

will be an integer (Fig. 9). From AZ /)
the difference equation we get
ot

1 n n
u = (1 r)um + ru - 4

The value u3+1 = ug of the solu-

tion u(h) at the point (0, 1) of the
net is expressed, via the difference

equation, in terms of the values

0
points (0, 1-7) and (h, 1-T) of the

net. The two values “8 and u?, are Fig. 9.

n n
u, and u, of the solution at the 7
1 g (7:0)

(4 0)

expressed in terms of the values

n-1 n-1 and un-l of the solution

Y Y 2
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at the three net=-points (0, 1-2t), (h, 1-2T) and (2h, 1-27). The values of
o 8% and W7 , in turn, are given in terms of the

the solution Uy sy 2

solution-values at the four points (0, 1-31), (h, 1-37), (2h, 1-3T) and
(3h, 1-31), etc. Finally the value un+
values, uo, of the solution at the net-points (0, 0), (h, 0), (2h, 0), ...,

(h/t, 0) = (Nh, 0). All these points lie on the interval

may be expressed in terms of the

Alz
"

0<x<

of the line t = 0 (see Fig. 9), where we are given the initial condition
u(x, 0) = ¥(x)
for the differential equation. Thus the solution of the difference

equation at the point (0, 1) of the net does not depend on the values of
the function ¥(x) at points, x, lying outside the interval

0<x< L.
e
Further, the solution of the problem
du du
a—t"'—a—;=0, ~® < x <@, t >0,
u(x, 0) = ¥(x), =@ x {»,

as one can easily verify, is the function
u(x, t) = ¥(x + t).

This function is constant on each characteristic x + t = const; and, in
particular, on the 1line x + t = 1, which passes through the points (0, 1)
and (1, 0) (see Fig. 9). At the point (1, 0) it takes on the value V¥(1).
Thus 1t 1s clear that, iIn the case r > 1, comnvergence, generally, cannot
occur. In fact in this case the segment of the aiis with abcissas

0<x<2<1
- %2y
does not contain the point (1, 0). 1If, for some value of the function
V(x), convergence were to take place accidentally then, without changing
the value of ¥(x) on the interval

0<x< L
- —-r

and, thus, not changing the solution of the difference equation at the
point (0, 1), we could eliminate convergence by altering ¥(x) at and near
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the point x = 1, a change which would, in turn, change the value, u(0, 1) =
Y(l), of the solution of the differential equation. The change in Y(x) at
and near x = 1 could be managed in such a way as not to negate the
existence of second derivatives of the function Y(x), or of the solution
u(x, t) = ¥(x + t), so that approximation on the solution u(x, t) remains
in effect. Under these conditions stability of scheme (5) would imply
convergence. But since for r » 1 we cannot have convergence, we cannot
have stability either.

The proof we have given of the instability of difference scheme (5) is
indirect in character. It is interesting to examine directly how the
instability of difference scheme (5) for r > 1 is reflected in the
sensitivity of the solution, u , to errors in the specification of f(h).
After all, it is precisely the uniformity, with respect to h, of the
sensitivity of the solution to errors in f(h) which was defined, above, as
stability.

Suppose that, identically for all h, ¢(wh, nT) = 0 and Y(mh) = 0, so
that

and the solution u(h) = {un} of problem (5) is identically zero, uz = 0.
m

Suppose, further, that, in specifying initial conditions an error has

occurred so that, instead of ¢m = 0, we are given ¢m = (-1)me, € = const,

and instead of

n
¢
g0 Y =0
v
m
we have
0
~(h ~(h
L -
h
N ion T()
We will call the resulting solution u . From the equations
~n+l ~n ~n
u = (1 r)um + TU L1
~0 m
u. = (-l)y e
et, for 3L
we get, fo umv
~1 ~0 ~0
u = (1L - r)um + L

= (1 - r)(-l)me + r(-l)m+1€ = (1 - 2r)(-1)m€ = (1 - 2r);2.

We see that the error committed at mn = O has been multiplied by (1 - 2r).
On proceeding to a we get
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~2 ~1 ~1 ~1 2 ~0
u, = (1 - r)um + Tu .= (1 - 2r)um = (1 ~ 2r) u -

In general

Va1 -20" 0 = (1 - 20" e
m m

Forr > 1 we have 1 - 2r < -1, so that the error

~0 _ ,_.m
u = (-1)" e

on stepping from one level t = nT of the net to the next, is multiplied by
a negative number exceeding one in modulus. For n = [T/7]

s IR T

so that

Py = 2] (/RO =y e I/ W oy 151 -

= |1 - ZI‘I[T/(rh)]H;(h)H .
Fh

In a fixed time, T, an error (-l)me in initial values increases by the
factor |1 - 2r|[T/(rh)],
We pause now for a brief critique of the method by which we have

a factor which grows very rapidly as h + 0.

chosen to evaluate the quality of approximation; i.e, a method based on a
comparison of the norm of the residual ||&f h }1, with this or that power
of h. As we know, for stable schemes the order of approximation coincides
with the order of the error, [u]h - u(h , 1n the solution. It 1s natural
to judge the quality of a scheme by the amount of computational effort
which is required for the attainment of & given accuracy. This amount of
computational effort, generally speaking, 1s proportional to the number of
points, N, used in the difference net. For ordinary differential equations
N is inversely proportional to the step-width, h. Therefore, when we say
that the error € ~ hP we are, at the same time, asserting that € = 1/Np,
i.e. that halving the error will require that we increase the expended
effort by a factor P/7, Thus, 1n the case of ordinary differential
equations, the order of approximation with respect to h characterizes the
volume of computational effort.

For partial differential equations the situation is different. 1In the
above example of a problem in two variables, x and t, the net is specified
by the two step=-sizes T and h. The number, N, of net-points, located in a
bounded region of the plane Oxt is of order 1/(th). This number also can
be taken as a measure of the amount of work expended in solving the
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difference equations. Suppose T = rh. In this case N ® 1/h? and the as-
sertion that € = KP 1g equivalent to the statement that € = NP 2. IF T =
rh?, then N = 1/h3 and the assertion that € ~ hP 1s equivalent to € = 1/Np/3.

We see that, In the case of partial differential equations, it would
be more natural to measure the order of the error, not in powers of h, but
in powers of 1/N. We will, nevertheless, settle on the method described
above, 1n which approximation is evaluated in powers of h, since this is
more convenient for computational purposes. The reader should, however, in
judging the quality of difference schemes, keep in mind the above
considerations.

We must note, further, that the assertion that the computational work
is proportional to the number, N, of net-points is also not always true.
One can cite examples of difference schemes whose use requires, in the
solution process, = N *q arithmetic operations, where q = 1/2 or even 2.
One encounters such schemes 1n the solution of difference boundary-value
problems approximating elliptic equations, or in solving problems 1in three
or more independent variables (e.g., u = u(t, %, y)). In the multidimen-
sional case the construction of difference schemes such that the solution
process entails ® N arithmetic operations 1s a nontrivial problem, about
which more will be said in §§31, 32.

For real calculations on electronic computers it 1s common to take
machine time as a measure of quality, for the purpose of comparing
algorithms. Machine time is not necessarily proportional to the number of
arithmetic operations.

The time required to transfer information from one block of computer
memory to another may also play a significant, sometimes even a predominant
role. And the time expended on logical operations must also be considered.

PROBLEMS

1. For Cauchy problem (4) study the following difference scheme:

ntl n n n
m m Yu Yp-1
- = ¢(mh) nT),

m=0, 1, ...; n=0,1, ..., [T/7]-1,
0 -
u = ¢(mh), m=0, H, ...,

where T = rh, r = const. More precisely

a) Write out in detail the operator, Lh’ and right-hand side )

, which appear when this scheme is put into the form L,u = f .
b) Sketch the relative locations of three net-points, such that the
values u at these points are connected by the difference egquation for

£(0)

fixed m and n.
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¢) Show that the difference scheme approximates the differential
problem to first order in h on a solution, u(x, t), having bounded second
derivatives.

d) Determine whether the difference scheme in question 1s stable for
some cholce of r, T = rh.

2. For the Cauchy problem u, + v = d(x,t), ulx, 0) = ¥(x),
-®<{x<>® 0<t<T, investigate, following the outline laid out in

problem 1, above, each of the following difference schemes:

n+l n n n
Unm " Vn Yn T Yp-1
= + o = ¢(mh, nT),

m=0, +l, ...; 1u=0,1, ..., [T/T]-1,

ut?l = y(mh), m =0, #1, ...

n+l n n n
-u
+ = ¢(mh, nT),

m=0,+l, ...y 1n=0,1, ..., [T/T]-1,
0
um=lll(mh), m=0, #1, ...;

§22. Simplest methods for the construction
of approximating difference schemes

1. Replacement of derivatives by difference relations. The simplest
method for the construction of difference boundary-value problems, approxi-
mating differential boundary-value problems, consists in the replacement of
derivatives by corresponding difference relations. We will present several
examples of difference schemes obtained in this way. In these examples we
will use the approximate expressions

df(z) , f(z + Az) - £(z)
dz Az 4 }

df(z) _ f(z) - f(z - Az)
dz Az ’ $

(1

df(z) - f(z + Az) - f(z - Az)
dz 2Az °

d’£(z) _ f(z + Bz) - 2f(z) + f(z + Az)
dz?  AZ?
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Assuming a function f(z) having sufficiently many bounded derivatives,
it 1s possible to write out expressions for the remainder terms in these
approximations. By Taylor's formula

2
f(z + Az) = £(2) + bzf7(2) + (AZ? £77(z) + )
3 4y
+ %_)_ £7°7(2) + (2+) £y + ol(82)"1,
Y (@)
2
£(z - Az) = £(z) - B2f"(2) + (QT) £77(z) -
3 4
SL2) ey« L2 Doy 4 ooy )

Using expansions (2), one can get expressions for the remainder terms in
the approximate Eqs. (1). Specifically, one finds that

; \
ezt 02) - B(2) - po(p) + |92 £77(2) + o(b2)],
o) =z = 22) o pr(e) + [- 32 £77(2) + o),
b(3)
- - - 2
flz ¥ b2) 2Bz 2 02) _ oy + (L2200 77 (2) + o (82271,

28z

f(z + 42) 'A:E(Z) Yz 2 82) ey 4 (27 6B 4 o (a2y2)]. /
The remainder terms in the approximations (1) enter into the corresponding
Eqs. (3) in the form of the expressions in square brackets.

Clearly Eqs. (1), as well as the expressions for the remainder terms
written out explicitly in (3), can also be used to replace partial
derivatives by difference relations. For example

du(x, t) _ u(x, t + At) - u(x, t)
at At

since

(x, t +At) =~ u(x, t) _ du(x, t) At 3%u(x, t)
u i - P + [5..———-—-Btz + o(At)} .

Equally
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du(x, t) L o(x + Ax, t) - u(x, t)
ax Ax

and, in this case,

u(x + Ax, t) - u(x, t) _ 3u(x, t) + [Ax 32u(x, t)

vy = + o(Ax)]
Ix

etc.
Example 1. We return, here, to Cauchy problem (4) of §21:

d 3
3% - 5% = ¢(x, t), -=<x<=, 0L t(LT,

(4)
u(x, 0) = ¥(x), - x { o,

To approximate this Cauchy problem we construct three schemes. In all
these schemes we use the net, Dh’ formed by those points of intersection of
the lines x = mh, t = nT, falling inside the strip 0 { t < T. The values
of T and h we take to be connected by the relation T = rh, where r is some
positive constant. The simplest of these schemes has the form of (5) §21:

un+1 -u u _ un
n - - m+1h = ¢(mh, aT),
Lhu(h) s (5)
u) = ¥(ah),

and 1s obtained by replacing the derivatives u = du/dt and u = du/dx by
the approximate expressions

ut(x’ t) = u(x, t + Tz - u(x, t) ,
u(x + hy, £) = u(x, t)
h

ux(x, t) =

We have studied this scheme in detail in §21. 1In this case the
residual, Gf(h , which develops when the solution, [u]h, of the
differential problem is substituted into the left-hand side of the
difference problem

(h) (h)

L fu], = £ + 8f

has the form

n
T h
Fu -Euxx> + o(T + h),



§22 Construction of Approximating Difference Schemes 201

(h)

maximum of all components of thils element. Then, obviously

In this section we take, as the norm of the element f of space F the

h?

1eet™ 1 = o(t + h) = o(rh + h) = 0(h),
h
and the approximation turns out to be of first order.

The second scheme results from the substitution of another expression
for du/dx:

du(x, t) _u(x, t) - u(x - h, t)
Ix h ’

This scheme has the form

n+l n n n
Un T Un Un ~ Ym-1
(h) T - T = ¢(mh) “T))
L u B
h
0
u_ = Y(mh).
m
Here
n
T h
(5 Uee T2 uxx) tolr+h,
se(h) = m

(h)
Mee ™11, = o(h),
Fh

and approximation again turns out to be first order.

The second scheme, it would seem, differs only insiganificantly from
the first. Below we will see, however, that this second scheme is com-
pletely unsuitable for computation: 1t is unstable for any T/h = r =
const.

The third scheme

no,on
un+1 _ Ymkl Un-1 " - un
m 2 mt1 m
L u(h) = T - h ¢(mh, nT),
[¢]
Um = Y(mh),

is obtained by replacement of the derivatives by difference relations via
the approximate expressions
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( _u(x+h, t) + u(x - h,t)
du(x,t) " 2
ot T '

x, t + 1)

du(x, t) _u(x +h, t) - u(x, t)
X h

With the aid of the Taylor expansions (2), for a sufficiently smooth
solution, u(x, t), of problem (1) we get

u(x + h, t) + u(x - h, t)

ulx, £+ 0 - 2 Cu(x +h, ©) - u(x, t) _
T h -
3 3 2 32 32 . 4
=[5%-a—;’(--%-—“+—zr-—“ +O<T’-+h2+:—=
ax? a2
Xx,t
= ¢(x, t) + -h u_ + = u. . + 0(h?2)
’ 2r xx 2 tt x.t
E]
Therefore
¢(mh, oh) + |- E—-u teu 4 0(h?)]
L (u]. = ? 2r "xx 2 tt ’
h h
Y(mh) + O,
(h)
so that &f in the equation
_ ((h) (h)
L (ul, = £ + 6f
has the form
h T 2
2r Yxx + 2 Yt + o(h®),

seth) =

0.

Thus ff&f(h)llF = 0(h) and we again have first order approximation,

as in the two first gxamples.

o -

) mHn) (m,7) (m-hn)  (mn)

Fig. 10.
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Let us now consider the case where the connectlion between the mesh
widths is given, not by the relation T = rh as above, but by the equation

T = rhz, r = const,

presupposing a more rapld refinement in T than in h. In this case

du  du 1 3% 2
['BT"‘E'H—E] + o(h®),
9x xm’tn
Eplelp =

u(mh, nT),

from which it is clear that the above difference scheme approximates the
problem

ul(x, 0) = ¥(x),

not at all the same as the Cauchy problem (4) which we set out to
approximate.

We have, thus, stumbled onto the fact that one and the same difference
scheme may, for different functional relations T = T(h), approximate
different differential problem as h + 0. Such difference schemes are
called "rigid”.

For heuristic purposes it 1s common to assoclate a difference scheme
with a sketch (or "stencll”) representing the relative positions of the net
points at which (for some fixed m and n) solution values are directly
connected by the difference equations. For the above three schemes these
sketches are displayed in Fig. 10.

Example 2. We now present two difference schemes approximating the
Cauchy problem for the heat equation

2
ﬂ_.a_ﬂ=¢(x’t)’ - x { ™ 0<t<T,

u(x, 0) = ¥(x), -~ o x £ o,

The simplest of these

un+1 - un un - 2un + un
m . m _ “mtl m-1 _ ¢(mh, oT),
(1) (h) b’
Lh u = 0
u = ¥(mh),
(h) ¢(mbh, nT),
£ z
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is obtalned by replacement of the derivatives u, and u . by difference
relations via the equations

“t(x! £) = u(x, t + I) - u(x, t)

u(x + h, t) =~ 2u(x, t) + u(x - h, t)
hz

t ~
u (%, t)

If, for the replacement of uxx(x, t), one were to use another expression:

u (x, t) = u(x +h, t+ 1) - 2u(x, t+ 1) +ulx-h, t+71) ,
XX h2

one would arrive at a different scheme for the same equation:

ntl n ntl nt+l n+l
u - u u - 2u + u
m m mt1 m m-1
= - = ¢(mh, nt),
2
(2) = h
L u(h) =
h
0
u, = Y(mh) .

To distinguish the two operators L of these two schemes we have numbered

(h) _ (h) h(2) (h) _ (b
them, writing Lh u =f and Lh u = f .
ponding to both difference schemes are shown in Fig. 11.

The stenclls corres-

(m,n+!)

' o (1m1+1,11+7)
. I —e I;?,ﬂ)
{/”-/1/7)

Fig. 11.

Thege schemes are basically different. Computation of the solution by
the first scheme presents no difficulties, and is carried out by use of the
explicit relation

n
1l

un+1 = (1 - 2r)un + r(un +u
m m

. ] + t¢(mh, nt),

where r = T/h%. This expression is obtained from the difference equation
by solving for u;+1. Knowing the value of the solution, ug, m=20, +1,
.ee, at the level t = tn(= nt) of the net, we can compute its value u;+1 at
the next level t =t .

In the second sgzéme Lﬁz)u(h) = f(h) this convenient property has been
lost. For this reason the scheme is sald to be "implicit™. In this case
the difference equation, written for fixed m and n, cannot be solved expli-
citly for u;+1, expressing this quantity in terms of the known values

n

n
of U s Upe Yol from the preceding level. The problem is that this

+
equation contains not only the unknown u; , but also the other unknowns
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u and u . Therefore, to determine u$+1, m=20, +1, ..., it is

necessary to solve the difference equation for the whole net function,
+
o 1, of the argument m. Nevertheless it will be shown below that the

(2) (h) _

scheme Lh u f(h) is, as a rule, more counvenient than the scheme
LD (),

For T = rhz, r = const, both schemes have second order approximation
with respect to h. We calculate the residual Gf(h) and evaluate the order
of approximation of the second scheme. Using Eq. (3) one can write

(2) .
by luly =
T h2
(ut - Jx=mh - E.utt(x’ tn+1J T 17 Yxxxx
t = (ntl)T

U (x, tn+1J + o(T + hz),

i

u(wh, 0).

It follows, since T = rhz, that

- - 2
= o=, tn) + 0(1) ¢(xm, tn) + 0(h?).
Therefore

h .
Hee®™y1, = oen?).
h
Example 3. We now consider the simplest difference scheme approxi-
mating the Dirichlet problem for Poisson's equation in the square D
(0<x<1, 0<y<1) with boundary T (Fig. 12,a):

u + u = q’(x, y)) (X, Y) in Dl
XX yy
ulp = ¥x,y), (%, y) in T.

We construct the net, Dh’ assiguning to it those points (x , t ) =
(mh, nh), which fall inside the square or on its boundary. The step-width,
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y
4, 1)
ey +/)
r (714, 77)
V/j
a) )] (r1-1)
a 4 4

Fig. 12.

h, we assume to be chosen such that 1/h is an integer and the difference
scheme, Lhu(h) = f(h) will be given by the equations

um+1,n B 2umn * um-lJn + um,n+1 B 2umn * um,n-l -
h? h?
Lo = = ¢(mh, nh (mh, ah) in D
hY = = ¢(mh, nh), mh, nh) in D,
u = Y(mh, nh), (mn, nh) in T
mn
¢(mh, nh), if (mh, nh) in D,
RO
Y(mh, nh), if (mh, nh) in T.

By virtue of Eq. (3) the residual Gf(h), Lh[u]h ALY Gf(h), has
the form

h? )|

— 2
12 “Vxxxx + uyyyy + o(h®),

éf(h) - ' n

0,

so that approximation is of second order. The five-point stencil,
corresponding to the given difference equation, 1s pictured in Fig. 12,b.

We have, above, constructed difference schemes by replacing each
derivative in the differential equation by a difference relation of one
sort or another.

2. The method of undetermined coefficients. A more general method of
constructing difference schemes is, not to replace each derivative
separately, but to replace the whole differential operator at once. We
explain this method by way of examples of difference schemes for the Cauchy
problem (4). First we consider a first-order approximation, scheme (5).
This scheme connects the values of the required function at three points,
as shown in the left-hand panel of Fig. 10. The difference equation
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otl _ n n _.n
(h) Un Un Ykl Yn
Ahu = = - n = ¢(mh, nT),
used in this scheme has the form
h) - o+l
A ulP) = g0 .
u a um + agup g alum+1 $(mh, nT)

Let us forget, for the moment, that we already know about difference scheme
(5), for which

0o .1 =11 = -1
a =7 a9 = T 1w

1

=gl

and, considering these coefficients undetermined, try to choose them in
such a way that

au du
Mlolp| = Gp )| v om
x=mh, x=mh,
t=nT t=nT
or
A = A +
NON Wl + OB, (6)
x=mh, t=nT
t=nT
where
- du _ du
hu = 5E - %% S8

For this purpose we make use of Taylor's formula:
u[mh, (n + 1)T] = u(mh, nt) + Tu;(mh, nt) + 0(7%) ,
u[(m + 1)h, 0T] = u(mh, nT) + hu’(wh, ot) + O(h?).

Substituting this expression into the right-hand side of the equation

INCIN = a’ufmh, (n+1)T] + aju(uh, nT) + a u[(a + 1h, o)
x=mh,
t = nt
we get
= 5}
Ah[u]h, . (a + a, + al)u(mh, nT) +
»
t=nT
0. du(mh, nT) du(mh, nT) 0.2 27,
talt ——gt—=+ ah ——t——= 4 o(at2, a,h ) (8)

Since it 1is our goal to choose the coefficients ao, a, and a, so as to

fulfill the condition of approximation (6), it is natural, preliminarily,
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to group terms on the right-hand side of Eq. (8) in such a way as to

separate out term (7).

remainder term of the approximation, a term which must be small.

Then the remaining terms will constitute the

To single

out the term Au one may replace, in the right-hand side of (8), the

derivatives du/dt or 3u/dx using, respectively, one of the two relations

For the sake of definiteness we use the first

_ du
—-a—t-l\u.
of these.

In addition we connect the step-widths T and h by the relation T = rh,
with some constant r. After these manipulations Eq. (8) takes the
following form:

= a¥rhA + (a% +a + +
Ah[u}h| a’rh u,x=mh, (a ag al)u(mh, nT)
x=mh, t=ntT
t=nT
+ (a% + al]hux(mh, nt) + 0(a%r?n2, alhz). (9

Among all smooth functioms u(x, t) one can find a subset for which u, 9u/dx

and du/dt will take on, at any prescribed point, any mutually independent

values. Therefore the quantities
du du du
u, 3_)(- and

also may be considered mutually independent.

Au=—a-t-"1é—x-=¢(x, t)

In view of this fact, it

follows from (9) that 1f, for any right hand ¢(x, t) side of problem (4),

we are to fulfill the approximation condition

A = (A + 0(h
W] g+ o)
’ t=nT
t=nT
it 1s necessary that
arh =1 + Ol(h)’
v =
a’ + a, + a, 0+ 02(h)’

0 =
(a r + al)h 0+ 03(h),

where Ol(h)’ 02(h) and 03(h) are some arbitrary quantities of order h.
Suppose that Ol(h) = 02(h) = 03(h) = 0. The resulting system

Chapter 7
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1
i}
+ =
a'r al 0
has the unique solution
oL _1
ar = rh T
r-t_1_1
%" Tk
=-1
T "we

which takes us back to the already familiar scheme (5).
Now, however, we have learned that, among difference schemes of the
form
v ol n n_
a um + aoum + alum+1 ¢ (mh, nT),
(h) .
Lhu =
u? = y(mh)
m

this is the only one approximating the given Cauchy problem. 1In
considering uniqueness we neglect the degree of arbitrariness resulting
from the free cholice of the functions Ol(h)’ Oz(h) and 03(h). Every~-
where in the examples below we will

also neglect a similar sort of

obvious arbitrariness and, in fact, ”W’”*/)

will not always introduce, expli- — I 4~¢ﬂﬁ+gfy
citly, arbitrary quantities anal- (m=4n)  (mn)

ogous to Ol(h)’ 02(h) and 03(h),

assuming from the start that they Fig. 13

are zero.

The reader will easily convince himself that, in the present example,
the introduction of these quantities would have lead to the following
insignificant change in results

1,1
5 l; + o(h)],

ap =3 =t + om)],

a; --11; -1 + o(h)].
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The situation will be much the same also in the other examples we will
encounter.

Let us now consider how one can construct, for problem (4), the
difference scheme

Uun+1 .

n n n_
a‘u agu ta_ju _, tau o= ¢(mh, nt).

Lhu(h) : (10)

u? = y(mh)
m

of more general form, connecting the values of the unknown function at four
points, as shown in Fig. 13.
Again we connect the step-widths by the equation T = rh, r = const,
and introduce the notation Ah, defining
(h) _ ¢ n+l n n n
= + + + . 11
Ao alug  Fagup taju g Aty ()
For every sufficiently smooth function u(x,t) we may write, with the
aid of Taylor's formula,

A {ul

NIRRT

x=mh,
t=ntT

0 + a + a_l)u(mh, nt) +

g 1 0,212
+ - =
a rhut(mh, nt) + (al a_l)hux(mh, nt) + 5> ar h utt(mh, nt) +

1
+ 5 (a; + a_;)h?u_ (mh, 1) + 0(a%rh3, ahd, a_hd). (12)

We now separate out, In the right~hand side of this equation, the term
Au = (Bu/3t) - (3u/3x), using for this purpose the identity u = u + Au.
As a result we get
A = alrhA +(a" +a +a +
h[u]h, a’rh u|x=m (a aO a a_l]u(mh, nt) +
x=mh,
t=nT

h,
t=nT

1
+ (a0 - = 50,212
(a r + a a_l)hux(mh, nt) + 7 ar h utt(mh’ nt) +

1
+ 7 (al + a_l)hzuxx(mh, nt) + 0{a%3n3, a h?, a_1h3).

If we assume that the quantity O(aorahs, alha, a_lha) is sufficiently
small, an assumption which will later be confirmed, then in order to

fulfill the approximation requirement

(Ah[u]h)x=mh, = (Au)x=mh,+ o(h)

t=nT t=nT
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1t 1s necessary that the four numbers, aU, ag, a; and a_i» satisfy the
three equations:
arh = 1 + 0, (h),
0 + =
a” + a, + a, + a 0+ Oz(h),

Ur + - = .
(a’t +a) -a_)h=0+0,(h)
Suppose, according to our convention, that the arbltrary quantities Ol(h)’
Oz(h) and Oq(h) of order h, are equal to zero. We then get the system of
equations

alrh = 1,
Uy + + =
a ay +a, a_ 0, (13)
v - =
a'r + a, a_y 0.

If condition (13) is fulfilled, then

1 0.2.2
= + =
Au'x=mh, 5 ar h utt(mh, tT) +

t=nT

A [u]
b hlx=mh,
t=nT

1 2 0,33 3 3
+3 (al + a_ Jh uxx(mh, nt) + 0(alc3n3, alh » a_jh ).

1 1

System (13) has many solutions, in fact a family of solutions depending on
one parameter. One of these solutions

0 -1 =0 r -1 = -1
2 =T 2, ’ o~ "rn ! h
leads to the above scheme (5). The solution
Q=L a = - L a . = =L
th °* 0 th ° -1 " 2n° ! 7h

l.ln+l = u Un Un
m+l m-1
(h) mr B 7h = ¢(mh, n1),
L u
h
u! = y(mh).
m

Having chosen some solution of system (13), one must substitute this
solution into the remainder term and confirm that it is small. For the
above two solutions substitution of the quantities aU, 3y 3 and a_ gives

the remainder terms
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212 52 a, +a_ 2
a’r’h §;§ + _1,7___l h? ;;— + 0(a0r3h3, alh3, a_lha]
of order 0(h).

Among the smooth functlons u(x, t) are second-order polynomials for
which 92u/3t2 and 32u/3x? take on, at any given point, any arbitrary
prescribed values. Moreover the term O(a rh, a,h’, a_lh ) containing the
third derivatives of the polynomial u(x, t) will vanish. Therefore, 1if the
remainder term is to be of order higher than h, it 1s necessary that the
coefficients of 32u/3t? and 32u/f3x? should each, separately, be of higher
order. Since, from the first of Eqs. (13), we have a = 1/(rh), the
coefficient of 32u/9t2 is rh/2 and the remainder term is never of order
higher than first.

We have established that is is impossible to construct a difference
scheme of form (10) which approximates the problem

du du
B Tt- - 3’; = 4)()(, t)
Lu =
u(x, 0) = ¥(x)

to order hZ. To raise the order of approximation it would be necessary to
increase the number of net-points used in constructing the scheme.

But we will now point out.some methods which, nevertheless, permit the
construction of a difference scheme with order h? approximation, using the
four indicated points of the difference net. The method of raising the
order of approximation, which we now present by way of examples, 1is general
in character. It turns out that one can choose the coefficlents 1in such a
way that the equation

i

Ah[u]h auu(mh, (n + 1)1) + a_lu((m - D)h, nt) +

+ aou(mh, nt) + alu((m + 1)h, nT) =

= hu + 22 [(Au). + (Au) ] + 0(h?) = P_Au + 0(h?),
2 t X h
x=nh, (x, t)
t=nT m n
will be satisfied, where
rh (9 ]
BBty Gt

and E 18 the identity operator. Then, since Au = u -u = ¢(x, t), the
difference scheme

n n n
ug + a,u =06,

p. o+l n
aty, ¢ 1% = %

m a1%e-1 ta,

ud = Y(mh),
m
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with

GO NIRRT O | I

x=mh,
t=nT

x=mh,
t=nT

will approximate the gilven differential problem, on the solution u(x, t),
to second order in h.

The coefficients aO, a_is 3 and a; again may be chosen by the method

of undetermined coefficients. They turn out to have the following values:

1 -r - - 1 +r
3 20

r
h? a, 2k °

1
a’ = =, ag = - ™ +

With these values the operator Ah takes the form

A u(h) _ %_[un+l _ un) _

n r n n n
h - ) - o [ - Zum + um_l].

1 ( n
o w/ 728 “Ymtl T Ym-l b Umtl
By the method of undetermined coefficients one can not only choose
coefficients ao, a_l, a, and a; for which

ALl = alu(x, t + 1) + a_ju(x - h, t) +

1

+ agu(x, t) + aju(x +h, t) = P Au+ 0(h?)

with the above defined operator Ph’ but one can also construct all oper-
ators, Ph, for which the above equation can be satisfied.

x X % & % %

Let us now show how this can be done.
Taking

A u(h) = aoun+1 + a Tt au+oa
h m

m -1%m-1 0 u

n
1 mtl?

and using Taylor's formula, we get

A =(a’ +a_ +
h[u]h (a a, ta
x=mh,
t=nT

1 + a_l)u(mh, nt) +

+ a%rhu_(mh, n7) + (a) + a_

1 02,2
1)hux(mh, nt) + 5 a’r’hPu (mwh, nT) +

+

Nl e

[al + a_l)hzuxx(mh, nt) + 0{a’r3h3, alha, a_1h3]. (14)

This equation will, next, be put into a somewhat different form. We start
with a derivation of the identity

32 32

fu-uy (hu), + (hu)

a2 3x? ¥
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which follows from the definition of Au:

du _ du
-a—E——a—x—'l-Au.

The proof consists of a chain of obvious identities:

3%u _ (3u _ 3%y _ 9 =
proiallt R & RO RN

d -
2= (“x + Au) + (Aw), = u  + (hu) + (hu) .

Using these identities one can rewrite Eq. (14) in the following,
equivalent, form

= 40 n, 1 9202 . n
Ah[u]h,x=mh alrh(Au) - + 5 a’r’h [(Au)t (Au)x]m +
’
t=nT
+ (a +a%+a +a )u(mh nT) + (aur +a, - a ]hu (mh, nT) +
0 1 -1 ? 1 -1 X ’

1

+ Lf alr? +‘%(a + a_ )thuxx(mh, ntT) + O(aor3h3, alh3, a hs]. (15)

1 1 -1

We now construct the operator satisfying the condition Ahu = P_Au + 0(h2).
The terms containing Au' (Au)  and (Au) may be included in the expression
PhAu, since the definition of PhAu is at our disposal. All the other terms

(ao +al + a + al]u(mh, nT),

(aur + a - a_l)hux(mh, nT),
alr® +a +a_
2

1
hzuxx(mh, nt),

O(aur3h3, alh3, a_1h3),
must be constituents of the remainder term of the equation
Ah[u]h = PhAu + remainder term,
no matter how we try to choose the operator P_. The validity of this
assertion 1s proven by the fact that there exist functions, u(x, t), for
which u, u , u_, Au, (Au) and (Au) take on, at any given point

(x , t ) any mutually independent prescribed values ua, ul, uix, (An)?,
(Au)i and (Au)g. One such function, for example, is the polynomial
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1.0

P(x, t) = ul + ui(x - xo) + [(Au)0 + ui](t - to) t3 uxx(x - x0)2 +

1
+ E{Uix + (Au)i + (AU)EJ(t - to)z + [uix + (Au)ij(x - xoj(t - to).

In view of the independence of the values u, uosou s Au, (Au) and (Au)
it is necessary, in order to achieve second-order approximation, that each
term, individually, entering into the remainder should be of order h2.
This requirement may be written in the form

a, + al + a +ta_ =0,

(aor + a - a_l)h = 0. (16)

(aor2 + a, + a_l)h2 = 0.

The solution of system (16) 1s determined to within an arbitrary
factor. We will supplement this system by the equation

aorh =1, (17

which constitutes a natural, though not necessary, constraint on the choice
of the operator Ph: i.e the coefficient of (Au) in the expression for
PhAu is taken to be unity.

On the right-hand side of equations (6) and (7) it would be possible
to add arbitrary terms Ol(hz), 02(h2), 03(h2) and 04(h2) but we have, in
conformance with our earlier conventions, set these terms to zero.

Solving the system of equations (16), (17), we get the coefficients,

aU, a_;» 2, and ajps already given earlier:
oo L -l ~Ll-r S 4
T 0" "mTw aq T Tone 2 = Zh

With these values for the coefficients the remainder term in Eq. (15)

- rh rh 0,313 3 =
Agluly = fu+ 52 (Aw) |+ 22 (hu) + o(a%3n3?, a b, a_1h3) =

1

=P Au+ o(a’r3n3, a1h3, a_1h3]

satisfies the bound
fo(a%r3n3, a1h3, a_1h3]l < A(r?n% + n?)

where A is some constant depending only on the maximum absolute value of
the third-order derivatives of the function u(x, t). Correspondingly we

may also write
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- n 2 2
1A [ul, Ph¢1m_<_A(r + b=,

Thus, we have established that, ignoring insignificant variatioms,
only one difference scheme

un+1 _.n n _.n n -2 RIS
m Yn _ U+l Ym-1 I Ul Um T Ym-1 _
T 2h 2 h2
(h) _ = Ih
Lhu - < - l¢ + 2 (¢t + ¢x“x=mh,
t=nT (177)
0
(Y = ¥(mh)
among all difference schemes of the form
u ntl n n n_ n
alu " ta_ju o otagu toagu Ph¢|m .
(h}
Lhu
u! = y(mh)
m

approximates differential boundary-value problem (4) on its solution
u(x, t) to second order in h.

M) _ ()

far in this chapter, the operator Lh’ mapping the space Uh into space

In all the examples of difference schemes, Lhu , presented so
Fh, is given by explicit equations. But one often has use for difference
schemes in which the operator Lh is specified in some other, more compli-
cated, way. Below we will encounter problems for which such schemes will
evolve naturally.

The above methods for con-
structing difference schemes remain Y
applicable also for problems with ﬁ% 0
variable coefficients, for nonlinear

problems and for nets with varilable
step-size. For example, in the case AUQ

of the non-uniform net shown in Fig.
14, one can congtruct a difference Az,

scheme for the equation u__ + u =

X yy o’
¢(x, y) by substituting, for the J 0 47
derivatives in this equation, the ?
difference relations Fig. l4.
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AR AN COEA R CANES
BEE. - Axm Axm_1 .\
) a Ax_ + Ax
bls (x ) m m-1
n*Yn 2
1
+'§ (Axm - Axm l)ux + OLLAxm + Axm l)zJ’
Wigs ) = ulge 3] a3 - oy )
524 Ay Ayn_l
— = +
3y2 ( ) Ayn + Ayn_l
*a» Yn 2

1
+3 (ay, - ay e oo+ ollay +ay %),

n
discarding the remainder terms. The validity of the above equations may be
confirmed with the aid of Taylor expansion (2). By the method of undeter-
mined coefficients we may convince ourselves of the uniqueness of the equa-
tions: to within unessential variations there is only one set of coeffi-
clents a_;s 4y ap, for which we may write, given any sufficiently smooth
function u(x, t), the expression

32
el T e ) (e v
952 -1V "'m-1* “n 0 "m” “n

+ yn) + O[max(Axm_l, Axm)J

alu(xm+1’

with a remainder term which is small to first order with respect to

A .
m-1" me
Equations of the form

max[Ax

Bzu(x y ¥ )
_——_;EE_—E— B a'lu(xm-l’ yn) M aOu(xm’ yn) +

+ alu(x

v )+ ollmax(ax_, ax)]2),

m
with remainder terms of second order, do not exist for Axm_1 # Axm.

To achieve greater accuracy via the replacement of derivatives by
difference expressions it would be necessary to involve more than three
net~-points.

3. Schemes with recomputation, or “predictor-corrector” schemes. To
construct difference schemes approximating time-dependent problems one can
use the same idea which underlies the construction of the Runge-Kutta
scheme for ordinary differential equations, the idea of "recalculation”.
Recalculation allows one to raise the order of approximation attained, by
ugse of the initial scheme, before recalculation. In addition, in the case
of quasilinear differential equations recalculation allows us to construct
so-called "divergence” schemes, about which more will be said in §30.
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We recall the 1dea of recalculation via the example of the simplest
Runge-Kutta scheme for the numerical solution of the Cauchy problem

d
F=tt, ), ¥y =¥, 0T (18)
If the value y at the point t = pT has already been calculated then, to

compute y +1° we determine an auxiliary quantity, yp+l/2’ using the
simplest Euler scheme (the "predictor” scheme)

~

Yot1/2 " Yp
- tle, v ) (19)

and then carry out the corrective recalculation

y -y
ptl__‘p . £t

= (20)

ptl/2? yp+1/2)'
The auxiliary quantity ; 1/2° computed by use of a scheme with first-order
accuracy, allows us to determine, approximately, the inclination of the
integral curve at the midpoint of the interval [t , t +1J, and to get

yp+1, using Eq. (20), more accurately than by Euler's scheme (19).

We have already noted, in 4819, that all our considerations remain
valid if y, y_and ; 1/2 are finite-dimensional vectors and f is a vector
function. But one can go still further, considering y, yp and y 1/2 as
elements of a function space, and f an operator in this space. ng example
the Cauchy problem

ST +tAg =0, melx<®™, 0<t<T,
@
u(x, 0) = ¥(x, o x Lo,

A = const, can be thought of as a problem of form (18) if we set y(t) =
u(x, t) so that, for each t, y is taken to be a function of the argument x;
the operation f is interpreted to mean the application of the operator
-A3/3x. Let us take as an example a difference scheme, with recalculation,
for problem (21).

Example. Suppose that the net function uP = {ug}, m=20, +, ..., for
a gilven Py has already been computed. We first determine the auxiliary net

function u = {:g:i;;}, m =0, +1, ..., relating to time tp+ 5 =
(p + 1/2)T and to point X0+l /2 = (m + 1/2)h, using the following (first-
order accurate) scheme:
~pHL/2 vy * ug
1 /2 2 LIPS
77 + A T =0, m=0, +, ... (22)

Then we perform the correction, and find up+1 using the scheme
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+1 ~p+l/2 1/2
Ya " “5:+1/2 } pr:l/z
= + A 5 =0, m =0, 1, ... (23)
~pt+l/2
Eliminating u from Eqs. (22) and (23), we get the scheme
ptl p p _ P P _, P, P
Uy U Ukl " Ymel o, ot Ul T 2 Y Upog
+ A - A% 5 =0
T 2h 2 2 ’
h (24)
u;=¢(xm), m=0, +l, ... p=0,1, ..., [T/T] - 1.
This latter scheme, for A = -1, coincides with scheme (177), énd the case

A # -1 differs only insignificantly from the one already discussed. Scheme
(24), and thus also the scheme with recalculation, i.e. (22), (23), has
second-order approximation in h when T = rh, r = const.

4. On other examples. We now mention, briefly two more extremely
important and widely-used methods for the construction of difference
schemes. The first of these is based on the formulation of the original
differential equation, the equation which is to be differenced, as an
"integral conservation law”. The need for the use of this method arises
naturally in the computation of so-called “"generalized solutioms,”
functions which do not have full sets of derivatives, or may even be
discontinuous. Difference schemes developed in this way are called
“divergence schemes” or "conservative schemes”. Methods for constructing
divergence schemes are described in Chapter 9.

The second method is based on the use of some variational formulation
of the differential boundary-value problem whose solution is to be
computed. This method is often called the method of finite elements, and
the corresponding difference schemes are referred to as "variational-
difference” or “projective-difference” schemes. This method allows the
construction of difference schemes on irregular nets, finer 1in regions
where the solution changes more quickly. Chapter 12 will be devoted to the
discussion of such schemes.

PROBLEMS

1. For the solution of the Cauchy problem

3u du
By, 0,  -w<x<=, 0T,

u(x) 0)=1P(x), - x £ o,

use the net xm = ph, t = nT, h =17, and construct a difference scheme of
n
the form
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o, ntl 1 ntl n n _.n
+ + a + =
atuy Hatu, tage tau, =

(h) _

0 -
u Y(mh) .

How must one define a”, al, a and ¢m g0 as to achieve order hZ2

0* %1
approximation?

2. For the Cauchy problem

du du ]
a_t'-(a—,('+a_;]=¢(x:}’:t>’ -2 < x,y <@, 0<e<rT,
u(x,y,0) = ¥(x,y), -2 x,y<®
use the net xm = mh, yn = nT, tp = pT, and construct any approximating

difference scheme.
3, For the heat conduction problem

2
%‘-:a—‘i, el x<®, 0<t<T,
ax2
(25)
u(x, 0) = ¥W(x), ~o { x @
consider the difference scheme
un+1 - un un+1 - 2un+1 + un+1 un - 2un + un
m m m-1 m g m-1 m ol
=0 + (1 - 9q)
T h2 W2 :
0 _
u, Y(mh),

where 0 1s a parameter and un the value of the desired function at the
point (xm = mh, tn = nT) of ?he net.

a. Show that, for any o, the differential equation is approximated on
a smooth solution u(x, t) to order O(T + h2).

b. Choose a 0 such that approximation will be of order 0(12 + h?).

c. Taking the step sizes to be connected by the relation t/hZ s =
const, choose 0 gso as to get an approximation of order nt.

d. For o = 0 choose the number r = T/h? so that approximation will be
of order h*.

e. Is it possible, through the choice of o for given r = T/hz, to
achieve approximation, on any smooth solution, of order higher than fourth?

4. TFor the heat-conduction problem

du 3 9
5e = 5z latx, ©) 52, medxde, 0<CtLT,
U(X, 0) = ‘P(X), - o< x< @,

using the net xm = mh, tn = nT, construct an approximating difference
scheme.
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5. For the nonlinear heat-conduction problem

du ] du

—aT=3—x[a(u)a—x], ~e<{x<®, 0<t<T,

u(x,0) = ¥(x), - o x <o
using the net X = mh, tn = nT, counstruct an explicit approximating dif-
ference scheme. Write out equations for the computation of u by this

scheme.
6. Prove that, for a bounded net function uP = {up}, there exists a
unique bounded net function up+1 = {ug+ } defined by the difference scheme

ptl p ptl ptl
u -u
m m m+1 m-1 _ - 1
T - o =0, m=0, +1, ...

7. Prove that the predic{or-corrector scheme for problem (25), in
which the solution-values {;Z+ } at the intermediate level are given by
the implicit scheme with order of approximation 0(T + h?)

~p+l/2 _ P ~ptl/2 _ ~ptl/2 ~pt+l/2
Un ! 2"‘m + Un-1

=0, m=0, +1, ...,
T/Z h2

and the solution {ug+1} 15 defined by the scheme

up+1 . :p+1/2 - 2:p+1/2 + ;p+1/2
m m _ _mtl m m-1

T

” =0, u31=‘l)(xm], m =0, +l, ...
h

has approximation of order O(T2 + hz) on a smooth solution u.

§23. Exzamples of the formulation of boundary conditions
in the construction of difference schemes

The examples of §22 were so selected that questions relating to the
construction of difference boundary conditions did not arise. These could
easily be obtained from the differential boundary conditions and formulated
in such a way that, upon substitution of [u]h, they would be satisfied
exactly. Here we consider examples which, as regards boundary conditionms,
are more complicated.

Example 1. 1In the construction of a difference scheme for the problem

- u, - ouy é(x, t), =
u(x, 0) = ¥(x)

we will use the difference equation
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n+l un-1 un un
u - -
m m m+1 m=-1
2T = 7h = ¢(mhp nT)r (2)
n=1, 2, ...} m=0, +1, ...; T = rh.

To calculate the solution of Eq. (2) we must fix not only ug,
ug = Y(wh), m=0, +l, ..., (3)

but also u;, m =0, +1, ... Then from difference equation (2) for n =1,
2, ..., one can, next, compute uz, m =0, +1, ..., then u;, m =0, +1,

«ee, etc. The value assigned to u:l

must be close to
u(mh, 7) = u(ah, 0) + Tu (mh, 0) + o(1?).
Since o, =u + Au, Au = u -u = d(x, t), ulx, 0) = P(x),

u(mh, ) = u(mh, 0) + T[ux + Au]x + 0(12) =

=mh,
t=0
= Y(mh) + 1| ¢*(mh) + $(mh, 0)] + 0(12).

Thus, discarding the term O(Tz) we may write
ul = Y(mh) + t[¥"(ah) + #(zh, 0)]. (4)

Clearly the difference scheme

un+1 _ un-1 " _ un
m - m _ m+12h m-1 = 6(amh, n1),
(h) _
Lyu =¢ W = y(ah), (5)
m
ul = y(ah) + 7|97 (@n) + ¢(an, 0)]

approximates the differential boundary-value problem (1) to order h2. The
complication in this scheme consists in the fact that difference equation
(2) is second-order in t, while the differential equation is first-order.
For this reason it was necessary to construct a second difference boundary
condition (4), not arising directly from the given boundary condition for
the differential problem.

Let us now consider another example in which the construction of
difference boundary conditions is not trivial.
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Example 2. Consider the differential boundary-value problem

u - u = ¢(x, t), 0<x<1, 0<Ct<T,
Lu = { uw(0,x) = wo(x), 0<Cx<1, (6)
a(t, 1) =‘P1(t), 0<t<T.

Any solution of the differential equation of problem (6) is uniquely
defined if we know its values at one point on each of the lines x + t =
const. In fact along such a line

Y% +u ——=u_ - u = $(x, t),
go that u{x, t) is the integral, along the line
X + t = const
of $(x, t). The value of the integration constant is determined by the
value of u at the given point.
In Fig. 15 we depict the rec-

! tangle, 0 { x <1, 0<t<£T, in
which we intend to look for the so-

G/

lution, and show two lines of the
family of parallel lines x + t =
const. Each line of this family in-

L+ =Const

tersects, at a single point, either
the segment 0 £ x {1 of the x-axis,
or the segment 0 { t { T of the line
x = 1, where u(x, t) is given. Thus

> 7
J (4 0)

Fig. 15 We now proceed to the construc-

problem (6) has a unique solution.

tion of a difference scheme for the
computation of the solution of problem (6). Suppose h is given such that
Mh = 1, and assume that T = rh, where M is a positive integer and r =
const. As a net, D _, we use the set of points (mh, nT), m =0, 1, ..., M;
n=0,1, ..., [T/T]. With each point of Dh not lying on the upper
boundary or the sides of the rectangle, we assoclate an equation

ntl _ n n _.n n -2 n, "
Um Y _ Ul Ym-1 _I Yl U Yn~1 - ¢n )
T 2h 2 2 o’
h
where

n rh
= — + . 8
¢m LeGx, © + 2 [¢t ¢x)Jx=mh, 8

t=nT
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The derivation of this equation was described in detail in §22.
The values ug and u; will be given by the equations

ur‘l’1 = ¥, (mh), m=0,1, «u., M-1,

n i 9
Uy < wl(nT), n=0,1, ..., N, N = [T/7],

which are analogous to the boundary conditions of the given differential
problem. But Egs. (9) do not suffice to determine the solution u; every-
where on D . The value of ug+ , at the left hand boundary of the rec-

tangle, is still undefined. For this reason we supplement the difference
boundary conditions as follows:

o "1~ Y%
T - n = ¢(0, nT), n=0,1, ..., N-1. (10)

This conditions results if we substitute for the derivatives 1in the
equation

du(0, t) du(x, t)
3; - a; = 9(0, t),
which follows from Eq. (6), appropriate difference relatioms.
Thus we have constructed the difference scheme L u(h) = f(h):

n

( n+l n n n
u
m-1

n
n o el 2um +u

L u(h) = <

un+1 - dt Q0 - un
0 o Y1 " Y% ~
L - - = n=0,1, «o., N-1,
r
rh
Lo +5 (o + 0 )y
t=at
(h) Wo(mh)’ m=0,1, ..., M-1,
f =
ﬁ ¥, (7)), n=0,1, ..., N,

L $¢0, n7), n=20,1, ..., N-1.
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Let us now determine the order of approximation of this scheme.
Taking account of the considerations of §22 it 1s clear that the residual
§f h), which develops when Su]h is substituted into the difference
scheme Lh[u]h = f(h + §f , assuming a sufficiently smooth solution
u(x, t), has the form

"Omn(hz) =0(h?), m=1,2, ..., M-1; n=0, 1, ..., N-1,

0, m=0,1, ..., M-1,
se(M) sﬁ 0, n=0,1, ..., N,
~u (0, nt+E1)+2y (£h, nt), n=0,1 N-1
2 et 1 2 Txxt20! ’ R ’
. 0<E <1, 0<E <1
(h)
If we introduce a norm in Fh, assuming that for any element g in Fh
(&
Am’
a
(h) 4 ’
& b n
b,
n
C
.

||g(h)||Fh = max lA;l + maxlaml + max|b"| + maxlcnl,
m,n m n n

then ||6f(h)||F = 0(h), and approximation turns out to be only of first

order in h. Frgm the expression for Gf(h) it 1s clear that the approx-
imation is first-order because of the residual (T/Z)utt + (h/2)uxx = 0(h),
resulting from the substitution of [u], into the auxiliary boundary condi-
tion which we have artificially constructed, and imposed at the left-hand
boundary.

The magnitude of the remainder term, in the norm || « IIF which we
are now using, 1s determined only by the second derivatives of'the solu-
tion; i.e. this norm does not allow us, in studying the boundary condi-
tions, to take advantage of the same degree of smoothness which we had to
assume In the solution to get second-order approximation at interior
points.

We now introduce a norm || ||F for which the above difference
scheme has second order approximationhon a sufficiently smooth solution
u(x, t):
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(h) a ntl _ n
MNeg" "Il =hmax lc’| + h max < - L S
h n n
N 1/2 bn+1 - p?
+ <h Y la |2> + max |b"] + max + max A" .
m T m
n=0 n n m,n

For this scheme, as 1is easily seen,
Iléf(h)IIF < A(rh? +12), r = 1/h.
h
Further the constant A depends on derivatives up to and including the

third.
Smoothness 1s accounted for, in this norm, via the terms

The reader has probably noticed that some of the terms in the formula
defining the new norm in Fh differ from the corresponding terms in the old
norm through the presence of a factor h. It is clear that if one
arbitrarily multiplies terms by h, and by various powers of h, then one can
achieve any desired order of approximation. But in §13 we have already
discussed the question of the choice of norms in comnection with ordinary
differential equations and we know that only those norms are useful in
which the difference scheme simultaneously approximates the differential
boundary-value problem, and is stable.

The stability of the above scheme, using norms in which it has second-
order approximation, will be proven in §42.

Example 2 is very instructive. It shows that, to verify approximation
in any reasonable sense, one must choose a norm correctly. In studying
different possible schemes it is necessary to test many norms. In each
norm one must try to carry out a study of stability which by itself, at
least at present, often requires imventiveness and labor.

In practice in most cases, instead of studying the real problem which
concerns us, one investigates a simplified, so-called “model” problem,
after which one carries out test calculations using the proposed difference
scheme for the original, unsimplified problem.

PROBLEMS
1. For the Cauchy problem
2 2
Fu 8L pix,), cwCx <, 0<t<T,
at?  ax?

u(X, 0) = 4’1(}(). =»®x< ®,
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M=w2(x)’ —°°<X<°°,

at

study the order of approximation, on a sufficiently smooth solution
u(x, t), of the difference scheme

~
u;+l - ZUE + u;—l u;+l - ZU; + u;_l
- = ¢(mh, nt),
T2 h?
(h) _ 0 -
Lhu = u wl(mh),
ul = 40
m m
L T - (wZ)m.

if [¢2)m = ¥,(mh). Take, as the norm (lf(h)[‘F , the maximum of the moduli
h

of all components of the element

(h) _

Show that the approximation is first-order in h; T = rh, r = const.
How must one assign the value of [wz)m, using the given functions

o(x, t), wl(x) and ¢2(x), so that approximation will be second-order?
2. For the heat—conduction problem on a line-interval,

u 32y

30 - o = ¢, 1), 0<x <1, 0<t<T,
t 2
Ix
u(x, 0) = ¢0(x), 0<x<1,
éﬂi%;_&l =¥, 0<t<T,

u(l, t) = Wz(t)

consider the difference scheme
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ntl _ n n - g™ 4+ A
“m “n Ym-l Ya T YmHl _
= - = ¢(mh, nT),
h2
m=1l, 2, ..., M-1} n=0,1, ..., [T/T]-1,
ug = ¥y (mh), m=0, 1, ..., M, >
ot -
1 0
—-h_—=(w]_]n’ n=1) 21 T [T/T])
uy = ¥,(n7), n=1, 2, ..., [T/T].
As the norm || IIF , take the maximum of the absolute values of the

right-hand sides of all eguations which, collectively, make up the given
difference scheme. Assume that the step-sizes, T and h, are connected by
the relation T = rhz, r = const. Show that, setting (wl)n = wl(nh), we get
a scheme with first-order approximation on a smooth solution. What sort of

expression must one use to define (wl)n in order to get an approximation of
second order?

§24. The Courant-Friedrichs-Levy condition,
necessary for convergence

In §21 we proved that the difference scheme

un+1_ n n n
m Um _ Ymrl T Yn -0
T h T
16D)
ul = y(mh),
m
approximating the Cauchy problem
du du _
Tl el 0, 0<t<T,
(2)

u(x, 0) = y(x),

cannot be convergent for an arbitrary function ¥(x) if T/h > 1 (see Fig. 9
on p. 193). 1In the course of the proof we used a principle, general in
character and first formulated, in connection with another example, by
Courant, Friedrichs and Levy. This principle is often useful in the con-
struction and study of difference schemes. It may be stated as in the fol-
lowing section.

1. The Courant-Friedrichs-Levy condition. Suppose that the formula-
tion of a differential problem involves some function, ¥ (see (2), for
example). Choose an arbitrary point, P, belonging to the domain of defini-
tion of the solution u. Suppose that the value of the solution u(P) de-
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pends on values of the function ¢ at the points of some set, G, = G (P),
belonging to the domain of definition of ¢, i.e. a change in the value of ¥
in a small neighborhood of any point Q of G (P) can evoke a change in the
value of the solution of u(P). Suppose further that, for the computation
of the solution u, one uses ahdifference scheme, Lhﬁt = f , such that
the value of the solution, u , at the net-point closest to P, is com-—
pletely determined by values of the function ¥ on some set G(hS = G(h)(P).
In order that it be convergent, so that u™ >y oas n 0, the differ-
ence scheme must be so constructed that, as h * 0, an arbitrary neighbor-
hood of any point of Gw(P) must, for sufficiently small h, contain a point

of the set G(h) = G(h)(P).

Let us explain why, if the Courant-Friedrichs-Levy condition is not
satisfied, one cannot expect convergence. Suppose the condition 1s vio-
lated so that, in some fixed neighborhood of a point Q of G, (P), for
(h) = G(h)(P). If

convergence u + u does occur (accidentally!) for the given functiom YV,

all sufficiently small h, there is no point of the set G

then we change V¥ in the indicated neighborhood of point Q in such a way as
to change u(P), leaving ¥ unchanged outside this neighborhood. Convergence

u + u for the new function ¥ is impossible: the value u(P) has changed,
while u(h) at the net-point closest to P has, for small h, remalined un-
chﬁnged, since there has been no change in ¥ at points of the net Gih) =

G P).

v (P)

The Courant-Friedrichs-Levy condition can easily be put into the form
of a theorem, and the above arguments converted into a proof, but we shall
not do this.

Next we consider several examples where the above considerations per-
mit us to prove the divergence and unsuitability of a proposed difference
scheme, and to feel our way to a stable and convergent difference scheme.
0f course proof of convergence must be carried out separately, since ful-
fillment of the Courant-Friedrichs-Levy condition is only necessary, and
not sufficient, for convergence. We note further that, given approxi-
mation, the Courant-Friedrichs—Levy condition is also necessary for sta-
bility, since approximation and stability imply convergence.

2. Examples of difference schemes for the Cauchy problem. We now use
the Courant—Friedrichs-Levy coundition for the analysis of several dif-
ference schemes approximating the Cauchy problem

du 3u
3t a(t) - ¢O(x, t), - o x < o, 0<t<t,

(3
u(x, 0) = ¢1(x), -® < x ™

where ¢0(x, t) and ¢1(x) are given “input data" for problem (3), and

a(t)‘E -1 - 2t.
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T
A=, 4)

Fig. 16

The solution of problem (3) at any point, (x_, tp), depends on the
values of the functions ¢O(x, t) and wl(x) at all points transversed by
by the characteristic segment which, emerging from some point, A, of the x
axis, ends at point P.

* % X k & %

In fact the characteristics, here, are the integral curves of the
differential equation

dx
o -2t

i.e. the parabolas x = -t2 - ¢t + C. Along each characteristic

du du du dx du du
dt =3¢ T ax dt - 3r T alt) 3 = ¥t o).

Therefore the value of the solution u(x , L ), at some point
P = (xp, tp), is given by the expression

t

» 1 0 ’ 1 0 ,» L .
ulx t = ‘P A ‘P x(t tfd ‘J} ‘V

where A 1s a point on the x axis, and AQP a segment of the characteristic.

x %k %

In Fig. 16 we show the characteristic x = 2 - t - tz, emerging from
point A = (2, 0), and entering point P = (0, 1). We see that the value
u(p) = u(xp, tp) of the solution of problem (3) depends on the value of the
function wl(x) at point A, so that A =GW (P). Further, u(P) depends on the
values of wo(x, t) on the characteristiclsegment AQP. This segment AQP is,
then, G, (P).

Yo
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Consider the difference scheme

n-+1 n n n
Um Um Um T Um-1
———ee. + ————— T
(h) _ T a(tn) h wO(xm’ tn)
Lu z (4)
uﬁ = wl(xm), m=0, 1, «eey; 1w =0, 1, ..., [1/1]-1,
or
n+l n
U = [l + a(t )r]um - a(tn)ru 1 + Two(x » € ),
(5)
0 =
“m wl(xm)’
where x =mh, t =nt, r = 7/h, a(t) = -1 - 2t. We will show that this

scheme gannot benconvergent for any step-size ratio r, since for any r it
violates the Courant-Friedrichs-Levy condition.

Let us take, as point P, the point (0, 1). The net will be defined so
that NT = 1. The value of the solution u =u (P) at the point
P =(0, 1), i.e. u,, by virtue of difference equation (5), is given in
terms of wO(O, 1-1), and in terms of uf_ , u 1. These two values, in
turn, are deteﬁTénedNEg wo(—h, i - 21) and wO(O, 1-21) and through the
three vilues U_g s U and u , etc. In the final analysis the
value uy can be expressed in terms of the values of the function wo(x, t)
at the net points designated, in Fig. 16, by crosses, and in terms of the
values of UEN = wl(x_N), uEN+l = wl(X—N+l)’ san, ug = wl(xo) of the func-

tion wl(x) at the points X Xigap? o X on the x axis. Thus the
set G(h)(P) consists of the net-points marked with crosses, and the set
h 0
G( ) of the points X_ys X_ygpe to0s Xg on the x axis (and it will be noted

v 0
thét these sets have points on the x axis in common). Obviously any point
Q of the set G, (P) has a neighborhood which does not contain a point of the
set GW (P), no matter how small we take h. The difference scheme (4) does
not sagisfy the Courant-Friedrichs-Levy condition, necessary for
convergence.
We consider now, for problem (3), the difference scheme (Fig. 17)

n+l n n n
Um T Yn + ( ) Ymtl " Yn _ ( )
(h) _ T alty h = Vol¥pe Ey)o
L u = (6)
W=y (x), m=0,+, «eo5 n =0, 1, ..., l/1-1,
m 1" m -
or
n+l _ n o_ n
um - [l + a(t )I'Jl.lm a(tn)rum+l + T“po(x ’ tn)!
N
0 =
“n wl(xm)’

where r = T/h.
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vA
J A Bt4:d)
Fig. 17.

The step-size T will be chosen to satisfy the condition NT = 1, with N
a positive integer, so that the point P = (0, 1) will belong to the net.
The value of the solution u(h) at this point, i.e. uO,N{s expre;ifd through
Eq. (7) in terms of Y(0, 1-1), and of the two values u and u . These two
values, in turn, through (7), are expressed in terms of wO(O, 1-271),
wo(h, 1-2t), and of the three values uN-Z’ uT-z, u2-2, Finally u can be
expressed in terms of the values of wofxm, tn] at net points indicated 1in
Fig. 17 by crosses, and of the values ug = wl(O), ug = wl(xll, ...S

0 = L] .
Uy wl(xN] at the points Xys X;» s Xy of the x axls. Thus G o (P),
in this case, is the set of points marked by crosses, while Gih)(P) 1s the

set of points x_., Xys e+, X On the axis. Clearly, if r = T/% > 1/2
(which is not the case depicted in the figure) the point B = (1/x, 0) lies
to the left of the point A = G (P). Therefore there exists a neighborhood
of point A in which, as h + 0, there are no points of GW (P). The

Courant-Friedrichs-Levy condition is violated, and one cénnot expect
convergence.

So that 1t will be possible for scheme (6) to be convergent it is
necessary that r 5_1/2. But this is not enough. Suppose that r < 1/2, but
that some point Q on the characteristic AQP lies above the line BP, as in
Fig. 17. Then, again, one cannot expect convergence. The value of the
function wo(x, t) at the polnt Q exerts an influence on the value u(0, 1)
of the solution of the differential problem, i.e. Q belongs to the set

G¢ (P). But the value wo(x, t) at point Q (like the values wo(x,t) on the

whgle segment QP of the characteristic) does not affect the value u(h)(P)
of the solution of the difference equation at the point P: there exists a
n?ﬁ§hborhood of point Q into which, as h *+ 0, no points of the set

Gwo (P) will fall. The Courant-Friedrichs-Levy condition is not satisfied.

If r has been taken so small that the triangle OPB contains, not only
the point A = (2, 0), but also the whole characteristic AQP, then it is
already possible to prove the stability (and convergence) of difference
scheme (6). To choose r in this way we note (since the differential equa-
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tion of the characteristic is dx/dt = a(t)) that -1/a(t) = tan 8, where 9
is the angle between the x axis and the tangent to the characteristic. It
is easy to see that the characteristic AQP will lie in the triangle BOP if

1

1 h
r< max Ia(t)‘ =3 TS—S_’ (8

0<t<1

and then the Courant-Friedrichs-Levy condition will be fulfilled.

Let us show that, under condition (8), difference scheme (6) which
approximates Cauchy problem (3) is stable and, consequently, converges.
For this purpose we define norms by means of the equations

llu(h)lluh - max

n
u
m

h
Hf( )I ,F = max I'JJO(xm, tn)l + maxlwl(xm)
h m,n n

Noting that, from condition (8)

2t + 1

L+a(e Jr>1 - 1

2 —s 20, 0Lt <1,

we get from (7)

o+l 2tn + 1 Ztn + 1 n
u <11 - 3 r + 3 r|max |u | + T maxHJO[xm, tn)]
m m,n
< max ui + T max H’O[xm’ tn)l <
m m,n
< max uz_l + 2T max H}O(xm, tn)| <
m m,n
< max ug1 + (n + 1)1 max Iwo(xm, tn)l <
m m,n
(h)
Cmax [y )] o+ 1o max v £ )] = 11
m m,n h
Since the final equation
n+lj (h)
| ey
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is valid for any m = 0, #1, ... and any n, (n+1)7 < 1,
(h) (h)
ey < e
Uh Fh’

and the stability of scheme (6) under condition (8) has been proven. The
bound (8) on the step-size T for given h, T < 1/3 h, can be weakened
without violating the Courant-Friedrichs-Levy condition if one takes T to

¢

7y

— kg
o~ %

PO, 1)

g
0: —- — ) = . z
Fig. 18. A=B=(5, Y)
be variable, t =t + 1, and chooses it, in the transition from t to
n+l a n n

tn+l’ taking into account the slope of the characteristic close to the
point t = tn, i.e. chooses it from the condition

" 1 1

r = E—-s Besl =TT n=20,1, ... M
n n
Thus modified, scheme (6) takes the form
n+l n n n
Um " Un Y+l " Ym
o )
Lhu = (10)
0 -
um lPl(xm]
or
e ale )r Ju® = ale Je o™ 4T (x, )
m n m n’ n mtl n'0"m’ "n’?
(11)
ul =y (x ).

The limitation on the step-size, T , imposed by Eq. (9) is less severe
than that which is required when using scheme (6) with constant step-size.
For small n one uses the step-size Tn = h, and only when u pproaches t =
1 is it necessary to take T = h/3 (see Fig. 18). The proof of stability
of scheme (10) under condition (9) differs only insignificantly from the
proof of stability of (6) under condition (8); us}ng the inequality
1+ a(tn)rn > 0 we get from (11)



§24 Courant-Friedrichs-Levy Condition 235

ntl n
Ium l £ max fu | + 7T max I¢O(xm, tn)l <
m m,n
< , n-l’ + (= + 1 Jmax |9 (x, £ )] <
- m n-1 n 0""'m> n’ -
m,n
U (h)
< max up e, max l¢0(xm’ thI < s ||F .
m m,n h

Tt follows that

He®™rr, < ne®™ug,
h h
signifying stability.
3. Examples of difference schemes for the Dirichlet problem. Let us
now use the Courant-Friedrichs-Levy condition for the analysis of two dif-

yl
o, 1)
4 e o @ 11' I ’ 4//77*/,2)
b .‘D e o 4 £) ﬂﬂ,/)
0 q; ﬂ&éd‘ i c;ﬂ,ﬂ

Fig. 19.

ference schemes approximating the following Dirichlet problem for the

Polsson equation:

2 2

3_u+u=¢(x’ ¥)s O_Sx, y<1,

3x2 3y? (12)
ulp = ¥(x, y), (x, y) in T,

in the square region D = (0 < x, y < 1), with boundary I'. We construct the
net x = mh, yn = nh, where h = 1/M with M an integer (Fig. 19,a). To the
net D, we assign those points, (xm, yn), which fall inside the square D, or
on 1ts boundary. Conslder the following difference scheme, approximating
problem (12):
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rum+1,n - 2umn M um-liy . ggln+1 ~ 2umn + um,n-l
h? h?
Lhu(h) =¢ = ¢(mh, nh), 1if (mh, nh) is in D,  (L3)
UL " Y(mh, nh), if (mh, nh) is in T.
\

Scheme (13) is obtained by replacing the derivatives L. and u_ by dif-
ference relations, and there can be no doubt about approximation. We will
prove its stability in §34 and discuss methods for computing its solution
u in §§35-37. But we point out that computation of this solution is not
a trivial matter, since the system of equations L u = f(h) which deter-
mines the values of the net-function, u h , 1s rather complicated when h is
small. This very complexity leads one to consider whether it is possible
to construct a scheme such that the numerical solution process will be
simple. At first glance it appears that one can use the scheme

- + -
(um-l,n 2umn um+1,n + um,n+1 2umn + um,n-l = $(mh, nh)
hz h2 1 »
m=1, 2, ..., M-1; n=1, 2, ..., M~2,
u -2u ., +u u, =-2u.+u
L u(h) - < m-1,2 m2 mtl, 2 . m2 ml m0 _ ¢(mh, h), (14)
h h2 h2

m=1, 2, ..., M-1,

= Y(mh, nh), (x, y) in T.

L Ymn
Obviously this scheme does approximate the differential problem, since it
is obtained by replacing derivatives with difference relations and the
boundary conditions are represented exactly. Each equation of the first
group connects the values of the solution at the five net-~points shown in
Fig. 19,b. The second group of equations, for fixed m, connects the
solution-values at the five net-points shown in Fig. 19,c.

Consider the set of equations of the first group corresponding to a
fixed n, in fact to n = 1, together with the whole second group of equa-
tions. The resulting system of equations connects the quantities U v

m2
and umo, while u and u are given by the boundary condi-

0’ Y01’ Y02 “m M2

tions. This system can be solved for u andu ,, m=1, 2, «.., M-1.

Then we use the difference equation from the first group for n = 2, and de-
termine u g via the explicit formula obtained by solving this equation for
the only unknown quantity which it contains, i.e. u .. Proceeding level by

level from un to u bl we compute, via the equations of the first group,
(hy .’

the solution u at all interior points of the net. Of course the values
at boundary points are known from the start.
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However thils, at first glance seemingly convenient, scheme is com-
pletely unuseable. We know that the solution of the Dirichlet problem for
the Laplace equation depends, at each point, on the values w(x,y)lr every-
where on the boundary. 1In contrast, in the computational scheme we have
constructed the computation of the solution u h at all internal points
proceeds without using the values ¥(x,y) on the upper surface of the
square. This difference scheme cannot be convergent. The complexities of
scheme (13) are essential to the problem,

x k k k k X%

In conclusion we stress again that the Courant-Friedrichs-Levy
condition is not a sufficient condition for stability. In §25 we will
show, in particular, that the difference scheme

un+1 un un n
- -u
mtl -1
(n) - T = ¢(mh, nD),
Lu =
h
u? = y(mh)
m

is unstable for any r = T/h = const. This scheme approximates the Cauchy
problem

u T u = ¢(x, t),

u(x, 0) = ¥(x),

for which we have already considered several other schemes. It is easy to
verify that, for r < 1, it also satisfies the necessary condition for
stability.

In order to do this we again consider, for the sake of definiteness,
the point (0, 1) in the x,t plane, assuming that it belongs to the net Dh
for all h, so that NT = 1i where N 1s an integer. The value ug is computed
from the values u?{l, ug- and uT-l. These three values are then computed
from five values at the preceding level t = (N-2)T, etc. Ultimately ug is
computed, then, in terms of the values u’ = Y(mh), o = -N, -N+l, ..., -1,
0, 1, ..., N, on the net points which belong to the interval -1/r < x { 1/r
of the x axis. If r = t/h < 1, then this interval contains the point x =1
where the solution value 1s defined by u(0,1), u(0, 1) = ¥(1). Thus for r

< 1 the Courant-Friedrichs-Levy condition is satisfied.
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PROBLEMS

l. The solution of the heat-conduction problem ut =u ,
XX
- {x <o, t >0 has the form

_ (x=£)2

4t

u(x, t) = u(t, 0) e dE.

IH
8 —

3
Al

Does there exist a convergent difference scheme approximating this problem,

and having the form

Ny p P P p P
Y (agupey + @jup ) + qup + @pupy + ayup),
(where the ai are constants) if T = h?

2. The system of acoustic equations

v aw
3¢ T - O
£>0, =~wo<x<=,
w oy
at ax O ?

V(X; 0) = ¢'(X)) W(X, 0) = ‘1’(1()

has a solution of the form

v(x, t) = plx - t) + v(x - t) ; $lx +t) - ¥(x +t) i

wix, t) = o({x - t) + ¢(x - t) ; d(x + t) + y(x + t).

Can there be a convergent difference scheme of the form

<
+1
T
- + = =0, p>0, m=0,+l, ...,
+1
Wy vPoo- WP
m m mtl n_ g
T h a
0 = 0 - ?
Vin ¢[xm)’ ¥ w(xm]' J

Compare the domain of influence of starting values for the difference and
differential problems.
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3. The Cauchy problem

has the solution

i
a(x, t) = e ateiax

The corresponding difference scheme

up+1 - u uP - up
m m mt1 m _ =0, 1
T - h =0, P = Uy 1y ooy
W alo,

has the solution

iah]p 1ahm
e

uP = [1 -r+ re
u!

which, for p = t/7, m = x/h, tends to the solution of the differential
problem as h + 0, whatever the preassigned, fixed, value of r = T/h.
Nevertheless for r > 1 the difference scheme does not satisfy the Courant-
Friedrichs-Levy condition. Explain this apparent paradox.
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Chapter 8
Some Basic Methods for the Study of Stability

§25. Spectral analysis of the Cauchy difference problem

Here we develop the Von Neumann method, useful in a wide range of
circumstances for the study of difference problems with initial condi-
tions. In this section we limit our discussion to the case of the Cauchy
difference problem with constant coefficients, and in §26 we partially
extend our results to the case of variable coefficients.

1. Stability with respect to starting values. As the simplest
example of a Cauchy difference scheme we take the problem, often considered

above,
ug+1 3 ug ug+1 " “a p
(hy _ T 5 = ‘bm’ p=0,1, ..., [T/T]-1,
Lu (1)
V= =0, +1, ...
u vy, m , +1,
Setting
oP p=0,1, ..., [T/t]-1
m’ » s » ’
L) _
v, m =0, +, ...,

we write problem (1) in the form

(h) (h)

= . 2
Lhu £ (2)
We will define the norms ||u(h)||U and llf(h)llF via the equations
h h
Ilu(h)llU = max max Iup‘ . ||f(h)|| = max {¥_| + max ¢p| .
m F m m
h p m h m m,p

The stability condition for problem (2)

(h) (h)
Hu lth_<_ c £ ”Fh (3
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then takes the form

¢§‘]) p=0,1, ..., [T/7], (4)

max up’ < c[max 1¢_| + max
m| — m

m m m,k

where ¢ does not depend on h (nor on T = rh, r = const). Condition (4)

must be satisfled for arbitrary {wm} and {¢§}. In particular, for

stability it is necessary that it be fulfilled for arbitrary {wm}and

¢$ z 0, 1.e. that the solution of the problem

optt b up -
T - h =0, p=0,1, ..., [T/7]-1,
(5)
u; = Wm’ m=0, +1, ...,

satisfy the condition

max |uP £ ¢ max 'ug’, p=0,1, ..., [T/T], (6)

m m
for any arbitrary, bounded, function u! = Vo

Property (6), necessary for the stabil?ty (4) of problem (1), 1is
called gtability of problem (1) with respect to perturbatione in starting
values. 1t indicates that a perturbation in {uo}, the starting values of
problem (1), induces a perturbation in {ug}, the solution of problem (1)
which, by virtue of (6), 1s no greater than c times greater than the
perturbation in starting values, where ¢ does not depend on h.

2. Necessary spectral condition for stability. For the stability of
problem (1) with respect to starting data it is necessary that condition
(6) be fulfilled, in particular, when {ug} is any harmonic

ug =e m=0, +l, ..., 7)

where @ is a real parameter. But the solution of problem (5) for initial
conditions (7) has the form

oP - aPelem (8)

where X = A(a) 1s determined by substituting expression (8) into the homo-
geneous difference equation of problem (5):

A(a) =1 - + reia, r = % = const. (9)
For the solution (8) we may write
max ’u$| = |A(a))? max ub].

m m
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Therefore, 1if condition (6) is to be satisfied, it is necessary that, for
all real a, we have

@i?<e, p=0,1, ..., [T/1],
or
X)) <1+ c T (10)

where c1 is some constant not depending on @ or T. Precisely this 1s the
necessary spectral condition of Von Neumann as applied to the example under
consideration. It is called a "spectral” condition for the following rea-
son. The existence of a solution of the form (8) shows that the harmonic
{eiam} is a proper function of the transition operator
1

u§+ = (1 - r)ug + ru§+1,
which, according to difference equation (5), maps the net function {up},
m =0, +1, ..., defined on level t = pT of the net, into the functiog
{ug+1}, m=0, +1, ..., defined onpthe level t o (p + 1)T. The number
A(a) =1 ~r + re is the eigenvalue of the transition operator corres-
ponding to the harmonic {eiam}‘ The curve described 1in the complex plane
by the point, A(a), when a traverses the real axis, consists entirely of
eigenvalues, and 1s the spectrum of the tramsition operator.

Thus the necessary condition for the stability of (10) can be stated
as follows: the spectrum of the transition operator corresponding to dif-
ference problem (5) must lie in a circle of radius 1 + clT in the complex
plane. 1In our example the spectrum of (9) does not depend on T. For this
reason condition (10) is equivalent to the requirement that the spectrum,
A(a), lie inside the unit circle

(@) < 1. (11)

Let us now use the above-formulated criterion to analyze the stability
of problem (1). The spectrum (9) constitutes a circle, with center at the
point 1 - r and radius r, in the
complex plane. 1In the case r <1

A

this region lies 1nside the unit 4
circle (and is tangent to 1t at the \
point A = 1); for r = 1 it coincides
with the unit circle, and for r > 1
lies outside the unit circle

(Fig. 20). Correspondingly the
necessary condition for stability Fig 20.
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(11) is fulfilled for r { 1, and not fulfilled when r > 1. In 3§21 we
studied this same difference scheme and showed that, for r { 1, it is
stable, and 1is unstable for r > 1. Thus the necessary Von Neumann
stability condition turns out to be sensitive enough, 1n this particular
case, 80 as to separate precisely the region of stability from the region
of instability.

In the case of the general Cauchy problem for difference equations,
or systems of difference equations, the necessary Von Neumann condition
for stability consists in that the spectrum A = A(a, h) of the difference
problem, for all sufficiently small h, must lie in the circle

<1 +e (12)

of the complex plane no matter how small the previously-specified positive
€.

Note that 1if, for the given difference problem the spectrum turns out
not to depend on h (or on T), then condition (12) is equivalent to the
requirement that the spectrum, A = A(a, h) = A(a), must lie in the unit
circle

Al < 1. 2%)

By the "spectrum” of the difference problem, referred to in (12), 1is
meant the totality of all A = A(a, h) for which the corresponding
homogeneous difference equation (or system of equations) has a solution of
the form

ug = [A(a, hy]Plutel®®], m=0, +, ..., (13)

where u® is a number (unity) 1if we are dealing with a scalar difference
equation, and is a vector if the equation In question is a vector
difference equation, 1.e. a system of scalar difference equations.

If the necessary Von Neumann condition (12) is not satisfied then one
cannot expect stability for any reasonable choice of norms, and if it is
satisfled one may hope to achleve stability for some reasonably defined
norms. A similar point regarding the indifference of the spectral
stability criterion to the choice of norms has already been discussed, in
connection with difference schemes for ordinary differential equations, in
§15.

3. Examples. We will now consider a series of interesting Cauchy
difference problems, and will use the Von Neumann spectral criterion to
analyze stability. We start with difference schemes approximating the
Cauchy differential problem
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3 9
oM, -e<xde, 0<elT,

(14)
u(x, 0) = ¥(x), - o x =™,

Example 1. Consider the difference scheme

E z .= m-1 = ¢(w » € )r p=0,1, ..., [T/T]—li
“31:‘4’("]’ m=0, +l, ...

Substituting an expression of form (8) into the corresponding homogeneous
equation we get, after some simple manipulations

_i(y.
AMa) =1+ r - re .

It follows that the spectrum constitutes the perimeter of a circle,
centered at the point 1 + r, with radius r (Fig.
21). There 1s no r for which the spectrum lies
in the unit circle. Stability criterion (127)
is never satisfied.
In §24 1t has already been established
that, for any r, the Courant-Friedrichs-Levy
necessary condition for convergence (and sta- Fig. 21.
bility) 1s violated.
Example 2. Consider the following difference scheme

p+l P P P
u -u u -u
m m _ atl m-l T P _ P P -
T 2h 212 (um-l 2um + um+1J d>(xm’ tp)'
(15)
0 =
u v,

approximating problem (14) to second order in h (§22). For this scheme
A = A(a) is determined by the equation

ia -1a
A - - T -
1 _e 2he _ ___.(eia S92+ e 1a) - 0.
2n2
As before, let r = T/h. Noting that
ia _ -ia
e Zie = sin @,
- 1a/2 -1a/2\2
eia “2 4 e ia R af - ta/ ) , a
7 = - 51 =-sin® 7,
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we get
A=1+1r sin o - 2r? gin? %-, (16)
2 ay?
A2 = (1 - 2r?sin? EJ + r?sinfa.
After some simple manipulation
1 - |A12 = 4r2gin® ; (1 - £2). (17)

The Von Neumann condition is satisfied 1f the right-hand side 1is non-
negative, r < 1, and is not satisfied for r > 1.
Example 3. Consider the following difference scheme

ptl _ P P _.P
Yo Ym _ “ntl " Ym-1 _ ¢[x ¢ )
- ’ ’
Lhu(h) - T 2h m P (18)
0 -
Y q)(xm)

for the same Cauchy problem (14).
Substituting expression (8) into Eq. (18), after some simplification
we get an equation for A:

A -1 ) eia _ e-ia -
A 1*ir T 2h
or
/-ir Ma) =1 + 1(% sin o).
Fig. 22. The spectrum A = A(a) fills a vertical segment of

length 2T/h, passing through the point A = 1 (Fig. 22).
If 7/h = r = const, then condition (12°) is not satisfied; the
spectrum does not lie in the unit circle. If, as h » O, the step-size T
varies like h?, so that T = rh?, then the point A(a) farthest from A = O
represents an eigenvalue of modulus

2
sy = L+ (—}T;) =/l +rir<l+5.

2

The condition [A(a)[ < 1 + ¢T is satisfied, in this case, with ¢ = r/2.

Clearly the requirement T = rh? puts a much more severe condition on
the reduction of the time step-size, T, as h tends to zero, then does the
requirement T = rh, r < 1, which was sufficient to guarantee satisfaction
of the Von Neumann condition for schemes (5) and (15), approximating the
same Cauchy problem (14).

Note that the Courant~Friedrichs=-Levy criterion (as shown at the end
of §24) allows us to ascertain the instability of the scheme under consid-
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eration only for t/h > 1, while for T/h_s_l it is inconclusive, so that it
turns out, here, to be weaker than the Von Neumann criterion.

Next we consider two difference schemes, constructed in §22, approxi-
mating the Cauchy problem for the heat equation

u - a%u = d(x, t), -2l x < », 0<t<T,
XX
(19)
u(x, 0) = ¥(x), ol x K@,

Example 4. The explicit difference scheme

ptl P P P P

u -u u - 2u’ +u

m . m o2 mt1 Z m-l _ $(mh, n1),
(h) h

“121 = ¥(wh), m=0, H, ...; p=0,1, ..., [T/1]-1,

(on substitution of the expression ug = Apeiam into the corresponding
homogeneous difference equation) leads to the relation

A -1 ) e—ia -2+ eia
-a" —— =0,
T h2
Noting that
- 2 - 2
e e 2 + eia - - eia/ - e La/2 = - gin? a
4 21 R
we get
T
A(a) = 1 - 4ra2sin? E, r=—.
2 h2

As o varies the quantity A(a) traverses the
segment 1 - 4ra? < A <1 of the real axis (Fig.
23). For stability it is necessary that the
left end of this segment lie in the unit circle /
so that 1 - 4ra? 2> -1, or

r S——l— . (20) Fig. 23.
2a?

If r > 1/2a%, the point A(a) = 1 - 4ra? sin?(a/2) corresponding to @ = W
lies to the left of the point -1. The harmonic exp(imm) = (-1)® gives rise
to the solution

P = (1 - 4a2r)P-n”,

not satisfying condition (6) for any constant c.
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Example 5. We come now to the second scheme
1 +1 1
ugﬂ' - u:] uﬂl - 2ug + urIr):l
T - a? 5 = ¢(mh, nT),
h
(h) -
= 21
Lhu ur?] = (mh), (21)
m=0, 1, ...; p=0,1, ..., [T/T]-1.

Analogous calculations lead to the expression

A(a) = , r=. (22)
1 + 4ra? sin? 32‘. r?
The spectrum for this problem fills the segment
-1
<A<l

[1 + 4rasin? %] <2<

of the real axis, and the condition |A] < 1 is satisfied for all r.
The Von Neumann spectral criterion may be used for the study of the

Cauchy difference problem also in the case where there are two or more

space varlables.
Example 6. For the problem

3 32 a2
et t >0,
ax? 3y2

u(x, ¥y, t) = ¥(x, y)

we take the net (xm, yn, t ] = (mh, nh, pT]. Replacing derivatives by
difference relations we construct the difference scheme

ptl _ P P - 24P P
f “mn “mn - um+1,n 2umn * um-l.ln _
T 2
h
P P P
-2u +u
h u -
L u( ) - m, nt+l mn m,n-1 _ 0, (23)
h h2
0 =
L U Y(mh, nh).
Taking W = exp[i(am + Bn)], i.e. postulating a solution in the form of a

mn
two~dimensional harmonic depending on the two real parameters @ and B, we

get a solution of the form

uP? = AP(q, B)ei(cnn+f3n)_
mn
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Substituting this expression into the difference equation, after some
simplification and identity-transformations we find that

A(a, B) = 1 - 4r sin? § - 4r sin? 5.

As the real a and B vary the point X = A(a, 8) traverses the segment
1-8<A<1

of the real axis. The stability condition is satisfied if 1 - 8r > -1,
r < 1/4.

Now we present an example illustrating the application of the Von
Neumann criterion to difference equations connecting the values of the
unknown function, not at two, but at three time levels.

Example 7. The Cauchy problem for the wave equation

2 2
u oy, e x<®, 0<t<T,
at2 ax2
] 0
u(x, 0) = ¢l(x)’ _Eggi__l = ¥, 00, -w(x <™,

will be approximated by the differemce scheme

up+1 - 2up + up-1 up - 2up + up
m m m _ _ml m m-1 _ 0
12 h2 ’
p=1, 2, ..., [T/t]-1, (24)
ul - uO
m m
ugl = q)l(xm)’ T = wz(xm], m = 0, i]., “es

Substituting, into the difference equation, a solution of form (8) we get,
after simple transformations, the following equation for determining X:

32 - 2(1 - 226102 SN +1 =0, r=—.
2 h
The product of the roots of this
equation is equal to one. If the
discriminant / /
= 4r2ain2 2102 & _

d(a) 4rfgin‘a (r sin 5 1] a) &)

of the quadratic equation 1s nega- Fig. 24.

tive, then the roots, Xl(a) and
Xz(a), will be complex conjugates,
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and egqual to one in modulus. When r < 1 the discriminant remains negative
for all a. In Fig. 24,a we show the spectrum in this case. It fills part
of the circumference of the unit circle. In the case r=1 the spectrum
fills all of this circumference. For r > 1, as a increases from O to T the
roots Xl(a) and A_(a) move, from the end point A = 1, along the circum-
ference of the unit circle, one in the clockwise and the other in the
counterclockwise direction, until they meet at the point A = -1; then one
of the roots moves along the real axis from the point A = -1 to the left,
the other to the right, since both are real and AIAZ =1 (Fig. 24,b). The
stability condition is satisfied for r < L.

Let us consider the Cauchy problem for the following hyperbolic system
of differential equations, describing the propagation of sound:

v _ o
3t ox °®
) ) -® x < ™ 0<t<T,
w _ 3v
36 = 3% (25)
v(x, 0) =¥, (x), w(x, 0) =9,(x), =-><x<=,
We set
v(x, t) wl(x)
u(x, t) = s ¥(x) =
w(x, t) ¥, (x)
and write (25) in the vector form
Ju du
5 A F i 0, - o x ™ 0<t<T,
(25%)
u(x, 0) = ¥(x), Sedx Cw,
where
_ 40 1
A= (] -
We will study two difference schemes approximating problem (257).
Example 8. Consider the difference scheme
AT S
= - A 5 =0, p=0,1, ..., [T/T]-1,
(26)
u& = ¢(xm), m=20, +1, ...

We seek a solution of the homogeneous vector equation of the form (13):

P Ap(uo 1am) - AP(Z )eiam
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Substituting this equation into difference equation (26) we arrive at the

equation
S SN ei“h- L0 -o,
or
o= D - rel® - DA =0, =-% , (27)

0

which one may regard as a system of linear equations, in vector notation,

for the determination of the components of the vector u
Let us write the system (27) in expanded form:

A -1 -r(eia— 1) v0
= 0. (28)

The system of linear equations (28) has a nontrivial solution, u
(vo, wU]T only for those XA = A(a) for which the determinant of system (28)

vanishes:

O - 1)2 = 2(e1 - 1),

Therefore
M) =1 -+ rel®,
Az(a) =1+r - reiu.

The roots X_(a) and A_(a) move along circles of radius r, centered at the
The Von Neumann stability

points 1 - r and 1 + r, respectively (Fig. 25).

condition is not satisfied for any r.
Consider the difference scheme

Example 9.
+
urp; b utll)l urllJH'l 3 uml?-]. T 2( P P P
= - A A -———2A(um+l-2um+um_1]=0,
2h
p=0,1, ..., [T/T]-1; m=0, +1, ..., (29)

ui = W(Xm], m=0, +1, ...,

approximating problem (25”) to second order, and analogous to scheme (15)
The condition for existence of a nontrivial

for the scalar case (l4).
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golution, in form (13), of vector Eq. (29)

consists (as in example 8) in that the
determinant of the system which fixes
uy = (v0, wO]T must vanish. Setting this

determinant to zero we get a quadratic
equation for A = A(a), from which we find Fig. 25.
that

Al =1+ {ir sin a - 2¢? sinz-% s
(30)
XZ =1 - ir sin a - 2r? sinz-%.

These expressions are analogous to (16), and as in (17) we get

1= 1y (01?2 = 4r? st 51 - ).
»

The spectrum given by Eqs. (30) lies in the unit circle for r { 1.

4. Integral representation of the solution.* Consider the Cauchy
problem of the form

ptl ptl ptl _ 9
L S et
- P P P y o 4P
(a-lum-l + 834 n + alum+1) T¢m’
) (31)
p=20,1, ..., [T/T]-l’
ui =y , m =0, +1, ...,
n J
with constant coefficients, assuming that
bye @ +by+be®r0,  0gagom (32)

Difference schemes (1), (15), (18) and (21) take on this form if both sides
of the difference equations involved in these schemes are multiplied by T.

We note first of all that, for arbitrary bounded net functions {¢p}
and {¢ }, problem (31) has one and only one bounded solution. In factmif
it 1s glready known that [up}, for a given fixed p, exists and 18 bounded,
then Eq. (31) becomes an orginary difference equation of second order

*Results obtained in this section are not used later.
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b_lugti + boug+l + blugii = T¢g + [a_lug_l + aoup + a1u$+1) (33)
for {up+l}' with bounded right-hand side. The corresponding characteristic
equatign b_1 + b.q + blq2 = 0, thanks to (32), has no roots, q = eia, equal
to one in modulus. Therefore, as shown at the end of 2§3, it has a unique
bounded solution {UE+ }. But {ug} = {wm} is given and bounded; therefore
Eq. (33) sequentially and uniquely determines bounded functions {“é}' {u;},
etc.

Below we will need the following well-known fact about Fourier series.

Each sequence of numbers cpo = 0, #1, ..., for which 2 Icml { © cor-
responds to a convergent (in the mean-square sense) Fourler series

c(a) = —— § c et (34)
—

the sum of which is a function, C(a), square-integrable on the interval
0 Cag o,
27
[ le(a)|? da < =,
0

Conversely, every function, C(a), square-integrable on the interval
0 < a < 2m 1s expandable in a unique Fourler series (34), with co-
efficients < given by the equation

e =L c(a)ei“m a. (35)
™ Y2m 0

Further, these coefficlents satisfy Parseval's equation
2n
[ lc(a)lda = § fe 12 . (36)
0 m
Theorem l. Suppose that, in Problem (31)

2

\ P o Y 2 o

max ) ’¢m’ < =, ) ‘¢m| < o
p m m

Then the bounded solution of this problem admits the integral

repregentation

2m
1 f ] iam

— Uf(a)e (37)

vZm 0 ’

where the square-integrable funetion uP(a) is defined by the recurrence

relation

u?
m

P (@) = A(a)uP(a) + Pa), p=0,1, ... (38)

Here



254 Some Basic Methods for the Study of Stability Chapter 8

1 -1 1 -iq
P(a) = — ) oPe oM, U%(a) = ¥(a) = : v 1 "
Vor m ™ /21 m
and the function
-ia + + ia
X(a) - ale aO a_le
-ia + ia
ble + bO b_le

i8 so chosen that, for each a, 0 < a < 2m, the net function
uP = \P(a) exp (iom) satisfies the homogeneous equation corresponding to
Eq. (31).

We may prove this theorem by direct substitution of expression (37)
into Egs. (31), making use of Egs. (34) and (35).

Consequences. If, in (31), the function ¢p = 0, then Sp(a) = 0; by
virtue of (38) we have Up(a) = Xp(a) g(a), and ?rom (37) it follows that

WP = L f AP(a) F(a)el™™da. (39)
27

The integral representations, (37) and (39), can be used to analyze the
properties of difference scheme (31).

We define norms via the equations

2 _ h
Pl = ) ™1y = max [[0P], )
m h
2 s 2 .
I A T RIS WP S
m
(40)
(h) i
N, = | ™) = el + max] 7]
h \Pm p
F J

h

Theorem 2. For the stability of difference scheme (31) with respect
to initial conditioms, i.e. to guarantee the validity of the inequality

HePll <ell®fl,  p=0, 1, «ouy [£],

for arbitrary ug =V ]| ¢ = and ¢$ = 0, with constant ¢ not depending
on h (or on T = 1(h)), it 1is necessary and sufficient that the spectrum
= A(a) lie in the eirecle (10):

[A(a)] <1 + )T (41)

where o does not depend on h for on TJ.
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Proof. First we establish sufficiency. Given (41), clearly

c, T
D@IP < +ed™Tcel, (42)

From representation (39), using the Parseval inequality and inequality
(42), we get

om 1/2 e 1l 2r 1/2
11uPl] =[I le(am(a)IZda} <el [I lU(a)Izda]
0 0

c, T
1
= e | la

o1 = el
Necessity. We now show that violation of (41) for all fixed < im-
plies instability. The fact that, in this case, the solution

iom T
u = AP(aye T, p=0, .o, [2],

1s unbounded as T + O, cannot be used as a proof of instability, given norm
(40), since {exp(iam)} does not belong to the space of net functions such
that the sums of squares of the moduli of function values, over all net-
points, is bounded.

To prove instability we note, first, that, one can always choose a
square-integrable function, U(a), in such a way as to satisfy the

inequality

1 3 2 2 1 3"

77 | W@1™Pluce)12da > max[ M) 1P - &) « 5= [ [u(o)|%da, (43)
0 o 0

where € > 0 is arbitrary. In fact if max|A(a)| = |[A(a*)|, we may take

a

1, 4if ais in [o* - §, a* + §],
U(a) =
0, if a is not in [o* - §, a* + §].

Because of the continuity of the function IX(u)]zP, (43) will be satisfied
if 8§ = 8(e) is taken small enough. If (42) 1is not satisfied, then one can

find a sequence of hk's, and a corresponding sequence T, = T(hk], for which

[/ ]
ey E [mix (A(a, hk]IJ e

k

Let us set € = 1 and choose a U(a) such that (43) is satisfiled. As our
sequence {uo} we take the sequence of Fourler coefficlents of the function
U(a). Then (43), with p = [T/1], takes the form

L T R [ A A T
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which indeed signals instability with respect to initial data.

Theorem 3. For stability of the Cauchy difference problem (31), given
norma (40), it ie neceesary and sufficient that the spectral stability
eriterion (41) be satisfied.

Proof. Necessity is obvious, since violation of this criterion im-
plies, via Theorem 2, that there 1s no stability with respect to initial
data.

To prove sufficlency we will establish that for every k > 0 we have
the inequality

Huk+l” < (l + CIT)Huk“ + CZT mix ||¢nH, (44)

from which, clearly, it follows that, for all j such that p > j > O,

(4 eI P (0 et P+ epr(t + e t)P - max [[o7)].
n

Summing the left- and right-hand sides of the inequality for j = 0, 1,
ves, p term by term, and discarding identical terms on the left- and right-
hand sides, we find we can write

1 -

P < (1% e )™ u0]] + e,mp(1 + e;7)P max|[o7]] <
n
c., T

1 ¢t n (h)
< (1 + clt)e < |[u®)] + e, T e max ||¢"|| < conste]|f ||F
n h
which, in view of the arbitrariness of p, p =0, 1, ..., [T/T]-1, implies
stability.
To prove (44) we use the integral representation of the solution,
(37), and the recurrence relation (38), from which

27
Sl L el gy temy
m Y2r 0O
2% 2 k.
=L @ Man v = [ ——2 () — !4, (45)
Ym0 Y2t 0 be " 4 by +b_je

+
Thus the net-function {ui 1} of the argument m has been represented as the
sum of two net functions, written in the form of integrals over the
parameter o. Using Parseval's equation we may write, for the norms of

these two net—functions
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2m
L [ a@u*(ayel®aal| = [ [1a(wu*(a)124a]M2 ¢
2t 0

2w K 1/2 k
< max [A(@)] | [ 10%(a)|%da <1+ clT) © o™l

a 0
— ?ﬂ ¢k(al‘* eiamda
s -ia ia

2t 0 ble + bO + b_le
. ¢k " |2 1/2
= T f 'i(! ( 1a da S
0 ble + bo + b—le
. 2m K 172
L -1a ia J 187(a)|2da =
min'b e +b.+b e 0
1 0 -1
a
T k
_ - o ¢ eI < e, max 11671,
minlb. e +b,.+5b .e n
S o " P

From these last two bounds on the norms of the terms on the right-hand
side of Eq. (45) we get bound (44), completing the proof.
One can show that 1f, in place of the norm in (40), one takes

uP

HuPll = sup
m

then the spectral criterion {A(a)] < 1 + clf will no longer be a sufficient
condition for stability. For the Cauchy difference problem for a system of
equations this criterion 1s again only a necessary condition for stability.

* % % k &k *

The integral representation (37) of the solution of the Cauchy
difference problem 1s used, not only in the study of stability, but also to
bring out other properties of a difference scheme.

If, for example, the spectrum A = i(a), for a # 0, lies strictly
inside the unit circle, then the solutions uP = Xp(a) exp (iam) for which
a # 0 are damped, from level to level, by the factor A(a). From Eq. (39)
it is clear that, for [T/T] = p, one gets a net-function, corresponding to
the function Ap(a)w(a), which is concentrated in the long-wave-length
region (o ® 0)., The difference scheme "smooths” the initial data.

5. Smoothing of the difference solution as a result of approxima-
tional viscosity. We have seen that the spectrum of the difference scheme
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L =0, m=0, +1, ...
p=0,1, ..., [T/t]-1, (46)
u; = w(x ), m=0, +1, ...,

approximating the Cauchy problem

BT e o, < x < =, 0< t<T,
(47)
u(x, 0) = ¥P(x) - x < o

in the eircle A =1 - r + r exp (1a), 0 < @ { 27. For r < 1 each point for
which o # O corresponds to a point of the spectrum A(a) such that

|A(a)] < 1. This means that every harmonic u& = exp(iamh), specified via
initial data, 1is damped, being multiplied by A(a) at each step from one
level to another; in the course of time the solution is smoothed, since for
small ah (i.e. for low-frequency harmonics) the damping 1s weaker. Note
that the solution of the differeutial problem (47), u(x, t) = ¥(x + t),
does not become smoother with time; 1t 1s obtained from the initial data,
as time progresses, by shifting these data to the left. Thus the solution
of problem (47), corresponding to the initial condition u(x, 0) = exp(iex),
is u(x, t) = exp(lat)exp(iax), aund the factor exp(iat) is equal to omne in
modulus. The computational smoothing of the solution, which occurs when
one uses difference scheme (46), may be understood as the manifestation of
an "approximation viscosity”, characteristic of this scheme. Let us ex-
plain what we mean by approximational viscosity. If the equation

du _ du _ 0
It T x

is taken as the simplest model of an equation of motion for a non-viscous
gas, then it 1s natural to take the equation

L (48)

as a model equation for the motion of a gas with a viscosity, u > O,
smoothing the solution. With the initial conditions u(x, 0) = exp(iax) the
solution of Eq. (48) has the form

X

2
-pact+iat fax _ ia
e Ha“t+i te X X(a, t)e .

u(x, t) =

For u = 0(1) and t = T the factor, X(a, t), damping the harmonic exp(iaex),
may be written thus:
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~ 2.2
Aa, 1) =1 - a2t + fat - EEI_ + o(12). (49)

We will assume that the solution u(h)
defined 1n such a way, via auxillary conditions outside the net, that the

of the difference problem can be

resulting smooth function u (x, t) will be bounded uniformly in h,
together with 1ts derivatives up to fourth order. Then at the net-points,
(x, t), using Taylor's formula we may write

o - oMo e+ - aPo o W Parn, o - o™, o
h

T

au(h)(x, t) Bu(h)(x, t) + X Bzu(h)(x, t) _
ot 9%

™ 2 ar2

2

-2 3_“_2_ + hzeih)(x, t). (50)
ax

Here and below e(h), e(h) and Egh) are functions uniformly bounded in h,

together with their derivatives.
From (50) it follows, in particular, that
3™ 5™

ot ax

+1elMex, o).

Differentiating this identity with respect to t we get
(h)
Bez

22e™ 5 [ay ™ 32, (M)
— 5 x|\ T)the T +h
a2 ax?

aelh) 3™,
2 2 _ 3% (h)
+h - + nelM.
Tx 3t o2 3

Inserting the above expression for 32u(h)/at2 into Eq. (50), and discarding
terms small to second order, we get a differential equation of form (48),
™ (M h - ¢ a2z

3t % 7 a2

(51

which we will consider, not just on the net, but everywhere for t > O.

Thus difference equation (26) has turned out to be "basically equiva-
lent” to the differential approximation (51), which 1s an equation of form
(48) with small viscosity W = (h - 7)/2. This viscosity is called approxi-
mational since it arises as a result of the approximation of problem (47)
by difference problem (46). Differential equation (51) smooths the initial
data basically in the same way as scheme (46). In fact 1if U(x, 0) =
exp(iax) then at time t = T this harmonic, according to Eq. (49), is
multiplied by

a21?

1 -2 20 4 gar - + o(12) =1 + iat - % a?T + o(12). (52)

M, T) >

0
= o
For u_ exp(1 x)lx=mh

t = T, thils same harmonic multiplied by the factor

= exp(iomh), by difference scheme (46) we get, at
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21,2
A(a) =1 ~r + reiah =1=-r+ r(l + iah - 252—) + o(hz) =
=1 + fat -—}210.21' + 0(12),

which agrees with the factor (52) with an accuracy up to small terms of
second order in T (or h).

PROBLEMS

1. For what values of the parameter 0 > O does the difference scheme

+ + + +
uP L " n - 2up 1 + up 1 " - 2P 4+ P
m m mt+1 m m=-1 mt+1 m m-1
= =0 + (1 -9 R
h? h?
ui given, m=0, +1, ...,

approximating the Cauchy problem for the heat equation, satisfy the
Von Neumann spectral stability criterion for all r = T/h??

2. Does the following difference scheme satisfy the spectral
stability criterion:

up+1 - up-1 " - 20 4+ 4P
m m _ _mkl m m-1 _ ¢( N ) > 1
2T 2 xm' ’ p bl
h
w =y,
v =0, +
1 » oy "t
ul =‘,’,( )’

where

(1) dulx, 0) 32u(x, 0) .
¥, 0 =u(x, 0) + T R = u(x, 0) +1 —ax-;— = \P(xm) + 17 (x )2
This difference scheme approximates Cauchy problem (19) for the heat
equation to order O(T2 + hz].

3. Show that the difference scheme

1 +1
“§+ - vy “ﬂ1 -~ Upe1
= + A h =0, m =0, +1, ...,
p=0, 1, «..,
ul = w(x ), m=0, +1, ...,
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approximating the Cauchy problem

du du
3t + A 3% - o, -@{ x K ™ t >0,
a(x, 0) = ¥(x), -=<x<w,

to order O(T + hz), satisfies the spectral stability criterion for any
r = t/h and any constant A.

4. Study the following predictor-corrector difference scheme for the
solution of the Cauchy problem u, + Aux =0, u(x, 0) = ¢(x):

+1 1/2 1/2
w - uSd/z - “::1/2
r + A h =0, m=20, +1, ...,
p=0,1, ...,
ug = ¢m, m=20, 41, ...,

A = const, where the intermediate net function up+1/2 = {ug:ijg} is
determined from uP = {ug} in two stages: first one calculates vP = {VS} as

the solution of the difference problem

+
vg 1/2 ug vg:i/Z _ gti/Z
73 + A o =0, m =0, #l, ...,

p+1/2 _ { p+1/2

um+1/2} via the expression

and then u

pHL/2 | pHl/2 pHl/2 | pHl/2
P2 (g VetttV g w2t Vme

Unt1/2 T 7 t 7 .

Show that if the interpolation parameter a lies in the interval 0 < a < .25
then, for any r = T/h = const the spectral stability criterion 1is satis-
fied. For a = 0 the whole spectrum lies on the unit circle, and for 0 < a
< 0.25 it 1is located in the unit circle and touches this circle only for A
= 1. The eigenvalue A = 1 corresponds to the eigenfunction u = (il)m.

26. Principle of frozen coefficients

Here we present a method which greatly expands the class of time-
dependent difference schemes which may be studied through use of the
spectral stability criterion. This necessary condition for stability,
developed in §25 for the study of the Cauchy difference problem with con-
stant coefficients, can be used also in the case of Cauchy difference
schemes with “continuous®™, but not constant coefficients, and, as well, for
problems in bounded regions when the boundary conditions are given not only
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at the t = 0 time-boundary, but also on the side boundaries. This method
can also be used for the study of nonlinear problems.

1. Frozen coefficients at interior points. We will formulate the
principle of frozen coefficients using, as an example, the following
difference boundary-value problem:

N
+
pHl " wP - 2P+ P
m m m-1 m mt1
T - a[x , t ] =0,
m P 2
h
P=O, 1’ M ] [T/T] -1:
1)
u21=¢‘, m=0,1, ..., M; Mh =1,
ptl _ ptl _
lluo 0, ZZuM 0. J

In this difference boundary-value problem £1u8+1 = 0 and 22u§+1 are certain
conditions given, respectively on the left and right boundaries of the net
segment 0 { m { M; further a(x, t) > O.

Now we take an arbitrary interior point, (;, Z], of the region
0<x<1l, 0<t<T, in which problem (1) is to be treated, and "freeze”
the coefficients of problem (1) at that point.

The difference equation with constant coefficients

“Sﬂ - up ~ o~y Upey T 290 uny
—_— - alx, t) =0,

’ h? (2)

p=0,1, «ury [T/T]-1; mw=0, +l, ...,

generated in this way, will be considered now, not only for 0 < m < M, but
for all integral m. We will now formulate: The principle of frozen coef~-
ficients. For the stability of problem (1) it 18 necessary that the Cauchy
problem for equation (2) with constant coefficients should satisfy the
necessary Von Neumann spectral stability criterion.

To provide a rationale for the principle of frozen coefficlents we
present the following heuristic argument.

As we refine the mesh the coefficient a(x, t) in the neighborhood of
the point (;, ?], for any fixed number of step-widths h in space, and T in
time, changes less and less, and differs less and less from the value
a(;, ?]. In addition, the distance from the point (;, Z] to the boundaries
x = 0 and x = 1 of the interval, as measured in numbers of net-steps, tends
to infinity. Therefore for a fine net the perturbations induced in the
solution of problem (1), at the instant t = ;, in the neighborhood of
point x = ;, develops (for short times) in approximately the same way as in
problem (2). )

It will be seen that this redasoning is general in character. It does
not depend on the number of space variables or the number of unknown
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functions; nor on the form or the difference equation or the system of
difference equations.

In §25 we considered the Cauchy problem for an equation of form (2)
and found that, to satisfy the Von Neumann criterion, the ratio r = /02 of
the net mesh-~widths must satisfy the condition

r < ~1 —

- Za(x, t)
Since, by the principle of frozen coefficients, it is necessary for
stability that this condition be satisfied for any [;, E] the ratio,
r = T/hz, of step-widths must satisfy the condition

P —— 3

T 2 max a[;, :)
X,t
The principle of frozen coefficients gives us some guidance, at a
heuristic level of rigor, also in the investigation of nonlinear

problems. Consider, for example, the following nonlinear problem:

ut-(1+u2)uxx=0, 0<x<1,
u(x, 0) = ¢0(x), 0<x<1,
u(0, t) = llJl(t), u(l, t) = wz(t), 0<t<T.

To treat this problem we -use the following difference scheme:

(  ptl p P p p
u -u 72 u - 2u’ 4+ u
m m ll + [upJ J mtl o m-1 _ 0,
T m 2
p h
0<m< M, p=20,1, ..., [T/1]-1,
h) _
Lhu(‘) s u? = y(ah), 0<m< M,
+1
Ug =‘P1(tp+TpJ, p=1,2, ..., [T/T]’
p+l -
LUM lPZ[tP“PTpJ’

allowing the step-width T to change from level to level. This scheme
allows one to compute sequentially, level after level, the unknowns
ué, m=20, ..., M, then uz, m=0,1, ..., M, etc.

Suppose that we have already gotten to the level t = t , have computed
UE’ m=0,1, ..., M, and want to continue the calculation. How should we
choose the next step-width T = T ? We can imagine that we are required to
compute the solution of the linegr difference equation
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+1
up - P u? - 2up +uP
m m mt1 m m-1
B B aey, ) 2 - 0
P h

with the given variable coefficient a(x , t ) =1 + (up]z. In fact 1t is
natural to assume that the values uP arg close to the 3alues u(x ,t ) of
the smooth solution, u(x, t), of the differential problem. The ?oegficient
1s then close to the continuous function a(x, t) = 1 + u?(x, t) which, in
the course of several time-steps, changes very little.

The application of the Von Neumann criterion to the equation with
varlable coefficlents a(xm, tp) yields the restriction (3) on the relation
between step widths,

T
_P _ 1 - 1
12 Tp L3 max[a(x, t ]I 21 °
X P 2 max|l + (ug) |
m

as a necessary condition for stability. On this basis it seems plausible
that the next step width should satisfy the condition

T 1 h2

<
P s (ug)z|

2 max
m

Computer experiments confirm the validity of this heuristic reasoning.

If the necessary conditions for stability, derived via consideration
of the Cauchy problem with coefficients frozen at any arbitrary net-point,
turn out to be violated, then one cannot expect stability for any boundary
conditions. We stress, however, that the principle of frozen coefficients
does not take into account the influence of boundary conditions. If the
necessary stability conditions, flowing from the principle of frozen
coefficients, are fulfilled, then we may have stability for some, and not
for other boundary conditions. Now we develop the criterion of K. I.
Babenko and I. M. Gelfand, which take into account the effect of boundary
conditions for problems posed on intervals.

2. Criterion of Babenko and Gelfand. In considering problem (1), we
postulated that perturbations communicated to the solution of problem (1)
in the neighborhood of some arbitrary internal point (;, E) develop, for a
fine mesh, approximately in the same way as the same perturbations communi-
cated to the solution of Cauchy problem (2), with coefficients frozen at
point (;, E). In justifying this principle we argued that the distance
from the interior point [;, Z) to the boundary, measured in numbers of net-
steps, lncreases without bound as the net is refined. But if the point
(;, E) lies on the side-boundary x=0orx= 1, then this heuristic
argument loses its force. Suppose, for example, that X = 0. Then the
distance from point X to any fixed point x > 0 (and, in particular, to the
right interval-boundary x = 1), as measured in step widths will, as before,
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grow without bound as h > 0; but the number of steps to the left boundary,
x = 0, does not change and remains equal to zero.

For this reason a perturbation of the solution of problem (1) near the
left-hand boundary x = 0 must develop, in short time-spans, like a pertur-
bation of the solution of the problem

+
ui 1. ug - u§+l - ZUS + ug_l
- - a0, t) ) =0, m=1, 2, ...,
h 0)
p+l _
lluo 0.

This problem is obtained from the original problem (l) by freezing the
coefficient a(x, t) at the left interval-boundary x = 0 and simultaneously
moving the right-hand boundary to + ®. It is natural to consider problem

(4) only for those functions uf = {ug, uT, ug, ...} for which
P’ » 0 as m > + o,
m

It is only in this case that the perturbation is concentrated near the
boundary x = 0, and it is only with respect to perturbations of this con-
centrated form that problems (1) and (4), near the left-hand boundary x =
0, are similar to each other.

So too, the development of perturbations of the solutions of problem
(1) near the right-hand boundary x = 1 must be similar to the development
of the same sorts of perturbations in the problem

p+l p P _ P p

u - u u + u
m m ~ m+1 m m—1
L Y SY - o,
T hz
m= eee, =2, =1, 0, 1, «.., M-1, ()
p+1 -
ZzuM =0

with only a right-hand boundary. This problem was obtained from the origi-
nal problem (1) by freezing the coefficient, a(x, t), at the right-hand
boundary x = 1, and removing the left-hand boundary to - «. Problem (5)

must be considered for net functions u’ = {..., uEZ, uEl, ug, uT, ey ug},

satisfying the condition ui + 0 as m > — o,

Problems (2), (4), and (5) are simpler than the original problem (1)
in the sense that, for fixed r = T/hz, they do not depend on h, and are
problems with constant coefficients.

Thus the procedure for studying stability, taking into account the
effect of the boundary, as applied to problem (1) takes the following
form. One formulates three auxiliary problems (2}, (4) and (5). For each
of these three problems, not depending on h, one finds all those A (the
eigenvalues of the tramsition operator from up to up+1> for which there
exists a solution of the form
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For problem (2) u = {ug}, m =0, +1, ..., must be bounded. In the case of
problem (4) W = {ug, ug, vee ug, ..‘}, ug + 0 as m > + ®, yhile for
problem (5)

W= ey uf, Ll W,

u’ » 0 as m+ - @,
m

If problem (1) is to be stable the totality of eigenvalues of the
three problems (2), (4), and (5) must lie in the unit circle X < 1.
Problem (2) is to be considered for each fized ;, 0< %<1,

Let us continue to examine problem (l). We will assume, hereafter,
that a(x, t) = 1, and compute the spectra for all three problems (2), (4),

and (5), with different boundary conditions llug+ = 0 and QZuM = 0.
Substituting the solution ug = Xpum into difference equation (2) we
get
A-1u -rlo . -2u +u ) =0 r ==
m ol m m-1 ’ h2
or
=2r +1 - X
R e ©)

This is a second order difference equation. Similar equations have been
investigated in Chapter 1. To find the general solution of Eq. (6) we
first construct the characteristic equation

-1
r

Q¢ + (2 + A Jg+1=0. (7)

If q 1s a root of this equation the net function

PP M
u q
is one of the solutions of the equation
ptl p P _, P
u u _ Ul Zum + U .
T 2
1f |gl = 1, 1.e. q = exp(ia), then the net function
up'= Xpeiﬂm

»
bounded as m + + ® and m * - ® 18 a solution, as we saw in §25, for
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A= 1-drstn? 5, 0<agom.
These A = A(a) fill the interval 1 - r <A <1 on the real axis. Precisely
this interval is, then, the spectrum of problem (2). There are no eigen-
values, A, of problem (2) which do not lie in this interval since, if
characteristic equation (7) has no roots, q, equal to unity in modulus,
problem (6) has no solutions bounded as m > + =.

If A does not lie on the interval 1 - 4r < A { 1, then both roots of
characteristic equation (7) are different from one in modulus, but their
product is equal to the constant term of Eq. (7), i.e. is equal to one.
Therefore one of the roots of (7) 1s greater than, and the other less than
unity. Suppose, for the sake of definiteness, that Iqll <1 and |q2| > 1.
Then the general solution of (6), decreasing in modulus as m > + ®, has the
form

m
u = ctql(")J )
and the general solution of (6) tending to zero as m * - ® has the form
= M,
u ctqz( )]

To determine the eigenvalues of problem (4) one must substitute
u, = cq?(k) in the left-hand boundary condition Qlu = 0 and find all those
X for which it is satisfied. These will, then, be all the eigenvalues of
problem (4). If, for example

then the condition ng = 0 is not fulfilled for any ¢ # 0, so that there
are no eigenvalues.

If Zlu =u-u, = 0 then the condition cqi - cqg = c(q1 - 1) =0, in
view of the fact that 9 # 1, leads to ¢ = 0 so that, again, there are no
elgenvalues.

If 2.u=2u - u, =0, then the condition c(qu - 1) = 0 is fulfilled
for ¢ # 0 1if q = 1/2. From Eq. (7) we find that, for q = 1/2, X is given
by

1 1 -44+4 r
X—1+r<q1-2+q>—l+r——i—-l+i.
This 1s, in fact, the only eigenvalue of problem (4), and it lies outside

the unit circle, since A =1 + r/2 > 1. The eigenvalues of problem (5) are

computed analogously. They are gotten from the equation
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Chapter 8
with
m
u, = 9 q2=q2(>‘), m=M, M-1,M=-2, ...
We take as another example the difference scheme
+1
E el -
= - T =0, =0, 1, ..., [T/t]-1,
m=0,1, ..., M-1,
Mh =1, ? (8)
ug = w(xm), m=0,1, ..., M,
ptl
=0,
M J
approximating the problem
u -u =0, 0<x<1, 0<t<LT,
t X
u(x, 0) = ¥(x),
u(l, t) = 0.

Let us examine the stabllity of this problem via the Babenko-Gelfand
criterion. We assoclate, with scheme (8), three related problems: the
problem without side~boundaries

Sp " U g T Up
— - - =0, n=0, +l, ..., 9)

- - T = 0, m=0,1, ..., (10)

and the problem with only a right~hand boundary

AR I FRT
= - h = 0, m = M-l, M=2, ...,
(11)
ptl
=0, p=0,1, ..., [T/T]-1.

In the case of problem (10) with only a left-hand boundary there is no

boundary condition, since there was no left-hand boundary condition in the
original problem (8).



§26 Principle of Frozen Coefficients 269

We must now compute all the eigenvalues of the three transition

p p+l

operators from u' to u , corresponding to each of the three auxiliary

problems (9), (10) and (1l1), and determine under what conditions they lie
in the circle IXI < 1.
The solution of the form

under the substitution

ptl _ P P
u o= (1 r)um + ru L

generates the following ordinary first order difference equation for the

eigenfunctions:

(A -1+ r)um - rum+1 > Q. (12)

The corresponding characteristic equation
(A-1+r)-1rqg=0 (13

provides a connection between A and q. The general solution of Eq. (12) is

m
u =cq" = (A2Llro

n . s m =0, 1, ...

For {qf =1, g = exp(ia), 0 < a <27
a

A= (1l -1)+ re .

The point A = A(a) traverses the perimeter of a circle with center at point

1 - r and radius r. This perimeter is, then, the eigenvalue spectrum of

a) 3) z)

Fig. 26.

problem (9) (see Fig. 26,a). The nontrivial solution decreasing as

m+> + @

= p_m
u = cOX q
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exists for any q, lql < 1. Corresponding eigenvalues X =1 - r + rq,
clearly, fill the disc bounded by the circle A = (1 = r) + r exp(ia)
(Fig. 26,b).

Finally, the solution of problem (11), ug = Xpum, decreasing as
m *> - @, must have the form

m
W= P, el > 1,

where A and q are connected by Eq. (13). From the boundary condition
P _ 0 it follows that a nontrivial solution (c # 0) exists only for A =
A(q) =0, 1.e. q = (r - 1)/r. This value of q is greater than one in
modulus if either (r - 1)/r > 1 or (r - 1)/r < -1. The first equation has
no solution: the solution of the second is r < 1/2.
Thus for r < 1/2 problem (10) has the eigenvalue » = 0 (Fig. 26,c).
In Fig. 27,a,b and ¢ are represented the totality of eigenvalues of the

a) r<g y) F<r<l Y r>/

Fig. 27.

three problems for r < 1/2, 1/2 < r < 1, and r > 1. Clearly the set of all
eigenvalues of all three problems lies in the circle || < 1 + T, where ¢
does not depend on h, if and omly if r < 1.

The above stability criterion for nonstationary problems on an inter-
val, taking into account the influence of boundary conditions, 1is appli~-
cable to boundary value problems on an interval also for systems of dif-
ference equations. 1In this case seemingly natural difference schemes,
satisfying the Von Neumann criterion, often turn out to be unstable because
of an unsatisfactory approximation to the boundary conditions, and it is
important to know how to choose schemes free from this defect.

In Chapter 14 we will return to a discussion of the Babenko-Gelfand
spectral criterion taking a broader point of view. In particular we will
demonstrate rigorously that fulfillment of this condition is necessary for
stability, and that if it 1s satisfied there cannot be a "gross" insta-
bility.

PROBLEMS

1. Show under what conditions the spectral stability criterion is
satisfied for the difference scheme
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P _.,Dp, D
e W Tl A

ug = ¢(xm), m=0,1, ..., M,
+1
gl
p=0,1, ..., [T/7]-1,
ptl _ p P _
Llo uo_ul UO_O
T h

approximating the differential problew
’ 0 0<x<1l, 0<t<T,

u - u
t X
u(x, 0) = ¥(x),

3

u(0, t) = u(l, t) =0

on a smooth solution u(x, t) to second order in h.

Answer: T/h <1.

2. To construct a difference scheme approximating the following
boundary-value problem for the hyperbolic system of differential equations

dv _ 3w
3t T 9x’
0<x<1, 0<t< T,
dw _ v -~ - =
3t  ax’
v(x, 0) = ‘Pl(x), w(x) 0) = ‘112(1(),

v(0, t) = w(l, t) =0,
we set u(x, t) = [v(x, t), wix, t)]T, and write the equation in matrix form

3 9
3T LAY

u(x, 0) = P(x),
v(0, t) =

[
£
”~~
—
[aJ
~
il
(=]
-

where

A=((1) é).

Take, as a net, (xm, tn) = (mh, nT), h = 1/M, M a positive integer. Set
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- - P _ 5P P
Um Ym - A Y+l Ym-1 _ I A2 Ym+1 2um M Ym-1 =0
’
T 2h 2 hz
m=1l, 2, ..., M-1,
0 =
up = ¥ )

vp+1 _ ptl - o.

o "%
To complete construction of this scheme it 1is necessary to impose
additional boundary conditions on the left and right side-boundaries.

Noting that, for any a and B, it follows from the system of differential
equations that

a(v + aw) - d(w + av) -0
Jt X . B

(v + Bw) _ I(w + Bv)
3t 3x

=0,
x=1

we pose the supplementary difference boundary-conditions setting

(vp+l + awp+1] - (vp + awp) (wf + avp) - (wp + avp]

0 Q Q 0 1 0 0
- =0
T h ’
+1 +1
(vﬁ + Bwﬁ ] - (vﬁ + Bwﬁ) ) (wﬁ + BVS) - (wﬁ_l + Bvﬁ_l) -

T h

Under the condition r = T/h { 1 show that:

a) 1f « =1, B = -1 the spectral stability criterion is satisfied;

b) if a = -1 then, regardless of the choice of B the spectral
stability criterion 1is not satisfied.

c¢) Find the conditions which @ and B must obey so that the spectral
stability criterion will be satisfied, taking account of the influence of
boundary conditions.

§27. Representation of the solution of some model
problems in the form of finite Fourler geries.

Here we present examples of model problems whose solutions can be
repregsented in the form of finite Fourier series. Such representations are
of great value since they allow us to understand the properties of the
given model problems, and thus of the class of problems they model.

First we must explain what 1s meant by a "Fourler seriles” for a net
function.

1. Fourier series for net functions. Let us consider the set of all
real functions v = {vm}, defined at the points X = mh, m =0, 1, ..., M,
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Mh = 1, and vanishing at m = O and m = M.

The set of such functions, along

with the ordinary operations of addition, and of multiplication by real

factors, forms a linear space.
the system of functions

The dimension of this space 1s M-1, since

1, 2, ve., M-1,

= (V ’ Vls vty VM)’

$(M-1).

0 +
~(k) , if m # k,
v =
1, 1if m = k, k
clearly forms a basis. 1In fact each function v
Vo T Vy T 0 can be represented gniquely as a linear combination of the
functions ¢(1 , ¥ s ooy W(M- )
v = v1~(1) + oo v

We introduce, 1In the space under consideration, a scalar product defined by

the relation

M
(v, w) = h z VW . (1)
w=0 n
Let us now show that the system of functions
v 2 /7 sin l‘-;‘-{ﬂ}, k=1, 2, ..., M-1, ()

forms an orthonormal basis in this space, i.e. that

0,
(w(k)’ w(r)) =

k#*r,

k, r=1, 2, ..., M-l.

For this purpose we note that

M-l 2mm 1 M-1 i2mTm/M -127Tm/M
z cos 4 =3 2 e + e =
m=0 m=0
-12 0
IR TN S B U S
2 M T 7 /M 1,
It follows that, for k # r
(K) (1) v kn | rmm
W, v') =2 § sin == sin —2 = 2h ]
M M
m=0
M-1 M~-1
- - m o
= h 2 cos (k )T h Z

+ L4
cos Lkt D)Tm

if & 1s even and 0 < £ < 2M,

M-1

if 2 1s odd.
KTm rm _
sin m sin M

m=0

M =0,
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while for k = r

M-1 M-1
(¢(k), ¢(k)) =h § cosO=-h } cos Zﬁlﬁ =hM -h*0=1.
n=0 m=0

)

Using this orthonormal basis any net function v = (vo, Vis eees Y

M
may be expanded in the sum
= n (-1)
v o= c1¢ + ...+ CM-lw s
or
M=-1
v, = V2 Z S sin Eﬁﬂ s 4)
k=1
where
) 7 kr
¢, = (v, '] ) =v7 h Z v sin =2 .
k - m M
m=0
Clearly, because of the orthonormality of the basis (2)
= o2 2 2
= + see .
(v, v) <] <) + + CM-1 (5)

It is sum (4) which 1s the finite Fourier expansion of the net function
v = {v }, and (5) 1s the exact analog of the Parseval equation in the
ordinagy theory of Fourier series.

In exactly the same way one can conslder the finite Fourler serles for
functions on a square net. Define the net

X = mh, v, = nh, 0<{mh <1, 0<nh <1,
where h = 1/M, for M a positive integer. The set of all real functions,
v = {vmn}’ defined at the points of the net and vanishing at points lying
on the boundary of the square, forms a linear space. Introduce, in this
space, the scalar product

M M
(v, w) = h? nio mEO v

In the given linear space of dimension (M-1)2 the system of functions

k=1, 2, ..., M-1,
¢(k’£) = 2 sin E%E sin E%E,
=1, 2, «.., M-1,

forms an orthonormal basis
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(¢(k,l)’ ¢(r,s)) . 0, for k # r or 2 # g,

1, for k =t and £ = s.

This follows from (3) i1f we note that

M M
(k,2) (r,s)y _ kTm o LTn sTn\ _
(v y ¥ ) = <2 mzo sin —— sin T) <2 nZO sin 5= sin T) =

= (9, B ey,

Any function, v = {vmn}’ which vanishes on the boundary of the square
may be expanded in a finite, two-dimensional, Fourier series

M-1
¢ k&m LT
v =2 Yoo sin =— sin — , (6)
mn K, =1 | 32 M M
where
(k%)
ck£=(v:¢ i ):
and the coefficients satisfy Parseval’s equation
M-1
G, v = L el 7
k,2=1
In all the examples of difference boundary-value problems whose
solutions we will write using finite Fourier series we encounter the
expression
AVEI—(V -2v +v ) m=1, 2, ..., M-1. (8)
m o+l m m-1"? > ’
Note that
ktm 1 km(m + 1) kTm ki(m = 1)y _
Axx sin vl N [ in m 2 sin M + sin M ] =
2 kT kTm _ kTm _ R
= 2 (cos e 1) sin il uksin TR m=1, 2, ..., M-1,

where W = -(4/h%) sin® (kn/2M).

In other words the basis (2) consists of eigenfunctions of the opera-
tor Axx’ which maps functions v = {vm} from the space.of functions
vanishing at m = 0 and m = M into functions of the same space via the
relations

W - +.vm_1), m=1, 2, ..., M-1.

m ;; [Vm+1

To the eigenfunction w(k) = V2 sin(kmm/M) corresponds the eigenvalue
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4
uk = = — gin

- k=1, 2, ..., M-1, 9)
h

™

2. Representation of the solutions of difference schemes for the heat
equation on an interval. As a first example in which one can represent the
solution in a finite Fouriler series, consider the simplest difference
scheme

N
p*l . p P _ o, P, P
u wooouwg Zum + L) -
T = = Yy
h2
m=1, 2, ..., M-1, p=0,1, ..., [T/T]-1,
(10)
P_.P_
ug = uy 0,
ul = ¥(mh) J
m
for the heat equation on an interval
u -u =0, 0<t<T, 0<x<1,
t XX - = - =
u(0, t) = u(l, t) =0, 0<t<T, (11)
u(x, 0) = ¥(x), 0<x<1.
Problem (10) may be rewritten thus:
WP = P41 W= (E+ 1A P,
m m XX M XX
(12)
ul = y(mh).
m
Here E 1is the identity transformation: Eu? =+%$, while E + TA is the
P p

XX
to u , 1l.e. the level-to-level
transition operator. As regards the net functions up = {uZ} of argument m

operator effecting transitions from u

we assume that, for each fixed p, they belong to the space under considera-
tion, 1.e ug = ug = 0.
We will look for a solution of Eq. (12) in the form

X£¢(k) z Xi(ff sin E%E).

Substituting this expression into the equation, dividing kﬁff sin (nTm/M)
out of both sides, and making use of (9), we get the following expression
for A :
or A,
4t 2 km

Ak,= 1+ ruk =1 - ;; sin 3
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Because of the linearity of Eq. (12) the expression

M-1
o=y Ck)\Ew(k) (13)
k=1
is a solution for any arbitrary constants et For p = 0 we get
w0 = Mil ¢, (V2 sin KIM)
moo,o K M7

Let us take, as the constants c, , the coefficients in the expansion of
the given function ud = Y(mh) in a finite Fourier series, i.e. set
m

M
ck=(¢, w(k))=h 1 v(mh)(V2 sin k"T“‘J.
m=0
Then the solution (13),
M-1 p
P_ Y _Ar oo kN5 L kTm
u = k£1 ck<1 ” sin ZM) (V2 sin m 1, (14)

will satisfy the given initial condition u? = ¢(mh). Equation (14) then is
the required representation of the solution of this problem in a finite

Fourier series.
(p)

K 2 of the expansion

For fixed p, the coefficients, ¢

u

Py (0

m
of the function u(p) of argument m, in the orthonormal basis functions
’
¢(k) =77 Sin(k"m?M), have the form
() _ P
e = ckkk.

Therefore, taking note of Parseval's equality, we have

M:l 2 M-1 9
k=1 k=1
M-1 2
< max |A {2 7 |e Ap' = max |A lz(up up)
K kD2l k 'k K k ’

+ +1
where, moreover, the strict equality [up 1, uP ) = max [Aklz(up, upJ is
k

0 (k)

attained if, as u’, one takes that for which |A | is greatest.

k I
If max llklz < 1, then
k

(up+l, up+1] S_(up, up). (15)

The positive—definite quadratic form
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(Aup’ uP] s

where A is a square matrix, brings to mind the expression for energy in the
equations of mathematical physics. Therefore an inequality of the form

(4P, wP*1) < (AP, WP)

for the solution of a difference boundary-value problem 1is commonly called
an energy inequality.

® % & * & %

Thus bound (15) is the simplest energy inequality. When some sort of

energy inequality exists it 1s natural to relate the norms || °* ||U and
h
[ IIF to f?g form (AuP, uP) and, 1in particular, to take !Iu(h)l[U
h
max(Aup, up] . Such norms are called "energy norms".
P
x % %

The inequality maxl)\kl2 <1 1s satisfied, as one easily can see, if

k
T
r=—«< l-.
n 2
For
r = const > %

and for small enough h, there will be a kk for which fkkl > 1. We cannot
then have stability for any reasonable® choice of norms.

Consider the difference scheme of more general form

L P
m m - P ptl =
22 la o)A uP + oh__u ] =0,

ul = ¥(ah)

for this same heat-conduction problem (11). Here 0 is some free parameter.
We look for a solutlon of the form

*3ee §13.
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P _ P kmm
ug Ak Y2 sin el
where A remains to be determined.

Substituting this expresion into the difference equation we get an

equation which A must satisfy:

k

A =14+ (1 - c)uk + 10A u .

k k' k
Thus
4(1 - o)t
1 - ( ) sin? Ll
h2 2M
Ak = ZoT S kT y k=1, 2, ..., M-1.
1 +— sin M
h? M
As before

Energy inequality (15) 1s satisfied 1f

A 1
max| k| <

or

1 - 4(1 - o)r sin? %%' ﬁ_'l + 4or ain? %ﬁ . r = r .

It is clear that for 1 > ¢ > 1/2 this inequality, and also energy ine-
quality (15), are satisfied for any r. If 0 = 0 the difference scheme
takes the form of the explicit scheme, already considered above and, as we
have seen, 1f energy inequality (15) 1s then to be satisfied for all h it
is necessary that r < 1/2.

3. Representation of the solution of difference schemes for the two-
dimensional heat-conduction problem. We now consider the two-dimensional

heat-conduction problem

3 - ;
t 3x? 2

du 324 + 32y

3y

o
I~
»
IA
—
o
I
“
I~
—

u(x, y, 0) = ¥(x, y), (16)

o

A
[ad

A
=
.

u(x, y, t)‘F =0,

Here I' 1s the lateral surface of the parallelopiped 0 < %, y <1,
0<t<T.
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We construct the net [xm, yn t ) = (mh, nh, pT) with h = 1/M for some
positive integer M. As the set Dh we take those points of the net inside
and on the boundary of the parallelopiped 0 { x, y {1, 0< t <T.

Let us now introduce the notation

P - 9,P P
P Y, n 2umn t um—l,n
u. = 2 ,
XX mn h2
p p p
- +
@& = l"m,n+1 2umn um,n-l
Yy mn h2

The operators Axx and Ayy are perfectly analogous, except that the first
acts on the variable m,  with n and p treated as parameters, while the
second acts on n, in its turn treating m and p as parameters.

The simplest difference scheme for problem (16) is

ptl P
Yoo " Ymn P P
— = A + Ayyumn’ 0 < mm, nh <1,
u;n = ¢(mh, nh), 0 < pt < T-1, 17)
up = 0.
mn T

We will look for solutions of the difference equation, under the condition

up = 0, of the form
mn |
P p (k%)
= A .
“mn kl“pmn
Note that

N I N O I NG NONORMORCDE

XX" m n

U IR O RO ONC)
yy yy  m n

Therefore we get, for A the expression

ke?
A -1
L
le - ll—l(k) + u )j
or
4T 2 kW o &m
}‘kl 1 -h—2 (sin o + sin ZMJ .

The solution
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P= J c AP ¢(k,2) (18)
K, 2=1 k2 kL

satisfies the conditions on the lateral boundary for any choice of the

constants Crp” For p = 0 this solution takes the form

0 - (k,2)
u Z cklw .
If the 1nitial condition

0 - - (k,2)
Yinn ¥(mh, nh) = E cklwmn ’

1s to be satisfied, then the ¢ , must be taken to be the Fourier coeffi-
clents of the function ¥(mh, nt), i.e.

g =M L W, nh)(2 stn 2 sin “T“‘). (19)

According to Eq. (18) the coefficient of w(k’l) in the Fouriler expansion of

oF 1s equal to ¢ A

P
WL Therefore

2
P Py . p
(“’“)’kiz ckE)‘kJLI :

’

For any given p we may, therefore, write

-1

M 2
ptl  ptly _ )‘p+1'
("7, ™) Lo | £
K, 2-1
2
2 P|°_ 2( P P
< max kall ) cklxkl! max Iszl (u , u ).

k,2 Kk, 8 k,%

Equality is attained if we take, as VY(mh, nh), that eigenfunction of the
operator E + T[A + A ) (1.e. the operator which effects transitions from

level t = pT to level p = (n + 1)T) with eigenvalue, A largest in

k&?
modulus.
If max[X
k,%

kl' < 1 we have the energy inequality

(up+1, up+1J < (up, up). 20)
As k and 2 run through the values k,% =1, 2, ..., M-1, the eigenvalues run

through a finite set of points, on the real axis, lying to the lefit of the
point A = 1. The leftmost point is reached for k = £ = M-1:
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M-1)T
A =1 - 2 (M=LT
M-1,M-1 1 8r sin M

MZ
Therefore the inequality maxlkkll £ 1 is satisfied for -1 {1 - 8r, r £ 1/4
For the implicit scheme

=1-8rc052%i=1—8r+0<1—>.

- ptl ptl
T Axxumn + Ayyumn ’

u;’m = {(wh, nh),

uP =0
mn| L
the golution has the form
P _ \ )‘P (k,l)
Yin k%l Crs klwmn 4
where
A _ 1
ke 2 kT 5 AT, ?
+ kT 20
1 + 4r(sin o T sin ZM]

and the coefficients ¢ g are determined, as before, by Eq. (19). Here

0 < sz < 1, and the energy inequality (20) holds for any value of r =
/h2.

* * & k k& %

4. Representation of the golution of a difference scheme for the
vibrating string problem. Consider the example of the three-level scheme

Lhu = f , approximating the problem of the vibrating string with fixed
ends:

U Tu = 0, 0<{x<1, 0<t<T,

u(0, t) = (1, t) =0, 0<t<T,

u(x, 0) = ¥,(x), 0<x<1,

ut(x, 0) = ¢1(x), 0<x< 1.

Define
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+
rupl_zup+up1
m m n
- o = 0.
12 XX m

P_. P _

(h) Yo T T O

Lhu =

ul?1=¢0(mh)’
| —
Um ‘Um,

where

~ 2 2
9. = u(mh,0) + Tu (uh,0) + .;— u, (wh,0) = Y (mh) + Ty, (mh) + ;— P2 (%)

We will look for a solution of the difference equation satisfying the

p p
condition uy = uy = 0, and of the form

P = AP V7 sin %{z APy (k) (21)

ignoring, for the moment, the initial conditions u = w (mh) and u

=$°
m
For A we get the following equation

1
m

1
ttirs u =0 n 4 g1n2 KT
- - =Y, == - TR
1z k k 2 M
A2 - - 9p2 2 kT - =X
2(1 - 2r? sin ZMJ +1=0, =1,

N

A (k) =1 - 2¢% sin? 1 - 2e2 stn2 57 -1

2M

2
- 2r2 ¢1n2 X)©
1 2r® sin ZMJ 1

2— J
A(k) =1 - 2r? gin? k— \/
Thus there are two solutions of the desired form (21):

xlp(k)w(k) and Xg(k)w(k).

Because of the linearity of the problem the expression

p mel p p (k)
ub = kzl [ak)\l(k) + ekxz(k)me
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1s a solution for any choice of the numbers ak and Bk’ k=1, 2, ..., M-1.
For p =0 and p = 1 one gets, respectively,

M-1

Wl = dgn) = § (o + 800,
k=1
M-1
1 237 = (k)
ol =9 kzl Lo A ) + 82,0100

These relations determine the values of @ and B . The sum @ + B8 must be
the Fourier coefficient of the expansion wo(mh) in the functions {w(h)},
i.e.

M kmm
Sk = h Z ¢0(mh)(/5-sin _ﬁ-]'

m=0

ak +

Similarly

M
_ ~ kmm
A A () + B A (k) = h mZO v (72 sin )

Expansion of the solution of a difference equation in a finite Fourier
series 1s a device used not only to determine under what conditions an
energy inequality is satisfied. Below we will often use such expansions
for various purposes in the qualitative study of model problenms.

It must be noted, however, that the representation of a solution as a
finite Fourler series is rarely used directly for the computation of the
solution. A good computational method must be useful for a wide range of
problems. The above difference schemes may easily be generalized to treat
problems with variable coefficients, and regilons with curved boundaries.
Further, we can expect that, in the modified problems, such properties as
the validity of an energy inequality will be preserved. But any such
change in the problem eliminates the possibility that its solution can be
represented as a finite Fourler serles: we generally cannot find
eigenfunctions of the level-to-level transitfon operator and cannot compute
corresponding eigenvalues.
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PROBLEMS

1. For the two-dimensional heat-conduction problem in a square
region, with a solution vanishing on the boundary, consider the difference

scheme
ptl _ p
u u 1 ptl
LRI N L O WL A I
XX mn yy mn
- P P
+ Q1 c)[Axxumn + Ayyuan, | 0 <mh, nh<1,
Pl . 0 -
umn,P 0, u ¥(mh, nh)

(in the notation introduced in the text of the above section). Write out
the solution of this problem in the form of a finite Fourier series. De-
termine for what values of 0, 0 { 0 < 1, the energy inequality [up+1’ up+1)
< (uP, uP) 1s valid for any choice of r = T/h2.

For which 0 can we write, given any uP # 0, the strict inequality
(up+1, up+1) < [up, up), regardless of the cholce of r or of the step-
width, h?

2. Write the solutions of the differential problem

u =-u_ =0, 0<x<1, 0<t<T,
t o oxx =0 = - =

ul. =0, u(x, 0) = ¥(x)

ptl _ p
Ymn Yon
T - Axx“mn =0,
Wl =0 u® = P(mh, nh)
mnf . 4 mn ?

respectively, in a Fourler series and finite Fourier series. Prove by
comparing these series for r < 1/2, assuming the boundedness of ¥”“(x),
that the solution of the difference scheme converges to the solution of the
differential problem. Prove that for r > 1/2 there is, in general, no
covergence

3. Write out in a finite Fourier series the solution of the Dirichlet
problem for the Polsson equation in the square region 0  x, y < 1:

u u = ¢(mh, nh), 0 <mh, =nh<1,
XX mn yy mn

with the boundary condition

a) u = 03
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nh, if m=0

1 + mh, if n =M,

b) Yon mh, if n =20,
1+ ah, 1f m =M.

Hint for 3b: u = mh + nh + Z , where Z satisfies homogeneous
mn mn mn
conditions on the boundary.

§28. The maximum principle

We have already seen by way of examples, in §§21 and 24, how to prove
stability with the aid of the maximum principle. Here we analyze two more
interesting examples where one can prove stability via this method: 1impli-
cit and explicit difference schemes approximating the boundary-value
problem for the heat equation

2
%-az(x,t)a—‘i=¢(x,t), 0<x<1, 0<telT,
t > 2tz
ax
u(x, 0) = ¥,(x), 0<x<1,
(1)
u(0, t) = ¥ (), 0<t<T,
u(l, ) = ¥,(c), 0<t<T.

1. Explicit difference scheme. Let us consider the explicit dif-
ference scheme

r ntl n n n n
u Cu u - 2um + uy
- az(mh, nT) = ¢(mh, nt),

T

m=1l,2, ..., M-1; =n=20,1, ..., [T/T]-1,

Lhu(h) = W =y (ah), m=0,1, ..., Mh, ()
ug=¢1(nr). n=1,2, ..., [T/1],
L U;=¢2(UT): n=1, 2, ..., [T/T]’

where M = 1/h 1s a positive integer.

The Von Neumann spectral criterion, together with the principle of
frozen coefficients leads, as we saw in §26, to the necessary stability
condition

o— L (3
h? 2 max az(x, t)
X,t
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We will now show that, given this condition, the above scheme really is
stable 1f norms are defined via the equations

||u(h)||U = max max un, s )
m
h n n
||f(h)||F = max(max|¢0(mh)|, max|¢l(ﬂT)|. ? (4)
h m n
maxlwz(nT)l, max|¢(xm, tn)l). /

n m,n

Let us first establish the validity of the inequality (the "maximum
principle™)

max

“:+1|_S max[mix|¢1(tn)l, mixlwz(tn)l,

max u: + T max|¢(xm, tn)l]. (5)
m m,n

For this purpose we rewrite the difference equation on which scheme (2) is
based, casting it in the form

+1 ;
“3 = (1 - Zraz(xm, tn))uz +
+ raz(xm, tn)(uz_l + u;+1) + T¢(xm, tn), m=1l, ..., M-1l. (6)

1f condition (3) is satisfied the expression 1 - 2raz(xm, tn) is non-

negative. Therefore we may write

n+l 2 n
u S_Ll 2ra (xm, tn]Jmix U +
2 n n -
+ ra (xm, tn)<éax ukl + max|u >+ T max|¢(xm, tn)l
k k m,n
n
= max|u, | + T max|¢(xm, tn)l, m=1, 2, «.., M-1. (7

m,n
Noting that

e A LGRS = ¥ln + 1)1, (8)
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we arrive at the maximum principlez (5).

Next we sglit the solution, u , of the problem Lhu(h) = f(h) into
two terms, u =v +w * defining v and w , respectively, as the
solutions of the following equations

0 ¢(xms tn);
wo(xm) 0
(h) (h)
L v = Low = (9
h v (e ) h 0
¥y(t,) 0.

By virtue of bound (5)

max vn+1| < max |max |V, (t, }1, max!¥_(t, )|, max vn| ,
m - 1Yk 2tk m
m k k
n n-1
max|v s_max[maxlwl(tk)l, maxlwz[tk)!, max (v '],
m k k
max vn-1| < max|max|y {t }I, max!¥_(t ), max vn-2|
m - 1V k7? 28k m ’
m k k m
max vé' = max[maxlwl(tk]l, max|¢2[tk)|, maxlwo(xm)l].
m k k m

Similarly, again by virtue of bound (5),

nax wn+1‘ < maxlwn, + 1 max|¢(x , t )| <
m - n m’ k' =
m m m,k

n-1
< max v I + 2t maxl¢(xm, tk)| <
m m,k

< max wgl + (n + )T max|¢(xm, tk)l <T max|¢(xm, tk)l.
m m,k m,k

From the bounds on v;+1 and w2+1 it follows that



§28 Maximum Principle 289

max un+1l = max v;+1 + wn+1| S_max|vn+1, + max wn+1| <
m m n ' "
S'max[maxiwl[tk)l, maxl¢2[tk)i. maXIWO(XmJIJ +
k k m
+ T max|¢(x , t )l S_c||f(h)|| . (10)
m n F.
m,n h
where
¢ =2 max(l, T). (11)
This inequality 1s valid for all n. Therefore
™1 <elte®™ir, (12)
h h

and the scheme 1is stable.
2. Implicit difference scheme. Now let us consider the implicit
difference scheme

a ntl _ n ol 2 n+l i ntl
um um - 2( ) unﬂ-l um um-l _ ( t )
T a“(x , t ) $ x5 t ),
0 -
h Yn ¢0(ij,
Lu = (13)
h n
W v = Yyle)s
L u; = IJ)Z(tn)'

ntl n
In order to compute the U given us m=0,1, ..., N, one must solve

the problem

un+1 un+1 _ 2un+1 + un+1 o
m m+1 m m-1 m
T az(xm, tn] h2 =zt ¢(Xm’ tn)’
(14)
ntl o+l _
u =l ) e = ¥pltny)-

After both sides of the above difference equation have been multiplied by T
this problem takes the form

av .4 + bmvm + oVl = 8m? m=1, 2, ..., M-1,

(15)
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where
vm = ug+1, am = az(x y € ]r,
bm = -Zaz(xm, tn]r -1, e = az(xm, tn]r,
&n © -u; - T¢(xm’ tn)’ @= lpl(tn+1)’ B = ¢2(tn+l)’
The coefficlents as bm’ cn satisfy the conditions
a >0, c. >0, lbml > a + < + ¢ (s > 0).

Therefore, as shown in §§4 and 5, the problem has a unique solution

(un+l ntl n+1),

(vo, Vis cees VM) =luy s up s e, uy

which can be computed by FEBS.

To prove stability we must still demonstrate the validity of
inequality (12). For this purpose we first prove inequality (5) (the
maximum principle), from which bounds (10) and (12) may be derived exactly,
word for word, as in the case of explicit scheme (2).

0f all the quantities, u$+1, equal in modulus to max u;+1|, select

that one whose index, m, has the smallest value m = m*. If m*¥ = 0 or
m* = M then, in view of (8), the validity of 1nequality (5) 1s obvious.
Suppose m* # 0 and m* # M. Let us write out Eq. (14) for m = m*:

t ] n+l

u ] n+l
n’ m*-1

+1
t ]]un + raz(xm*, a um*+1

- (1 + Zraz(xm*, o)

raz(xm*,

= - u;* - T¢(Xm*, tn].

+
Suppose, for the sake of definiteness, that u;*l > 0. Then the left-hand

side of this equation can be bounded thus:

+1 +1 +1
raz(xm*, n)u;*-l - (1 + Zraz(xm*, tn]]u;* + raz(xm*, tn]u;*+l =
o+l ntl ntl ntl ntl ntl
= raz(xm*, tn)l(um*-l T U ] (um*+1 T U ]] Tou < Uk -
Therefore
ntl
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nt+l n+l n
max|u ' =uy < st T¢(xm*, tn) <
m
< max|u”] + T max)¢(x , t JI.
- m m’ n
n m,n

3. Comparison of the explicit and implicit difference schemes. Thus
we have proven inequality (5), and also the maximum principle implied by
(5). At the same time we have also proven the stability of implicit dif-
ference scheme (14) in norms (4).

We gtress the essential difference between the explicit and implicit
schemes (2) and (14). The first requires for stability the step-size
limitation

T<———1——h2,
2 max az(x, t)

which becomes very restrictive if the coefficient a®(x, t) takes on large
values even in the small neighborhood of some single point. The second,
implicit, difference scheme remains stable for any arbitrary relation
between the step-sizes h and T.

Difference schemes which, like the implicit scheme (14), remain stable
for any arbitrary relation between net step-sizes are called absolutely
stable or unconditionally stable. Explicit scheme (2) 1s not uncondi-
tionally stable.
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Chapter 9
Difference Scheme Concepts in the Computation
of Generalized Solutiomns

§29 The Generalized Solution

In all the examples so far considered we have assumed that there exis-
ted "sufficiently smooth™ solutions of the differential boundary-value
problem, and based the construction of difference schemes on the approxi-
mate replacement of derivatives, in a differential equation, by difference
relations. But differentiable functions do not suffice for the description
of many physics processes. Thus, for example, experiments show that the
distributions of pressure, density and temperature in the supersonic flow
of a non-viscous gas are described by functions with jump-dicontinuities,
discontinuities called "shock waves.” Discontinuities may develop, in the
course of time, even from smooth initial conditions.

The corresponding differential boundary-value problems do not have
smooth solutions. It will be necessary for us to broaden the concept of a
solution and, in some natural way, to introduce generalized solutions which
can be discontinuous. There are two basically different ways to do this.

The first approach is to write the physical conservation laws (conser—
vation of mass, momentum, energy, etc.) not in differential, but in inte-
gral form. Then they are meaningful even for discontinuous functions which
cannot be differentiated but can be integrated.

The second consists in that one artificially introduces into the dif-
ferential equations terms such that the resulting equations will have
smooth solutions. These artificially introduced terms may, in the case of
gas dynamics problems, be intepreted as small viscosity terms which smooth
the discontinuities in the solution. Eventually the coefficients of these
"viscous” terms tend to zero, and the limit approached by the solution is
taken to be the generalized solution of the original problem.

We clarify the definition of the generalized solution, and the compu-
tational methods which may be needed to compute this solution, via the

example of the following Cauchy problem

? 3 -
a—‘:+u3—i=0, 0<t<T, =-2<x<m,

(1)
u(x, 0) = ¥(x), -© < x <,
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which is the simplest model gas dynamics problem among all those in which
discontinuous solutions develop from smooth initial data.

1. Mechanism generating discontinuities. Let us assume, first, that
problem (1) has the smooth solution u(x, t). Draw the lines, x = x(t),
defined by the equation

‘—;% = ulx, t). ()

These lines are called characteristics of the equation u, tuw = 0.

/

Fig. 28. Fig 29.

Along each characteristic x = x(t) the solution u(x, t) may be considered a
function of t alone:

u(x, t) - u[x(e), t] = u(c).

Clearly

du du + du dx du du
dt at 9x dt at

Therefore along each characteristic the solution 1s constant, u(x, t) =
const. But, by virtue of Eq. (2), it follows from u = const that each
characteristic is a straight line x = ut + x,. Here x_,  is the abscissa of

0
the point ( 0) from which the characteristic emerges, and u = w(xo) is

X »
0 the tangent of the angle which it
i Z makes with the t axis. The assign-
_ ment of imitial values u(x, 0) =
=T =7/———=?¢ y(x) thus determines, in a manner
easlly visualised, both the pattern
of characteristics, and the value of
the solution at each point of the
///// half-plane t > 0 (Fig. 28).

—— T Let us note at once that, under

the assumption that there exists a
Fig. 30. smooth solution u(x, t), the char-
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acteristics cannot intersect; otherwise each characteristic would bring to
the intersection point its own solution value, and the solution would not
be a single-valued function. For a monotonically increasing function Y(x)
the angle a increases with increasing x ., and the characteristics cannot
intersect (Fig. 29). But in the case where y(x) decreases with increasing
XO the characteristics converge and must intersect, regardless of the
smoothness of Y{x). A smooth solution of problem (1) ceases to exist at
the moment t = E, when at least two characteristics intersect (Fig. 30).
Graphs of the functions u = u(x, t) at t = 0, E—E and t are shown in
Fig. 31.
| # -
Jynz;t)

7
wir,0) oz

Fig. 31.

2. Definition of the generalized solution. We recall Green's
formula, which we will use to determine the generalized solution of
problem (I1). Let D be an arbitrary region, with boundary T, on the xt
plane, and suppose that ¢l(x, t) and ¢2(x, t) have, in region D, partial
derivatives which are continuous up to the boundary. Then one can derive

the following equation

30, 29,
ij(-at— + 5;—) dx dt = g (d?ldx - ¢2dt], (3

due to Green. The expression (8¢1/8t] + (8¢2/8t] is the divergence of the
vector & = (¢1, ¢2)T. Green's formula (3) states that the integral of the
divergence of the vector field ¢ over the region D is equal to the current
of vector & across the boundary, T, of that region.

We go on, now, to define the concept of a generalized solution.
First we will write the differential equation of problem (1) in divergence

form:
u 9 u?
¥+ . (2 ) = 0, 4)

Integrating both sides of Eq. (4) over amy arbitrary region, D, lying
in the half-plane t > 0, we get

0 = fo [%€'+ %; (%EJ]dX dt‘= ?(u dx - %i dtJ.

Thus each differentiable solution of Eq. (4) satisfies the integral

relation
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$(u dx - %i dt) = 0, (5)
T
where T is an arbitrary contour lying in the half-plane t > 0. Equa-
tion (5) expresses a certain conservation law: i.e. the current of the
vector (u, u2/2)T across any closed contour vanishes.
Let us now prove that, conversely, if a smooth function satisfies the
integral conservation law (5) for every contour T, then at each point
(xo, to), tO > 0, Eq. (4) is satisfied. Assume the contrary and suppose,

for the sake of definiteness, that at some point (xO, to)
du 9 u?
5t o (20 > 0.
X = X4,
t=t0

) and
perimeter ', small enough so that everywhere within it a, * (uZ/Z?X > 0.
Thus

Then by continuity one can find a circle D, with center at (x , t

2 2
0= ?(u dx - %— dt) = fo [%% + %; (%—J]dx dt > 0.

The contradiction 0 > O proves that, for a smooth function u(x, t),
(5) implies (4), so that (4) and (5) are equivalent. But in the case of a
discontinuous function u(x, t) the differential equation (l) or (4), on a
line of discontinuity, will lose its meaning, while the integral condition
(5) will not. Therefore any piecewise~differentiable function which
satisfies conditions (5), for every arbitrary contour T in the half-plane
t > 0, will be called a "generalized solution” of Eq. (4).

3. Condition on a line of discontinuity of a solution. Suppose
that, within a region where we seek a solution, there is a line x = x(t),

z on which the generalized solution has a
\t VA £ first-order discontinuity. Suppose that,
= on approaching from the left or right we
get on this line, respectively,

v/ 7 A alx, t) = up ¢ (x, t),
u(x, t) = uright(x’ t).
p, z
Fig. 32. It turns out that the values uleft(x’ t)

and uright(x’ t) and the speed, x = dx/dt,
with which a point of discontinuity moves cannot be arbitrary: these
various quantities are interconnected by certain relations.
Suppose L is the line of discontinuity (Fig. 32). The integral

f (u dx = E'uzdt) on the contour ABCDA, as on any other contour,

ABCDA
vanishes. When the segments BC and DA shrink to the points E and F,
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respectively, the integrals along these segments vanish and we get the
equation

2
{‘ (tulax - [5-]ae) = o,
or
dx u?
{) (lul g7 - [57]) et =0,

where [z] = z = Zyofp 1s the step-jump in the value of z along the

right
line of discontinuity, and L” is an arbitrary segment of this line.
In view of the arbitrariness of segment L” we conclude that, at each

point of line L, the integrands in the above equations must vanish:

dx u?
(u = li—] = 0.
Therefore
2 _ 2 +
dx _ [23] : L) = Yright ~ “left  “lefr © “right
ac =~z ¢ =2 - = 2
I“righc Uegr)
so that
+
dx _ Ylefr ~ “right 6)
dt 2 .

If we had written the equation ut + uux = 0 in another divergence form,

e.g.
2 3
LIy i A I )

we would have arrived, by a similar route, to another integral relation, in

this case to

2 3
b (2 ax - L ge) = o, (8
2 3
r
and to another condition on the line of discontinuity:
2 2
dx _ 2 Ulegr * “leftr right * Yright (9)
dt 3 *

“left * “right

The slope (9) of the discontinuity line (or the speed of the shock
wave) does not colncide with the slope (6), corresponding to the first
divergence form (4). Thus it 1s clear that the nature of the generalized
solution depends on precisely what conservation law underlies the differ-
ential equation (1). In the problems of mathematical physics the conser-
vation laws have a perfectly well defined physical meaning.

For smooth functions u all five expressions
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%%+ug:=0,
Ju 3 ,su?

3t axz) T O
3 (u? 3 (ud
) ) - o

2
¢ (u dx - o~ dt] =0,

g 2
2 3
?(;—dx—i;—dt]=0

are equivalent. Below, in discussing Cauchy problem (1), we will be
assuming integral conservation law (5), and discontinuity condition (6)
which flows from it.

4. Decay of an arbitrary discontinuity. Suppose we are given the
discontinuous initial conditions

2 for x < O

1 for x > 0.
The solution constructed from these initial conditions is shown in Fig. 33.
The slope of the line of discontinuity (dx/dt) = (2 + 1)/2 = 3/2 is
the arithmetic average of the slopes of the characteristics on either side
of it.

We now assign initlal conditions with a different discontinuity:

1 for x < O,

2 for x > 0.

From Fig. 34 one sees that it 1s now possible to counstruct solutions
in two ways. The first gives us a continuous solution, while the second

£

Fig. 33.

yields a solution discontinuous for t > 0. Here it is necessary to give
preference to the continuous solution. In favor of this conclusion one may
argue as follows. If the initial conditions are slightly changed, so that
we are given



§29 The Generalized Solution 299

1 for x <0,
u = 2 for x > &,
1+ x/e for 0<x(<c¢g,

then the solution u, shown in Fig. 35, is determined uniquely. As € tends
to zero this solution goes over to the continuous solution drawn in Fig.
34a. The impossibility of the solution depicted in 34b, because of

z| z A F-F
//
Pd =
/,/i//* U=/
s
////
/ Z / i
ML .
4 z Y, z
a) b))
Fig. 34.

its instability with respect to perturbations in initial conditiomns, is
analogous to the impossibility of rarification shock waves in the
mathematical description of the flow of ideal gases.

5. Other definition of the generalized solution. One may formulate
the generalized-solution concept through consideration of the auxiliary

problem
su, 2w _ 3%
ot Y ax 5’
ax (10)
U(Xy 0) = ‘p(x)'

Here the differential equation is no longer hyperbolic, but of parabolic
type. It's solutions preserve smoothness if P(x) is a smooth function:

and if u(x, 0) is discontinuous, then the discontinuity is. smoothed. The
parameter p > O plays the same role here as viscosity in gas dynamics. As
p + 0 the solution of problem (10) tends to a limit which we can take to be

the generalized solution of problem (1). One can show that, for problem
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(1), this latter definition of the generalized solution 1s equivalent to
the definition based on conservation law (5).

§30. The construction of difference schemes

Let us proceed, now, to discuss the construction of difference schemes
for the problem
du 3u
3t T U -0
(1)
u(x, 0) = ¥(x).

We will assume, for the sake of definiteness, that P(x) > 0. Then
u(x, t) > 0. It may seem natural, at first glance, to consider the use of
the difference schemes

+
ST
—-—_l_-——---+um -—h——=0, p=0,1, «us,
=0, +1, «es, (2)
P _
u, = w(xm].
Freezing the coefficient ui at the point m = m0 we see that, for the

resulting equation with constant coefficients, in the transition to the
level t = (p + 1)T the maximum principle is fulfilled if the step-size,
T = TP, is chosen so as to satisfy the condition
' 1

r = ER.S
P max|uP

m

m

Thus we may expect stability. If the solution of problem (l) is smooth,
then there is little reason to doubt that problem (2) approximates problem
(1). And, in fact, in this case experimental computations of solutions
known, beforehand, to be smooth confirm convergence.

However, if problem (1) has a discontinuous solution, then convergence
to the generalized solution determined, let us say, by the integral conser-
vation law

§(uax -2 ac) =0, 3
r
cannot be expected on any reasonable grounds. Indeed, no information has
been built into the proposed difference scheme (2) as to just what sort of
conservation law ((8) §29, or (3), or perhaps some other) we have taken as
a basls for the generalized solution.
Therefore in constructing a difference scheme one must use either the
integral conservation law corresponding to the desired generalized solu-
tion, say law (3), or the equation with artificial viscosity (10) §29;
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+ =
u, uu qux, (4)
which accomplishes, as W + 0, the selection of the generalized solution
which interests us.

1. Schemes with artificial viscosity. Let us point out at once that

the difference scheme with artificial viscosity

+1
up - up uP - up up - 2up + up

m m p _m m-1 m—1 m m+1
- T + un ____E____ =W >

hz
0 =
Y w(me
has a solution, u(h) = {up} which, for sufficiently small T = t(h, u),

converges uniformly as h + 0 to the desired generalized solution outside
any prescribed neighborhood, however small, of the line of discontinuity of
this solution. It must be assumed, here, that p = u(h) tends to zero suf-
ficiently slowly. Various schemes using artificial viscosity are applied
successfully in gas dynamics calculations. Their weakness is the smearing
of discontinuities.

We turn now to consider, in detail, the construction of difference
schemes based on conservation law (3).

It is possible to distinguish two approaches. 1In the first one uses,

not only the conservation law (3) itself, but also the discontinuity condi-

tion
dx _ Uleft + uright (5)
dat 2 :

which this law implies. In the second the discontinuities are not singled
out, and the computation is governed by the same equations at all points of
the computational net.

2. The method of characteristics. The idea of singling out the dis-
continuity in computing the generalized solution is embodied in its clear-
est form in the method of characteristics, which may be considered as one
of the variants of the finite difference method. The development of dis-
continuities in the course of the computation, i.e. with increasing time t,
is taken into account via special equations, making use of relation (5) on
the discontinuity. Away from the discontinuity statements of the differen—
tial equations in all the forms we have encountered are equivalent. There-
fore, in constructing computational formulas at points where the solution
is smooth, we may take as our starting point the conservation law in dif-
ferential form, i.e. the differential equation

du Ju
3-g+uax—0.
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In its main outlines one of the variants of the method of character-
istics, a variant applicable to our example, may be sketched as follows.
Mark out on the x axis the points X = mh. We will assume, for the sake of
definiteness, that the initial condition, u(x, 0) = y(x), is given by the
smooth function Y(x). From each point (x s 0] draw a characteristic of the
equation u, + uu = 0. "

Suppose, in order not to complicate our presentation, that for the
given function, Y(x), one can choose such a small T that during any time
interval of length T a characteristic can intersect no more than one of its
neighboring characteristics. Select such a T and draw the lines t =t =
pt. Locate the points of intersection of the characteristic emerging from
the point (xm, O] with the line t = T, and translate to these points, along
the characteristics, the values of the solution u(xm, 0) = w(xm).

If, in the interval 0 { t < 7, no two characteristics have intersected
we take the following step; we extend the characteristics up to their in-—
tersections with the line t = 2T and translate the solution values along
the characteristics, to the points of intersection. If, during the time
t < t < 2t, there is again no intersections of the characteristics we take
the following step, etc., until on some segment t < t < t 41 two char—
acteristics, emerging for example from the pointsp(x N O] gnd
(xm+1, O], have intersected (Fig. 36). Then the midgoint of the segment

p+l pt+l

Q , Q will be taken as the point from which a discontinuity origi-
m+l n i p+l ptl |
nates. The points Qm and Qm+1 will be
t=€pe replaced by the single point }, to which
we ascribe two solution values, uleft
&
0:':; ” and uright’ taking for these quantities
N - 2=t the values
”p'l ‘pr!
m
= p = p
Yeft u(Qm) and uright u(Qm+1)'
07 0p t—tﬂ From the point Q we draw the disconti-
m i +/

nuity line up to its intersection with
Fig. 36. the line t = t o° The slope of the

discontinuity Eine is defined by the
discontinuity condition

+
Yleft uright
tan a = 3

From the point of intersection of the discontinuity line with
t = tp+2 we draw characteristics back to their intersections with the line

t =t e giving them the slopes uy the values of u assigned

e and u
e
at the previous level. At the points of intersection of these characteris-

tics with the line t = tp+1 we find values of u by interpolation in x, and
take these as the left- and right-hand values of the solution at the point

of discontinuity lying on the line t + In this way we can now define a

p+1
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new slope of the discontinuity line as the arithmetic average of the newly-
found left- and right-hand values, and continue this line still another
timestep T.

The advantage of the

method of characteristics is /5722f)y

that it allows one to track

the discontinuity and to (”7‘5’10*21)" 15/1771‘2'41/7*21)
compute it accurately. But in

the computational process more Aqa/v

and more new discontinuities

develop and, in fact, unimpor- Fig. 37.

tant discontinuities may
intersect, so that in time the picture becomes more and more complicated.
The computational logic becomes more complicated, the demands on computer
storage and computing time increase.

This constitutes the disadvantage of the method of characteristics, in
which the discontinuities are singled out and treated in a special manner.

3. Divergence difference schemes. Difference schemes which do not
use artificial viscosity, and do not use discontinuity conditions must, as
noted earlier, rely on integral conservation laws.

On the xt plane let us draw a net of lines t = pT, x = (m + 1/2)h, m =
0, 1, ... We next mark off the midpoints of the sides of the thus-formed
net rectangles (Fig. 37: coordinate axes not shown) and add these mid-
points to the net D .

The function {u], which we would like to calculate we take to be the
net function defined, at each point of Dh' by averaging the solution
u(x, t) along that side of the net rectangle to which the point belongs:

X
W a7 e
h‘ m h > opl
X=X =172
L=t
p
tp+l
=p+1/2 _ 1
[u]h,x‘x Um+l/2 T f u[xm+l/2’ t)dt.
= >
t=tm+l/2 p
ptl/2

The approximate solution of this problem is defined on the same
net D . Values of u(h) at the points, (xm, t ], lying on the horizontal

p and those at points

sides of the rectangle will be designated u
pt+

p+l/2] of the ve;tical sides by U m+l/2°

The values u  may be considered to pertain to the whole rectangle-

to which the point [xm, t ) belongs. Analo-

(xm+l/2’

side, t =t , X <x < LI

p B
gously, we will consider that U;+l/2 is defined on the whole vertical

interval
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= t < < .
*a+1/2° p t tp+l
Thus u(h) will be a function defined on the {}ges x = mh, t = pT. The
. s +
connection between the quantities ug and Ug+1/2, p=0,1, oo, m=20, #1,

+e., will be established by a process starting from the integral conserva-
tion law

2
¢ (udx - %— dt) = 0.
T

Let us take, as contour I', an elementary net-rectangle, setting

(h))?
- 4§ (u(h) dx - LE"——l‘ dt) =0, (6)

r 2
or, in expanded form

ptl _ p] . [ ptl/2y%_ ( p+1/2 2] B
h[“m “m] * 2[(Um+1/2) (Up21y2) ] =0 )

1/%f we can now set down a rule by which one can compute the quantities
+
P m=0, +1, ..., from already-known values of up, m =0, +1, ...,

then Eq. (7) will ?llow us to compute
t the quantities uP*

,m=0, +l, ...,

L i.e. to move ahead one timestep. But,

| I by whatever specific method we com—
pt+l )

& i pute U 1700 @ difference scheme of

form (7) has the divergence property,

which consists in the following.

%

!
"——-:———- Draw, in the half-plane t > 0, any
| closed contour, which does not inter—

T sect itself, and consists entirely of

7 the sides of net-rectangles (Fig.
Fig. 38. 38). This contour gh encloses some
region, G , made up of net rectangles.
We now add, term—by-term, all Eqs. (7) pertaining to the rectangles

constituting region G, . Equations (6) and (7) differ only in notation.

h
Therefore we may, as well, sum Eqs. (7), and we then get

2
-4 <u(h) dx - LEE;ll— dt) = 0. (8)
Eh

Integrals in (6), over rectangle-sides which do not lle on the boun-
dary, gh, of region G , will cancel after the summation. In fact eaﬁh such
side belongs to two neighboring rectangles so that integration of u over
each is encountered twice, with the two integrations carried out in oppo-
site directions (Fig. 39).

Schemes based on difference equations which, when summed over points
of the net-region Gh, involve only algebraic sums of unknowns, or functions
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of unknowns, on the region-boundary are called “divergen
"conservative schemes". Such schemes are analogous to d
equations In divergence form
3¢ 3¢
=1 2 _
dv & = 5=+ 3= =0,
which, when integrated term by term over the two-dimensi
yield, on the left-hand side, the contour integral (3) §
not in divergence form, scheme (7) is.
Note the following. Suppose the net

function, u , satisfying Eq. (7), con-

ce schemes” or

ifferential

onal region D

29. Scheme (3) is

verges uniformly as h + 0 to some
piecewlide-continuous function u(x, t) in

each closed region not containing a

discontinuity line, and let u be
uniformly bounded in h. Then u(x, t)
satisfies the integral conservation law

2
¢ (u dx - 5= dc) =0,
g
where g 1s an arbitrary piecewise—smooth contour.
This follows immediately from the fact that one can

approximate

contour g hy a contour gh, together with Eq. (8) and the assumption of

convergence* u,_ + u.

If scheme (7) is to take on meaning one must indicate a method for

+
computing Up+1 from known UE'S' In the scheme of S. K. Godunov, which we

will use to illustrate the concept of a divergence scheme, one computes

+
Ug+};§ via the following "discontinuity decay” problem.
t = 0 the solution u(x, 0) is given by the conditions
Y eft for x < 0,
u(x, 0) =

uright for x > 0,

where u = const and u = const. It is then possible to construct

left right

the corresponding generalized solution. How this can be done we have seen

in §29, first for the example u = 2, and

=1
left ’ uright

*The function u = u(x, t) is defined almost everywhere,

Suppose that at

then for u
le

while u(h) =

ft

ulh)(x, t) 1s defined only on a network of lines. One can circumvent
this formal inconsistency, first, by postulating that, as h decreases,

each new net is gotten by subdividing the last net, and
treating convergence at the points of one of the possib
structed for any one possible fixed h.

, second, by
le nets, con—

305

= 2,
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right = 1. An important step is the determination of the value U = u(0,t)
of Ehe solution u(x, t) for x = 0.

The reader, having constructed sketches like Figs. 33 and 34,
representing the solution u{x, t), will easily verify that on the line x =
0 the solution will take on the values Yeft’ uright or 0, depending on the
initial data, and can easlly determine, for any specific pair of numbers

u precisely which of these values it will have. For

d
eft an uright,

0 = i <0
example if Ulofr >0, uright > 0, then u(0, t) Ulefe? and if Y eft
and u , < 0 then u(0, t) = u_, .
right right
p+1/2

The quantity Um+1/2 (= U) in scheme (7) will be determined via the

analysis of a discontinuity decay problem at the boundary, x = x +1/2°

m
between two segments where we are given the constant values up (= uleft)
m

P =
and u (= uright)° P
If, for example, u >0, m=0, +l, ..., then

p+1/2 _ I _
ml/2 T Ylefr © “m? m=0, #l, ...,
and scheme (7) takes the form
2 2
+
" L. uP <up> oP )
n m o, L\m/ A\ mel -0
T h 2 2 ’
o xm+1/2
wo=y g J v(x)dx
m-1/2
or
+
up ! - up up + up up - up
m m o, m—1 m m m-1 _ 0
T 2 h ‘
One can easily see that, for
r = % £ L
max|u®
m
m
the maximum principle holds
+1
max | uP ’ < max uP < < max u < max]¢(x)].
m | m m vee mlm x

Clearly then, if T = h/max]W(x)l, we have reason to hope that the above
difference scheme will be stable for some reasonable choice of norms. We
will not, however, specifically point out such norms: numerical experi-
ments confirm that, as the net 1s refined, the solution u h of problem
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(7), with piecewise-monotonic and piecewise—smooth initial values Y(x),
converges to some function, u(x, t), with a finite number of discontinu-
ities; and, Ffurther, outside any neighborhood of these discontinuities,
convergence is uniform.
s p+l/2
Scheme (7), with U

m+l/2
of course, the only divergence scheme for problem (l). There is, for

computed via decay of discontinuities, is not,

example, a still simpler scheme based on the predictor-corrector idea.
This idea was formulated in 3822, For simplicity we limit our discussion
to the case ¢(x) > O.

First we wlll determine auxiliary quantities u from the non-divergence

implicit difference scheme

-p+l1/2 -p+1/2 -pt+l/2
et
/2 * Uy h = 0.
The value of the coefficient of u in the equation ut + uuX = 0 has been re-
placed here by up, and not by Gp+l/2, so that the resulting scheme should
m m

be linear with respect to the quantities to be computed.
Next we let

+1/2 1,~p+l/2 -p+l/2
:1+1/2 = 5luy +up ) )

and use scheme (7), (9). The divergence scheme so derived has second-order
approximation on a smooth solution.

A heuristic analysis using the Von Neumann spectral criterion, after
linearization and the freezing of coefficients, suggests stability for
arbitrary r = 1/h. Let us now carry out this analysis.

As a result of linearization, and of freezing coefficients, we get a

scheme of the form

£p+1/2 - £p+1/2 _ Gp+1/2
m m o, m m—1 =0
/2 a h ’
+ -p+ -p+ -p+ -p+
PP SpHL/2 | =ptl/2 =ptl/2  =p+l/2
m m . a m+1 __m m—1 =0
2 h 2 2 *

Given the initial conditions

GP = Glom
m
we get
-p+1/2 iom
u
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where

Further

where
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"= 1
B r -ia ’
1+ a ) aye
up+1 - )\elam,
m
A -1 , au ela _ e—ia -
T h 2 ’
2 + ar - re+ia
A(a) = _.—-—————ii——:{a N [A(a)| = 1.
2 + ar - are

Chapter



309

Part 4
PROBLEMS WITH TWO SPACE VARIABLE

Chapter 10
The Concept of Difference Schemes with Splitting

Difference schemes with splitting belong among our important tools for
computing solutions of the multidimensional time-dependent problems of
mathematical physics.

§31. Construction of splitting schemes

At a descriptive level the idea of the construction of splitting
schemes may be presented as follows.
Consider a differential problem of the form
3
3% = Au, 0<t (T,
(»

u|t=0 given,

where A is some operator in the space variables such as, for example,

2 2
Au = 3_3 + EME R
3x?  3y?
The value u(x, v, tp+l] can be expressed in terms of already known values
U(X, Y, tp)' tp = pT, by means of the relation

3 )
u[x, Y, tp + T) = [x, Y, tp] + T 3% + 0(1é) =
= (x, Y, tp] + TAu(x, Vs tp) + 0(7¢) = (E + TA)u(x, Y, tp] + 0(14).

(where E is the identity operator, Ev = v).
Suppose that the right hand side of Eq. (1) has the form

= + .
Au Alu A2u

We will, then, split Eq. (1)
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into the following two equations:

P

dw

T A2w, tp < t.ﬁ tp+1,

w(x, y, t ) = V(x’ Y tp+1)
Note that

w(x, Y tp+1) u(x) Y tp+1] + O(TZ)'
In fact

v(x, Y tp+l] = (E + TAl)V(x’ Y, tP) + O(Tz) =

Chapter 10

(2)

3

(4)

= (& + TAl]u(x, ¥, tp) + 0(12).

Further, taking account of the last equation, we have
w(x, Y, tp+l] = (E + rAz)w(x, Y, tp] + 0(12) =

= (E + TAz)v(x, Y, tp+l) + 0(12) =

= (E+ TAZ)(E + rAl]u(x, Vs tp] + 0(12) =

1

(E + TA)u(x, Yy tp] + 0(1?) = u(x, Vs tp+l

On the basis of Eq. (4) we can now, in each time interval t
tp+1, solve Eqs. (2) and (3) sequentially in place of problem (1).

) + 0(12).

[E + T(A1 + Az)]u(x, ¥, tp] + T2A Azu(x, Y, tp) + 0(12) =

e

In actuality, to solve (2) and (3) we approximate these equations by
difference equations of some sort. We then get a difference-splitting-

scheme, Lhu(h) = f(h), which allows us to compute up+1, in two stages, from

the already-known uP (in the first stage computing vPtl

from the given

vP = P and, in the second, computing up+l = wp+1 from wP = vp+1, using the

vl already computed 1in the first stage).

The above congliderations are heuristic in character. After some sort

of difference-splitting-scheme

(h) _ ¢(h)
Lhu f

(5)
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for computing the solution of problem (1) has been constructed we must
still, somehow, verify approximation and stability.
In the case of the Cauchy problem for the two-dimensional heat

equation
3 32 32
o _2u,2u 0<¢t<T, =-=<x,y<®,
at 2 2
3x dy (6)

u(x, y, 0) = 9(x, y)

we may take, for example, as the system (2), (3)

3 3¢
.§!=4, v(x, v, t ) =u(x, y, t_),
t a2 P P (7
dw 32w
Fr ;;;, w(x, v, tp) = v(x, v, t:p+1)'

This splitting of the two dimensional equation of problem (6) into two
one-dimensional equations (7) can be interpreted as an approximate replace-
ment of the process by which heat spreads in the xy plane, in time t < ¢t
{t by two processes. In the first of these, described by the first of

— +1°
Eqs. (7), one iatroduces (conceptually) non-heat-conducting

P
Unin
o Z
”/77 -7 mn
’ Yn "
”/77, n+!
2
> qmtﬂn
Umn
P
”m-/,ﬂ
Fig. 40. Fig. 41.

partitions preventing the spread of heat in the y-direction. Then, during
time-interval 7, instead of those partitions one introduces others prevent-
ing the spread of heat in the x direction. This spread of heat, again in
time-interval t, 1s described by the second equation.

We now choose the net (x , ¥, t ) = (mh, nh, pt):

A difference—splitting—sgheme based on (7) can be constructed in many
ways. We consider two possibilities, 1l.e.,
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u_ -dP
mn mn _ p
T xxmn?
p+l _ ~
u u
mn mo_ o, (8)
»
T yy mn
(U
“an W(xm, yn)
and
o -uP
mn mo_
T "xx"mn?
p+l _ ~
umn umn o ptl 9)
———————— = Ay ,
T yy mn
U =y .
Yin ,[xm’ yn)
In both splitting schemes we set
~ _ ptl _ p ptl _  ptl
u v w , u zw .
mn mn mn mn mn

Let us recall that, in notation defined earlier

- 2 +
_ um+l,n Yo um—l,n
A u =
XX mn h2 ’
-2 +
_ um,n+l Yon um,n—l
u =
yy m W2

Scheme (8) is represented schematically in Fig. 40, scheme (9) in Fig. 4l.
The splitting of problem (6) itself is also not unique. One can, for
example, write the problem in the form

2 2 32 2
fu-p(Bu, ), (e, 20,
ax? ay? ax? ay?

u(x, y, 0) = (%, y),

(67)

constructing, correspondingly, in the interval t <t
two systems:

the following

1A
(md

p+l?
v _ 1<32v 32y

—_— <t <t
Tt 2 + 2>’ t:p-— — “p+l’
X’ dy (10)

and
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dw _ 1 {32 92w
’&"’Z<_—+——z—>' I E S
32 dy (11)

w(x, Y, tp) = V(xr Ys tp+1)’
Such a splitting is not a physically-based splitting like scheme (7). We
now choose a difference scheme as follows (Fig. 42):

-u
mn mn _ 1 P
-/ Z (Axxumm * Ayyumn)’
ptl _ ~
u u
an m _ 1 p+l ~ (12)
T z (Axxumn * Ayyumn) ’
0 o .
“mn W(Xm, yn)

To calculate yP*! by alternating-direction scheme (12) oune must,
first, for each fixed m, solve the implicit equation for Emn’ in which m
occurs as a parameter. Then to

P/ +/
u,/:_’,” Yan ”,,",7./'” compute uP:1 it is necessary to
g solve the second equation (12),
b implicit with respect to ugzl, in
yn=t Ynn which n occurs as a parameter.
A Scheme (8) can be written in
11+
form (5) if one sets
P
llmqﬁ[’n P+l -
» 2 Ym = Ymn \ ~
/7771 bl a
Y-t Lo < T yy m?
Fig. 42. W,
mn

where 4 =uP + T4 uP 1ig determined from the first of Egqs. (8). Then
mn mn XX mn

0 m, n =0, +1, «eo; p=0,1, «eo, [T/T]-1

=]
]

(=
»

+

.
-

.

.

"’(xmr yn), m, =

We propose to the reader than he write schemes (9) and (12) in form (5).
The reader may verify that the Von Neumann spectral stability
criterion (i.e. the requirement that solutions of the form uP =
APexp[i(mm + Bn)] should remain bounded) is satisfied for scﬁgme (8) with
any r = 1/h? < %, and for schemes (9) and (12) is satisfied for any r. We
will not pause here to study the stability conditions, or to prove approx—

imation, for schemes (8), (9) and (12).
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PROBLEMS

l. Determine for which r = T/h? the Von Neumann spectral criterion is
satisfied for difference-splitting-schemes (8), (9) and (12), introduced in

the text above.
2. Verify that scheme (8) approximates problem (6) on a sufficiently

smooth bounded solution u(x, y, t).
3. Repeat problem 2, but for difference-splitting-schemes (9) and

(12).
§32, Economical difference schemes

We will now consider and study examples of difference-splitting-
schemes for the heat-conduction problem

2 2
%3__1;+i;, 0<x,y<1, 0<t<T,
ax? 3y
uGx, v, 0) = ¥(x, ), 0<x y <1, “)

U(X, Ys t)IF =0

in the rectangular region 0  x, y < 1 with boundary I', using the usual net
(x , t,t])=1(mh, oh, pt), m, n =1, 2, «e., N and h = 1/N.

The difference—splitting-scheme which we now introduce has, in certain
respects basic advantages over the simplest explicit

pt+l P 9
Ymn T Ymn p p
= u + u_
T XX mn yy mn
wWo=(x, v ), (2)
mn m ‘n
uzn =0
r J
and the simplest implicit
ptl _ p
“inn Ymn p+l p+l
——ee 2 AU u »
T XX mn uu mn
U = 3
umn "’(xm) yn): ( )
uE =0
iy

difference schemes.
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Computation by explicit scheme (2) 1s very simple. To proceed from
the already known uP to the unknown up+1 = {uszl} we must execute arith-
metic operations whose number is proportional to the number, (N-1)2, of
unknowns {ugzl}. In this sense the explicit scheme is the best possible.
Difference schemes in which the number of arithmetic operations involved in
the step from uP to up+l = {up+1} is proportional to the number of unknowns
are called "economical™. On ?ge other hand, although it is economical, the
explicit scheme 1s stable only under the very stringent condition T S_hz/h
on the timestep T. The above “simplest implicit difference scheme"” (3), as
we already know (see 3§27) is absolutely stable. But it is far from econo-
mical. To calculate the unknowns {ugzl} one has to solve a complicated
(non-separable) system of linear equations. As we know from the analysis
of numerical methods, this requires that we perform numerical operations
whose number 1s proportional, not to the first power of the number of un-
knowns as in economical schemes, but to the cube of the number of unknowns,

if one uses some sort of elimination method.

* *x k k k& %

We note that a search is now in progress for more economical ways to
solve general linear systems. Strassen has pointed out an algorithm re-
quiring a number of operations proportional, not to the third, but to the

logy(7)'th power of the number of unknowns.

* k %k

The difference-splitting-scheme which we will now construct is
economical and unconditionally stable, i.e. it unites the advantages of
explicit scheme (2) and implicit scheme (3).

As regards the solution u(x, y, t) of problem (1), we will assume that
it has derivatives continuous right up to the boundary I', of all orders
required in the course of our work. Note that, on the boundary T', all
even-order space derivatives (up to all orders for which they exist and are
continous) will vanish

u = u =u
XX|p XA | XXyYip

= 0. (4)

Thus, along the side x = 0 of the boundary ' of the square 0 { x, y £ 1,
the derivatives du/3t and 32u/dy? both vanish. Therefore, since

u =u_+u_, alsou = 0. Differentiating the equation twice by y we
t XX yy XX
get
du
XY =

+ .
5t Yxxyy T Vyyyy

But on the side x = 0 of boundary I' we have
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du
u_ =0 u =0 XY -0
yy ’ yyyy ’ 3t ’
and, therefore, it follows from the differential equation that also
u = 0.
XX

Now let us proceed to construct a difference-splitting-scheme for
problem (l1). In parallel with problem (l), on the interval
. we pose the two problems

tp <t < tp+1
3v _ aly
TS T
ax? (5)
Vlr =0, V(x: Yy, tp] = u(x: Y tp]’
2w _ 3%
3t L, °?
3y (6)
W’[‘ = 0) w(x, Y tp) = V(X, Y tp+1)'
The net function
(h) _ ¢ p T p -
u {umn}n umn = ‘!’(xm) yp)) umn r =0
will be determined, sequentially, from the equations
Uon " U~
= = Axxumn’ my,n=1, 2, «ss, N-1
N
umn'r = 0;
ptl ~
u -u
m_mno_ o, P mon =1, 2, «eu, N-1,
T yy mn
+1 @
uP = 0.
m iy

Problem (7) 1s analogous to problem (5), while (8) is analogous to (6).
Here
+ ~ +1
P ] LR L p

v . W u_ -, u
mn mn mn mn mn mn mn

Using (7) and (8) one first computes the auxiliary function U  from
oP = {Ugn} and then, from (8), computes oP*tl {uggl}.
Note that difference scheme (7) for Emn’ for each fixed n, n = 1, ...,

N-1, exactly coincides with the implicit difference scheme
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vp+l - P "
mn mo_ . P
T XX mn

for the one-dimensional heat equation on the interval 0 { x { 1, in which y
enters only as a parameter.

Difference problem (7), for each fixed n, is solved by FEBS in the
direction of the x axis. In precisely the same way difference scheme (8),
for each fixed m, is solved by FEBS in the direction of the y axis. We
note that, by virtue of the properties of the FEBS algorithm, the total
number of arithmetic operations required for the computation up+1 = {ugzl}
turns out to be proportional to the number of unknowns, i.e. difference
scheme (7), (8) 1s economical.

So as to formulate the concepts of approximation and stability exactly
we write difference scheme (7), (8) in the form we have taken as standard
throughout this book,

La(M = g(W), 9
h
For this purpose we set
ug;l - ;mn ptl
—_— - Ayyumn , my, n =1, 2, «ea, N-1,
La® = (et (10)
h mn
r
u
“n?

where ;mn is the solution of the auxiliary problem

;mn - “En ~
— = Axxumn , my,n=1, 2, +.., N-1,
(11)
u = 0.
ma|
In this case we must then take, as f(h),
0, m, n =1, 2, +e., N-1,
h) _
f( 0, (xm, yn] in T, (12)
wx_, y )

Ag a norm in Uh we take
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™1y = wax |uP)

h m,n,p

Elements in Fh will have the form

P
L

g =40,
")mn

and the norm in Fh will be defined by the equation

llg(h)llF = max ¢gn + max lwmnl'
h m,n,p m,n

First let us demonstrate the unconditional stability of difference scheme
(9), defined by Egs. (10) and (12), and approximation will be proven later.
In view of the linearity of difference scheme (9), to prove stability one
will have to show that the problem Lhz(h) = g(h) has a solution for

any g(h),
¢P
mn
g(h) = 0 in Fh,
P
mn

(h) (h)
Hz"" 11y < elle g
Uh - Fh

and, moreover,

where ¢ does not depend on h.
Let us now write the problem Lhz(h) in expanded form:

p+l ‘;
2 - + +
Lt m_ g GPY) L Pt mon=1, 2, .., N1,
T Yy mn mn
! ! (13)
ptl _ p+l
20n “Nn 0,
where Zmn is the solutlon of the auxiliary problem
;mn - Zﬁn ~
- Axxzmn’ m, n =1, 2, «.., N-L,
(14
Z .=z =0,
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while

By the maximum principle, proven in §28 for the one-dimensional,

implicit, difference scheme approximating the one-dimensional heat equa-
tion, it follows from (13) that

+1 ~
max zp < max |z + T max |¢p ‘ .
m | = mn mn
m,n m,n m,n,p
But from (1l4)
max ; £ max 2p ' .
m,n m,n
Therefore
+
max zp < max zp + T max ¢p .
mn | = mn
m,n m,n m,n,p
so that
1 -1
max 2P ‘ < zp + 2T max ¢p ‘ <
mn 2
m,n m,n

< max | | + T max '¢p ' <
= mn mn
m,n m,n,p

< e D(max P |+ omax o2 ) = e D [1e™
m,n m m,n,p mo h

The above inequality

+1
ZP

(b)
m | £ G+ DIe R,

max
m,n

is valid for any p, and therefore
(h) (h)
2"y < a+Dlle ]
U = By

for any arbitrary relation between step-sizes T and h. This means that the
splitting scheme under consideration is unconditionally stable.

Let us now proceed to verify approximation. It will be assumed, as
usual, that problem (1) has a sufficiently smooth solution u(x, y, t). We
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will compute the residual Af(h), Lh[u]h = f(h) + Af(h), which develops
when [u], 13 substituted into the left-hand side of Eq. (9), and show
that ||Af(h)||Fh = 0(T + h2).

By the definition of Lh we have
mn

T - Ayyu(xm’ Yu? tp+1)’

r u(xm,yn, tj)i].) - ;

mn=1, ..., N-1,
L lul, = (15)
0 at points on T,

u(xm’ yn; 0)» my,n=1, ..., N-1,

.

where u n is the solution of the auxiliary problem
mi

u - u(x » Y o ) ~
= r‘ll'l = - - Axxumn = 0’ m, n = 1; 2) ee ey N"l,
(16)

~

umn, 0.
r

The solution Emn of auxiliary problem (16), as we will show below, has the

form

:mn = u(xmn Yoo ) + TAxxu(xms Yoo ¢ ) + O(Tz)’

p P

mn=1, 2, ..., N-1, (17)

; = u(x N yn, t

mn'p m P)'F =0

Inserting this expression for u o into (15) we get
m

’ yn) t‘p.’.l) - umn

ulx
T yy m’ “n p+l) =

m

“(xm’ Yo tp+1) - [u(xm, Yo tp) + TAxxu(xm, a? tp) + O(Tz)]

) -l v )

- : = p+l m _
Ayyu(xm’ Yn? |:p-i-l) T
- Axxu(xm, yn, t ) - Ay u(xm, yn, t +1) + 0(1) =
2 2
A (3 _3u 3 +0(t +1n¢) =of1t +n2).
5t x4 ay2
xm’ yn) tP

10
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Thus
0 + 0(T + h?)
- _ () (h)
Lh[u]h = 0 + 0 = f + Af R
wx, y ) +0
where
O(T + h?) at points on (xm, Yo tp),
(h)
Af = 0, p = 0, 1, cey [T/T]—ly
o, mn=1, 2, ..., N-1.
Therefore
(h)
| Ing Ith =0(t + n2).

It remains for us to prove the approximate representation (17) for the
solution Gmn, of problem (16). First we bring out some heuristic consider-
ations suggesting representation (17). It is clear that, for small T, we
may write the approximate equation

u = u(x, v, €.

1f, on this basis, in Eq. (16) we were to replace the expression Axxﬁmn by
the expression Axxu[xm, Yo» t ), we would get the equation

P
u

— LA u= 0,
T XX
from which follows the equation u = u + TAxxu, which differs from (17) only
in the remainder term O(712). Let us now proceed to prove the validity of
(17).
First, to complete the definition of Axxu[xm, Yo tp), we set
A u = 0. Substituting
X%

o = 05gs €00 €) # T ul v, €

in place of Emn, into Eq. (16) we get
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wmn - u(xm, yn, tp) N i}
T xx"m

Tu(x

+ TA t
» yn) tp) T xxu(xm’ ynn
T

 lulx, b=l vne)

- Axxu[xm, yn, tp) - TAxxAxxu[xm, yn, tp) =

= - TAxxAxxu(xm, yn, tp].

Assuming that 3“*u/3x* is continuous and bouanded, and taking into account

2

that 224 = 0, it 1is easy to see that A_A u(x » Y, t ) is bounded.
; xx xx + m’ “a’ “p

x|

Therefore
w -—ulx,y,t)
mn m’ ‘'n’ p’ w = 0(1),
T XX mn
= 0.

“m|
mnr

Subtracting Eq. (16) term by term from these equations we get, for the

difference z =w_ _-u_,
mn mn mn

z - TA =z = 0(12),
mn XX mn

(18)
z ' =0,
mo |
or In expanded form
1 = 2
- + = + =
rzm—l,n Z(r Z)Zmn rzm+l,n o(t=),
m,n=1, «., N-1, (187)
= =0 = 2,
Zo0 = Zun , r = 1/
But this problem for (zmn) has the form
amum_1 + bmum + cmum+1 = gm, m=1, +.,, N-1,
u =u_ =0,

a >0, ¢ >0, |b|>a +c +8, & =1,
m m m — m m

In $4 it was shown that, in such a case

10
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max ]um| e maxlgml,

where c depends only on §. Therefore z 0" 0(t2), i.e.
m

= s 2y =
z wmn o(t<)

= u(xm, Yy tp] + TAxxu(xm, Y, tp] + 0(12).
which coincides with representation (17), as was to be proven.
PROBLEMS

1.
propagation of heat in the square region 0 { x, y < 1, propose and
investigate a difference-splitting-scheme, analogous to the explicit
splitting scheme (8) of §31 for the Cauchy problem.

2. For the differential boundary-value problem (1) propose a
difference scheme analogous to the alternating-direction scheme (12) of
§31.

For the differential boundary-value problem (1), relating to the

Prove that approximation 1s of order O(T + h2).

3. To solve the problem
32 2
g_:=_“ 3 0<t<T, (x,7y)inD,
axz 3yl
u(x, y, t)lr = ¥(x, y, t) u(x, y, 0) = ¢(x, y)

in the case of a
scheme analogous
(1) in the above

region, D, with curved boundaries, propose a difference
to the difference-splitting-scheme considered for problem

text.

§$33. Splitting by physical factors

The idea of splitting is used not only as a basils for development of
economical and absolutely stable schemes. Sometimes one splits a compli-
cated problem into simpler problems so as to separate, 1in each small time-
interval t <t <t 1’ the action of various factors which influence the
process under study. For the resulting, relatively simple, problem it then
becomes easier to comstruct satisfactory difference schemes which, togeth-
er, constitute a difference—splitting—scheme for the entire problem.

By way of example we cite the method of super—particles, developed by
0. M. Belotserkovskii and Yu. M. Davidov (U.S.S.R. Comp. Math. and Math.
Phys. 11, #1 (1971)) intended for the computation of gas flow with strong
deformation of the medium and large density oscillations.. This method, like
Harlow's particle-in-cell method can, as pointed out by N. N. Yanenko, be
treated as a certain difference-splitting—scheme for the gas—dynamics

equations. The whole medium 1s split up, by a net of statlonary lines (and
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it should be noted that we are considering, here, the two dimensional
problem), into cells. The material contained in a cell at time t_1s a
“super—particle”. To it 1s ascribed a momentum and total energy. Next one
constructs a difference scheme modeling the change in speed, momentum and
total energy of the super-particles under the influence of pressure alone,
without taking into account those terms, in the system of gas dynamics
equations, which describe the transport of matter, momentum and energy.
This is the first step in the difference-splitting-scheme. In the second
step one recomputes intermediate values, resulting from the first step, by
a difference scheme which treats the remaining terms In the gas—dynamics
equations, i.e., treats only the flow of matter from each cell to its
neighbors, and the corresponding flow of momentum and energy. Thus one
produces super—particles, with their corresponding momentum and energy, at

time t = + T.
ptl tp
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Chapter 11
Elliptic Problems

$34. Simplest difference scheme for the Dirichlet problem

Here we will confirm that the simplest difference scheme (13) §24
approximates the Dirichlet problem (12) §24 to second order in h, and 1s
stable, so that 1t may be used for the approximate computation of the
solution of the Dirichlet problem.

The Dirichlet problem for the Poisson equation in the square region
D=(0<x, y<1), with boundary I', will be written in the form

2 2

3 s 3%u _ a(x, v), 0<x, y<1,

ax2 Byz (1)
ull = (s,

where s is the arc length along the boundary T', and the functions $(x, y)
and V(s) are given.

The set of net-points [xm, yn] = (mh, nh) (h = 1/M, M a positive
integer) falling in the square or on its boundary will be denoted by Dh‘
The points of Dh lying strictly inside the square D will be considered
"internal points” of the net-square Dh: the set of all internal points we
call D%. The points of Dh lying on the boundary I' of square D will be
considered "boundary points” of net-region Dh' and the set of boundary
points will be denoted by Fh. Difference scheme (13) §24

Lhu(h) = g(h) (2)

we now write in the form

B L A N L
Lu = (3)
], [x > Y ] inT ,
m’ “n h
where w[smn] is the value of the function y(g) at the point (xm' yn)

belonging to Fh.
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1. Approximation. The right-hand side, f(h), of difference schene
(2) has the form

» Yp)s (xgr vo) in DY,

s ], (xm, yn] fnl .
Assuming that the solution, u(x, y), of problem (1) has bounded fourth
derivatives one can, with the aid of Taylor's formulas, derive the equation

h XX vy
. 3% , 3%2u , h2 <3"u(x + Eh, y) 4 Atulx, y + nh)> ) (s)
Ix?  ay? % ax+ 3yt

Therefore for the solution u(x, y) of problem (1) we may write

¢(xm’ yn) + O(hz)) (xm) yn) in D%)
L [u] = (6)
hooh w(smn] + 0, (xm, yn] in Fh.

Thus the residual, Gf(h), which develops when [u]h is substituted into the
left-hand side of difference scheme (2) has the form

O(hz], (xm, yn) in D%,
se(M) < )
0, (xm, yn] in Fh.

In the space Fh, composed of elements of the form

U
- ¢mn’ (xm: yn) in Dh’
£ =
wmn’ (xm, yn) in I'h’
we Introduce the norm
HE™L = max (s |+ max [ | (8)
h (wmh,nh) in DY ™ (mh,nh) in T ma

h

Then

||6f(h)||Fh - o(w2).
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Thus difference boundary-value problem (3) approximates Dirichlet problem
(1) to second order with respect to h.
2. Stability. Let us define a norm in the space, U , of functions

h
given on the net Dh’ setting

. (9

h
™)y = max
h  (mh,nh) in Dh

To prove stability of difference scheme (3), as is our present goal, we
will have to establish that, in accordance with the definition of
stability, problem (2) has a unique solution for any arbitrary right-hand
side f h) (a property which does not depend on choice of norms), and that

h h
Ha® 1, <elle™), (10)
h h
(h)
where ¢ depends neither on h nor on f .
Lemma 1. Suppose that the function v(h) = {v_} is defined on the

net D and at intermal points, (xm, yn) = (mh, nh) in Dg, satisfies the

condition

A (P > 0, (mh, nh) in D0, (11)
(mh, nh) —

. h R . .
Then the maximun of v( ) over the set D, is attained at ome or more points
of Fh.
Proof. Assume the opposite. Choose, among those points of D _ at
(h)
which v
largest abcissa. By our assumption (xm, yn) i{s an internal point and,
. At point m,n then we have

attains it's maximum, any single point (xm, yn) having the

further,vmn is strictly larger than Vm+1,n

(h) -
v =
(mh, nh)

)+ (v )+ (

(v -v - v v v
m+l,n mn m,n+l mn m—1l,n m m,n—1 m g
b
h2

A

since, in the numerator, the first expression in parentheses is negative,
and the others are non—-positive. But this conclusion contradicts (1l1).
Lemma 2. Suppose the function v(h) = {v_} is defined on the net

D and, at interior pointe (mh, nh) in Dg, satisfies the condition
A () <o, (mh, nh) in D). (12)

(mh, nh) -
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(h)

Then the minimum value of v on the net D, 18 taken on at least at one

h
point of the boundary.

The proof of Lemma 2 is analogous to that of Lemma 1.

Theorem (“maximum principle™). Every solution of the difference

equation

Ahv(h) =0, (mh, nh) in Dg. (13)
(mh, nh)
attains its maximun and minimum values at points of ry.

A proof may be constructed by combining what is asserted in Lemmas 1
and 2.

This property of the solution of difference equation (13) is analogous
to the corresponding property of the solution, v(x,y), of the Laplace
equation vxx + vy = 0, a solution which also takes on its least and
greatest values on the boundary of the domain where it is defined.

From the maximum principle it follows that the problem

AhV(h)l =0, (mh,nh) in DY,
(mh,nh)
L u(h) = (s
(h)'
u

(mh,nh) = 0, (mh, nh) in T

h’
has only the vanishing solution u(h) = 0, since the greatest and smallest
values of this solution are taken on at points of T , where uo s 0.
Therefore the determinant of the system of linear equations (3) is
different from zero, and difference boundary-value problem (2) has a unique
solution for any arbitrary right—hand side f h .

Let us now go on to a proof of bound (10). By virtue of Eq. (5), for
every polynomial P(x,y) of second (or even third) order

P(x,y) = ax? + bxy + cy? + dx + ey + f

we have the equality

2 2
AP = 2P, 3P (15)
ax2  ay?

since the fourth derivatives of P(x,y), which appear in the remainder terms
of Eq. (5), all vanish.

Using the functions ¢ and wmn which form the right-hand sides of
system (3), and taking R > , we construct the auxiliary function

P, v =R (2 4] max e |+ max |y
(mh,nh) in Dg (mh,nh) in I

mn
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which we will consider only at the points of D . This latter fact 1s
indicated by the superscript h in the notation P(h)(x,y)- From (15) we see

that, at all points of D%

11}

AhP(h) - max |¢rs|’ (mh,nh) in D%.
x=mh, (rh,sh) in DY
h
y=nh

(h)

Therefore, at the points of Da, the difference between the solution u
of problem (3) and the function P(h) satisfies the relations

(h) _ _(h)y _, (h) (h) _
A, (u ) = Au AE =+ max 4| > 0.
r,s
By lemma 1 the difference u(h) - P(h) takes on its greatest value on the

boundary Fh. But there this difference

ROTIEMCOI _p(™)]

h = I' wmn

mn

1 . .
= [¢mn - max |¢rsl] + Z[(xz + y?) - r?] max '¢rs
(rh,sh) in Fh (rh,sh) 1in D%
is nonpositive since, everywhere in square D, 2 + y2 < R? and both square
brackets on the right-hand side are nonpositive. Since the greatest value

of u(h) - P ) is nonpositive, then everywhere on Dh

OO KOO

(mh,nh) < 0 or

Similarly, for the function a4 p(M) o the points of D% we have

Ah(u(h) + (M) ¢ o,

and at the points of Fh the sum u(h) + P(h) is non-negative. By lemma 2,
everywhere on Dh

h
u(h) + P(h) >0, or —P(h) S_u( ).
Thus, everywhere on Dh
(h) 1.2
lu 0 < IR T <7 R max o 1+ max ¥l

(rh,sh) 1in D% (rh,sh) in T

from which we get inequality (10):
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h h
maxlu_| = 11a™ 11, <elle™), -
h h
= max e 1+ max |‘J’rs|),
(rh,sh) in D;)] 8 (rh,sh) in T
where

c = max[l, %—],

completing the proof of stability.

In the case of the Dirichlet problem for the elliptic equation with
variable coefficients

] 3 ] 3
3 ey gl + g Loy gl =2y, (9 e,
ulr = "J(S))

where kl(x,y) and kz(x,y) are positive, smooth functions in the rectangle
D, one can construct difference equations analogously. Replacing the
derivatives 8/8x(k1 du/dx) and B/By(k2 3u/dy), at interior points of the
net Da, by difference expressions via the approximations

3 ~
ey (x,y) 2T 2 T uix,y) =

i

=2 N

[k (x + 072, ¥) ux * b, Z) - ulx,y) |

- kl(x - h/2, ) u(x,y) - E(x - hy)],

du(x,y)

3
Tk Y =5t

| = Ayyu(x,y) z

= 4

u(x, y +h) - u(x,y) _
h

h

[ky(x, y + 1/2)

- kz(x’ y - h/2) u(x,y) - E(Xy y = h) ]

we get a difference scheme (2) of the form
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LA Ké;‘)u(h) = $(mh, nh), (mh, nh) in DY,

(h)

Liu =

h
ul = ¢(s ], (mh, nh) in Fh.

Using Taylor's formula one can convince oneself that approximation 1s of
second order. It 1Is possible to prove stability of this scheme after
overcoming some additional difficulties which do mnot appear 1in the simpler
examples we have chosen to consider.

In practice in treating specific problems one limits oneself,
ordinarily, to very fundamental theoretical considerations, based on the
analysis of model problems like those above. Concrete error estimates are
obtained, as a rule, not from theoretical bounds, but from intercomparison
of the results of computations carried out with various stepwidths, h.

After a difference boundary-value problem, approximating a given
differential problem, is constructed one still needs to specify a method of
solution which is not "too difficult”. After all, for small h problem (2)
is a system of scalar equations of very high order. 1In the example we have
chosen the solution of the difference equations 1s a complex and inter-
esting problem, but we defer consideration of this problem to §§35, 36.

PROBLEMS

1. Show that 1if, at the interior points of domain Dh’ the function

u(h) satisfies the equation
Ahu(h) =0, m,n=1, 2, ..., M~1,
(mh,nh)
Mh =1,
(h)

then either u takes on, everywhere in D,, one and the same value, or the
greatest and least values of u(h) are not gttained at any interior point of
the set Dh (the “"strengthened maximum principle”).

2. 1f, at all internal points of the domain Dh’ the condition

Ahu(h) > 0 is satiified and, moreover, strict inequality holds at least at
one point, then u does not attain its maximum at any interior point.

3. Consider a difference scheme Lhu o f of the form
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+ + -
r um+1,n um,n+1 um-l,n + um,n-l humn -
h2
(h) = ¥(mh,nh), (mh, nh) in DU,
Bt F 1)
Yan © wl(smn) on I‘h ’
u -u
1 0
\—ﬂT—Ln=¢2(nh), n =1, «.., M-1,

This difference scheme approximates the problem (see Fig. 43)
32 3%y
_‘_u + — = #(x,y) (x, y) in D,
Ix2  ay?

(L
u(x,y)! =% (s), (x,y) inT "7?
¢)) 1

du 2
- = q)z(s), (x, y) in 1"( ).
£(2)
a) Prove that for any ¢(mh,nhg, wl(smn)
and Wz(nh) the problem Lhu( = f has a
p p unique solution.
I D ]'” b) Prove that i1f d(mh,nh) is non-negative,
a?g)wl(smn] and wz(nh) are nonpositive, then
‘ u is nonpositive.
¢) Prove that for any ¢, ¢1 and wz there
Fig. 43. exists a bound of form
max |umnl S_c[max|¢mn| + max (h) le(smn]l + maxlwz(nh)l],
m,n m,n (mh,nh) in Pl n

where c 1s some constant not depending on h. Compute c.
§35. Method of time-development

1. TIdea of the method of time-development. To calculate the
solutions of many of the stationary problems of mathematical physics,
describing various equilibrium states, one considers these equilibria as
the results of the approach-to-steady-state of processes developing in
time, whose computational treatment is simpler than the direct calculation
of the equilibrium state 1itself.

We 1llustrate the use of the method of time-development via the
example of an algorithm for the computational solution of the Dirichlet
problem
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+ A = = S -
Axxumn yyumn @(xm, yn], m, n=1, 2, , M-1,
(1)
umnlr B IlJ(Smn >

approximating the differential Dirichlet problem

3%y 32y

,+_,=¢(X)Y)s OSX) Y_<_1!
BXZ ay‘i (2)
ulp = v(s).

In the case of problem (1), which we will consider here, it will be
possible to carry out a theoretical analysis of various time-development
algorithms with the aid of finite Fourier series. Note that, for the
golution of elliptic difference problems like problem (1), much more
effective iterative methods have been developed. Some of these will be
described in §§36, 37. Methods for the exact solution of problem (1),
capable of generalization to the case of variable coefficients and domains
with curvilinear boundaries (like the Gauss elimination method) for M at
all large become very inconvenient, and tend not to be used.
We present, first, some introductory, orientational considerations.
The solution u(x,y) of problem (2) can be taken to be the time independent
temperature at point (x,y) of a plate in thermal equilibrium. Functions
d(x,y) and Ww(s) are in this case, respectively, the distributions of heat
sources and the temperature on the boundary.
Consider the auxiliary nonstationary heat-flow problem
2 2
%% = 3—£-+ 3—2 - d(x,y),
Ix2 Qy‘2

ul, = u(s), )
UCx, 3, 0) = b, (x, ¥),

where ¢ and  are the same as in problem (2), and ¢0(x,y) is arbitrary.

Since the distribution of heat sources $(x,y), and the boundary
temperature 'w(s), are time-independent, it 1s natural to expect that the
solution, U(x,y,t) will change more and more slowly with time, and that the
temperature distribution U(x,y,t), in the limit as t > =, will evolve into
the equilibrium temperature distribution u(x,y) characterized by problem
(2). Therefore instead of stationary problem (2} one can solve
nonstationary problem (3) out to the time, t, when the solution stops
changing within the accuracy we require. This is the idea behind the
solution of stationary problems by the “method of time-development™.

In accordance with these considerations we will solve problem (3)
instead of (2), and instead of difference scheme (1) for problem (2), we
consider and compare three different difference schemes for problem (3).
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First we will consider the simplest explicit difference scheme

1
Y TV e a g o *
T = Axxumn yyumn - ¢(xm’ yn]’
p+l _ >
Ymn r w[smn)’ )
g =
“mn wO(xm’ yn)' J
Then we examine also the simplest Implicit difference scheme
+
“gnl B “gn ptl ptl )
T = Axxumn + Ayyumn b ¢(xm’ yn]’
wl, - P
“m | ey ), (5
U=
Yo lPO(xm’ yn)' J
Finally we will study the alternating-direction scheme (12) §31:
-~ P
u _~u
mn mn _ 1 ~ P 3
T - 7'[Axxumn + Ayyumn ¢(xm’ yn”’
1~
“g: " Ymp 1 ~ ptl
T = I'[Axxumn yy'mn T 4)(xm’ yn)]’
> (6)
ol =l
u =u =(s_]J,
m | mal mn
vo=
Yon wO(xm’ yn]' J
It will be assumed that wo(xm, yn) is so defined that on the boundary
= . 7
bo| =¥, (7

The computation of WPt - {ugzl}, given uP

t equations.
“g:l}’ given uP
requires the solution of the problem

scheme (4) by the use of exYlici
The computation of up+ = {

{up }, 18 accomplished in
mn

{ugn}, by scheme (5)
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L P
ptl ptl _ “mn _ _ _mn
Mmn Ayyumn T ¢(xm, yn) T *
+1
up = ¢(s ).

mn mn

r

This problem is in no way simpler than the original problem (1). Therefore
it makes no sense to use this scheme for the approximate solution of (1).
Finally, the computation of up+1 = {ugzl} from given uP = {ugn} via scheme
(6) 1is accomplished by the FEBS method used, first, in the direction of the
x axis for the solution {;mn} of one—dimensional problems for ei%h fixed n,
and then in the y direction for computation of the solution {uin } of one-
dimensional problems for each fixed m.

The number of arithmetic operations is then proportional to the number
of unknowns. For each of the two schemes, (4) and (6), which we set aside
for further study, we will consider the difference

P =uP -y (8)

mn mn mn

between the net function uP = {ugn} and the exact solution, u = {umn}’ of
problem (1), whose existence was demonstrated in §34.

We will determine under what counditions the ertot Eﬁn in the solution
ugn of the nonstationary problem tends to zero with increasing p, and also
the character of this convergence towards zero; we then choose an optimal T
and evalute the volume of computational work required to decrease the norm

of the original error

e = wo(xm, yn) - u

mn mn

by a given amount.
2. Analysis of the explicit time-development scheme. The
soluttion {umn} of problem (1), obviously, satisfies the equations

u _ -u
mn mn
—_— = + -
T Axxumn Ayyumn ¢(xm’ yn)’
umnlp B W(S J’
u =u
mn mn

Subtracting these equations from Eq. (4) term by term, we get for the
error, spn, the following difference problem:
m: B
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p+l_E 3
kis LU LA 3 WL
T XX mn Yy mn
Ep+1 =0, (9)
m{p
e =y (x,y)-u .

mn 0" m n mn J

Note that the net function e’ for each p, P =0, 1, ..., vanishes on
the points of T'. This function m2§ be considered an element of the linear
space of functions, defined on the net (xm, yn) = (mh, nh), m, n =0, 1,
«sey N, and vanishing on I'. A norm in this space will be defined, as in
§27, by the equation

2)1/2

In §27 we arrived at a representation of the solution of problem (17)

P
mn

et =( e

m,n

in the form of a finite Fourler series. This problem differs from

difference scheme (9) for the error eP = {Ein} only in the designation of
the unknown function. Therefore
P e S)
e = ) (e 000 (10)
)

where the ¢ are coefficlents in the expansion of the initial error,

rs
el = {E&n}, in a finite Fourier series, and the er are given by the
expression
o, A4t . 2 IT . o ST
Ag =1 > (sin >y +osin ZMJ' (11)
The quantities cgs = rsxg are the coefficients in expansions of the
error, e = {ezn}, in Fourier series with the orthonormal basis w(r S)
Therefore
2\1/2
P oo (Y P Or 2 (Y 2y1/2
I T T i R IE TR O P R (12)

Clearly, then,

JJ———LL < {max[r__[|P. (13)
- rs
| r,s
Further, one can always choose an €% such that strict equality is

r’,s

attained. For this purpose one need only take el =y , where
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(r“,s”) is that pair of indices for which

maxIAr | = IX . ,I.
r,s

Thus, if ||eP||/]]e?]] is to tend to zero as p > =, it is necessary that

maxiwrsl < 1.

r,s

The error will decrease most rapidly if T is so chosen that maxllr s' will
»

r,s
take on its smallest possible value. From Eq. (11) we find the left-most
and right-most points er

8T T
A = -2 2 Z_
lefe = 1 75 0% 7
hi
_ _ 8t oW
‘raghe T 1T I N

(Fig. 44). Increasing T, starting
from T = 0, we cause a leftward
shift of both these points. For

x'LEFT XRIGHT that value of T for which the points
_ . . N are symmetrically placed with
-/ [7 / respect to the point A = 0,
Fig. 44. A =2 (14)

“Mleft right’

any further increase in T is harmful. In fact if T increases further the
right-hand point, Aright’ will continue to approach zero, but in return the
left (which becomes largest in modulus, maxerS| = —Xleft) moves further
from zero.
For that T for which A
not tend to zero at all.
Thus the optimum T = h?/4 is determined from condition (14). Moreover

left = -1, and for larger T's, the error eP will

-1 - in2 o
maxlArSI 1 2 sin e
r,s
Therefore, to reduce the norm of the original error el = {eon} by a factor
m

e it is necessary to carry out a number, p, of steps of iterative process
(4), such that

Therefore

ln(l - 2 sin? %ﬁ) n2
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Let us now estimate how many arithmetic operations are required to reduce

the error by e.

arithmetic operations.
3. The alternating-direction scheme.

behavior of the error eP = {egn} for scheme

For each transition from uP to up+1

(6).

one needs cM?
Therefore the total number is cpM2 = o(M*).

We now turn to a study of the

As before we find that the error, Ep, in this case 1s determined by

the difference boundary-value problem

€ - ¢
mn mn _ ~ P
/2 Axx mn + Ayyemn’ w
+ ~
eP L. €
mn mn ~ p+l
=A A€ ,
]2 XX mn yy mn
5 (15)
n' = epn =0,
mip ™y
0
€ = - .
mn ¢0(xm’ yn) v

mn

S

The solution of problem (15) was written out in the form of a finite

Fourier series in §27.

e ) (e

rs rs

AR PALERLS

As also for problem (9), it has form (10):

where the c o are coefficients in the expansion of the initial error

0= Vo 1J)(r.S)

rs

in a finite Fourier series, but the quantities, Ar ,
s

harmonics ¢(r,s)

different:

(1 - 2tM2 sin?
by =

by which the
are multiplied in the transition from e? to €p+1

, are now

;rj(l - 212 sin? %%]

rs

M
1+ 2 2 It
( 2TM¢ sin i

J(1 + 21M2 sin?

(16)

s
o)

As in the analysis of the convergence of scheme (4), Eq. (13) is satisfied:

p
Uell ¢ fmax)a_1}7,
e ™ z,s
and, moreover, equality is achieved for some special choice of el = {eg }.

From expression (16) for Ars one can see that, for any T, the condi-

tion lxrsl <1 is satisfied and, consequently, ||€p|| tends to zero.

Further, A =X <« A, where
rs s

r
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1 - 242 sin? %%
)\k= > S Tk’ k=1, 2, +0., M-1,
1 + 2TM“ sin M

Therefore max Ilrsl is attained for r = s = r”, where r” is the index for
14

which 'A ,l 1s maximum. Clearly the function A = (1 - x)/(1 + x) is

monotonic. Therefore
LE
1 - 2tM2 sin? M
A =
s 1+ 2tM2 sin? s
lies between the points
1“2TM2COSZL
2M
Aleft = 2 o X
1 + 2TM° cos M
and
- 2 21
. B 1 2TM- sin M
right

2 2 T
1 + 21M% sin M

on the real axis. Increasing T shifts the points X R Ao, to the
ri
left. Therefore the quantity mgx[lsl will be smallest for the % for which
-Xleft = Xright’ i.e. for T = 1/YZtM. 1In this case
Z 1
max |A_ | =1 - "+O<—>.
rs M M2

To make the norm of the ervor ||eP|| smaller by a factor e than the
original error-norm ||€0|| thf number of steps, p, must satisfy the
cmﬁﬁm[l—hﬁm”pie,soww

]

— = 0(M).
w2

Each transition from uP to uPt! requires eM? arithmetic operations.
Therefore the total number of arithmetical operations required to decrease
the error e times is O(M3), and the number of operations needed to decrease
the error k times is O(M3 fn k).

We see that, for large M, the second of the time—development processes
considered here, using the alternating directions scheme, ylelds a
prescribed decrease in error at a smaller cost in arithmetic operations
than the time—development method based on the use of the simplest explicit
scheme ((4):
alternating directions scheme turns out to be the more efficient of the

for sufficiently large values of M (1.e. for fine nets) the

two.
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4. Cholce of accuracy. We now make some remarks on the accuracy
which must be attained in solving problem (1) by time-development, or some
other method yilelding a sequence of approximations, ul, uz, ey uP,
Difference scheme (1) approximates problem (2) on a smooth solution u(x,y)
to order h? = I/MZ. Therefore the exact solution u(h) of problem (1)
differs from the desired table [u]h by a quantity of order 1/M%2. Thus it
makes no sense to calculate the solution u of problem (1) with any
greater accuracy. If we suppose that the zeroeth approximation uw = wo is
given with an error of order 1, than the number, k, by which we want to
decrease the norm of the error should be taken of order M2, To decrease
the original error by more than O(M2?) would be a useless expenditure of
computational effort.

In computations on a specific, fixed, net one iterates, in practice,
until the sequence of approximations up, up+1’ «s+, Stops changing within
prescribed limits of accuracy.

5. Limits of applicability of methods. Difference scheme (4), as
well as our analysis of error reduction, can be generalized to difference
schemes approximating other boundary-value problems for elliptic equatioms
with variable coefficients, in regions with curvilinear boundaries. Here
it is important only that the operator Xh’ analogous to the operator
—Ah = _(Axx + A ) of scheme (1), ranging over net functions satisfying
homogeneous boundary conditions, be selfadjoint and that its eigenvalues
ui be of one sign:

0<u <u, <um .
min j max

In this case one uses for analysis in finite Fourier series, not the

functions
(r,s) . Tr Ts
po? =2$1n——M sin "R

but an orthonormal system of eilgenfunctions of the selfadjoint operator
Xh' It is known that such a system of eigenfunctions exists and is
complete, and the specific form of these functions does not enter the
general argument.

Alternating directions difference scheme (6) withstands generalization
to the case of variable coefficients in domains with curvilinear boundaries
(although the Fourier analysis then becomes impossible). For boundary
conditions of the form aqu + B au/anlr = § a direct generalization of scheme
(6) does not lead to an algorithm which separates into two one-dimensional
FEBS calculations.
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PROBLEMS
. Write, in analogy to the above schemes (4) and (6), explicit and

implicit time—development schemes for the solution of the Dirichlet problem
a) for the Laplace equation with variable coefficients:

9 v 9 9 9
ws Lk Gy) w2] + wlkotey) 5] = 0, 0<%, y<1

ul L =¥y L,

b) for the quasilinear equation

3 duy . 3 )
AL R Tylka(w) 3—‘;-] =0, 0<%, vy <1,

ul = v0LY) L

2, Show that, in the alternating direction method for the iterative
solution of the Dirichlet problem

A u + A u = ¢(x s ¥ ),
XX mn yy mn m “n

m, n =1, 2, ..., M-1; Mh =1,
ol = VO
r
one can choose an iteration parameter T such that, after the very first
iteration, the finite Fourier series for the error eP will not contain some
single, prescribed, harmonic ¢(r,s .

§ 36. Iteration with variable step-size

1. The idea of Richardson. The convergence mechanism for the
simplest time-development scheme (4) §35

= b b b )
T = Axxumn * Ayy mn ¢(Xm’ yn)’
ptly
Urn = W(Sm“]r (1)
r
0 -
Yoo l‘b()(x ’ yn) J
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consists, as we have seen, in the damping of each harmonic, w(r,s)’ con—
tained in the Fourier series expansion of the error, el =4 - uf , In
mn mn mn
the zeroeth approximation. If
eP = Z P w(r,s)’ (2)

rs
r,s

then the Fourier coefficients of the error in the next approximation

p+1= 2 cp+11|l(r’5)

€
rs
r,s
can be expressed in terms of CSS via the equations (see (10) and (11) §35):
P - p = iM2(sin? XX 2 Is
<l (1 Turs)crs’ where —u__ = 4M (sin 7 + sin ZM)' (3)

For a given, fixed, T not all the harmonics damp equally fast. The
harmonics V(r,s) which damp most quickly are those for which the damping
factors er =1 - Turs are closest to zero, i.e those for which Mg ™ /7.
This suggests that, step after step, Wwe change the parameter T so as to

damp all the harmonics Y TS

effectively in sequence, with the result
that, after several steps, all the harmonics will have damped more or less
uniformly.

This constitutes Richardson's idea for the solution of selfadjoint
linear systems of equations, with matrices all of whose eigenvalues have
the same sign.

2. The Chebyshev set of parameters. Richardson's iteration process
is given by the equations

+1
uin = uin * Tp+1 [Ahugn - ¢(Xm’ yn)]’
m,n=1, 2, ..., M-1, (4)
+1
ugn . = w(smn); {u&n} given

with iteration parameters, depending on the iteration number.

T

+1°
Richardson indicated a useful, but not optimal, set of parameters {T }. We
now present results on the optimum choice of iteration parameters {T }, and

p
. From Eg.

estimate the rate of decrease of the norm of the error ||eP]
(3) it is clear that the Fourier coefficients, Clgr of the error € in the
k'th step, can be expressed in terms of the Fourier coefficients c?  of the

rs
original error el by the equation

k
k _ .0 - = -
Cle = Cre o (1 Tjurs)’ T, s = 1, 2, veu, M-1.

Let us now introduce the notation Qk(u), setting
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Qk(u) = )
j

[t

1 - .
1 ( TjU) (5)

Then

%

K, 2 ‘ Kk 2 , 2
[T A TN IR S
’ ]

. 2 2
<max 1o ()1 L e | = maxlo (n )] + [[°]] -

It is clear that the inequality

e ] < max Jo (u )] = [Ie0]]

becomes an exact equality for some ed. The quantities urs’ given by

Eq. (3), are distributed over the interval

a=p, <p<up = b, (6)
min —  — "max
where
a=uyu = 8M2 sin? — 2n2
min M ’ .
. (6”)
= = 2 2 2
b umax 8M% cos i 8M-.

We will not rely on knowledge of the actual values of the numbers u |
since this is an accidental circumstance, particular to our exampler.:S
Instead we use only the fact that we know the boundaries, a and b, of the
interval (6) on which they lie. Therefore, given k, we ask how one can
define the {teration parameters Tl, T2, veuy Tk’ so that, among all

polynomials, Qk(u), satisfying the condition
Q(0) =1, (7
polynomial (5) will, on the interval a { ¥ { b, deviate least from zero:

Q* = max |[Q
alu<h

1((u)l minimal. (8)

This problem in the theory of approximations was solved in 1892 by
A. A. Markov. The desired polynomial Qk(u) B ?k(u) may be expressed in



344 Elliptic Problems Chapter 11

terms of the Chebychev polynomial (see for example V. L. Goncharov,*
"Theory of Iteration and Approximation of Functions,” 1954, in Russian)

k k
Tk(x) = cos k arccos x = %-(x + “xz -1) +(x~ "xz -1,

which, among all polynomials of order k with coefficient of xk equal to

one, deviates least from zero on the interval -1 < x < 1. In fact if one
makes the linear transformation
b+a-~2
x = R (9)
mapping the interval a { u { b into the interval -1 < x £ I, and the point

p =0 Iinto X, = (b +a)/(b~a) > 1, then

N T. (x) 2 N {
T = Tk[x T & + = l] (10
k70 (xg *4/x2 - 1) \/

The set of iteration parameters T , T_, ..., Tk’ which generate polynomial
(10), are defined through the condition that the zeroces, u. = 1/t., of the
polynomial Tk(u), under transformation (9), should be mapped into the

zeroes xj of the Chebyshev polynomial Tk(x):

2
T =
j b+a~(b- i
Jz_ (b =k (11)
Xj = cos 21.%%5:_11, i=1, 2, «o., k.

Let us now evaluate the maximum, Q*, of the deviation from zero of
polynomial Qk(u) = T(u) on the interval a<u b, As is known from the
theory of approximation, the Chebyshev polynomial Tk(x) takes on its
maximum-modulus value, on the interval -1 { x {1, at k + 1 points,
including the ends of this interval. Therefore it follows from (10) that

o h() 2

. 12
gfkgj —k —— k (12)
" (% *‘l"é - 1)+ (xg '\lxé' 1)
Further, from (9) we get
_bt+a _1+n_
xo_____b_a—_._l_n—1+2n+o(n)
(13)
_a _ min m2
[
max  4M?

*or R. S. Varga, "Matrix Iterative Analysis™ Prentice Hall 1962.
(Translator's note).
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Therefore for large M
x, +Jx2 -1 =1+ 2/7+ 0(n),

from which, taking note of (13), it follows that

Q*: 2 =

KT+ 2+ omy]E + [1 - 2/% + o(n)]® )

ek (1 + 2/m + o(n)) a1 - 2/m+ o(n))}

{ekﬂ’/M + e—k‘"’/M} ]

Considering the fact that the norm of the initial error £ is of order
unity, IICOII = 1, and noting the comments in 4§35 as to the accuracy which
it is reasonable to achieve in the iterative solution process, we conclude
that k should be obtained from the condition Qﬁ = M_z, i.e.

L2 M+ &n 2 M =~ 2 n M+ n 2 . (14)

m 2/

. ~1 .
To reduce the initial error by a factor e ~, k must be obtained from
the condition Qi: < e'l, i.e.

k

K = 1 + 2n2 M = 1 +2%n 2 _ o) . (15)
m 2/m

Having chosen k in this way one can then consider the first k iterations as
the first iteration cycle, and repeat the whole cycle with the same set of
parameters T_, T2, «vey T o« To decrease the norm of the error by a factor
M2, the number of cycles, V, must be taken such that exp(-v) ~ 1/M2,
v ~ 2 &n M. The net number of elementary steps of the iterative process in
Vv ecycles will be

1 +2n 2

kv » (—— M} 2 n M =0 (M n M).

This exceeds only by the finite factor

1 + &n 2

Ty St 2

the number (14) of elemenary iterative steps required without cycling.

Thus the use of cycling with k = (1 + 2n 2)/(2 VW) achieves some

simplification without substantially increasing the number of iterations.
The use of cycles of length k << 1/(2VW) is inadviseable. For example

for k = 1 the Richardson process (4) transforms into simple iteration (1)

with optimally chosen T. The number of steps required, via this process,
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to reduce the norm, I‘EO[I, of the original error by a factor e is
= 2M2/12, as shown in 2§35. This number 1s O(M) times larger than the
number of steps required to achieve this same reduction when the cycle-~
length is taken in accordance with (15).

3. Numbering of iteration parameters. Equation (11) gives the
Tys soes Tk (for given fixed k).
Suppose we now rearrange, somehow, the members of the sequence

optimum set of iteration parameters Tl’

TI, T2, ceey Tk’ into a new sequence Kk ) - (Kl, K2, ceey Kk], and iterate
according to the formula
+
uP 1. o+ Te (Ahup - ¢],
pt+l (16)
+
uP llr =, u? given.

If algorithm (16) is realized exactly the result of the final, k'th,
iteration will not depend on the detaills of the chosen sequence ¥ k)
(Kl, KZ’ ceny Kk). But in real calculations, carried out on a machine with
a finite number of significant figures, this ordering 1is extremely impor-
tant. For large k it very strongly
influences the sensitivity of the /Lﬂyy
computed result to rounding errors
committed in intervening steps of
the process, 1.e. the computational
stability of the algorithm. Before Y/ 4
introducing acceptable orderings
K(k) = (Kl, K2 evey Kk], we note
that the original algorithm (4)
corresponding to the ordering
K(k) =(1, 2, ..., k) is useless, Fig. 45.
from a practical point of view.

We now analyze the mechanism which gives rise to instability in this
case. Suppose the original error €? has the form e = ) cgsw T8 ,

0
s

r ~ ], and the computation 1s carried out exactly, without roundoff
error. Then the coefficlents of the error in the & 'th approximation,

EE = E cisw(r’s), are given by the expression

L
E_I'I - 0
rs 31 (1 Tjurs]crs'

Let us follow the evolution of cis with increasing £ for r = M-1, s = M-1.
In this case

= = = b~ M2
urs uM—l,M-l lJmax '

Qa7)

Lo Su-1m-1 % _
g = —— - §;¥ {1 ij).
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Consider the linear functions 1 - t,u, j =1, 2, ..., k, whose zeroes,

. = 1/1., are determined by Eqs. (11). From these equations it is clear
tﬂat, fo% (25 = 1)/2k < 1/3, or j € (2k + 3)/6 (and large enough M), we
have uj < b/2, and therefore (see Fig. 45)

[1-1.b]>1 for j<2Xit3 (18)
J

If k ~ 1/(2/%) ~M and j ~ 1, then byvat (1/m2), T (1/a) - (1/m2)

and therefore
|1-rm[~3~Mﬁ
3j a

Thus the value 52, defined by Eq. (17), increases initially by about a
factor of M2 per step, and then more slowly. We see from (18) that this
growth continues at least as long as £ < (2k + 3)/6, so that for & ~ k/3

the quantity c2 and therefore also llezl], will be very large,

s
increasing witE i.M %n fact the order of magnitude of the value of the
approximation u2 = {ul } may exceed the limits allowed by the computer even
for reasonable values of k, k << M.

1f, hypothetically, this didn't happen, and the computation were
contlnued with infinite precision, then up to step & = k the quantity
CM 1M1, would decrease so that Ek< Q*.

’But’ the point is that, even if an overflow did not occur at 2 ~ k/3,
then unavoidable, relatively small roundoff errors, at £ ~ k/3 will be very
large in absolute value. These errors are random, so that in their finite-
Fourier serles expansions all terms will be present and, in particular, the

term of form

~ 1,1
2 Y,

where z is a quantity which isn't small in absolute value.

We now show that, in later iterative steps, the error Zl
troduced into the harmonic ¥ 1,1 by roundoff in the step % ~’k/3 is not
substantially damped, and distorts the computationally result unaccept-
ably. The contribution, ZT Iw(l’l), of this error to the approximation

uk obtained at the last, k‘Eh, step, is given by the expression

S g

k k
~k ~ ~
= 1- = 1- .
it LD Oy le = LTI (G- myelle

But for j > (2k + 3)/6, clearly

b~-a

1
uj > 7[b +a -
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Therefore
1 k 1 \k-l
1 - Tl [T (1-r.a) ~ (1 ~ __> ~ 1,
M2 J=1+1 3 M2

so that ZT 1 ~ Z 0 and the roundoff error has not been damped. Thus we
have shown that use of the parameter sequence K(k =(l, 2, .., k) is
impractical.

If in the £'th step of process (16) one has introduced a roundoff

error

¢(r’s),

rs

then at the k'th step this error evolves into

k (r,s)
I:H (l - Tjurs)] crsw T

1=2F1

For this reason it seems desirable to try to achieve an ordering K(k) =
(Kl, K2, ceey Kk), for which

max < A (19)

alu<b

k
T1 (- Tju)

J=2¥1

with some moderate value of A.
r,s

S 0 ’
uppose crsw

imation. By the £'th step this error develops into

X (r,s)
[ TI( - Tj“rsJ] cgsw 282,

j=1

If the norm of this function is large then roundoff will give contribu-
tions, large in absolute value, to all harmonics. It can then happen that
a contribution to some harmonic will not be damped by further iteration,
and will strongly distort the computed result. Therefore it 1s plausible
to look for an ordering, K(k = (Kl, K2, ceny Kk), for which

<B (20)

3
TI0 -7

j=1

max
a<u<b

11

is a component of the error €% in the zeroth approx-—



§36 Variable Step-Size 349

with some moderate value of B.

In the work of V. 1. Lebedev and S. A. Finogenov, (U.S.S.R. Comp.
Math. and Math. Phys. 11, #2 (1971)), and of A. A. Samarskii [23], the
authors describe various useful methods of ordering parameters, and shed
some light on the history of thils question. Here we present some results
of V. I. Lebedev and 5. A. Finogenov. In their work they assume that k is
a power of 2, 1.e. k = 21, ang give a recurrence formula for the
construction of K(k).

Specifically, for 1 =1

<, 2.

i-1
If for k = 2171 the ordering K(Z ) has already been defined

i—l)

K(Z = (K K eves K. 1),

then one sets

i .
K(Z ] = (K 21 -k K

10 Ko PRI . 2l -k ,_1) (21)

1’ 2 o1

In particular for £ = 2, 1 = 3 and { = 4 we get, sequentially
(1, 4, 2, 3); (1, 8, 4, 5, 2, 7, 3, 6);
(1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

By the indicated method (21) of ordering iteration parameters, the numbers
A and B in inequalities (19) and (20) can be taken to be independent of k
and £.

The parameter—ordering algorithm presented by A. A. Samarskii has a
somewhat more complicated formulation, but in return does not necessarily
require that the order be a power of 2. The number k can have the form k =
(235 + 1)+21, 1Instead of (19) and (20) the author establishes other bounds
which, in some sense, guarantee stability.

4. The Douglas—Rachford method. In the alternating direction method
(6) 8§35 we will take the 1teration parameter, T, to depend on the step—

number, setting

~ p
Jma ” Yen 1 (ALu_ + A uP - 4(x 1]
Tp+1 7 xx mn yy mn m* Yn/d>
Pl
u -
mn mn 1 ~ +1
—T;:l—-—— =7 [ty * Ay = g v )1,
pt+l o -
u o =u r = w(smn)’ m, n=1, 2, «.., M-1.
T
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For the error ek = uk ~ u we get the expression

M-1 k
k k (r,s) k 0
= X X
€ 2_ crsw ’ ch rolly r(Tj) S(Tj) Crs,
r,s=1 i=1
where
1 - 21M? sin? %
)\i(T) = - T i=1, 2, ..., k.
1 + 2TM% sin 'Z_}T
For a given k the optimum set of T's 1s the set, Tl, TZ, very Tk,

for which the quantity

K
max Al (ey)
rys (71 ¥ 4703

takes on its smallest value. If one does not make use of the exact values
of Xr(T) and XS(T), but only of the boundaries within which these values
lie, one gets involved in a Chebyshev-type problem like the problem for
polynomials in section 2, above, but for products of rational fractions,
each linear in numerator and denominator.

The statement of this problem and, as well, the proposal to solve the
Poisson equation by the process of time—development using an alternating
direction scheme, 1s due to Douglas, Peaceman and Rachford.* 1In the
Douglas—Rachford work of 19561 which is presented here, this problem is
solved approximately. For their choice of iteration parameters the number
of iterative steps required to decrease the error by a factor e is O0(&inM),
and the number of arithmetic operations is O(MZQnM).

We show first that, given an arbitrary positive g, q < 1, one can
choose iteration parameters T T2, ceey Tk’ with k = 0(AnM), so as to
satisfy the inequality

(r I <q (22)
r, s =1, 2, ..., M-1,

Then ||ek|| < q[]€%][. 1If one carries out the first k iterations with

iteration parameters T , T ceay

1 27 and the next k iterations again

Tk,

*See, for example, the discussion Iin R. S. Varga, "Matrix Iterative
Analysis,” Prentice Hall 1962. (Translator's note.)

TDouglas, J. Jr. and Rachford, H. H., Jr., "On the numerical solution of
heat conduction problems in two and three space variables,” Trans. Amer.
Math. Soc. 82, 421-439 (1956),
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using Tl, Tz, ceey Tk’
one will require, clearly, some number of cycles (a number independent of
M), each cycle made up of k = 0(£nM) iterations.

then to decrease the norm of the error by a factor e

Let us now justify Eq. (22) and, in the process, explain how one can

choose the parameters Tl, TZ, cany rk. It is clear that

lxi(r)( <1, 1 =1, 2, «as, M-1, t > O.
Therefore 1f inequality (22) is to be satisfied for any r,s =1, 2, ...,

M-1, it is sufficient that for each 1 =1, 2, ..., M-1 at least one of the
k factors Ai[rp)' p=1, 2, ..., k should satisfy the inequality

1 - 21 M2gin?
p

<Yq . (23)

i
M
p i
™

IHT)IJ
i ,1 + 2t M2sin?
P 2]
All the quantities 2M2sin?(mi/2M), 1 = 1, 2, ..., M=l belong to the
interval

a < 0.5m < ug oM = b (24)

Thus to satisfy (22) it is sufficient, in view of (23), that for each u in
the interval (24) the inequality

1 —1wn
- — P
74 < <,
P
be satisfied for at least one T, T = Tl’ TZ’ cevy rk; and it is all the

more sufficlient that the inequality
-/g<1 - T <’q

be satisfied.
For this to be true it 1s necessary that, for each u in the interval
(24), there is a Tp, p=1, 2, ..., k, for which

1-Yg<tu<l+vqg. (25)
M

Let us define up and Tp’ respectively, via the relatious

/g \P!
u = <3-417#§ a, p=1, 2, ee, k,
1 -7q

=14 p =1, 2, euuy ke (26)
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Then as ¢ increase from up to

(25).
Clearly, if we take k to satisfy the condition uk > b, i.e.

up+1’ the product Tpu traverses the interval

K>Am2+1=a2mM+2nd) 41,
- a nz

(27)
A= ! ,
1 +Yq
N ———
1 -Yq
we do indeed get, from Eq. (25), the desired sequence Tl, T2, ceny Tk.
PROBLEMS

1. 1Is it possible to choose iteration parameters T_, T_, +e., T such
that a finite number of iteration steps of process (4) will yield the exact
solution of the Dirichlet difference problem?

How many iterations would be required? Can such a method permit
generalization to the case where the exact eigenvalﬁes u are unknown.

2. Explain the mechanism for the development of co;gutational
instability in computations via Eq. (16), with

<Lk, ke, k=2, el 2, D,

for large k and M. Which harmonics ¢(r,s) will dominate in the Fourier
in a calculation with K(k = (k, k-1, k-2,
eesy 1), and in the presence of roundoff errors?

series for the error, ek,
3. Suppose A is a selfadjoint operator whose eigenvalues lie on the

interval 0 < pmin <Cul ﬁmax' What constraint must be satisfied by the

condition-number n = p /umax’ i1f, for the equation Ax = ¢, the Richardson

min
process

(ax® - ¢)

b =x - Tp+l
is to converge, and be computationally stable, for any arbitrary choice of
T, = 1/p,, " <, < Hoax? ji=1, 2, «.., k, and arbitrary k?

4, "Why is it that, in the Douglas-Rachford scheme, the ordering of
the parameters Tl, T2, ey Tk, has no substantial influence on the
computational stability of the iterative process?

5. Assuming the the machine time required for one step of the
Douglas—-Rachford process 1s twenty times greater than for one step of the
Richardson scheme estimate, through use of Eqs. (15) and (27) for what
value of M the superiority of the Douglas-Rachford method first becomes
apparent.
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§37. The Federenko Method

In the work of R. P. Federenko, U.S5.S.R. Comp. Math. and Math. Phys.
1, #5 (1961), the author presents an iteration method™ for the solution of
elliptic difference problems, a method which he calls relaxational. To
decrease the norm of the original error by a factor e this method requires,
in all, eM? arithmetic operations, where M is the number of net-steps in
one direction and ¢ is some constant not depending on M. We note that the
most rapidly convergent of the above (and generally of all other known)
methods, the Douglas—-Rachford method requires, for the same error
reduction, 0((£nM)M2) arithmetic operations.

The range of applicability of the Fedorenko method 1s almost the same
as that of the simplest time-development method. An additional limitation
is the requirement of “"smoothness™ of the lowest-order eigenvectors, a
requirement ordinarily fulfilled for elliptic problems.

In simple examples the computational speed of this method, as compared
with the most quickly—convergent iterative methods of other types, is
already convincingly demonstrated for M = 50. It must be kept in mind that
the logical organization of the relaxational method is substantially more
complicated, as we shall see, than the logic of, let us say, the Richardson
scheme. Therefore the computer time depends very strongly on the quality
of the computer program.

The simplest estimate of convergence rate (for a difference approx-
imation to the Poisson equation in a square region, on a square net, with
given boundary-values) was obtained by R. P, Fedorenko, U.S.S.R. Comp.
Math. and Math. Phys. 4, #3 (1964).

In the work of N. S. Bakhvalov (U.S5.S5.R. Comp. Math. and Math. Phys.
6, #5 (1966)) the author studied the convergence of the Fedorenko method,
and got precisely the same result for the difference analogue of the first
boundary-value problem in a rectangle, for a general elliptic equation
with smooth coefficients

A A% 3%u 3%u 3u Ju

+ 22, ==+ a,, —
11 3x2 12 9xdy 22 ay2

Finally, G. P. Astrakhantsev (U.S.S.R. Comp. Math. and Math. Phys. 11, #2
(1971)) got analogous results for a difference approximation to the third
boundary-value problem for a selfadjoint difference equation in an arbi-
trary two-dimensional region with smooth boundaries.

Since the derivation is very involved we limit ourselves to a
qualitative description of the idea of the method, and of the Fedorenko
algorithm itself, referring the reader to proofs in the original work and,
to a review article by R. P. Fedorenko, Uspekhi. Mat. Nauk*fZQ, Vol. 2

(1973).
Ak K K& &

* early variant of the multi-grid method. For a more extensive presen-—
tation of multi-grid methods see, for example, "Multi-Grid Methods and
Applications”, W. Hackbusch, Springer-Verlag (1985). (Translator's note).

**Title of translated journal is Russian Math. Surveys.

(Translator's note.)
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1. Idea of the method. To arrive at an iterative solution of the

problem
Ao - ¢(xm, yn) =0, myon=1, 2, «o., M-1,
1)
umnlr = W(Smn)
we set out from the simplest time—development process (4) §35
+1 P
uﬁn = + T(Ahugn - ¢(xm, yn))’ my, n=1, 2, ..., M-1,
o (2)
_ 0
umn 'r ¢(smn), {umn} given,

which, on the whole, converges véry slowly but uniformly in the various
harmonics. The error ef = uP - u, as in (10) §35, may be written in the

form of a finite Fourier series

M-1
P _ ; P .0 (r,s)
ef = ) DIy ' (3)
r,s=1
where the cgs are expansion coefficients of the error, ed =0 - u, in the
zeroeth approximation, and
=1 - 47M2(gin? 2L 4 gin2 =2
Ars 1 4T™ [sin ot osin 2M)'
The quantities A lie on the interval A <A <A , where
rs left — — right
A = = ] - 8TM2
left M-1,M-1 *
by = A =~ 1 - 2mlT,
right 1,1
Suppose that
o= 3, (4)
16M?

If, under this condition, at least one of the numbers r or s is greater
than M/2, then

|xrs| < 0.6. (5)

Therefore the contribution of the high-frequency harmonics w(r,s), r > M/2
or s » M/2, to the error (3) decreases, in one iterative step, almost in
half, and quickly becomes small. After several iterations via Eq. (2) the
error e will contaln, essentially only a smooth component (harmonics
¢(r,s)’ r < M/2, s < M/2), because the low-frequency harmonics ¥ r,s) are
multiplied by factors ers which are closer to unity. The contribution of
(1,1

the first harmonic ¢ damps very slowly; for the given choice of 7
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3n2

Al 1 #] == (= 1). (6)
» 8M2
Let us designate by U the approximation uP, obtained by iterative process
(2), and let v by the error eP = uP - u = U - u., If we knew the error v we

could find the desired solution u = U - v. But all we know about v is that
it satisfies the equation

Ahv = £, vl =0, (7)

where £, a known net function, is the residual obtained when one substi-
tutes uP = U into Bq. (1):

Problem (7) which determines the correction v is simpler than the original
problem (1) only in the sense that we know that v is a smooth net func-
tion. Therefore to determine v we can take as an approximation this same
problem posed on a net twice as coarse which (for even M) is contained in
the original net:

vk = L%, vk| = 0. (1%)

A2h r*

Here the asterisk designates quantities pertaining to the coarsened net.
We will solve problem (1*) by the iterative process

1
(vr )P = (v P+ wx(ny, (vx )P~ e ],
myon =1, 2, .., M*=1, (2%)
ptl =
(v*.) T 0

taking as a zeroeth approximation (v;n)o z 0. Here M* = M/2, 1% =
3/[16(M*)2] = 41,

Each step of iterative process (2*) requires only a quarter as much
work as a step of (2), because there are only a quarter as many polnts in
the computational mesh. Further, thanks to the fact that T* = 4T, the
attenuation of the most slowly damped error component proceeds more
quickly. Corresponding to (6) we now have

2 2
AF o=l __3 1 -4 3 < Al L
’ 8(M*)2 8M2 >

and, to attenuate the contribution w(l’l) by a factor e, one needs a fourth
as many lterations. Let us designate by V* the result of iteration by Eq.
(2*%), We next interpolate V* onto the original net (linearly). Smooth
components will be obtained almost exactly. The error induced in the
smooth function by interpolation will be small relative to the interpolated
smooth function, but (since the error due to interpolation is jagged
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because of slope—discontinuities at the interpolation points) the Fourier
expansion of the error will contain all components. In addition the non-
smooth component of V*, which bears no relation to the desired correction,
upon interpolation also gives a random contribution to the non-smooth
component of the function V, produced by the interpolation process.

Thus the smooth component of the difference U-V is close to the smooth
component of the desired solution u = U~v, but the non-smooth component is
not very small and has random features.

Therefore 1t 1is necessary to execute a few more steps of the original
iterative process (2), taking U~V as an initial approximation. In this way
one quickly damps the non-smooth error components, introduced by the
interpolation process, and attenuated by process (2) almost by a factor of
2 in a single step.

2. Description of the algorithm. The convergence-acceleration,
achieved by use of the coarsened mesh and process (2*), may prove inade-
quate. For large M (i.e. a fine net) problem (1*) on the coarsened net may
still be difficult. Therefore to solve this second problem it may be
worthwhile to carry out still another mesh-width-doubling, and to solve the
problem on the quadrupled mesh one may again douhle the mesh-width, again
doubling T, ete. In the experiments of R. P. Fedorenko the net step-sizes
were not doubled, but tripled. For M = 100 two coarsenings turn out to be
sufficient. We will assume for simplicity that M = 2k, i.e. M is some
power of two.

On the original net we take several steps of iteration (2) to “"smooth"
the error. This error 1s unknown to us and, therefore, we monitor the
iterative process by keeping track of the residual, Ahup - ¢, which also
undergoes smoothing. The result of the calculation U = uP is stored for
later use. Next, to calculate the correction v, we treat the problem on
the coarsened mesh, performing some iterations (2*) so as to smooth the
“correction to the correction” and storing the result V+ (which occupies
only a fourth as much storage space as U). To calculate the correction
to V* we consider the problem on a net again coarsened by doubling, and do
several iterations with a step-size T** = 4T* = 167, storing the result
Vxk, This process of computing correctlions to corrections, on nets coar-
sened by doubling, 1is repeated k times until one gets to the coarsest net
and to the correction V(k*).

Next one starts to move back to the fine net. First, f:om*the
coarsest net, one Ilnterpolates the last-computed correction V onto the
n??ﬁ Egige—as-fine, net, and inserts the interpolated correction into
A

interpolation. The results of these iterations are then interpolated onto

performing several iterations to damp errors introduced by the

the next twice-as-fine net: through use of this interpolated.function, one
refines the stored correction, v((k—Z)*)’ pertaining to this net, performs
several iterations, and carries out the next interpolation. On the next-
to-last step, after correcting ¥* and iterating, one gets the correction
V*, which is then interpolated onto the original net. Then, performing

some iterations (2) on U-V, the final result 1s obtained.
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Chapter 12
The Concept of Variational-Difference and
Projection-Difference Schemes

In this chapter we present a method for constructing difference
schemes, based on the use of one or another variational or projective
formulation of the boundary-value problem whose solution we wish to
evaluate numerically. This method, sometimes called the finite element
method, allows one to construct effective difference schemes on irregular
nets, and with a minimum of assumptions as to the smoothness of the desired
solution, or of the coefficients of the equation. Thanks to the resulting
freedom in our choice of nets the net-points may be distributed more
densely in those parts of the domain of definition of the desired function
where its form is particularly complicated, or where we are interested in
the finer details of its behavior.

Our ability to distribute polnts appropriately allows us to attain a
desired accuracy with a minimum number of net-points.

The method of finite elements may be interpreted as one of the possi-
ble realizations of the classical variational methods for the solution of
boundary-value problems. For this reason we begin (§38) with a description
of the classical variational and projection m-thods, and then (§39) discuss
variational-difference schemes.

§38. Variational and projection methods

1. Variational formulation of boundary-value problems. Many dif-
ferential boundary-value problems of mathematical physics adwit natural
variational formulations. We limit ourselves to a consideration of two
simple examples of such problems and their variational formulations which,
however, illustrate what is essential here. In these examples we will be
discussing various boundary-value problems for the Poisson equation in a
certain bounded domain D of the xy plane, with a plecewise-smooth boundary
T.

We designate by W the linear space of all functions continuous in
domain D and on 1its boundary T and possessing, in addition, bounded first
derivatives which may have discontinuities only on a finite set of lines (a
set which may be different for each of the functions, w(x,y), in space
W). We will introduce a norm, in space W, setting
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2

i W 2 1/2
[l = [1f weamay « /UG + Gy Jax o] 8

for each of its member functions w.

* k & & * %

1.

Conmpletion of the space W leads to the complete Sobolev space W2

* % &

Let us now turn to a consideration of examples.
Example 1. Consider the first boundary-value problem (the Dirichlet
problem)
32 32
fu,c8. f(x, y), (x, y) in D,
ax2 3y2 (A)
UIF = ¢(s),

where s is the arc~length along the boundary I' of domain D. Further,
f(x,y) and ¢(s) are given functions, functions satisfying all conditions
which are needed to assure that the solution, u(x,y), of problem (A) will
have continuous second derivatives everywhere in D, and on its boundary T.
Theorem 1. Among the functions, w in ¥, satisfying the boundary

eondition

wlF = ¢(s), (2)

the solution u(x,y) of problem (4) gives to the expression (or
"funetional’)

- ow 3wy 2
I(w) = + + 2fw|dxd 3)
fo[(gg] (g;] Jdxdy (
its minimum numerical value.
Proof. Let w(x,y) in W, wlr = ¢(s), be some given fixed function.

Introduce the notation E(x,y) = w(x,y) - u(x,y), so that
w(x,y) = ulx,y) + E(x,y).

Since u(x,y) has continuous second derivatives, and w(x,y) is in W, then
also £(x,y) is in W and, moreover, EIF = 0. We now prove that

. 2 2
) = TG+ ) = 1) + [ [[(ED) + (§5) Jaxay, )
D



§38 Variational and Projection Methods 359

from which the theorem follows since, in the case w(x,y) # u(x,y), the
function E(x,y) doesn't vanish identically, so that the second term on the
right—hand side of Eq. (4) 1s strictly positive, and I(w) > I(u). Clearly

1o 6 2 [ [[GE+ 39 ¢ (e 30 + 260+ £)aay -
D

=1+ G+ G2 Jaxey +

+2 [ (%E %5 %E ;5 + f£)dxdy.

It remains to be shown that the third term on the right-hand side
vanishes. In fact, from the obvious identities

du 9E By 3E _ 9 duy . 3 . 3u
= w Cwe oy Uy
SRl Puy o2 duy D g By (5)
3)(2 ayz 3x X W ay
it follows that
du 9E Ju 3¢
ff(i;‘a;* w5t £E€)dxdy =
ST (62 42 (5 )]axdy = [ £ 3 ds =0 (6)
o ad Ty LR gyllddy = Er ’

where 3u/dn is the derivative along the inward-directed normal.

In the next-to-last link in the chain of equations (6) we used the
theorem of vector analysis which states that the Integral of the divergence
of a vector field over a region 1s equal to the flux of this vector field
across the region-boundary. In the given case this flux f £(3u/3n)ds
vanishes, since EIF = 0. The theorem is proven.

Thus problem (A) admits the following variational formulation: among
all the functions of class W esatisfying condition (2), find the one that
minimizes the functional I(w), defined by Eq. (3).

Example 2. Consider the third boundary value problem

32 32

—% + —§ = £(x,y), (x, y) in D,

% ]
y (B)
v

a5 * o(s) vip = ¢0(s),

where f£(x,y), ¢(s) and o(s) > 95 > 0 are given functions, and dv/dn is the
derivative along the inward-directed normal.
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Theorem 2. Among all funetions w in W the solution v of problem (B)
minimizes the funetional

2 2
3w = [ 1)+ (5 + 2ewlaxay +
D

+ [o(s)w2 - 20(s)wlds (7)
r
Proof. Let w in W be some given function, while
ﬂ(x,y) = W(X,Y) - V(X)Y)'

We now prove the equality

m

J(w) J(v + n) + J(v) +
2 2
IR (23) laxdy + | o(s)n?ds}, (8)
D r

from which it follows that for w # v, i.e. n £ 0, we have the inequality
J(w) > J(v), whose validity is asserted in the theorem.

Clearly,
J(w) = (v + 1) =
=[] “av ) + (;1 -3—) + 2f(v + n))dxdy +
D
+ f [U(S)(v + n)2 — 20(s)(v + n)]ds =
T
any2 any2 2
=3y + ] ] [(3;) + (5;) laxdy + [ o(s)n2as} +
D T
v an dv an
{f f [ax X 3§'§? * fﬂ]dxdy + f [U(S)V - ¢(S)]ﬂds}. (9)
r

It remains for us to show that the expression on the right-hand side of
(9), in the second palr of curly brackets, vanishes. In fact transforming
the double integral 1n this expression as in (6) we get

[ [;% %; + g% %% + fn]dxdy + [ [o(s)v - ¢(s)]nds =
r

f 51 e nds + f [U(S)v - ¢(s)Jnds = f [—— + ov - ¢] = 0,
T T
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since 3v/9n + UV,F Z ¢. The theorem has been proven.

Thus the third boundary—-value problem for Poisson equation (B) allows
the following variational formulation: among all functione w in W, find
that one which minimizes the functiomal J(w) introduced in Eq. (7).

We direct the reader's attention to the fact that the difference
between the variational formulations of boundary-value problems (A) and (B)
lies not only in the difference between the functionals I(w) and J(w). 1In
minimizing the functional J(w) we are allowed, as trial functions, all
functions w in W, while in minimizing the functional I(w) trial functions
are admissible only 1f they satisfy the boundary condition, WIF = ¢(s), of
problem (A).

It is because of this difference that one calls the boundary condition
of problem (B) "natural”: 1in the variational formulation it imposes no
limitation on the class of admissable functions.

2. Convergence of minimizing sequences. The exact solution of
problem (A), as we have seen, is that function w(x,y) = u(x,y) which, among
all allowable functions (i.e. functions w in W satisfying the condition
WIF = ¢(s), minimizes the functional I(w). The numerical solution of the
problem of finding u(x,y) consists in the construction of a function, w in
W, v = $(s), which gives the functional, if not its minimum value, then at
least a value “close” to this minimum. More precisely, for computational
purposes one must designate a method for constructing the terms of a

sequence of admissable functions, wN(x,y) in W, w = ¢(s), for which

Nr

1im I(wN) = I(u).
N+o
Such a sequence of allowable functions is called a "minimizing sequence”.
Choosing a term, wN(x,y), of the minimizing sequence with large enough N,
one can attain a functional value, I(wN), as close as one likes to I(u).
Completely analogously, for the variational formulation of problem (B)
a minimizing sequence of allowable functloas s any sequence of functions,

wn(x,y) in W, for which

1im J(w_) = J(v).

N»>e N
Methods for constructing minimizing sequences for variational problems (the
Ritz method, and variational difference schemes) will be pointed out,
below, in this chapter.

Here we will prove only that minimizing sequences converge in the
mean-square sense, together with their first derivatives, to the solutions
u and v of the respective variational problems, so that their terms may be
considered as approximations to these solutions. More precisely, we will
prove the following twe assertions. '

Theorem 3. Suppose that w is in W, w'P = ¢(s). Then
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Hw = ul)2 < a[1(w) - T(w)], (10)

where is some constant completely determined by the form of the domain D,
and not depending on the function w
Theorem 4. Let w be an arbitrary funetion in W. Then

Hw - ]2 < 8law) - 3], (1)

where the constant g > 0 depends only on the form of the domain D, and on
the quantity min o(A) = gp > 0, but not on w.

4 Equations (10) and (11),
p clearly, imply the convergence of

minimizing sequences, for the
variational formulation of boundary-
value problems A and B, to their
solutions, u and v respectively:
when w is replaced by a member wy,
of the corresponding minimizing

< sequence, the right— and therefore
also the left-hand sides of Egs.
a b T (10) and (11) tend to zero as N + =,
Fig. 46, The proof of theorems 3 and 4
is based on the following lemma.

Lemma. Suppose that n(z,y) ig in W, and ofe) > o5 > 0. Then we may
write the following inequality:

[ waxy <L LER)") + B0 Jaxdy + | o(sinZds). (12)
D D x y T

Here B is a constant whose value is completely defined by the domain D and
the number 0j, and does not depend on the function n(x,y) in W.

* x * * % %

We prove inequality (12) under the additional assumption that each
line y = const intersects the boundary T of domain D in at most two
points. This assumption is in no way essential, but considerably shortens
the proof.

Suppose x and y are points interior to domain D (Fig. 46). Then

3n(t,y)
—-Tt-——dt- (13)

X
n(x,y) = n(x",y) + j‘
X

Let us now square both sides of inequality (13) and use the obvious
inequality 2AB S_AZ + B2, valid for any two numbers A and B:

2
n?(x,y) < 2[n2(x’,y) +<)j( ﬂ%—’-}p—dt) ] . (14)
-
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We now apply the Bunyakovsky inequality*

X 2 X X 2 -
(f‘ angE,Y) dt) i(f‘ 12 . dt) . [f‘ (Bngz,}’)) dtJ ‘<_

x X x
X 2
b=y [ (20D gy, (15)
X
Combining (14) and (15) we get
x” 2
nz(x,y)_i 2{n2(x",y) + (b - a) f‘ (EﬂéélZl ) dx]. (16)

X

-

Integrating both sides of (16) over x from x = x” = x"(y) to x = x°~ =
x"“(y), and using the fact that the right hand side does not depend on x:

- -

X X
[ n?Ge,yddx < 2(x77 = x*)[n2(x7,y) + (b ~ a) [
X x~

2
(Bn(x,y)) dax] <

X —_

) x™7 . 2.
<2(b - a)[n?(x",y) + (b - a) | (ﬂi},’(y—)] I an

X

Now we integrate both sides of inequality (17) over y, fromy = c to y = d

and get
2 4 an, 2
[ [ n2axdy <206 - @[] n?(Cuyday + (b - a) [ [ (33) ax ay]. (18)
D c D
Clearly
d 1
J n2(x",y)dy < [ n2(s)dx < — | o(s)nZds; (19)
c T or
any2 F 932 any 2
[ 15 axdy < f Iz + (55) Jax ay. (20)
D D

From (18) and (19) it follows that

*Usually called "Schwarz's inequality" in English. (Translator's note.)
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J ] n?ax dy <
D

2 2
< 2(b - a>[§5{ onZds + (b - a)f [[(32) + (,f};_) Jax day} <
D

< 2(b ~ a)max[%—, b - ale
0

U IGD + G lax ay + [ otemias,

which is, in fact, inequality (12) with B taken as 8 = 2(b—a)max[(l/do),b—a].

* k%
Inference. Suppose E(x,y) is in W, and E[r= 0. Then the Friedrichs
inequality

J J eraxey <[ S [25
D D

3 2
+ [3—)5,‘) de dy, (21)
is valid, with o = 2(b-a)2.

* x k * % %

Proof. Set o, = o = 1/(b-a). For a function &(x,y) = n(x,y) in W,

satisfying the auxiliary condition E]P = ylr = 0, inequality (12) takes the
form (21), where a =B = 2(b~a)2.

Proof of Theorem 3. For each function w in W, w|r = ¢(s), the
function £ = w — u satisfies the conditions which allow us to deduce Eq.
(21) as an inference from the lemma. Taking account of (4)

2 2 -
I [(32)" + (32) Jax @y = 1(w) =~ 1(w, ")

one can write Eq. (21) in the form
J) (v = w)2ax dy < GII(w) - T(w)]. (217)

Adding Eq. (47) to inequality (21°) one gets Eq. (10), with a = T+ 1.
Theorem 3 1s proven.
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Proof of Theorem 4. For any function w in W, n = w - v satisfies the
conditions of the lemma, and thus also inequality (12). Taking into
account Eq. (8)

3ny2 9n, 2 240 _ .
IDI () + () Jax ay + { o(s)n?ds = J(w) - J(v), (8%)

Equation (12) can be written in the form

[ [ (v - v)2dx dy < Bl - 3(wl. (127)
D
Adding (87) and (127) term by term, and discarding from the left-hand side

the non-negative term | o(s)n?ds, we get inequality (11) with the constant
T
B8 = B8 + 1. Theorem 4 is proven.

3. The variational method of Ritz. From theorems 3 and 4, by virtue
of inequalities (10) and (11), it follows that one may take, as
approximations to solutions u and v of boundary-value problems (A) and (B)
those functions which, among all admissable (w in W and w]p = ¢(s) for
problem (A) and w in W for problem (B)), give to the functionals I(w) and
J(w) values close to the minima, I(u) and J(u), over the corresponding
classes of allowable functions.

For the actual determination of approximate solutions Ritz proposed,
in 1908, a method which we present, first, as applied to problem (A). For
convenience in presentation we will assume that, in the boundary condition
of A, ¢(s) = 0, so that U'F = 0. The general case, ¢(s) # 0, reduces to
this one if we go over to a new unknown function u, u = u + h, where h(x,y)
is any twice differentiable function satisfying the boundary condition hIF
= ¢(s). The formal scheme for finding an approximate golution by the Ritz
method consists of the following steps. Designate by W the linear space of
all functions w in W satisfying the boundary condition w[r = 0., Choose a
positive integer N, and any N linearly independent function

N N N

ml(x)y)! mw(x,y), eesy mN(xay)’ (22)
satisfying the condition
w =0, n=1, 2, ..., N. (23)

a
Consider, now, the N-dimensional linear space, wN, of all possible linear

combinations of functions (22)

N
a w

nn’

[t~

wN(x, Ys @1y vees aN) = )

1

where a], ..., ay are arbitrary real numbers.



366 Variational and Projection Methods Chapter 12

We now seek, inoplace of a function w = u minimizing the functional
I(w) over the space W, a function wN(x, Vs 815 eeey aN) minimizing the 0
functional I(w) on the set of all functions in the N-dimensional space W .
It is this function wN(x, Yo 8p ey aN) = GN(x,y) which we will take as
the approximate solution for the given choice of N basis functions (22).
The problem of determining the function wN(x,y) 1s incomparably simpler
than that of evaluating the desired exact solution u(x,y).

In fact

2

- N N
I[wN(x, Vs @1y seey aN)] =[] T £1 aw

D n

|t~

s X Y N
+ (5; ) anmn> dxdy + 2 [ [ £ aw dx dy, (24)
n=1 D n=1

and we are now looking for N numbers a_, ..., aN, which minimize the func—
tion I[wN(x, Yo ps eeny aN)] of N variables. We show next that such a set
of numbers a,, ..., a, exists. The first term on the right-hand side of
expression (24) is a quadratic form in a,, ..., aye In view of the linear
independence of function system (22), this form for ay £0 must~be strictly
positive, since in the contrary case it would, for some set of N £ 0, be

equal to zero and we would have, by virtue of (21)

2
ff(lf Enw§> dx dy <
D n=

=1
~ ? S~ N d S~ N -

from which it follows, despite the linear independence of the wg's,
that

~ N
a w

o n(x,y) = 0.

e~ 2

1

Because of the proven positive-—definiteness of the quadratic form
expression (24) has a unique minimum. This minimum is attained for those

n

values a =a,n=1, ..., N, for which
n n

81[w (x y, a vesy @ )] .
o X -, n=1, «., N (25)
n
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In detail, the linear system of equations (25) for the

»ee, a_ can be written in the form

numbers a
N

1’
N m? s 3w§ awz
Lol toy oy ax oy -

i
N
=~ [ [ fw dx dy, n=1, ..., N. (26)
n
D
So as to abbreviate notation, and for convenience below we consider,

along with the normed space W, the linear space W consisting of the same
functions as in W, but with the scalar product (w*, w”*)

1

(wow )= [/ (Bw’ dw™” . Bw’ aw")dx dy + [ o(s)w"w""ds, (27)
T

D Ix ex By oy

where o(s) > o > 0 is some given function. This scalar product induces a

norm ||w||_ in the space W via the expression

[Hul|Z = (w,u). (28)
g ¥ N
We designate by W the subspace of functions w in W satisfying the condition

W(f = 0.
After the introduction of the scalar product system (26), thanks to

the condition wi' = 0, takes the form

==/ fw:dx dy, n=1, ., N. (29)

(ugs ©]) =0 (o wy)
is the Gram matrix of a system of linearly independent functions (22).
From a standard course in linear algebra we know that the determinant of
this matrix is differ%nt from zero.
The solution a = gn' n=1, ..., N, of system (29) now provides the
function

~

wN(x,y) = wN(x, Yy 8js eees aN),

which one takes as the approximate solution. This function GN allows a

simple geometric interpretation.
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From (4) and (27) we have
I(WN) - I(u) = (WN Su, o u),
Further
1(w

] = I(u) = min (I(w) - I(u)] =

N
w in WN

= min (w - u, W - u) = (w -u, W, - u).
9, N N
Wy in WN
Thus ;N 1s that element of the linear N dimensional space ¥y which, of all
elements erected on the basis (22) (i.e. in the “"span" of the basis

functions), deviates least from u in the sense of norm (28), i.e. GN is the
0
projection of the solution u onto the subspace W in the sense of the

scalar product (27). At this point we have completed our formal
presentation of the Ritz scheme for determining approximate solutions.

Let us now see what determines how close the approximate solution

R RN

computed by the Ritz method, comes to the exact solution of problem (A), in
which we have adopted the assumption that ¢(s) = 0. Naturally the quantity
'IGN - ullw depends upon the choice of basis functions (22). If, for
example, the basis functions (22) had been chosen in such a way (by an
improbable accident) that the function u turned out to be one of the
functions of the N dimensional space WN lying in the span of the basis
(22), then the approximate solution, GN’ would coincide with the exact
solution u. In fact

1(w

N) - L(u) = min (I(w) - I(a)) = I(u) - I(u) = O

~]

w in W

and by theorem 3
[ |w - I(u)) = O.

o - ully < a1

)

But the function u {s unknown to us, and we know only certain of its
properties, properties not peculiar to it alone but to a whole class U of
functions. Suppose, for example, we know that the second derivatives of
the function u are continuous, and bounded by the constant M. Then the
class U consists of all twice—continuously-differentiable functions the
second derivatives of which don't exceed M, and which satisfy the condition
U‘F = 0.
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0
We recall that, for the solution u and any w in W
I(w) = I(u) = (w=-u, w=u) =||lw-u]?
and that by theorem 3

Hw = uff2 < of[w - uf|2.
W W
Therefore, insofar as possible, the basis funciions must be chosen in such
0
a way that, for each function v in U, with U in Y, there should be a

9
function Yy in W close to it, 1i.e., a function for which ],wN— Vllﬁ is

small., Then, in particular, the quantity

[lwy = ul[2 = min JIO) = T] = min (0 - u, W - W),
N ~N
w in W w in W

will be small and, along with it, also the quantity ‘IGN - ul]w:
— 2 o - 2
Hug= ul 1y < allwy ullw-

More precisely, the best set of functions (22) would be one for which the
quantity

0

K = KN(U, WN) = Sup min Jw - v} (30)
v in U fad W

w in W

0
is as small as possible. We designate by KN(U,W) the number

0
og(U, W) = Inf K (U, W) = Inf Sup min | |w - v|]|_.
~N 0 N N , . O W
W in W Wy, see, Wy vin U win W
3

This number is called the N-dimensional Kolmogorov diameter of the class of
0

functions U with respect to the normed space W in . Clearly the optimum
choice of functions (22) would be one for which the guantity (30) coincides

0
with KN(U, W], the diameter of A. N. Kolmogorov. For any € > O there
exists, obviously, a set of basis functioms (22) for which

1(wy) = (W) = |]wy - ull2 <

0

: 0 0
< Sup e, |lw - u]|2 = &, W) < <2(u, W) +e
: inU win ﬁ w
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x & x x % %

The N-dimensional Kolmogorov diameter, KN(X,Y), of a set X lying in
linear normed space Y, with respect to this space, is defined by the
expression

KN(X,Y) = Inf Sup min ||y - x||Y,
N N
Y InY xin X yin Y

where Y _ 1s an arbitrary, given, N-dimensional linear manifold
("hyperplane”).

Diagonals have been computed in many cases. In particular, it is
known that, for the class of all functions v, VIF = 0, whose second

derivatives, in some domain, are continuous, and all bounded by one single

constant,
0 1
< (U, W) = o(=) , (32)
(0 ¥) N
k (U, #) = o) . (33)
N N

Taking into account additional information about the desired solution
u, obtained in a preliminary analysis of the problem, or as a result of

experience in solving similar problems, one may narrow the class U, and as
)

a result the diameter KN(U, W), N=1, 2, ... can only decrease.

Thus the skill and experience of the analyst are manifested here
through his ability to choose a narrow class, U, containing the required
solution u and then, for a given N, to choose basis functions (22) in such

Q
a way that the number KN(U, WN), introduced via Eq. (30), will not be much
[

larger than the N-dimensional diameter KN(U, ﬁ). Then on the right-hand
side of the equation

d
g = ul12 < al1(oy) - T)] = af [y = ul 2 < ak2(0, W)

0
we will have a number, close to K§(U, ﬁ), which tends to zero all the more
quickly, with increasing N, the narrower the class U. If one takes full
enough account of special features of the solution u, known prior to the
computation, and then, correspondingly, makes a good choice of basis
functions, then a sufficfently accurate solution may be obtained even for a
small N. But the volume of computational work, work which consists in the
computation of coefficients and solution of system (26), depends precisely
on N. Thus the computational algorithm will then be very efficient.
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Let us now illustrate the Ritz method with still another example:
consider problem (B). After a system of basis functions (22) has been
chosen, we look for an approximate solution

N
N
WN[X’ Yy 31’ veey aN) = }: 3nwn(x:y)
n=1
in the space wN of all linear combinations, choosing constants such that
the expression

)]

J[wN(x, Y, al, ey aN
be minimized. Minimizing constants 3y eves aN must be determined from the
system of equations

BJ[WN(X, Ys a1y eres aN)]

da
n

=0, n=1, «., N (34)

We will assume that in the definition (27) of scalar multiplication
the function o(s) coincides with the corresponding function which appears
in the boundary condition of problem (B). Then the system of equations
(34) takes the form

N

N
) ai(w§, wN) = - f f fwzdx dy + f ¢(s)mids, n=1, ..., N. (35)
1=]1 D T

The solution of this system a = En’ n=1, .., N then gives exactly the

desired approximate solutlon GN’

1

= - N
wN(x, y) = ¥ anwn(x,y).
n=1
For a function GN in W, and the solution v of problem (B), we get from Eq.
(8)

~ ~

J(; -V, W, - v) £ max min (w -V, W - v),

v) 5 .
vin U win W

where U is the class of functions containing the solution v of problem
(B). From the last inequality it is clear that the basis functions mT,
ey wg must be chosen in such a way that the right-hand side of this
inequality will be as small as possible. In this case it is not necessary,
as it was In the previous example, to subject the basis functions to any
sort of boundary conditions.

4., Projection method of Galerkin. B. G. Galerkin, in 1916, proposed
a computational method for the solution of boundary-value problems, a
method which did not require that the problem to be treated should have a
known variational formulation. We present this method via the example of
boundary-value problem (A) assuming, moreover, as in Sect. 3 above, that
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a2 32
———‘21 + -——‘2‘ ~ f(x,y) = 0, (x, y) in D,

oy (36)

ax

ulr = 0,

Again we choose a system of basls functions (22), but now we (temporarily)
stipulate that the functions mg(x,y) have continuous second derivatives.
Again we seek an approximate solution in the form of a linear combination

N
N
wN(x, Yo Ay eees aN) = Z anwn(x,y). (37)

n=1

Now we substitute Eq. (37) into the left-hand side of the equation and

boundary condition of (36) and get

32 a2
;;; [wN(x, Yy Ay sees aN)] + E;E [wN(x, Ys Bys eers aN)] - f(x, y) =

= GN(X, Y ala A | aN)

where GN(X, Vs al, veey aN)
Let us now introduce in space W, along with the scalar product

(w", w™°) defined above, another scalar product

is the resulting residual.

[w, w] = [ [ ww” dx dy.
D

If it turned out that 6N were orthogonal to all the functions in ¥, in the

sense of this scalar product, then & (x, vy, ALy vees aN) would vanish iden-

wl
tically, and Yy would be the exact solution. But the number of parameters

apy weey ay 1s too small to allow us to construct an exact solution by
adjusting these constants. Therefore we will choose them, instead, from
the condition that the projection of the residual on all the mz, n=1,
wes, N, be equal to zero, i.e. that the residual be orthogonal to all the
basis functions (22)

N

[SN’ w

=0, n=1, «.., N. (38)

In expanded form the system of equations (38) for the numbers al, cees A

may be written thus:
32w 2w
ff( 8 )N gy gy = f S Y e,
D ax? ay2 n D n
n=1, «.., Nu (39)

Integrating by parts we see that, thanks to the condition mg = 0,
r
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D \8x? ay?
0 BwN 3w BwN an i dy =
9x 9x 9y o y
N TR YO O T
=) a, [l dx dy =
g i 9x 93X 3y 4
i=1
N
__ ¥ N
B .2 ai(ml’ w“).
i=1
Thus system (39) may be rewritten in the form
N
X N N N
) ai(wi, mn) = - (¢, mn], n=1, ..., N (40)

and, for the given cholce of scalar product [*], exactly agrees with the
system (29) obtained by the Ritz method.

The additional assuption that the basis functions have second deriva-
tives can here be dropped, since the Galerkin equations (40) retain their
meaning even without this requirement.

5. Methods for solving the algebraic system. For not very large
N(N ~ 100), the Ritz or Galerkin equation-sets can be solved exactly by
existing standard codes for systems of linear equations. Further the
matrix w of Ritz system (29) in our example (and this is typical) 1is a
Gram matrix for the basis system w:, n=1, .., No. Obviously it is
symmetric, and it 1s known to be positive definite. Therefore to compute
the solution of Ritz system (29) one can make use of any one of a number of
iterative methods like, for example, 1iteration with Chebyshev parameters.

Iterative methods become considerably simpler if only a few of the
elements of the matrix mN are different from zero. We will see that, in
the variational-difference and projection-difference schemes precisely this
is true.

6. Computational stability. We have seen that the accuracy of the
approximate solution, for a given number N of basis functions w:, n=1,
«+s, N, depends on how well one can approximate the solution with elements
of the N dimensional linear ~puce formed by the span of these basis func-
tions. Thus the accuracy depends on the choice of an approximating space,
but not on the basis used in this space.

The stability, i.e the conditioning properties, of the equation system
(29) of the Ritz method, or of Galerkin-method system (40), depends on the
conditioning of the matrix wN of the equation system. From the point of
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view of stability it would be ideal if the functions w:, n=1, «see, N,

formed an orthonormal basis. In that case the matrix mN would be unitary.
PROBLEMS

1. Show that the solution of the following first boundary-value
problem for elliptic equations with variable coefficlents

7= [aty) 2] + g [bGuy) g2l = £y,

o(s),

ul

a(x,y) Z_ao > 0, b(x,y) > b0 >0

minimizes the functional

100 = f | a3 + b(;’;)z + 2fw]dx dy
over the class of all functions w In W satisfying the auxiliary boundary
condition wlr = $(s).

Assume that the solution u(x, y) has continuous second derivatives.

2. Given a system of basis functions MT, ceey w:, write out the
system of Ritz equations for computation of the solution, u(x, y), of the
above problem 1 with ¢(s) = 0.

3. Show that the solution of the third boundary-value problem for the
elliptic equation with variable coefficients

3 9 3 3
7 a6y F] + 5 [y 5] = £y

24 o(s)u R

minimizes the functional

Jw) = [ | [a(%;)z + b(%;—t)z + 2ufldx dy + {‘(owz - 20w)ds
D

over the set of all functions w in W.

4. Given a system of basis functions MT, ceey wg, write out the
system of Ritz equations for computation of the solution u(x,y) of problem
3.

5. Given a system of basis functions wT, ves, wg, write out the
system of Galerkin equations for the first boundary-value problem.
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32 32 3 3
S84 28 axn,y) -§ + b(x,y) a—u - c2(x,y)u = f,
3x2 ayz y

u[r =0,

§39. Construction and properties of variational-difference
and projection—difference schemes

1. Definition of variational-difference and projection-difference
schemes. Suppose that, in the closed region, D, in which we want to solve
some varlational problem for each N of a monotone increasing sequence of
natural numbers, we are given N points PT, PZ’ cesy PN. The totality of
these points will be called the "net corresponding to the given N.”
Suppose, further, that the Ritz method for solving the variational problem

makes use of a system of basis functions
N N N N
wl(x,y), wz(x!y), seey wn(x,y), seey wN(x,y),

the n'th member of which (i.e. wi(x,y)) takes on, at PE, the value unity,
vanishing at all other points of the net:

, n, k=1, 2, «.., N. [@))

In this case the linear combination

YN
wN[x, Vs @y eees aN) = nil anwn(x,y)
takes on at point PE the value wN(P:) =a,n-= 1, «¢., N. Therefore one
may write
N
Ny N
wN(x,y) = nzl wN(Pn)mn(x,y).

The system of Ritz equations for the determination of coefficients,
A, sss, a_, such that this linear combination minimizes the variational
functional over the linear space generated by the basis functions wT, ceay
wg will, thus, connect the values, wN(PE), n=1, «esy N, of the solution
function itself at the points of the given net Pl’ ey PN: i.e. the Ritz
equations turn out to be a sort of difference scheme. This difference
scheme, in conformity with the method by which it was constructed, 1is
called a "variational-difference" scheme.

Correspondingly 1f, to implement the Galerkin projection method, one
w:, satisfying condition (1), then the
Galerkin method becomes a sort of difference scheme, which it is natural to
call a “projection-difference” scheme.

uses basis functions wT, ceny

So that the reader will more easily visualize what has been done it
may be worthwhile to make the following remarks. For given values_wN(Pg),
n=1, ..., N, the linear combination
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N Ny N
we(xay) = L w(B Je (x,y)

n=1
can be understood as an expression which completes the definition of, or
"fills in" the function w _(x,y) everywhere in domain D, according to its
values wN(Pg], n=1, «.., N, at the net-points. Clearly neither the
choice of the net Pn, n = lﬁ veey N gor a given N, nor the choice of a
system of basis functions w, ..., W, satisfying condition (1) and
defining a method for filling~in the net function, 1s unique. Thus, for
example, in the one-dimensional case the function might be completed in the
interval, according to its net-point values, plecewlse-linearly, or quad-
ratically, or by Lagrange Iaterpolation, etc. On the choice of net Pg, and
of the basis functions, depends the form and properties of the resulting
variational-difference or projection-difference scheme for the given
variational or differential boundary-value problem.

Let us now consider examples of variational-difference schemes for
problem (A) and (B) of §38. We will assume, here, that region D, in which
we want solutions, is convex. (A region, D, is called "convex" 1if, for any
two points P and P” in D, all points on the line, PP”, with end-points at P
and P”, also belong to D).

The assumption that D Is convex 1s not at all essential, but
simplifies our prasentation.

2. Example of a varlational-difference scheme for the first boundary-—
value problem. Choose a positive integer N. Next inscribe in contour [,

N e Qz QT with vertices
at points QI’ seey Q:. Call this
polygon DN. Divide the polygon DN

bounding region D, a non-intersecting polygon QT Q

into triangles in such a way that
(a) each segment of its broken-line
perimeter will be a side of one of
the trianygles, (b) that each pair of
triangles either has no points in
common, shares a vertex, or shares a
side, and (c) that the total number
of vertices PN, ceey N of these
triangles lying inside the polygon
DN should be equal to N. The set of

points P?, oo, PN will, then, serve
Fig. 47 as our net (Flg. 47). Now we con—
struct a system of basls functions
N N
Wy eeey Oy

. We define the basis function, m§(x,y), n=1, ..., N as
follows. First we assign function-values at the net points via Eq. (1)

N K
wn(PE) =, n, k=1, «ou, N
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Then we fix these values at the

points QT, seey Q:, assuming them all to
vanish at these points. Thus each
function is already defined at the
vertices of all triangles constituting the
decomposition DN. In each of these

%

triangles we then complete the definition
of the set of basis functions, taking them

a!

7

all to be linear. It remalns for us to &
define them in the region D\\DN, where we

will set them to zero.
Note that, for any triangle that has ,

P.
no point P: as any of its vertices the g

function wg(x,y), as we have constructed Fig. 48.

it, will vanish. 1In a triangle with a

vertex at point Pg the function wg = wE(x,y) appears, in the space xyw, as
a section of a plane (Fig. 48) passing through the side lying opposite the
vertex PE, and uprailsed to unit height above the point PE. The system of
Ritz equations, (29) §38, determining the coefficients a = EN(PE) in the

approximate solution

oo ) o,
has the form
i Ny N N N
igl vy (P (wgs0)) = - JDJ fo_ dx dy, .
n=1, .., N

This is precisely the variational-difference scheme corresponding to the
above choice of net and of basls functions.
The matrix of this difference scheme

has, as elements, the quantities
N N (BwN 8w§ Swg awN)
n
= _n_ 4, . n_1 . 3
(wn’ UL)iJ fo Ix  9x + 3y 9y dx dy (3

Obviously only those products (mi, w?) can differ from zero for which the
points PN and PN are vertices of one and the same decomposition triangle.
In fact if PE and P? are not, in this sense, neighboring net-points then
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regions in which wN £ 0 and m? £ 0 will not intersect, and therefore the
integrand in Eq. (3) will vanish identically everywhere in the range of
integration.

Thus the n'th equation of the set which constitutes variational-
difference scheme (2) connects values of the unknown function at point
PE with other values of this function only at neighboring points.

The computation of coefficients via Eq. (3) presents no diffi-
culties. In fact the coefficients (w:, w?] are integrals of the quantity

Bmﬁ Al Bw: Bm?
E3TaE T T “
over a pair of subdivision triangles, triangles with the segment P:P? as
their common side. Further, the integral over any one of these triangles
is completely determined by the lengths of its sides, and does not depend
on its orientation or location. In fact the quantity (4), constant over
the triangle, 1s the product of the lengths of the vectors grad mg and grad
w?, multiplied by the cosine of the angle between these vectors, and there-

fore may be expressed in the form

cos (R, ). (5)

Here hn and hi are the lengths of perpendiculars drawn from the vertices
Pg and P? respectively to the surfaces w = wg(x,y) and w = w?(x,y), while

Fn and ﬁi are unit vectors directed along these perpendiculars, towards the
respective vertices, like the vectors grad w and grad w,. The integral
over the triangle is obtained by taking the product of the quantity (5)
with the area of the triangle.

The construction of variational-difference scheme (2), for a given

choice of points Q? and PV, is completed. Clearly, however, one cannot

i’
expect that for every cholce of these points, uniquely defining a system of

basis functions mN, n =1, .o, N, the corresponding approximate solution

n

g = wg(xs v, W (P)), een, @(2Y))

will be a "good approximation” to the exact solution, u(x,y), of the ori-

ginal problem. In fact if, for, example, all the points Q?, seny Qz and

PT, cersy Pg were distributed over one "half" of the region, with not a

single net-point in the "other half", then the resulting approximation
couldn’t turn out to be good. To make a good choice of boundary—-points

QT, ey Q:, and net~points PT, ey pN

N® one must take account of relations

discussed in §38, and reproduced here:
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[
- - <N
Ile-ullﬁ,ﬁalle-U||§§GK§(U, W) =
= a sup Inf [w = v]|2 . (6)
v in U w in W W

0
In (6) W is the N dimensional linear space generated by all possible
linear combinations of the basis functions, and U is a set of functions
containing the exact solution.
More precisely, it will be seen from (6) that it is adviseable to
choose the points QT, ey Q: and PT, ceay Pg with the properties of class
0
U in mind, so that the quantity KN(U, ﬁN) will be "as small as practically
0
possible”, and so that, as N + =, the sequence KN(U, WN) will go to zero

“as fast as possible”.

0 9 0
Always KN(U, WN) > KN(U, ﬁ), where KN(U, ﬁ) is the N-dimensional
- [4)

Kolmogorov diameter of the set U with respect to normed space W (see
3§38). Therefore for a choice of points to be "good™ it is sufficient that

[ 0
KN[U, W ) be close to Kk [U, W).

N

x & k% % % %

Generally speaking, however, it is not true that, for each set of
0
functions U, there exists a net for which KN(U, ﬁN) does not “greatly”

exceed KN(U, %N], so that as N > = the quantities KN(U, %N) and KN(U, %)

will be small of the same order in N_l. The problem is that, in parti-

cular, the piecewise linear basis functions which we are using in this sec-

tion to comglete the net functions will, for each choice of points, gener-
N

ate spaces W , of plecewise—~linear functions, spaces which do not exhaust
0

all possible N dimensional subspaces of space W, and among which there may

0
not be a subset WM which constitutes a good approximation to set U.

x* % *

Let us now analyze in detail a case where all the a priori information
which we have as to the propertles of the solution, u, permits us to con-
clude only that u belongs to the class, U, of all functions, vanishing on
the boundary, whose second derivatives do not exceed some number, M.

In this case we will show how one must distribute the points QT, veey

0
Qg, PT, caey Pg so that, as N increases, KN(U, W) will be of order o(1//¥).
Then, thanks to Eq. (6) for the error, GN - u, in the approximate solu-

tion GN' we are assured that
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ey = ull, <%=
by ‘w /N
(7
- ac
',wN-un.S:/%’

where ¢ 1s some constant.

* *x % k % Xk

Note that, because of equations (32) and (33) §38 for the diameters
0

7 = ol
KN(U’ W) = O(m)r
(8)
0
cg(Us W) = o(j—ﬁ-),

these bounds are hest possible in the following sense. If we look for an
approximate solution in the form of a linear combination of some given
N N
functions lpl(x,y), ceey ‘JJN(x,y),
N N
W, = z [
N kel k'k
then one cannot, for any choice of functiouns ¢g(x,y), nor for any method of
computing the coefficients ¢, given a right-hand side f(x,y), achieve
bounds of the form ’,wN - u, 0= o[l//ﬁ) and ,,wN - u,,g = o(l//ﬁj, valid
W W

for any f(x,y) for which the solution, u, belongs to our class U.

* % %

Theorem 1. [Let U be the set of all functions whose second derivatives
are continuous and do not exceed some number, M, in modulus, functions
which vanish on the boundary, T. Suppose that, for each N of some inereas-

ing sequence of natural numbers, one has selected points Qs Qpy eeer Q

m = m(N), and a decompogition of the polynomial DN = QTQZI, ey Q: into

triangles generating, as described above, the net P, PN, eeey P
further, that the following conditions are fulfilled:
1°. The length £, of any side of a subdivision triangle satisfies the

inequality

— =z

N Asgume,

where
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and C, is some positive number not depending on h.
2°. The area of the region DNDy, satisfies the bound

5, < c2h2, C, = const. (9)

3%, Each angle o« of any of the subdivision triangles of region Dy
satisfies the bound

a > ao = const > 0. (10)
N
Under the given conditions we have, for the quantity KN(U, W)
9 - 2 _ 2
(0, W) = sup  Ine [ {RETY)T  2ES W 6 D
SN D ¥ y
vin U win W
the bound
N
KN(U, W) < Cyh, (12)

where C, ig some constant.

* k * X k %

Proof. It 1s sufficient to show that, for each function v in U the

following function

s

V(Pz)mg(x,y), w in W, (13)
1

wix,y) =
k

[

satisfies the bound

h?, (14)

[ 1R (29 g o

]
D 9x y 4

since, obviously, in this case bound (12) is valid.
The integral (14) may be written as the sum of (non-negative)
integrals over the polygon D inscribed in region D, and its complement

D\DN in the whole region D:

N’

RIS L )

2
RRIESS 2 e o -

=guﬁ%;%+ﬁ“g”mx@+
N

uy.2 )
] {[3(“’ ")] + [a(way ")] fax dy. (15)
D

381
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Let us now estimate each of the two terms on the right-hand side of (15),
establishing the bounds

F 1 {.. }ex dy_(_Alhz, (16)

DN

I] ... .}lax dygAth, (17)
D DN

where A, and A2 are constants not depending on the function v in U, nor on
h. Clearly, by virtue of (15), Eqs. (16) and (17) imply (14) with constant
C4 = A1 + A2'

To prove bound (16) it is sufficient to show that, inside each

triangle making up the decomposition of region D, we have the inequality

d(w - v)
on [

y

3w =~ v)
l—-“’W-‘L < Bh, (18)

where B is a constant which depends neither on the function v in U, nor on
h. Then, clearly bound (16) will be valid if, for A, we take A

2B82+(area of D). Thus to complete the proof of bound (l6) we need to
establish bound (18), which we now set out to do. The proof of (18) will
be divided into two stages. First we show that the derivative d(w - v)/d%,
in any direction £, can change inside a triangle by no more than A3h, where

-

A3 = const, so that for any two points (x7,y”) and (x”7,y””) belonging to

the triangle we may write
[d(w - v)] _ [d(w - v)]
dag PO ds P
(x"7,y77) (x,y7)

Next we choose any two sides of this triangle forming acute angle o, and
show that everywhere in the triangle the derivatives d(w - v)dSL1 and
d(w - v)/dlz, in the directions of these sides, satisfy the bounds

< A3h. (19)

'E%T‘._V)_ < Agh, 'd_(.‘i.f:_"l < Agh. (20)
1 2
Then we use the equations
d(w = v) _ 3(w -~ v) . (w - v) 1
T T T oF Gy * oy sin gy,
(21)
d(w = v) 3w - v) AI(w = v)
dlz = T cos az + ——~§;——- sin az,

where ul and a2 are the angles which the directions Zl and 22 make with the

x axis. Considering Eqs. (21) as a system of equations for 3(w - v)/9x and
a(w - v)/dy, we find that
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sin a sin a

A(w - v) - 2 d(w ~ v) _ 1 d(w - v)
9% sin[az - ulj di;7 sinLuz - ulj dlz ’
(22)
Bw-v % dw-w, % d(w = v)
— 9y sin(a, = o] ar) sin(e, =] dz, :
But by Eq. (10) the angle « = @, = o > @, >0 and a {7 = Zao, so that

sin a > sin a, = const > 0.
From Eq. (22) and inequality (20) one derives the bounds
[3gw = v) 2 [3¢w = v) ¢ 2

| ax — sin a A3h’ |
o

dy — sin a A3h’

which take the form (18) if we define B = (2/sin GOJA3.

To complete the proof of bound (18) and, thus, of (16), it remains for
use to prove hounds (19) and (20) on which we have relied. Let us first
prove (19). Designate by S the direction from point (x”,y”) to point
(x”7,y”"). On the interval joining these points any function ¥(x,y) can be
considered as a function of s, where s is the distance from point (x7,y”).

By the theorem on finite increments

Wiy ) = wlasy) =yl - w02 (v - y)2 2B,

where (£, n) is some point of the interval connecting points (x”,y”) and
(x"*,y°"). If

v(x,y) = ‘—"_—dv((i;’y) ’
then
dv(x"",y"" dv(x”,y” . - P o d dv(E,
v[xdl y°°) _ V(zl y”) =‘JE;7 - x*)2 + (y77 - y7)2 ag'(-ziézﬂl)- (23)

Designate the angles that directions % and s, respectively, make with the x
axis as a and B. Then we may write the symbolic equality

d 3 + sin @ 3
L = ¢Ccos & H sin '3';; >
d 3 9
I5 = cos B =t sin B W
Clearly
d d 82 32
i [HE) = cos a cos B ;;; + [cos a sin B + sin a cos BJ TX3y +
32
+ sin o sin B —
3y

Therefore
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s U ae
2 2 32
= |cos a cos B E.X&ELEl + sin(a + B) 37v(E,n) + sin a sin B __XSELEZ < 3M
ax2 x 3y2 -

Since \jgg" - x’)z + (y"" - y’)z S_chh we get, from (23), the 1inequality

dv(x"”,y"") _ dv(x”,y")
de de

< 6Mc1h,

which coincides with (19) if we take A, = 6Mc_ . To prove the first of ine-
qualities (20) we note that on the side of the triangle having direction ¢
there is a point where d(w ~ v)/dl1 = 0. In fact on the ends of this side
w - v vanishes by construction and, therefore, by Rolle's theorem there is

1

an intermediate point where the derivative vanishes. We now designate this
point as point (x”, y”) and use (19), in which we take direction £ to coin-
cide with direction 21. In this way we get the first inequality. The
second is obtained analogously. Having completed the proofs of inequal-
ities (19) and (20) we have thus also completed the proof of inequality
(16). To complete the proof of the whole theorem it remains for us to
establish inequality (17).

Note, first of all, that each function v in U satisfies the conditions

dv v

where M is the maximum modulus of the second derivatives of function v(x,y)
in domain D, and L is the diagonal of any square containing D. Suppose
that the line y = const intersects domain D. Since at the ends of the
interval of intersection, where this line crosses ', by our assumption
v(x,y) vanishes, then at some interior point (xO, y) of this interval, by
Rolle's theorem, Bv(xo,y)/ax = 0, At any other point of the interval

av(x.,y)

v(x,y) 3v(x,y) 0 - . 1%vee, )
T T - = =[x - xOl ) < M.

The second of inequalities (24) is proven analogously. From the structure

of the basis functions mg, it follows that the functions w(x,y) =

N
Z v(P:)mﬁ(x,y), in the region D\DN over which one carries out the
n=1

integration the left—hand side of (17), is identically zero. Therefore, by

bound (24), the integrand on the left-hand side of (1l7) does not exceed the
bound 2M2L2, and the integral itself does not exceed the quantity

2712 o 27120 12
2M2L, SN£2MLC2h
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Thus inequality (17) is valid if one takes A2 = 2M2L2C2. The theorem is

proven.

3. An example of a variational-difference scheme for the third
boundary-value problem. Consider, now, third boundary-value problem
(B)§38:

32 32
gy v . £(x,y),
ax2 3y2
(25)

g—‘; + a(s)u = ¢(s).

Suppose that, for some N belonging to a given increasing sequence of
natural numbers, we have chosen a net PT, ey Pg, and a system of basis

functions wN, eey o satisfying condition (1)

1 N
N, N k
wn(PkJ =6, n, k=1, 2, «.., N,

Then the system of Ritz equations for the coefficients in the linear
combination

N
wy(x,y) = El wN(Pg)wﬁ(X,y),

minimizing the functional J(w) over the class of all functions w = a Wl o+

171
cee t anE, can be written in the form of the following variational-
difference scheme:

S
Low (PO, w) = = [ ] fudx dy + [ ¢(s)w ds,
N i
i=1 D
n=1, ..., N (26)

Let us now state sdu-what more specifically how we will choose our net and
basis functions. For a glven positive integer N we inscribe, in contour T,
a closed non~ intersecting broken-line figure QIQZ"°Q Ql’ with vertices at
points Ql‘ ooy Q , bounding the polygon D We then decompose this
polygon into triangles in such a way that any two either have no points in
common, or have a common vertex or a common side, and that the total number
of vertices of these triangles, including the vertices Q1 ceny Q ,is equal
to N. The totality of all these vertices will be taken as our net. We
label the net points PT, Pg, eney PE, for the sake of definiteness taking

n Qg forn=1, 2, ..., m. Next we define the basis function wz(x,y),
n=1, ..., N, as follows. First we specify the function at the net points

in accordance with condition (1):
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, n, k=1, 2, ...y N, (27)

Next we define it in each decomposition triangle in such a way that it is a
linear functioa fin each rtriangle, taking on values at each vertex given by
Eq. (27). Thus the function w:(x,y) is already defined everywhere in
the polygon DN. Let us now define it in
the region D‘\DN and on the boundary T.
The region D\DN consists of sectors, each
of which is bounded by one of the sides of
the broken-line figure QT...QEQT, the side
forming a chord of an arc of contour [.
Now single out any one of these sectors
and consider that subdivision—~triangle of
DN for which the chord of this sector is
one of its sides. 1In this triangle the
functien wg(x,y) is already defined, and
1s a linear function (albeit perhaps iden- Fig. 49.
tically zero). Let us now define wN(x,y)
inside the sector and on its boundary in such a way that mg(x,y) remains a
linear function in the region formed by the union of the sector and trian-
gle (the ruled area in Fig. 49). With this auxiliary definition in each of
the sectors we have completed the construction of the functions wﬁ(x,y).

Now the coefficients and right-~hand sides of variational-difference
scheme (26) have taken on definite numerical values. Note that, 1f points
Pz and PT are not vertices of one and the same subdivision triangles, then
the corresponding coefficient, (mz, m?), of scheme (26) will vanish.

Let us now discuss the question of the accuracy of the approximate
solution obtained via scheme (26)., By theorem 4§38

[wy = I3 < 8[3(wy) - 3], (28)
Further, in view of (8) §38 and (28)

g = vl12 < 83w) = 3] =
a(w, - v)]? a(w, - v)7?
=8 fo [ gx ] + [ gy ] dx dy +

+ [ a(s)(w, - v)3ds )= 8||w, ~ vl|_. (29)
r N N i

Suppose we know nothing about the exact solution except that it belongs to
some set of functions V. Then by (29) we are only guaranteed that the
difference wy T v satisfies the following bounds:



§39 Construction and Properties of Difference Schemes 387

W (30)
- ~N
fag - vl12 < sy, @),
where
Kﬁ(v, ﬁN) Sup Inf (w=-v, w-v) (31

~N
vinV win W

and W is the linear N-dimensional space spanned by our system of basis
functions w?(x,y), ceey wg(x,y). Consider, now, the case where V consists
of all functions with continuous second derivatives not exceeding some
given number in magnitude.

In theorem 2, below, are formulated additional requirements on the net
which, when fulfilled, have the effect that

Ky, W) <A (32)
YN

Theorem 2. Suppose V is the set of all functions having continuous
second derivatives not exceeding some wumber, M, in modulus. Suppose,
further, that the net P:, n=1, ..., N, constructed above, is subjected to
the two additional requirements:

1°. The length, %, of each side of any of the subdivision-triangles
of DN satisfies the bound

area of D 1/2
(=)

2 <ch q

1M h =

’
where ¢ 18 some constant.

2°. 7ach angle, o, of any of the subdivision triangles satisfies the
bound

a > 5 > 0,

where o is some constant not depending on N.

Then bound (32) is valid.

Proof. From definition (31) of the quantity KN[V, ﬁN) it follows
that, to prove bound (32), it is sufficient to construct, for each function
u(x,y) in V, a function wN(x,y) which satisfies the inequality

RTECEEI LA PP

+ [ a(s)(w - u)?ds 5_%3 (33)
T
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with constant A not depending on u or h. We show that we may take, as this
function w, the function
N
: Ny N
wix,y) = ) u(P Ju (x,y). (34)
n n
n=1
In view of the structure of the left-hand side of inequality (33) it is
sufficient to prove the following inequality:

‘i(-‘ig)‘?i‘-l < BN, |i%‘-‘l < B h everyuhere in D, (35)
|w - u] < BZh on T, (36)

where Bl and B2 are constants. Inequality (35) may be proven in the same
way, almost word for word, as inequality (18), established above for poly-
gon D . To prove inequality (36) we note that, by virtue of inequality
(35) which remains valid on the boundary T, the derivative

d(w = u) 3w = u) 3(w - u)

P —cosY-—g-x———+sinY 0

of the function w — u along the boundary does not exceed 2B1h in magnitude.
Here Y is the angle between the x axis and the direction of the boundary at
the given point. Further, at the points P: = Qg, n=1, 2, ..., my we have

the equation w — u = 0. Therefore at any point Q on the boundary

Q
lw-ul =) [2¥ W 4l 5 .2 k<2 (length of T) = B, = h,
Q N ds - N 1 - 1
Q Q,
n
where S is the distance from point Q to the closest point Q: measured
QQ

along thenboundary T+ The theorem is proven.

4, On the method for proving convergence. To analyze variational-
difference schemes 1t was not necessary for us to split the convergence
proof into separate studies of stability and approximation, as we did in
all other chapters. In carrylng out the variational-difference computa-
tions stability, which should be understood to mean the good conditioning
of the relevant system of equations, as before plays an important role:
not, however, as a factor guaranteeing convergence but only as a property
which permits us to disregard the influence of roundoff errors on the final
result. The concept of approximation, in the sense understood everywhere
in other chapters, no longer plays a role. It 1s replaced by approximation
of the set of functions U by linear combinations of basls functions.

Incidentally, however, a variational-differvence scheme on a regular
net may turn out to be the same as some ordinary difference scheme (see the
problem at the end of this section), and then the variational approach to a
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study of this scheme can be supplemented by the methods used to study
ordinary difference schemes, so as to get additional information as to the
properties of the approximate solutions.

5. Comparison of variational-difference schemes with general
variational and ordinary difference schemes. Variational-difference
schemes are syntheses of variational methods with ordinary difference
schemes. One of the basic advantages of the Galerkin-Ritz method 1is the
great freedom it gives us in the choice of basis functions. If it is known
a priori that the desired solution, u, belongs to some specific, narrow,
class of functions, U, with a rapfdly decreasing sequence of N—dimensional
diameters KN' then in principle one can choose basis functions so as to
achieve good accuracy even for small N and, consequently, for small compu-
tational effort. This fact made it possible for the skilled analyst to
solve selected problems numerically even before the appearance of fast
computing machines. But the actual construction of basis functions with
good properties 1s a difficult problem.

In the variational-difference method one's freedom to choose basis
functions 1s limited to the choice of net structure which results from
decomposition of the given region into a set of polygons whose vertices
serve as net—points, and the choice of methods by which the definition of
net functions will be extended over the whole domain. This limitation in
our freedom to choose basis functions brings with it, however, a degree of
automation in their construction. And we can still, to a certain extent,
take into account the special features of the class of functions, U,
containing the solution, by use of unequal polygons; or by taking advantage
of our freedom to f£11l in the basis function in each of the .Jecomposition-—
polygons, accomplishing this process (like the decomposition itself) with
the aid of a priori information on the behavior of the solution in this
polygon.

On the other hand the variational-difference scheme retains the
convenlence of ordinary difference schemes resulting from the simple
structure of coefficient matrices containing many zero elements. This
structure 1s obtained through use of basis functions each of which differs
from zero only in a small neighborhood adjacent to one of the net-points.
Further we retain here the simple, visualizeable interpretation of ordinary
difference schemes, where the unknowns are the values of the function of
interest at the net points, and not some auxiliary system of numbers with
no immediately visualizeable significance. At the same time varilational-
difference schemes enable us to overcome the difficulties which arise
through the use of difference schemes on irregular nets, or in dealing with
boundary conditions on curvilinear boundaries.
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PROBLEMS

Suppose the decomposition of region DN into triangles 1s accomplished
in such a way that the net-point PE, for a given N, is the vertex of right-
angled 1sosceles triangles with sides of length h, shown as hatched in Fig.

50.
Ty 4 +h)

—

7

Erhgp) L Kz,,+b,_1/,,))
n
7%
(Zyy g = 1)
Fig. 50.
Show that the equation
N N N N N
igl wN(Pi)(wn, wi) = - fo fwndx dy,

corresponding to the net-point P: in variational-difference scheme (2), in

this case takes the form

wN(xn *+h, yn) - 2wN(xn’ yn) * wN(xn - h ynJ

-h2 +
h2
wN(x, y + h) - 2w(x,y) + w(x, y - h) N
+ = - f f fwndx dy,
h? D
where (x s yn) are the coordinates of the point P:.
n
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Part 5
Stability of Evolutional Boundary-Value Problems
Viewed as the Boundedness of Norms of Powers of a Certain Operator

In the preceding parts of this book much attention was devoted to
study of the stability of difference boundary-value problems Lhu(h) = f(h).
We studied, in particular, the stability of certain difference schemes
approximating the Dirichlet problem for the Polsson equation. This is a
stationary problem; its solution does not depend on time. But we took as
fundamental the evolutional problem corresponding to time—dependent
processes such as, for example, the propagation of heat or of waves.
Methods for the study of evolutional difference boundary-value problems are
better developed than those designed for stationary problems. This situa-—
tion may be explained, in part, by the fact that, in many cases, the
stationary state may be regarded as the result of the stabilization of
processes evolving in time.

In studying the stability of evolutional difference problems we
applied the maximum principle, energy inequalities, spectral criteria, as
well as other principles. 1In all these approaches we used, implicitly, the
special structure of the evolutional difference scheme, in which the
solution u is given on one or several initial time-levels of the net,
and 1s then calculated step-by-step. on succeeding time-levels. Here we
will express the layered character of the evolutional difference scheme
directly in writing the scheme, setting up a corresponding linear operator,
Rh, which acts to effect the transition, from the already—known solution on
a given time-level, to still unknown values of this solution on the next
level. This operator may be chosen in various ways. We will construct it
in such a form that the stability of the difference scheme turns out to be
equivalent to the boundedness of the norms of its powers. This approach
will permit us to look at the already-encountered methods for studying the
stability of evolutional difference boundary-value problems from a unified
point of view, regarding them as methods for studying the properties of the
operator Rh: it permits us also to formulate the concept of the spectrum
of a family of difference operators, and a spectral criterion for the sta-
bility of a non-selfadjoint difference boundary-value problem.
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Chapter 13
Construction of the Tramsition Operator

§40. Level structure of the solution of evolutional problems
In all the above examples of evolutional difference schemes
L ulh) = () )
h

we were given the value of the solution u(h) on one or several initial

levels of the net. The value of u(h)

on the following levels was
determined, step by step, from the equations constituting difference
boundary-value problem (1). By the term "level” we mean the totality of
all points of the net Dh lying on the line (or plane) t = const. Below we
will assume that difference scheme (1), under consideration here, has the
indicated level-structure.

FExample l. Consider the difference scheme

U:l+l _ u:] . 3
T = Axxum + ¢(x R tp)’
p+l _ p+l _ 0 -
of o= le sl sl w = el ) (2)
m=20,1, ..., M; p=0,1, «u., [T/T]-1,

approximating the heat-conduction problem

2
§£=3__‘i+¢(x,t), 0<x<1, 0<t<T,
t
9x
W(0,6) = 9,(6),  u(l, ©) = b(6),  u(x,0) = ¥(x), 3

0<x< 1.

Knowing the value of the solution u(h) at the points of the level t = tp =
pT, i.e. knowing the net function

uP = {uP}, m=0, 1, vou, M, %)

of argument m we can calculate, sequentially, the values of the net
functions up+1 = {up+l}, up+2, etc.,, using the equations
m

ptl _ - P4 P 4+ 4P
u (1 2r)um r(um_1 um+l) + T¢[xm, tp). (5)



§40 Level-Structure of the Evolutional Solution 393

The net function ul = {uﬁ} = {W(xm)} is given.
(h)

Thus the solution u , defined on the two-dimensional net
(xm, tp] = (wh, pt), m=0, I, eee, M; p=20, 1, ..., [T/1] (6)

in the x~t plane has, in & very natural way, split into layers, having been

replaced by the sequence of functions
uw, o, ..., WP, p = [T/1], (7

defined on one-dimensional nets. The one-dimensional nets, on which the uP
are defined for p = 0, 1, ..., p, are the same for all p (Fig. 51,a), so
that one may consider them as various exemplars of one and the same net.
This one dimensional net is represented in Fig. 51,b.

Consider the linear space, U”, of
functions defined on the one—dimensional

net of Fig. 51,b. The net functions up, z

4
p=20,1, ..., p, in particular, belong to 4
this space., We assume that the linear u?
space is normed. For example the norm of ul

the element u = {uo, Uy wves uM} might be ul
given by one of the equations Q)

[1ul1 = maxlu |, '

(8) 3 o

M 1/2
ot =(n 2 logl2) -
m=0 Fig. 51.

In the definition of stability and convergence one encounters the

norm, Ilu(h)IIU , of the solution of difference boundary-value problem

(1). We will use only such norms llu(h)llu which take into account the

(h)

level—-character of the solution u , more specifically those for which

a1, = max o], 9
h p

where p takes on the values p = 0, 1, +.., [T/T], i.e. all those values for
which the region of definition of the net function WP = gug} belongs to the
two~dimensional domain of definition of the solution u

Example 2. Consider the difference equation

+ -
uP I 20P + P 1 uP - 2dP + P
m m m m m—

m+1 1

(10)
m=0, +1, ..0y; p=1,2, ..., [T/1]-1,
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which is the difference analogue of the differential equation

2 2
31{% - 3-% = #(x,t), 0<t<T, —=<x<= (11)
at 9x

In contrast to example 1, the solution u(h) of this difference
equation is not determined by its values at the net—points of one level t =
pTt. Here 1t 1s necessary to know the values u h at the net-points of two
levels: t = pt and t = (p+l)T, 1.e. values of the vector-function (Fig.
52,a)
prl  p¥l o pHl

eee Uy o 1 e
P
ut o=
p P p
tee Uy ug uy ‘s

From the values of up, through use of Eq. (10), one can define, sequen-—
+ +
tially, uP 1, uP 2, etcs In accordance with these considerations we take,

as space Uﬂ’ the space of vector-
functions (Fig. 52,b)

z
P e b—l bo b1 cen
. u =
2
¢ ces ven
S R
u!
¥/
) u? with some norm Ilu||. Concerning
7 - " z this norm we make the following
remarks.
The solution of differential
5) u? equation (11) is determined by two
functions:
Fig. 52. 3u( )
u(x,t
u(x, tO) and ———3-":—— ,

whose difference analogues are, respectively, the net functions

cees U, ug, u?, s

and

Therefore any natural norm in space U; must depend on both these net
functions. We may, for example, take
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b - a
Ilull = sup,am[ + sup il = LU
1/2
all = [ Lol + 5 1w, = 18]

After the introduction of a norm in space U  we automatically get a
norm, via Eq. (9), in the space, Uh’ of net functions defined on the two-—

dimensional net:
™1, = max] P}
h p

Here p runs through those values p = 0, 1, ..., [T/T], for which the region
of definition of the net vector-function belgngs to the two-dimensional
domain of definition of the net function u(h).

Since, by the convention we've adopted, all our norms must be of form

(9), the inequality
(h) (h)
Ha 20y <elle g
Uh - Fh

which, for a linear operator L signifies stability, is equivalent to the

h
inequality

h
IS >|1Fh

for all those p for which the function uP is defined. This turns out to be

convenient for the study of stability.
PROBLEMS

1. Define the space U; for the difference scheme

+1
Ymn ” Vm b b
= = Axxumn yyu + ¢[xm, yn, tp),
P = 0 =
Ynn 0, Ymn ¢[xm’ ynJ’

p=0,1, ..., [T/T]-1;
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Here (x » Yoo t ) = [mh, nh, pT), and T consists of those net-points which
lie on the lateral boundaries of the parallelopiped 0 { x, y <1, 0 {t < T.
2. Define the space U; for the difference-splitting-scheme

Yma T Ymn pt+l D
T = Axxumn * ¢(xm’ Yn? tp]’
Nmn " ugn ~
T = Ayyumn’
P - = 0 =
u =u =0, u "w[anJ)
mo | ma{ mn m’> “n J

myn=1, 2, ..., M-1; Mh = I; p=20,1, ..., {T/1]-1;
T is the lateral boundary of the parallelopiped 0 { x, y <1, 0 <t < T.

§41. Statement of the difference boundary-value problem
in the form up+1 = Rhup + 1P

1. Canonical form. We will write the difference scheme

u$+l - uz ur]rJ1+1 - ug p
- - - =¢P, m=0, 41, ..o,
u& =V, p=0, 1, ., [T/1]-L,

for the problem

u - = o(x,t), 0<ce<rT,
u(x,0) = ¥(x), -0 { x { »,
in the form
ptl _ - P P p
u (a1 r)um + rum+1} + T¢m,
(1)
ud =y, r = 1/h.
m m
I1f we set
vPHl o (1 - )P o+ roP L, pP = ¢P (2)
m m m+1’ m m’

Eq. (1) can be rewritten in the form
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-+
uPtL o Pl P u

=9y .

0
m m
+
The term vP 1 is completely determined by uP = {uz}, so .that we may write
+
P Rh“p’

where Rh is an operator which maps each net function uP in U; into a net

+ .
function vP 1 in U7 via Eq. (2). In this notation Eq. (1) takes the form

h
+
up 1 = Rhup + Tpp,
(3
u? given.

In this section we show also by other examples how one can reduce an
evolutional difference boundary-value problem

L™ LW )

to form (3). Further, we establish that if, in this reduction, certain
natural requirements are satisfied, then stability of problem (4) on the
interval 0 < t < T is equivalent to fulfillment of the inequality

P
¥

' <K, p=1, 2, «o., (T/T], (5)

where K is some constant independent of h: thus we reduce the study of
stability to the establishment of bounds on the quantities IIREI,, i.e. the
norms of powers of the transition operator R

he
Analogous constructions and considerations were presented in §§15 and
16. We recall that in §41 the study of stability was reduced to the con-

sideration of the inequality
oIl < elle ™1 (6)
h

Specifically, it was shown that stability is equivalent to the existance of
a number ¢, independent of h and f in Fh, such that inequality (6) is
satisfied for all p, p =1, 2, ..., [T/T].

Now we set out to implement the proposed plan, starting with an
example of the reduction of a difference scheme to form (3).

Consider the difference scheme
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+

uP . u S L 3
m m m+1 -1 P
T - =6,
h2 "

p = 0) 1, “sey [T/T]_l; m=1, 2’ veey M-lb
N
up = ¥y (e )y ug = w(e ), 2 =0, 1, e, [T/T]

ug = P(mh), m=20, 1, «o., M. )
Clearly it 1s necessary to satisfy, here, the consistency condition ¢ (0) =
¥(0), W2(0) = $(1). By the conditions of the problem ul = {u&} is given,

and the functilons ul, u2, «ee, can be computed consecutively. To carry out
this computation one must rewrite the difference equation of scheme (7) in

the form
p+l _ - p p p p
u (1 2r)um + r(um_l + um+1J +Th,
T
r=— m=1,2, (.., M-1; p=0,1, ..., [F/1]-1,
h2
and make use of the equation
ptl _ p+l _
0 wl(tp+l)’ M ZICRRO

Let us, then, take as U; the space of net functions

u = {uo, Ups sees uM}

with norm

[lal] = maxlu,
m

We now write the difference boundary-value problem in the form

u =R up + Tpp,

(8)

u” glven,

denoting by R the operator mapping each element u = {am} of the space Uy
into an element b = {bm} of the same space via the equations

bo = ag,
b o= (l-2)a + r(am_l + am+l), m=1, 2, ve., M-1, (9)
b =

M T A
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With this choice of the operator Rh the net function pP in U;

o = {0, of, oty o},
1s defined by the equation
" =<¢1(tpﬂJ - () 2 " vole ) - wz(th>
T ’ 1* **%» M-1? T

p=0,1, «.., [T/T]-1.

We have now completed the reduction of the above scheme (7) to form (3).
Next we propose to use this form of the difference boundary—value problem
to study stability. But if inequality (6), signifying stability, is to
have any meaning, one must define the norm l]fhllF . In our example

difference boundary-value problem (7) may be written in form (4) 1f we set

r p+
o ' - T
- - , m=1, 2, ..., M-1,
h2
+1
. up s P =0, 1, wes, [T/1)-1,
Lhu = 1
+
w o, P =0, 1, e.., [T/1)-1,
Lug, m=0, 1, ..., M,
-
¢(xm, tp], m=1, 2, ..., M-1,
o wl(tp+1), p=20,1, ..., [T/1]-1,

Wz(tp+1]. p = O, 1) eo ey [T/T]—lr

L?(xm], m=0, 1, «e., M.
(h)II

We define the norm ||f by the equation

1M1l = maxlo(x,, €)1 + maxu(x,)] +
h m,p m
v, (& -y, (c ¥, (t v,(t )
+ max 1( p+1JT 1( p) + max 2( p+1JT 2( Py, (10)

P
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2. Stability as the uniform boundedness of the norms of powers of
. We now formulate two conditions which, if satisfied in the reduction
of any difference scheme (4) to form (3), allow one to affirm that
inequality (5) implies stability.
Condition 1°. The inequality

h
HeP] < & | I£¢ )Ith.

is valid for some K, independent of h and f(h), and for all p for
which oP 1g meaningful,
Condition 2°. The bound

IR AT

-2 F
h

holds for some X, independent of h and f(h),

Conditions 1° and 2° require a certain compatibility between the

“ and F_, and the definition of the

h h
operator Rh (since the form of the vector pP is uniquely determined by the

choice of norms in spaces U

choice of Rh)' We note that in the above example, where scheme (7) is

reduced to form (3), these conditions are fulfilled. To convince oneself

P

of this it suffices to compare the norms of net functions p* and u®

vole ) = (e)
[1PI] = max pf;{ = max ! PR B By, e)] e
ot ) = eyl )
e, |¢(XM_11 tpjla 2" "ptl - 2'p
Hu® ] = maxful] = max|¥(x ]|
m m

with the norms ]|f(h)||F defined by Eq. (10). The numbers K, and K,, in
h
this example, may be set equal to one.
Let us now prove that, if in the reduction of difference boundary-—
value problem (4) to form (3), conditions 1° and 2° are satisfied, then the
validity of bound (5) is sufficient for the stability of difference scheme

(4). We have to show that the bound
h
[WPIT <P

where K3 15 some number independent of h and f(h), is satisfied for all p,
p=0,1, .., Py for which the domain of definition of the net function uP
belongs to the region of definition of the solution u h).

From the equation
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+1
" = Rhup + Tpp, p =0, 1, 00, po-l,
it follows that
p p-1 p-1 p~2 p-2 p-1
= = + + =
" R u + 1 Rh(Rhu w7} + 1
-1 ~2 -1
= Rﬁu0 + T(RE o0 + Rﬁ ol + ... 0P ], p=0,1, «., Py* (11)

By assumption
||R§|l <K, 2=0,1, ., [T/1].
From this inequality and Eq. (l11) we get the bound
[HePI] < RITO[] + w([[o0]] + [[o} ] + «ou + [1oPTH])s (12)
Taking account of conditions 1° and 2°, by virtue of which we may write

2 (h)
le‘_<_K1||f HFh’ R’=O’ 1! ey po-la

(h)
[Ta®1] < xyf 777 'Fh’

bound (12) can be replaced by the following
(h) (h) (h)
[uPl] < (kx, + ToKK )] |£ IIFhSK(Kl e SIE: HFh=clIf lth»

where the constant c = K(K2 + TKI) does not depend on h or f(h). Thus we
have proven stability.

Let us now use the just-established sufficient condition for stability
to show that, for r = 1/h? < 1/2, difference scheme (7) is stable.

In fact we will convince ourselves that, for the operator Rh’ which we
introduced via Eq. (9) in the reduction of scheme (7) to canonical form
(3), we have the inequality lthII < 1 and, therefore, also Ilell <
R P < 1. For v < 172

by = lagl < maxla_| = I[all,
m
b | =1t -2r)a +r(a_ +a <
< (1 = 2r + 2r) max|a | = [|a]],
m ™
b | = la| < naxla | = |[a]].

m



402 Construction of the Transition Operator Chapter 13

From these bounds it follows that ||b|| = ||Rha|| < ||a|[, i.e. |[Rh]] < 1.
Thus for r £ 1/2 the sufficient condition for stability is satisfied. One
can show that, if the constant r = T/h? > 1/2, the sufficient condition for
stability is not satisfied. It 1s, then, natural to ask whether, also in
the general case, stability is lost when the inequality IIRE|| <K, p=1,
2, wee, [T/1] 1s no longer valid. It turns out that in fact the validity
of the inequality |]Rﬁ]| < K 1s necessary for stability under one, addi-
tional, condition 3° which we now state in general form, and which 1s
satisfied in the example just considered above.

Condition 3°. Suppose the difference boundary-value problem (4) is
reduced to form (3). Take any function 0 in U; and construct the net

1

function ul, GZ, v up, +++by the recurrence relation Gp+1 = Rhﬁp. The

set of net functions {Gp}, p = Ozh§’ vesy [T/T], each of which belongs

to Ua, forms some net function u in space Uh' Let us now compute the
corresponding f s

f(h) . Lh;(h)'

We will say that, in the reduction of difference scheme (4) to canonical
form (3), condition 3° is satisfied if there exists a bound of the form

=(h) -0
HE gy < gl
h
where the constant K5 does not depend on @ in U; and does not depend on h.
Let us now convince ourselves that in the reduction, just described
above, of difference scheme (7) to canonical form (3), condition 3° is

fulfilled. In fact, given an arbitrary function w0 = {Gg}, we get
3P = P =50 -0 7 =20
bp =0 VP Tug Yy Tu W S up.

With our choice of norms

=(h) =0
HE g = u™
Fh

We now show that if, in the reduction of difference scheme (4) to
canonical form (3), condition 3° is fulfilled then, for this scheme to be
stable on the interval 0 < t < T, it is necessary that the transition
operator satisfy bound (5):

HR'EH < K: P = 11 21 saeoy [T/T]a
where K is a constant not depending on h.

If the indicated criterion is not satisfied then, for any K, ome can
find an h and PO, and a net function uO, such that
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Pg -0
I‘Rh u

- -P - -
Having constructed the vectors uP llu 0|I > KI|u0||) from u
TP =
u

> wenr (1w

0

and, from the
s, formed the net function u s, we conclude that

HEPI <l 110 (F = @),
At the same time

> 1570 > &1

Ha™ (1, = max| 3P|
h P
It is clear, therefore, that

Ny > ™y
Uh K3 Fh

This inequality, because of the arbitrariness of K, does indeed signify
instability.
Now let us summarize the considerations of this section. We have
shown that, after reducing the difference scheme Lhu = f to form (3)
+
up L. Rhup + Tpp,

u? given,

one can use the operator R

proven the following
Theorem. If, in the reduction of difference scheme (4) to form (3),

condition 3° has been satisfied then, for stability, it is necessary that

h to study stability. More precisely we have

HRPT < ®k, p=1, 2, wou, (1710, (13)

where K ig some constant not depending on h. If the reduction to form (3)
has been carried out in accordance with conditions 1° and 2°, then bounds
(13) are sufficient for stability.

We call to the reader's attention the fact that, ordinarily, the
splitting of u(h) into levels, and the reduction of the difference scheme
to canonical form (3), may be accomplished in several different ways.
However, we will not pause to discuss this point in detail (see §14, where
the same question was discussed in the case of difference schemes for
ordinary differential equations).

3. Example. In concluding this section we consider the implicit
scheme
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N
+
uP 1 _ uP up+1 _ 2up+1 + up+1
m m m—-1 m m+1 P
T = ¢m)
h2
m=1, 2, o0, M-1; p=0,1, ..., [T/T]~1,
(14)
u:l =V, m=0, ..., M,
ptl _ p+l _ _
UO —wl(tp*‘l]’ UM _wz(tp'f‘l]’ P—O’ I, veey [T/T]_la)
for the heat-conduction problem
3 a2
30~ —> = (x,t),
ax2
U(X,O) = W(x)’
(15)
u(O)t) = Wl(t), U(l;t) = wz(t))
0<t<KT, 0<x < 1.
This scheme was considered in detail in §28.
We take as vector uP the vector uP = (“8’ u?, ey ug) with norm

P[]

m
the form of a sum,

max |uP
m

ptl _

v

where

+1 +1
VP = (vg ,

Y1

are, in turn, solutions of the auxiliary systems

ptl

The solution at the (p+l)'st level will be written in

+ oF,

P
M

)

P P
(pgs Pl eees @

of equations

ptl _ p
vo =y = wl(tp]’
p+l _ ptl ptl _ _ p
™o (1 + 2r)vm + VLT uy
(16)
m=1, 2, ve., M-1,
vp+1 - P - w [t )
M Uy 27 p??
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oyl ) vy ()

o] T

reP = (1 + 2r)pP + rpP
1 m m=

P =¢P, m=1, 2, «u., M-I, (17)

1 m
o Yalep) ~ il

DM T

The first of these systems can be taken as the definition of the operator

R so that we may write

h’

ptl _ P
v = Rhu B

1f ']fh]]F is defined, as before, by Eq. (10), then satisfaction of
h

condition 1°
(h)
P11 < % e lth

follows from the bound

wl(tp+l) - (e)

ANERALS

T ]

t:p+l

l’ppll S.max max|¢§[ N

m

valid for the solution {pﬁ} of system (17) by virtue of bound (7) §4.

Further, Kl = 1.

Condition 2°
(h)
IR

is also satisfied, by virtue of (10) with u? = ¥ , and here, clearly, we
can set K, = 1. Further, in §28 we proved the bound

2
1
Ivz+ l < maxluil,
which may be interpreted as the inequality
Hrpull < el HIRGIT <1

from which it follows that

p
[IRPI] < ® = 1.
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We have here followed the same general plan as in the stability proof
of §28, showing that it and the proof presented here are the same. The
above example 1s interesting also in that it makes use of a rather

complicated method for constructing the vector pp.

PROBLEMS

l. For the system of acoustic equations

Ju du
It + A 5= o(x,t), - { x { », 0<Ct<T,

u(x,0) = ¥(x), -0 x £ »,

0 1)’

v(x,t)
10 ),

wix,t)
¢, (x,t) WI(X)
¢(X,t) = ¢2(X,t) » Y(x) = wz(x)>

reduce to canonical form (3) the scheme

A= ulx,t) = (

up+1 — P =P
m LY m+1 m=1l
T Z2h
I a2 (4P 5Py Py %
242 A (um+1 2o, * um—l) ¢(xm’ tp)’ 9
0 -
um W(Xm),

taking uP = {us}. Verify that, if norms are defined via the equation

a1y = maxl [P, e = maxl110]], max] 6],
h p h P
where

2 ' 2 2
a1 = 5 (V21 + 12l
m
1112 = 5019, @m |2 + [y, mm |2),
m

18P0 = 5 (oo )12 + o,

m

J12),

t
m’ " p

conditions 1°-3° are satisfied.

13
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Prove that for r < 1 difference scheme (*) is stable, and for r > 1 is

unstable.
Hint. To bound the norms ]]Rﬁ‘] go over to the variables

I(l) =v +w 1(2) =v

-w
m m m’ m m m>

called "Riemann invariants™ and use the spectral criterion of section 4§25,

2. Bring the difference scheme

+ —_
vp 1 2vp + vp ! vp - 2v_ + vp
m m m_ mtl m m-1 _ ¢p
= 3
12 h2

p=1, «.., [T/T]-1,

vg = wo(x 1, v; = T¢1[xm) + ¢0(xm), m =0, I, ...,

approximating the Cauchy problem

2 2
A W yxyt), == <x<® 0<t<T,

at2  ax?
_ av(x,0) _ - -
v{x,0) = ¢0(x), — = wl(x), <x <=,
to canonical form (3) setting
Vp+1
WP = n .
oP
m
+1 2
pp(? P2 v
eIl = L vl + L = >
m m
P2 P12 2 y 2
PN = 2 1B1E TInd12 = ()12,
11911, = max] ]oP]]
h P
h
e 1. = 1o ll + 11e I] + max][6P]].
h P

a) Verify that conditions 1°-3° are satisfied.
b) Prove that for t/h = r < 1 the scheme is stable, while for t/h =r > 1

it 1s unstable.
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§42. Use of particular solutions in the construction
of the transition operator

In §41 we talked about the reduction of the difference boundary-value
problem

Lhu(h) = ¢(h) (1)

to the form
Py P,
(2)

u” given.

In this reduction the operator Rh can be chosen in various ways. The
reduction to form (2) has the purpose that, by bounding the values of
||RE||, we be able to draw conclusions regarding stability. It was shown
that the bound

[IREIl <k, p =1, 2, ..., [T/1], 3

ensures stability if only the operator Rh, and the required norms, are
chosen in such a way as to satisfy the conditions:

o h
1 Pl < e,
h
where p runs through all values for which ph is defined; and
2° 0] sxznf(h’th-

In the examples considered in §41 the operator Rh could be taken to be
fairly simple, at the same time still satisfying conditions 1° and 2°.

But one can also encounter examples (and one will be considered in this
section) where condition 1° is too strict, so that the operator Rh’ con=
structed so as to take account of this condition, cannot be as simple as
one would like.

Below in this section it will be shown that bound (3) remains suffi-
cient for stability 1f condition 1° is replaced by the less restrictive
condition 1*, Thanks to the substition of 1* for 1° the operator Rh may be
taken simpler and simpler the more one knows about the solutions of the
above difference problem (1). In particular, the structure of the opera-
tor, R, which appears in the reduction of the difference scheme to form
(2), becomes simpler if we know certain particular solutions of the differ-
ence equations entering into the formulation of problem (1). Corres-
pondingly, one can simplify the proof of inequality (3), Vhich implies
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stability. All this will be demonstrated later by way of examples. Now we
turn to the formulation of condition 1%,

h) Suppose that zh 1s some net function in Uh depending, generally, on

f .

split the net function u(h) into functions uP of U;. In the same way we

In the reduction of difference scheme (1) to canonical form (2) we

now split the net function z h , by levels, into functions 2P of U;, and

postulate that the 2P satisfy inequalities of the form

lhwlsmuwhu{ “)

where K is some constant, and p runs through those values p =0, 1, ...,
for which zP is defined.

Condition 1*. There exists a function z
(4), and such that

Po (h)

» satisfying inequality

1 1
|G Sl F NI [P

() ) 2o

satisfied, but also the stricter condition 1°.

If one can take, as z then not only condition 1* is

Theorem. If difference problem (1) may be written in canonical form
(2), while satisfying both conditions 1* and 2°, then bound (3) implies the
inequality
Pl <e 1™, , (5
h

which, in turm, implies stability. As the constant ¢ one may take

e = R(2k, + 2K + TK. ) + &,

2 1
Proof. Define the function w(h) = u(h) - z(h). From the equation
up+1 =R uP + Tpp
h

it follows that

WP <R WP P, (6)
where

5P = P - P - RaP).

By condition 1* we have



410 Construction of the Transition Operator Chapter 13

(h)
[1OPI] < & |1£ IIFh-

Using Eq. (6) and inequality (3) we find without difficulty, as we
have many times before, that

[1aPH < IOl o+ 1 max] 3P| < K01+ e 15 7y
P

Further
W] < 2(x, + B[], . (8)
This follows from the inequalities
1O 1] = 1ha® = 200 < 1] + 112011,

(h) ~ ()
NPT < HET e s T2 <RI g
h h
of which the second coincides with condition 2°, and the third with
inequality (4) for p = O.
Substituting bound (8) for }|wl|| into (7) we see that
(h)
1

Pl < [2(k, + K)r + m)e, ]| |£

2 Fh

It only remains, now, to note that
aPI] = WP+ 2P < TP+ 112P0] <

<Ak, + ®) + ]+ KDL <
h

< [x(2k, + 2K + TK

~ h h
J+MH#)H%=cH#)H

i

Thanks to the replacement of condition 1° by condition 1* one can now,
in the investigation of stability, apportion the difficulties between the
construction of an operator, Rh, whose norms are not too difficult to bound
and the proof of the existence of a function z(h). In demanding from the
start that condition 1* be satisfied with z h) o 0, i.e. that condition 1°
should be satisfied, we are Imposing the strictest limitations on the
cholice of the operator Rh' It may turn out that any operator, R , which we
manage to construct under condition 1° will have a very complicated form,
so that bounding the norms of its powers will be too difficult. On the
other hand if we make the operator R, extremely simple, equal to one let us
say, and not in any way connected to the difference problem, we transfer
all the difficulties to the verification of condition 1%, i.e. to the

computation of the necessary bound for the function z(h) which in this
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case, it 1s most natural to take equal to u(h). The introduction of such

(h), would in no way advance our

an operator R , and such a function z
investigation of stability.
One must try to choose an operator, R , which is as simple as possi-

ble. On the other hand, R, must so faithfully reflect the properties of
the difference problem Lhu h) o f(h), that(iglfillment of condition l*,
i.e. existence of the required function, z , will be fairly clear. It is
often possible to use the freedom we have in the cholce of R, thanks to
the replacement of condition 1° by the less restrictive condition 1*, to
make it easier to prove stability. For this purpose one takes, as z(h .
functions constructed from the solutions of difference problems with right-
hand sides f(h) of some special form.

We will now show, by way of examples, how to use the proposed method.

Example 1. Consider a difference boundary-value problem (1) of the

form
u:1+1 - P u2+1 _ ug .
g - - =4, mw=0, 1, «c., M1 Mh = 1,
w = y(x ), m=0,1, ..., M. 9
uﬁ = ‘,,l(tp), p=1, 2, ..., [T/1].

This difference problem approximates the problem

u - u, = 906,t), 0<x<1l, 0<t<T,

t
u(x,0) = ¥(x), 0<x<K1l, (10)
u(l,t) = 'Pl(t), 0<t<T,

for the following choice of norms

™[], = max nax|u®],
h p m
|lf(h)||F = max max|¢£| + maxlw(xm]| +
h p m m
v (e )= (e )
1 1 1
+ max|w1(th| + max! s = P .

p
To reduce problem (9) to canonical form (2) we set

A ) R T I
m
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The operator Rh, b = Rha carrying the element a = (aO’ ]y eeey aM]
of space Uﬁ into element b = [bo, bl’ vees bM) of the same space, will be

defined by the equations

b (1 - r)am + ra_ m=20, 1, oo, M-1,

m +1°
bM =0, r = 1/h.
Then, obviously,
oP = (6P, 6P, ..., 6P , h_[_t_lLl)_ ]
o 1 M-1 T

It is clear that condition 1°
h
Ibﬂlsmnﬁ)n%

is not satisfied because the last component of the vector oP is wl(tp+1)/r,
which grows as T + 0. (In this problem it would have been easy to
formulate an operator, Rh’ such that condition 1° would be satisfied. To
do this it would suffice, in the definition of R, , to replace the

equation bM = 0 by the equation bM = aM.) On the other hand it isn't
difficult to show that the condition 1%

1 1 ot h
o7 - % 7 - man || <R,

is satisfied. The left-hand side of this inequality can be written in the
form

‘p [t )
p p P 1% ptl 1 +1
(¢0, B> voes by 0 — ) - = (P! - hap)

Therefore to prove that 1* is fulfilled it is sufficient to construct a
function, z(h), satisfying the equation

which may be written in the form

or

13



§42 Use of Particular Solutions 413

+1 (n
P
M

= (e )

p+l

In the case where wl[t ) does not depend on t this problem has the

+1
stationary (i.e. p-independent) solution

2P

m ¢1 = const.

2

In the general case ¢€ = ¢l[t ) depends on p but, for a bounded norm
llf(h)lth (containing the term |¢1(tp+1) - ¢1(tp)|/r) it cannot vary very

(h)

rapidly. Therefore the function z , defined by the equation

p =
zm I; wl(tp)’

although not a stationary solution (nor a solution at all) of problem (11),
"almost” satisfies (11). In fact

V- (e (e,

T T

) - v (e )

P

v, (t
1 ptl 1% " p+l
? (Z - hap) =<

blep) =4 (e)) ll'1(tp+1)> ]

T Y p
4 T 4 T
Therefore
v(e ) -v(c)

1 1 h 1 +1 1
”pp_?(zp+ —Rzp)’= % — =,
vle )= () (e ) =w ()

P 1% ptl 1'p p 1% " ptl 1 p
o) - ST - , 0 <
P P P
<0G 1s wees by ps O]+
p(e ) - (e
1 +1 1 h
e ! e RN 1Y

Condition 1* is satisfied; K = 1 and z(h) satisfies the inequality

(h)
2P1] = max|22] < |]€7] 15 -
m h

Condition 2°
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h)
[u0]] < &, l]£¢ e

is also satisfied:

)

max [y(x )| < [I£

Hu®[] = max {[ul]]
n m

Fh
To prove stability, which is present for T < h, it 1s sufficient to
show that ||RP|| < 1. The validity of this inequality follows from the

bound ||RhH < 1:

||Rha|| = maxIam(l -r) + ra

< max|a I = I|a||
m T M

+1|
Example 2. We will take, as a more complicated example, a different
difference scheme for the same differential boundary~value problem (10):

up+1 _— P - P uP - 2P+ P
m m _  mtl m m m—1 ¢p W
’

T 2h

hz

p =0, 1, eeu, [T/T]=1; m=1, 2, ., M-1,
Wl =y(x ), m=0,1, «ou, M, > (12)
m m

UM = wl(tp'l'l)’ P = 09 19 so vy [T/T]_ln

u
0 P -
- - T = ¢0, P = 0, 1, waey [T/T]-l' J

The difference equation which occurs in this scheme 1s of second order in
x, while the corresponding differential equation (10) is first order.
Therefore at the left-hand boundary x = 0 (m = 0) we have added the
condition

ptl _ p p_ D
%o Yo _ U1 7 Y = 4P
T i 0’

which we will use in the form

ptl _ - p p p
u, = (1 r)u0 + rTuj + Té.,

Difference scheme (12) has already been considered in §23, where we
discussed the question of approximation. Norms in the space Fh were
introduced, there, as follows: {if
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a at points (mh, 0}, m=0, 1, «ea, M
bP at points (1, p1), p=20,1, «.., [T/T].
f(h) =4 cP at points (0, pT), p=0,1, ..., [T/T]-1,
¢$ at points (mh, pt), m=1, 2, ..., M-1;
p=0,1, «.., [T/T]-1,
then
ptl _ p
HEM], = homax [eP| + homax [S— T 4
h P P
M 1/ pPtL _ P
+ (h ) Ia |2 + max|bp[ + max |—————| + max maxl¢p|.
m T m
m=0 P P p m

As was shown in §23 approximation, in this case, is of order h?. Let
us now show that, if we define the norm ||u(h)||U by the equation
h

1/2
(h h 2 M 2
111y = o (51817 0 12
h P m=1

with r < 1 then, along with approximation, we also have stability.
We verify stability, first having brought difference scheme (12) into
form (2). For this purpose we set

WP - (B, b, L, D)

with norm

2 M 2 1/2
h i
111 = (5 131" e 11 ).

The operator Rh will be defined via the following equations:
If a = (ao, aps e aM), b = (bo, bl’ eeey bM) and b = Rha, then

by = (1 - r)a0 + rap,

2 2
= (-r,r -~ r2 r,r
bm ( i * 2 )am—l + r )am * (2 * 2 )am+1’
(13)
m=1, 2, «.., M-1,
bM = 0.

In this case
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v (e )
P - P P P 1 1
oP = [¢0, ¢1, vees 10 ___?lﬁl._] .

Clearly, with our choice of norms condition 1° is not satisfied. In fact,
if, for example

0 at points (mh, 0), m=0, 1, «eo, M
0 at points (1, pTt), p=20,1, ooy [T/T].
g(h) _{ 1 at points (0, p1), p=0, 1, ..., [T/T]-1,
0 at points (mh, p1), m=1, 2, ..., M=1;
p=0,1, ..., [T/T]-1,
then
P P 4 (h)
0 =(19 0) veey 0), Hp H='—: ||f ”F =h9
VZ h
so that there can be no Kl for which the inequality

h
IEART A )||Fh-

will hold for all h.

For our choice of the space Uﬁ, consisting of the vectors uP =
(ug, uf, ey uﬁ], and for our choice of norms it 1s, apparently, impos—
sible to find an operator, Rh’ such that condition 1° will be satisfied,
but to satisfy condition l* zs possible.

* ® X k % %

Before proving this last assertion we note that, if we change the norm
[1EM || setting
Fh

1/2

M P

Ilf(h)ll = /h max Icp' +[h § la |2 + max b
o m=0 "

+ max max |¢p|
p m w

then the operator R, defined by Eq. (13), will satisfy condition 1°, but
the order of approximation (instead of h?) will be only h3/2. We can,
without changing the norms, bring the difference boundary-value problem
(12) to canonical form (2), whlle conforming to conditions 1° and 2°, if we

take as Uﬁ the set of vector functions
+
up L
m
u’ = . m=20, 1, .v., M.

uP
m

13
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But we then complicate the construction of the operator, Rh’ and the
estimation of norms of its powers. For this reason we will not consider
such a reduction process.

Let us show that, for our choice (13) of the operator Rh’ there exists
a zp, satisfying condition l#*:

p_1,ptl _ p (h)
p = (z ha )" < Klllf IIFh.

T

(h) we proceed very much as in example 1,
writing out the stationary (p—independent) solution of the problem

To construct the function 2z

ptl _ p P _ P P _ ,. P p
’m ‘m Cmtl Zo-1 T Zmtl sz * “m-1 -0
T - 2h 7 o
h2
m=1, 2, «e., M-1,
ptl _ _p P _ ,P (14)
%0 0_ %17 %0 _ 4P
T h ’
P _ P
Zy = ¥p»

postulating that ¢g and ¢€ are fixed, and do not depend on p.
This solution has the form

The function {zg} satisfies the bound
NP <RIE™), . k=2
h
In fact

1/2
P h o p? e
[2P]] = {5 lz5] +n 21 |z | <
—

(h)
< 2h max|¢g| + max|¢1(tp)| < 2||£ I'F .
m P h

Let
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£P = zp+1 - hap.

Since zP is the solution of a time-indepandent problem we may write

2P = hap + rép,
where
v (e )
P _ (4P 1" p
§F = (¢0, 0, 0, «es, O, = >.
Therefore
Ep = zp+l - 2P + 18P
so that
fh(¢P+1_¢P)1+t[l_(l‘—l)M]+
0 0 2 r+ 1
# (o (e ) - w(e)) + b, " = 0.
M
P _ ptl py l +r r- 1\ _rr -1
E_ﬁ n(ey - o) —5 [(tHJ (Hl)]+
+ (q;l(cw] - wl(cp)), 1 <m<H,
L 0, m = M,

Therefore the coordinates of the vector Sp = pp - Ep/r have the form

' B wl(tp+l) + ‘pl(tp)

M
_hoyptl _pyl+r [ _qr+ 1 ]
T ?'(¢0 ¢’0) 2 1 (t + 1) ?
m =0,
Vlepn) ~0i(ey) gl oy 1t [e-1 ™
B’l‘; = - T -3 log =) — [(t v
_IM

_(:+1] ] +¢$ 0<Il'l<M,
t 0. m = M.

The inequality constituting condition 1%

[1oP1] =

1 +1 h)
R G Nl FE I L[

18 satilsfied:

13
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2 M-1 2 1/2
P (k3P ~p
- (S e T )
m=1
1
v (e )= (e )] nleRth - P
1 1 1 0 0 h
s} A P ! + - + max|P] < |]£¢ )HFh.
m

Condition 2° 1is satisfied,
(h)
He® T < &, |]¢ Ith

since, clearly

M 1/2 " 1/2
h N . h
oot = (gt oo L) <(n §oe) e,
m=1 m=0 h

To prove that the proposed scheme is stable, which it is for r {1, it is
st1ll necessary to prove that, under this condition,

HeP < x,  p=1, 2, «oo, [T/1], (15)

where K 1s some constant independent of h. We will prove later that for

, whose last component Uy is equal to

any vector, u = (uo, Ups eees uM)

zero, we have the inequality

. (16)

Rgull < 1]l

Applying the operator to the vector u = (0, 0, ..., 1) we get the vector
(6, 0, +u., 0, 1/2r + 1/212, 0), whose norm does not exceed Yh. Therefore
for an arbitrary vector u = (uo, Ups wees uM), whose component g, is not
necessarlly zero we may write (taking account of inequality (16), valid for
a vector of the form u = (uo, Ups eees Uy s 0)),

HRpal ] = |1y (ug, Ups eee, uy g, 0) 4 u® (0, 0, «eey 0, 1) <
< 'IRh(uo’ Ups eoey U1 O)” + ,uMl ﬁ‘_.ﬁ
< l'(uo, Ups mees Uy g 0)][ + II[O, 0, «osy uM)Il < 2',u||,
[IRI1 < 2. an
Now we prove Inequality (15). In view of the definition of the
operator R the vector v = u has the vanishing component Your Vi = 0.

Therefore, using (16) and (17), we get
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[1RRul| = (IR (Ryu)l] = 1REMol] < [[v]]

- P
= rpull < 2ffull,  [IRGI] < 2 = &
It remains for us to justify inequality (16) upon which we have relied,
i.e. to prove the following proposition.
Suppose u = (u » U eees Uy s 0) is an arbitrary vector whose last

component, u,, is equal to zero, and let v = R u. Then vl S.||u|1; i.e.
. M 1/2 . M 1/2
(5v(2)+h ) vrfl> _S(-Eu(2)+h ) ufn) . (18)

m=1 m=1

Recall that, by virtue of definition (13) of the operator Rh

Vo = (1 - r)u0 + ru ,
v=(—£+ﬁ% + (1 -r2)u +@+r%
m Z 7 'mel m 2 2 Vml?
m=1, 2, «a., M-1,
= 0.
Y

We note the inequality

Rl 5 e Py + (0= ey + G Py, )
il Ol (g — 20 +u )2 =
2200 2 (-2 BP0 o
mx(t - 2a o+ e(l - o,

which is satisfied for r { I, and also the obvious identity

+1-r?

r2(1 - r)
—_— 1.

+ r2(1 + r) _
—— =

Now for r < 1 it i1s easy to verify, step by step, the validity of the
following chain of inequalities, without requiring that uy = 0:

13
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T2+ ? v2 <o [ug(1 =) +ur]? +
m=1
. M: [rz(lz_ ) Uz_l F(L - 22 4 r2(12+ r) “iﬂ _
- (1 - r2)u ot r(l - r?)u um+1] =
=% [uo(l -r) + ulr]2 + b): u; +

2 2 2
r°l -r) 5, r(l+r) o _ _r°(l - r) o
7 i) 7 up =l r)“0“1] 7 UM-1

1 5 ¢ 2 r 2 g 2 r2(1 -r) 2
=|lzug* E w -3 {u0 + [ - r)uO + rul] I - — <

The resulting energy inequality

1 M 1 M

L 2, v 21 2. v 2

7t LovpSqugt Lo

m=1 m=1
is stronger than the inequality (18) which we set out to prove.
Thus we have established the stability of scheme (12) for r { l. For

r > 1 we do not have stability for any reasonable cholice of norm, since the
necessary stability condition of Courant, Friedrichs and Levy i1s violated.

§43. Some methods for bounding norms of powers of operators

In §§41 and 42 it was shown that evolutional difference schemes

Lhu(h) = ¢ (1)

ordinarily can be brought to the form

+
i Rhup + 1P,
(2)

u? glven

such that stability will be equivalent to the boundedness, uniform in h, of
the norms of powers of the transition operator
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HRPIl <%, p =1, 2, «uu, [T/7]. (3

Since condition (3) is equivalent to stability, it follows that any
method for studying stability 1s also a method for testing whether or not
inequality (3) is satisfied.

Here we present some approaches to the study of stability already
encountered in Chapter 8 (but now viewed as methods for bounding the norms
of powers of operators) and bring out new aspects of these approaches.

1. Necessary spectral conditions for the boundedness of IIRﬁll.

Suppose Xh is any eigenvalue of the operator Rh and u is the corres-
ponding eigenvector, Rhu(h) = Xhu(h). Then
p (h)y _ p; (h)
[RR® 1) = 1P ™,

and therefore ['RE|| Z_[Ah|p. Since A, is an arbitrary eigenvalue, then

h

R[] > [max|x |)P,  p =1, 2, oo, [T/7], (4)

where max|kh| is the largest absolute value of the eigenvalues of operator
Rh. From (4) it is obvious (see §15) that, for (3) to be satisfied, there
must be a circle

[A] €1 + et (5)

in the complex plane, with constant c independent of h, containing all the
eigenvalues of operator Rh.

The above considerations do not become essentially more complicated,
and the results remain unchanged, if we take as Xh not only the eilgenvalues
of the operator Rh’ but all the points of its spectrum., If Ua 1s a finite-
dimensional space the spectrum of the operator Rh does not depend on one's
choice of norm, and consists entirely of eigenvalues. This is the most
important case, which arises naturally in the approximation of differential
boundary-value problems in bounded domains by difference problems on a net,
Dh’ consisting of a finite set of points. In this case condition (5) is
necessary for the validity of (3), independent of the choice of norm. If
the necessary spectral criterion for stability is not satisfied the problem
is hopelessly unstable, and the situation cannot be corrected by any
reasonable choice of norms. An analogous situation was investigated in
detall for the case of ordinary difference equations in §15.

Let us now clarify the connection between the Von Neumann spectral
criterion for the stability of the Cauchy difference problem, considered in
§25, and the spectral criterion (5) for the uniform boundedness, (3), of
the norms of powers of the operator Rh. We may use for this purpose, for
example, the difference scheme
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= v(x ), (6)
m=0, +1, ...; p=0,1, «¢., [T/T]-1,

approximating the Cauchy problem

3 du
3%._ i o(x,t), -2 x (™, 0<t<T,

u(x,0) = ¥(x).

Stability of this difference scheme was studied, with the aid of the Von
Neumann criterion, in §25.

We now write the above scheme in canonical form (2), defining Rh’
v = Rhu’ and pP via the expressions

v =(l - r)u + ru r = 1/h,
m m

m+l’

Define the norm in U; by the equation ||u[l = sup|um . Then the functions

-

u = {um} = {exp(iam)}, for any real a, belong tg the space U and are

eigenfunctions of the operator Rh:

ia(m+l) _ io7 1am
e = [ |

Ru= (1l - r)e:m'm +r e = A(a)u,

h (1 - 1) + re

where
_ ia
A(a) =1 -1 + re (7

are the eigenvalues. The stability condition (5), in view of the fact that
A(a) is independent of T, reduces to the requirement that |X(a)l < 1, which
is satisfied for all real a if r < I,

As shown in §25 condition (5), in the case of the Cauchy problem for a
two—-level difference scheme in one net function, is not only necessary, but
also sufficient for stability if the norm is defined by the equation

al| = (h mi ufn) .
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(in this case the functions {exp(iam)} do not belong to the space UB and,
consequently, are not eigenfunctions, but the points (7) still belong to
the spectrum of the operator R ).

2. Spectral criterion for the boundedness of powers of a selfadjoint
operator. Suppose that the M-dimensional linear space U, consists of
functions defined at the points Pl’ P2, vaey PM of a net (a net which, for
our purposes, may equally well lie on an interval or surface, or in a

-

h
pair of functions u and v in U;, we designate as (u,v). Suppose, further,

space) and that one has introduced in U] a scalar product which, for any

that the operator Rh is bounded, uniformly in h, by some constant et

Hrgll < eps ®)

and maps space U; onto some subspace ﬁ; of U;, of dimension N { M, while on
the subspace Ua operator Rh ii selfadjoint, i.e. (Rhu,v) = (u,R, v) for any
pair of functions u and v in U;. As is known from linear algebra, in sub-

-

space Uh there exists, 1In this case, an orthonormal basis

T A (9

consisting of the eigenvectors of operator Rh' Designate by Al’ A2’ cesy
AN the corresponding (real) eigenvalues:

th,(k) - Aku;(k), K =1, 2, «ou, N (10)

Theorem 1. For bound (3) to be satisfied it is necessary and
sufficient that
max | A

L1+ czT, ¢y = const. (11)

el
Proof. Necessity has been proven in Sect. 1 above. Let us now prove

sufficiency. Suppose u is in U . Expand the vector Rhu = v (where v is

in U;) in basis vectors (9):

v=) akw(k).

Then, by (10),
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1/2
M p-1 2
att =( 1 s ") <

1/2

S (T ) e 0 e a2
Noting that, by Eq. (8),
Hell = TRgul| < e Hull,
and taking account of condition (11), from bound (12) we deduce (3):
I < eqmax 7 < g1+ )7 g1 )7 ¢ et -

Below we establish some criteria for the selfadjointness of operator
Rh’ and point out some methods for bounding eigenvalues.
3. Selfadjointness criterfia. We now introduce the notation

fu,v) =4 5 (e )v(p,) (13)

and assume that the scalar product in the space U; is defined by the

equation
(u,v) = [u,v]. (14)
Suppose, further, that the operator Rh’ b= Rha, is given via the
expressions
b{P, | = a P
(7) =1 oz,
s

where P and Pk run through whole set of net-points. Operator Rh is
selfadjoint if and only if

(15)

s~ %ek*

In an interpretation independent of the numbering of points, this criterion

means that, in the computation of b(P) at any arbitrary point P of the net,
the value a(Q) at another arbitrary point, Q, must enter with the same

coefficient with which the value of a(P) occurs in the expression for b(Q).

I1f, among the net points {Pk}, one has singled out some subset Fh (the
boundary of the region) and the operator Rh is given by the expressions

b(Pk] = Z aksa(Ps], P, not in Fh,
Py (16)
(P ) =0, P in T,
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~

then on the subspace U; Eq. (16) is equivalent to the following:

) aksa(Ps], if P, is not in T
PS not in Fh

0, if Pk is in Th.

h’

The condition for selfadjointness of the operator Rh on the subspace Uﬁ

then consists, as one can easily see, of the equations

o 9= a P in T P in T . 17
ks sk’ ) not An Fyo k ot dn ty an
Thus, for example, the operator b = Rha,

b = (1 - 2r)a, + r(ak_l + ak_H), k=1, 2, eo., M-1,

bo = bM = 0,

which occurs when the difference analog of the heat equation on an interval
is reduced to canonical form (2), satisfies condition (17), but not
condition (15).

4. Bounds on the elgenvalues of operator Rh. In certain cases the
eigenvalues can be written out exactly, as was done in §27 for the operator
Axx acting on functions given at the points of a net-segment, and vanishing
at its endpoints; and also for the operator Axx + Ayy on functions defined
over a net rectangle, and vanishing on its sides.

To deal with selfadjoint difference operators one can make use of
variational methods. It 1is known that, in this case

(Rhu',u') . (Rhu',u‘] . 18)
u‘mig g u,u " “min’ u,mzﬁ g u,u B Amax' (
h h

Suppose, for example, the operator Axx + A acts on net functions of space
Uﬁ,
region composed of squares, and which vanish on the boundary of this re-

functions which are defined, not on a square, but in a more complicated

gion. Let us put the reglon into a square net-reglon large enough to con-—
tain it, and consider the operator Axx + A y acting on the functions of
Uﬁ’, defined in the net-square and vanishing on its boundary.

We now extend the definition of each function u” of U; so that it be-
comes a function u”” of Uﬁ" setting the extended functions identically
equal to zero on all those points of the net-square which do not belong to
the original region. It is easy to see that for each such function, be-
cause of the fact that it vanishes on the boundary of the original region,

we may write the inequality
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(Ru,u")  (Ru"",u"")
b - R =A_ +A_ .

u’,u T v u ’ h XX vy

Therefore, in going from Eqs. (18) to the equations

(Rhu »u ) e
max u ,u " “max
P ue- ,
u in h
we get numbers, A°7 and A”” | which satisfy the bounds
min max

ATTCAT 3 At (19)
min — min max — max

But in the case of the square region the eigenvalues are known, so that
A;in and X;;; are known, and we get bounds (19) on the boundaries of the
spectrum of the operator Axx + Ayy acting on the functions of Uﬁ, defined
in the original region.

In many cases we may bound eigenvalues through use of variational
methods analogous to those for differential equations. For example the
first eigenvalue of the problem

~ (h) (h)

h
Rhu = lu , u( )’F =0,
h

where Fh is the boundary of net-region D, and where, at interior points,

h
-1 h
RpUpn = ;; falx, + 77 )(um+l,n A

)}

- u
n mn m-1,n

m
1 h
* ;; {b(xm’ Yo ¥ 7)(um,n+l - uan -
h
= by vy =Pl m oy )b atey) >0, bixy) >0,

can only decrease when the variable coefficients, a(x,y) and b(x,y) are
replaced by the constants

a = max a(x,y), b = max b(x,y)
X,y X,y
This may be shown by exactly the same methods by which one reaches the
analogous conclusion for differential equations (Ref. 19).
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In the case of constant coefficients one may go from the original
region to a square, and get bounds similar to bounds (19). Eigenvalues of
the operator anx + bAyy in the square region are easy to calculate

exactly.
5. Cholce of a scalar product. Suppose that the operator Rh’ v =

Rhu, 1s given by the equation
B.v =A u, (20)

and, for some particular choice of scalar product (u,v) = {u,v] not
necessarily given by Eqs. (13) and (14), the operators Zh and Bh are
selfadjoint

~

[X-hu: V} = [U’ A-hv]r [Bhu: V] = [U! BhV]-
Suppose, further, that Bh > 0:

[B.u, u] >0, 1f u # 0.

h
Then the operator Rh = Bglxh is selfadjoint in the sense of the scalar
product
(u,v) = [B u, v]. (21)
B . h
h
In fact

~

(3., u, v]Bh = (B, (58 Ju, v] = [Au, v] =

~ _.1 ~ —_]~ —lN
= [u, Av] = [B By, Au] = [Bu, B Av] = (u, B Av], -
h

The above 1dentity in u and v

(B;lAhu, V)B = [u, B;IXhV)B
h h
means, precisely, that the operator Rh is selfadjoint.

Thus the choice of scalar product via Eq. (21) allows us to use the
spectral criterion of Sect. 2 for the boundedness of norms of powers of
selfadjoint operators. Specifically, one can affirm that the operator Rh,
defined by Eq. (20), has real eigenvalues Ak’ and a complete system of
eligenvectors V¥ :

(k) _ v (k)
AB T = K, (22)

and that disposition of all the eigenvalues Xk on the segment -1 < A <1
is necessary and sufficient for the validity of the inequality
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Hepll, <1, (23)
h

where the norm of the operator 1s defined with the aid of the scalar
product (21).

6. The stability criterion of Samarskii. A. A. Samarskii, in his
stability theory for a wide class of difference schemes in Hilbert space
(Refs. 23 and 24), presents necessary and sufficient conditions for
stability in terms of linear inequalities between the operator-coefficients
in these schemes, and also discusses other results. We give, here, only
two results of this theory.

Suppose U; is a Euclidian space with some scalar product (u,v) =

[u,v], and let the operator Rh’ v = Rhu, u, v in U, be given by the
equation
v - u _
Bh — t Ahu =0, (24)
where and B, are selfadjoint operators with Bh > 0. Define an energy

norm ]IuIIBH in space U;, setting
ally =1 = oy w (25)
u = |B u, uf = (u, u . 25
Bh h’ ’ Bh

One may now affirm the following
Theorem 2. The condition

2
0 <A <8 (26)
ig necessary and sufficient for the validity of the inequality
eI <1, p 2o, (27)

Proof. Let us define the selfadjoint operator Xh’ Xh B Bh - TAh.
Then (24) is equivalent to (20), and condition (26) is equivalent to the
condition —Bh ﬁ Ah S-Bh’ i.e. to the condition

- [Bhu, uJ S.[Khu, uJ S.[Bhu, u]; (28)

As shown 1n Sect. 5, above, the operator Rh is selfadjoint in the
sense of the scalar product (21), and the assertion of the theorem is
equlvalent to the assertion that all the eigenvalues, Ak’ of the operator
Rh lie on the interval -1 < A <1 if and only if condition (28) is satis-
fied. Let us now prove this last assertion.

Suppose condition (28) 1is satisfied. Computing the scalar product of
Eq. (22) with the eigenvector V¥ of operator Rh’ we get
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(k)’ ¢(k) (k), w(k)].

r (B4

I=1av
from which

[Khw(k), W(k)]

(k)’ W(k)]

'Ak, = N .<_ 1.
(B, v

Conversely, let max]kk| < 1. We now show that condition (28) is satis~
fied. Let u = Eckw ) Ee the expansion of any arbitrary element u, (u
in Ua) in the basis {w }, orthonormal in the sense of the scalar product
(21). Then

L R A R o [N SR RIS L [
(k)

=10 eo 3™, 1™ = s, ) er 1™, ) e b ®)) -

=y ckka(k)’ y ckw(k))Bh =) cﬁ’hk’ <

< ) cﬁ = (u,u)Bh = [Bhu, ul.

Therefore [Bhu, u] lezhu, u]|, which 1s equivalent to condition (28). The
theorem is proven.

Note that verification of condition (28) is equivalent to a deter-
mination as to whether or not all the eigenvalues of the operators Bh - X
and Bh + Ah (selfadjoint in the sense of the scalar product [u,v]) are non-
negative.

* % * * x %

Finally we introduce, without proof, still another stability ecri-
terion, applicable to difference schemes (24) with Bh > 0, = A% >20.

-

Let us introduce, 1n space Uh’ an energy norm ||u|| , setting ||u|| =
2 A, A,

u,ul.

h

Theorem 3. The condition B, > l~TAh 18 necessary and sufficient for

the validity of the inequality |?R;|fAh < 1.

Theorem 3 is contained in Sect. 481 of Chapter 6, Ref. 23, and may be
proven without the help of the spectral approach, here inapplicable because

the operator B, is not (necessarily) selfadjoint.

h

* % %
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PROBLEMS

1. Suppose the operator Rh’ b =R a, is given by the equations

b
m

(1 - r)am + ra s m=0,1, ..., M-1,

m+1

b
M

0.

Prove that in space U; of net functions {a }, m=20, 1, ..., M, 1t is im-
m

possible to define a scalar product such that the operator Rh will become

selfadjoint.
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Chapter 14
Spectral Criterion for the Stability of Nonselfadjoint
Evolutional Boundary-Value Problems

Here we show that, from the spectrum of a nonselfadjoint operator Rh’
one cannot judge stability of a difference boundary-value problem in a
bounded region; we introduce the concept of a of operators {Rh} and
consider the spectral formulation of the question of stability, which
remains meaningful also in the case of nonselfadjoint boundary-value
problems in bounded regions. We will point out a necessary, and close to
sufficient spectral criterion for stability.

§44. Spectrum of a family of operators {Rh}.

1. Need for improvement in the spectral stability criterion. In
Chapter 13 it was shown that, ordinarily, evolutional difference boundary-
value problems may be brought to the form

S R WP+ 0P,
e)

ul given,

so that stability on the time-interval O { t < T will be equivalent to the

uniform (in h) boundedness of the norms of powers of the transition
operator Rh' i.e. equivalent to the bound

HRPIL <%, p =1, 2, oo, [T/T), 2

where T 1s the net timestep, t=T(h).
It was established that confinement of the eigenvalues of the operator
Rh’ inside the circle

[A] <1+ et 3

in the complex plane 18 necessary for the validity of (2), i.e. for sta-
bility. In §43 it was shown that, in the case of a selfadjoint operator
Rh' condition (3) is not only a necessary, but also a sufficient condition
for the uniform boundedness (2) of the norms of powers of the operator
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Rh. This same fact was established in §25 for the Cauchy difference
problem with constant coefficients, for two-level difference schemes in one
unknown function, with no reference to selfadjointness. But, in the
general case of a nonselfadjoint difference boundary-value problem in a
bounded region, the necessary criterion (3) is very far from sufficient,
and is totally inadequate in dealing with the question of uniform
boundedness of norus, I'Rgfl. of powers of the operator Rh' This may be
shown by the following example.

Example. For the difference boundary-value problem

p+l - p _
Um Ym - Yo+l “a - ¢( N )
T h Xn’ p’?
ub =0, p=0,1, ..., [T/1], (4)
ug = w[xm), m=0, 1, «u., M; Mh = 1,

approximating the problem
u -u = d(x,t),
u(l,t) =0, 0<x<1, 0<eX<T,

u(x,0) = ¥(x)

the natural reduction to canonical form (1) leads to an operator Rh’ v =
Rhu’ given by the equations

<
13

(1 -~ r)um + ru m=0, 1, ..., M-1,

m+l?

v

M 0, r = 1/h,

In matrix form

1 -r r 0 ... 0 0
0 1 -r T eee 0 0
Rh= e s e . 5 4 & 8 s s s e & s e s . . (5)
0 0 0 ... 1 -r r
0 0 [0 I 0 0

The spectrum of the matrix consists of its eigenvalues, i.e. of the roots
of the equation

det(R, - AE) =0 or -A(l -r - M=o,
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Thus the roots of this equation, A = 0 and X = 1, form the spectrum of
the operator Rh for any h. This spectrum lies inside the unit circle IXI =
1 for 0 < r < 2. Nevertheless, for scheme (4) with 1 < r < 2 the Courant-
Friedrichs-Levy condition 1s not satisfied, so that stability, ||R:]| <K,
is impossible in any reasonable norm.

* & & k k %k

In fact we will show that, in the case T > 1 with norm ||u]| = max[um|
we have the inequality m

max HEPL > 1 = 2] M0 = p1/R, (6)

p=1l, 2, ..., [T/T]

For r > 1 also p > 1, so that as h > 0 and T = rh > 0 the quantity
maxl,Rgll increases exponentially and the condition ]IRE,I < K is grossly

p
violated. To prove inequality (6) we note that, in the case u& = (-7,
m=20,1, ..., M, the values ug of the function

o = Rguo, p=1,2, ..., Mand m =0, 1, «.., M-p
are given by the equations
o= D - 2P, w=0,1, ..., M.
Therefore
[RPO || > [1 = 2P| ][], p <M,
so that for these values of p, p =1, 2, ..., M,
[RPI] 2 1t - 2e|P,  p =1, 2, cou; M =1/h,

and inequality (6) has been proven.

Thus it has been established that the necessary spectral criterion (3)
for uniform boundedness ||R§|] < X, using the eigenvalues of the operator
Rh' is too coarse when the operator is nonselfadjoint: 1in our example
it does not detect the instability that occurs for 1 < r < 2,

2. Definition of the spectrum of a family of operators. Suppose the
linear operator Rh is defined on a linear normed space U;. We designate by
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{Rh} the set of operators Rh for all values taken on by the parameter, h,
characterizing the density of the net. By the nature of difference schemes
h can have positive values as small as we like.

The complex number A will be called a "point of the spectrum of the
family of operators { }" if, for any positive h0 and €, one can find an h,
h < hO’ for which the inequality

[Rpu = A 0] < eflu]]

has some solution u, u in U;.

The set of all such numbers A we will call the “spectrum of the family
of operators {Rh}".

3. Necessary condition for stability.

Theorem l. Suppose that at least one point A, of the spectrum of the
family of operators {R | lies outside the unit circle in the ecomplex plane,
8o that |X0| > 1. In this case it is impossible to find one constant K,
the same for all h, such that

HRPID <k, e

in which p runs through the integral values from 0 to PO(h)' where
Po(h) > = as h > 0.

Proof. Let us first assume that there does not exist an hO > 0 and a
¢ > 0 such that, for all h < ho, we have the bound

IR < e (8)

.l
Under this assumption the assertion to be proven 1is obvious. Therefore we
need to consider only the case where there exist values h0 >0and ¢ > 0
such that, for h < ho, inequality (8) is valid.

Suppose ’Xol = 1 + 8§, where XO is that point of the spectrum for which
IXOI > 1. Given an arbitrary number K, we choose p and € such, as to
satisfy the inequalities

1+ 8)P > 2,
1 - [l tet+teZ+ ..+ cp—l)e > %u
By the definition of a point of the spectrum of a family of operators {Rh},

one can find an arbitrarily small positive h for which there exists a
vector, u in Uh,which is a solution of the equation

Ry = Agul] < ]l 9

Let
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It is clear that [|z|| < €|]u|[. Further, from (10) one can conclude
that

P = AP, 4+ (AP7Ll, 4 P2 p~1
RYu = Afu ( 6zt Ay Rz e +RP z).
Given that IXOI > 1,

2702 +aP2R 2 + oL+ RPTV2]) ¢

S+ IR I+ HIRZI] + wen o+ [[RETH Do ul ],
and consequently
HRPall > Ao IP[1 = e(1 4 e + 2+ vow s PTH)]]ul] >

>+ &P 5 [ful] 2 25 |l = K]yl

The number h, throughout this construction, can be considered small enough
so that p will be smaller than po(h).

Since K was arbitrary we have now proven our assertion that disposi-
tion of all the points of the spectrum of the family of operators {Rh}
within or on the boundary of the unit circle |X| < 1 is necessary for the
validity of the bound ||R§1| < K.

4. Discussion of the concept of the spectrum of a family of opera—
tors {Rh}. We begin by turning the reader's attention to the analogy
between the definition of a point of the spectrum of a family of operators
{Rh}, and the following definition of a point of the spectrum of any
operator R (a definition commonly introduced in courses on functional
analysis). As the operator R, we take the operator Rh for some fixed h.

The point A in the complex plane is called g point in the spectrum of
the operator Rh if, for any positive €, the inequality

FRpu = Auff <efful]

has a solution, u, belonging to the space U], the space on which the
operator Rh is defined.

On comparing the definitions of a point in the spectrum of a family of
operators {Rh}, and a point in the spectrum of the operator Rh’ one may get
the impression that the spectrum of the family {Rh} consists of those
points of the complex plane which are obtained by passage to the limit h =+
0 of the points of the spectrum of Rh’ where the limit h + 0 is approached
by all possible subsequences. But, generally speaking, this impression is

erronecus.
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Consider the operator Rh' v = R u, given by the equations

h

v

o m=0, 1, ..., M-1,

(1 - r)um + Ty

(11)

M

0, Mh = 1.

The operator (11) acts in a (M + 1) dimensional linear space, and is char-
acterized by matrix (5). It is known that the spectrum of a matrix con-
sists of its eigenvalues, i.e. of the roots X of the equation det(Rh - XEJ
= 0. We computed these eigenvalues in Sect. 1; they are » = 0 and X =

1 - r. Thus the spectrum of the operator Rh’ for any h, consists of the
two points O and 1 - r, independent of h., But the spectrum of the family
of operators {Rh}' as will be shown in §45, consists not only of these two
points as, perhaps, one might expect but, in addition, of all the points of
the circle |X = 1 + r| < r of radius r, with center at point A = 1 - r
(Fig. 27, p. 270). For r < 1 the spectrum of the family of operators {Rh}
lies in the unit circle |X| <1, but for r > 1 this necessary condition for
stability is not satisfied: the inequality [lell < K cannot hold uniform—
ly in h.

In Fig. 53 we show plots of the dependence of the values of [|R£|| on
pT = prh in the case r = 3/2 for various values of h. In this case the
spectrum of each operator Rh con— kﬂ??
sists of both points A = 0 and ﬁ/
X = -1/2, thus lying in the unit
circle. This fact predetermines
the behavior of the graph ||R£||
for large values of pt. The

bl

value of ||R§|| tends to zero as

pt + @, f.e. the horizontal axis 7
is an asymptote (and in detailed
algebra courses it 1s proven that
the norms of powers of a matrix

tend to zero as the exponent
-7 —pr

increases if all the eigenvalues AT
of the matrix are smaller than Fig. 53.
one in absolute value).

The fact that the spectrum of a family of operators {Rh} is not
totally contained in the unit circle makes its influences felt on the
behavior of the values of ||Rp|| as h + 0 if pT 18 not too large. The
largest value of ,nglI on the interval 0 < pt < T (where T is an arbitrary
positive constant) grows quickly as h decreases. But this signals
instability on the interval 0 < t < T, while at the same time the behavior
of ||Rg|| as pT *» @, connected with the behavior of the spectrum of each
individual operator Rh’ is of no cousequence at all in the study of
stability.
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5. Nearness of the necessary stability criterion to sufficiency

Theorem 2. Suppose the operator R, i8 defined on the normed space
Ups finite-dimensional for each h, and 18 bounded uniformly in h by some
constant c:

R, 11 < e (12)

Suppose, further, that the spectrum of the family of operators {Rh} lies
completely inside the closed unit circle |A| < 1.

Then for any € > 0 the norms of the powers of the operators RE satiefy
the bound

HRPI < o)1 + )P, (13)

where A = A(e) depends only on €, and not on h.

This theorem means that disposition of the spectrum of the family of
operators (Rh} in the unit circle is not only necessary for stability, but
also guarantees against “gross” instability. If the conditions of the
theorem are satisfied the quantity

max | RP|
1 <p £ IT/r)
either remains bounded as h + 0, or grows more slowly than p[T/T] for any
base, p = 1 + €, greater than unity.

Proof. We show, preliminarily, that if the spectrum of the family of
operators {Rh} lies in the circle IX[ < p then, for any A satisfying the
inequality |X| >p + e, €>0, there exists a number A = A(g), and a h0 >0
such that for any h < h0 and any u in Uh’ u # 0, we may write

Ry = 2l | > 225 [ ful- ()

Assume the contrary. Then one can find an € > 0; a sequence of
numbers hy > 0, hk > 0; of complex numbers X |A | >p + €; and of vectors
u in U such that

B Py
pte + €
R e < [l ] (15)
[[Fn ™ e, hk
For large enough values of k, for which (p + €)/k < 1, by virtue of (12)
the numbers A cannot lie outside the circle |A| < c + 1, since outside

k
this circle

[ 2 = ]| 2 A= R [PUIsl] 2 111
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Thus the sequence Ak is bounded, and therefore has a limit point X,

[X[ 2 p + €. One can easily see from (15) that the point X belongs to the
spectrum of the family of operators {Rh}, contradicting our assumption that
the spectrum lies in the circle [A] < p.

Suppose, now, that R is a linear operator carrying some finite-
dimensional normed space U into itself. And suppose that for any complex
A, |A| 2r >0, any u in U and some a = const > 0, we may write the
inequality

[Ru = Auf[ > al[u]]. (16)

Then

p+l
HWRP| < —, »p=1,2, ... an

Inequality (17) follows from the following well-known equality:

1 -1
RP = - = § PR -2AE)T A (18)
i Ix]=r ’

and from condition (16) which implies that ||(R - AE)~1!| < 1/a. To prove
inequality (13) we set a = (p + €)/A(e), r =p +€, p =1 and R = Rh' Then
(17) coincides with (13).

* X x X &k &

In conclusion we indicate a proof of Eq. (18). Set

o re, wh) =

v el
p=0 AP

Multiply both sides of the equation up+1 = ruP by X—p, then sum over p from
p=0to p =c®. One then gets
AU(A) - Al = ROV,
or
(R - AEU(A) = 2o,  U(A) = -A(R - AE)"! W0,

From the definition of U(X) it 1s clear that uP 1s the residue of the
vector function XP—IU(X):

p._L p-! = - L PR - AR)"L 0
u 5 é APTru(n)da 5T § PR -AE)T W0 an.
A= |A]=x
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P

But u" = Rpuo, so that the last equation 1s equivalent to operator equation

(18).

In this section we have stated the spectral formulation of the problem
of the stability of evolutional difference schemes, a formulatiom which is
meaningful for any evolutional difference scheme which can be put into the
form

up+1 = Rhup + Tpp,

u? given

in such a way that satisfaction of the condition
[IRPI[ <k, p=1,2, ..., [1/7],

would be equivalent to stability. The schemes referred to here may be two-
level or multilevel schemes, splitting schemes, etc., for problems on an
interval, in multi-dimensional or composite regioms.

This spectral formulation requires that one determine whether or not
the spectrum of the family of operators {Rh} lies in the unit circle
HESE

$45. Algorithm for the computation of the spectrum of a family
of difference operators on net functions in an interval

In this section we describe an algorithm for computing the spectrum of
a family of difference operators {Rh} on the space of net functions (or
vector-functions) defined over an interval. As the norm of the function
(or vector—function) we take the maximum of the absolute values taken on by
the function (or the components of the vector-function).

1. Typical example. The family of operators {Rh}, v = Rhu, will be
defined by the equatiomns

v, = (1 - r)um + Tu L1

(1)

This operator Rh occurs in the stralghtforward reduction of the difference
boundary-value problem
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WPt~ P p _ . P
m

p=20,1, ..., [T/1]-1, (2)
u§+l =0, w=y(x), m=0,1, ..., M1,
to the form
u = Rhup + Tpp, u® given.

Equations (2) constitute a difference analogue of the differential
boundary-value problem

u -u = d(x,t), 0<x<1, 0<t<T,
u(x,0) = ¥(x), u(l,t) = 0.

We have already considered difference scheme (2) in 2§26 as an example
illustrating the application of the Babenko~Gelfand criterion. It should
be recalled that, in using this criterion, the investigation of the
original problem, given on an interval, must be split into the study of
three auxiliary problems: a problem without lateral boundaries, a problem
with only a left—hand boundary and one with only a right boundary, for each
of which one must find all the eigenvalues of the transition operator from
up to up .

It turns out that the algorithm for computing the spectrum of a family
of operators {Rh} colncides with the Babenko-Gelfand procedure.

In order to describe the algorithm for computing the spectrum of a
family of operators {Rh} defined by Eqs. (1), we conslder three auxiliary
operators: R R and R. The operator R v = Ru, is given on the linear
space of bounded functions u = {..., u_js Ugs Up, ...} defined on the whole
net-line =@ < mh < @, by the expression

vy = (1 - r)um truo ., m= 0, 1, ... (3)
This expression is obtained from Eq. (l) by removing the left-hand boundary
to —=° and the right-hand boundary to +°, a fact reflected in the two—sided
arrow of the designation of the operator: R. The operator R v = Ru, is
given on the linear space of net-functions u = ( Ugs Upy eees U, ...) de-
fined on the net half-line x = mh, m =0, 1, 2, ..., and tending to zero
as m * ©, It 18 defined by the equations

v, = (1 - r)um + ru m=20, 1, ... (4)

m+l?
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These equations are obtained from Eq. (1) by moving the right-hand boundary
to -+ @, as indicated by the mnemonic sign * in the notation for the

>
operator: R.

« +
Finally, the operator R, v = Ru, on the functions

u = (..., Uy eees Yy i UM)’ u 0 as m*> —=,

defined on the net half-line X = mh, m = ..., =2, =1, 0, 1, «.., M, will
be given by the equations
v, = (1 - r)um + LA m= ..., =1, 0, 1, «u., M-1,

(5)

These equations were gotten from (1) by moving the left boundary to —=, as
b
indicated by the notation for the operator: R.

bJsms M

-ocog/7]< oQ

Jstm<oo

-~oco<m=/M

Fig. 54,

We see that the operators ﬁ, ﬁ, and R do not depend on h. The domains
of definition of the functions u = {um} for operators (1), (3), (4) and
(5) are depicted in Fig. 54. It will be shown that the set of all
eigenvalues of all three operators constitutes the spectrunm of the family
of operators {Rh}. . .

The eigenvalues of the operators R, R and R have already been computed
in §26, but we reproduce this computation here because, before going on to
a proof of the above assertion, we must have clearly in mind the structure
of the elgenfunctions of the operators ﬁ, ﬁ, and R.

First of all we examine the nature of the set of polnts, A, in the
complex plane, for which the equation

Ru = Au = 0

has a bounded solution u = {um}, m =0, +l, ... These numbers A are
precisely the elgenvalues of the operator R. In our example the equation
Ru - Au = 0 has the form
-r - +
(1 -r K)um ru_

= 0, m =0, +1, ...
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Each solution of this ordinary first-order difference equation, as
follows from §1, can differ only by a constant factor from the net function
u = qm, m=0, +1, ..., where q is a root of the characteristic equation
(1l =r -X) + rq = 0. The relation between A and q can also be written in
the form

A=1-1r+ 1q.

The solution q_ = qm is bounded as m > +° and m *+ -=* only if |q| =1,
q = exp(ia), 0 < @ < 27, Therefore the set of those values of A for which
the solution u = qm is bounded may be obtained from the expression

A=l-r+rq=1-r+ reia,

when q = exp(ia) moves over the whole circumference of the circle |q| =1
in the complex plane. The point A then moves around the circle K, with
radius r and center at 1 - r (Fig. 26a, p. 269).

Let us now compute the eigenvalues of the operator §, {.e. those X for
which the equation

ﬁu = Au =0

has the solution u = [u s Uiy seey U ...) tending to 0 as m + +»,
> 0 1 m
The equation Ru - Xu = 0 may be written in expanded form as follows:

(1 -r - X)um + ru =0, m=20, 1, ...

m+1
Its solution w= qm, m=0, 1, ¢sos, tends to 0 as m > += if [ql < 1. The
corresponding eigenvalues A = 1 -~ r + rq, in this case, fill the interior
of the circle A, of radius r, centered at point (1 - r) (Fig. 26,b).

The algorithm for computing the elgenvalues of the operator |3 is
analogous to that for computing the eigenvalues of ﬁ. The equation Y is
written expanded:

(1~ - X)um +re =0, m= ..., -, 0, 1, ..., M-,

(e

Each net function u = {um}, m = M, M~-1, ..., satisfying the first of
these relations, to within a constant factor has, as before, the formu_ =
qm, with X and q still connected by the equation A = 1 - r + rq. The .
> 1. The
second of Eqs. (6), i.e. the equation -Au, = 0, imposes on the solution

solution = qm, m =M, M-1, ..., tends to zero as m * - {if Iq

u, = —qm the auxiliary requirement —AuM = —XqM =0, or A =0, If the point
A = 0 lies outside the circle of radius r and center at 1 - r (shown in
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Fig. 26c) i.e. if r < 1/2, then to this A there corresponds a q such that
lq| > 1. The set, K, of those A's for which the equation Ru - Au = 0 has a
solution tending to O as m + -=, consists only of this point A = 0. In the
case r > 1/2, as follows from the preceding analysis, the equation Ru - Au
= 0 has no solution tending to zero as m + — for any complex (or real) A,

The union of eigenvalues of the operators ﬁ, ﬁ, and ﬁ is shown for the
case r < 1/2 in Fig. 27,a; and for the case r > 1/2 in Figs. 27b and 27c.

We now proceed to prove that the spectrum of the family of operators
{Rh} coincides with the union, A, of the sets K, K, and K, of the eigen—
values of the auxiliary operators ﬁ, ﬁ, and R. We need to show that each
point in A belongs to the spectrum of the family of difference operators
{Rh}, and that the spectrum contains no other points.

Let us show first that each point AO in A belongs to the spectrum of
the family of difference operators. For this purpose it is sufficient to
establish that, for any € > 0, the inequality

[ 1Ry = Agul | < <l [ul] )

has a solution, u, for all sufficiently small positive values of h. The
solution u = (uo, Ups eoey uM) might be called a "near-eigenvector” of the
operator Rh’ insofar as the solution of the equation Rhu - Au = 0 is,

in linear algebra, commonly called an “eigenvector”.

The construction used in the proof depends on the set, K, K, or K,
to which the point XO belongs. Let us begin with the case AO in K. We
will show that, for any € > 0 and all sufficiently small h, inequality (7)

has a solution u.
We turn, now, to the construction of this function u = (uo, Ups eoes
uM). By definition of the set A there exists a g ]qol = 1, such

that AO =(1l-r)+ rq,, and the equation {1 -r- Ao)vm trv =0,
D m =0, +l, ..., has the bhounded solu-
tion v s qg, m=0, +l, ... We will
consider this solution only for m = 0, 1,
a) eee, M, retaining the designation v. The
0|v v v”f vector
M
v = (vo, Vis sees VM) = (1, Ap> +eos qo),
/4
clearly, would satisfy the equation
é) th - on = 0, which in expanded form
g J{E%"’:A, m consists of the relations
v VAR
(1 -r - Ao)vm v = 0,
5 m=0, 1, «.., M-I,
Fig. .
=i v, =0,
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if not for the fact that the last of these relations is violated. The
relation —AOVM = 0 may be considered as a boundary condition for the
solution of the ordinary difference equation

(1-r- Xo)um torop Ly = 0,

m=0, 1, «os, M-l

To satisfy this boundary condition at m = M, i.e. at the right end of
the interval 0 { x £ 1, we "touch-up” the vector v = (1, Qs ==s qg],
multiplying each of its components, v ’ by the factor (M - m)h. The vector
thus obtained we call u, u = (uo, Upy eees uM , u M - m)hq

In Fig. 55 we have plotted the function v Tv and u = ?um} in the
case q; = -1. The norm of the vector u is equal to one:

[lel] = max[uml = max|(M - m)hqzi =Mh = 1.
m m

Let us now evaluate the norm of the vector w = [wo, Wis eees wM], de~
fined by the equation w = Rhu - Xou. For the coordinates of the vector w
we get the following expressions:

[w | = [(1-¢ -2 JOM - m)hqs + T(M - m - 1)hqm+1| =
m 0 0 0

= 1[(1 = x = %) + raglt = mng - rhap"| =

#

+1
10 M- m)hq0 - rhqg |

Thus it is clear that 'lwl' = rh, and for h < £/r the inequality ||w]]
||Rhu - X0u|| < e]||u|| is satisfied. This completes the proof that the
point XO in & belongs to the spectrum of the family of operators {Rh}.

Now we show that, if the point AO belongs to one of the sets x or
K, then it is a point of the spectrum of the family of operators {Rh}.
Suppose, for concreteness, that AO is in 1. Then by definition of the set
X the equation kv - on = 0, which in expanded form consists of the
equations

(1 -r - Xo)vm + TV oS 0, m=20,1, 2, «oa,

has the solution v, S qg, |qo| <1, m=0,1, «.,
We will consider this solution only for m = 0, 1, ..., M, setting
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u = (UO’ UI, ey UN] = (1) qO’ veey qlg])

and will calculate, for this net function u, whose graph in the case q =
1/2 is shown in Fig. 56, the norm of the vector w = R u - A _u. From the

h 0
equation
+1
la, = 1(1 -1 - xo)q‘(’)‘+ rq'(’)‘ =0, m=0,1, «.., M-1,
M

loyl = lag]
it follows that ||w|| = IqOIM = ]q ll/h. If h is so small that qé/h <e,
then [[u]| = [IRyw = agal| < & = eflul |, stnce [Jul[ - 1.

Thus it has been shown that, in our example, all the points of the sets
K, k and A belong to the spectrum of the family of difference operators.
Let us show now that any point A _,
not belonging to the sets K, K or A does gm
not belong to the spectrum of the family Az /)
{Rh}. Specifically, we will show that
there exists a number A > 0, not depending

on h, such that, for any function 0‘ M

u = (uo, Ups eees uM), we may write the

inequality Fig. 56.
'th“ - AOUII > alful]]. (8)

Then for € < A the inequality ||Rhu - Xoull < €||u]| has no solution, and
the point XO does not lie in the spectrum. If we define f = Rhu - Aou,
inequality (8) takes the form

HEH > alfu]]. (9

It is this inequality which we will derive. The equation Rhu - Aou = f
will first be written in the expanded form

(1-r- Ao)um *ru o=, m=0, 1, .., M1,
(10)
Y = .
o% = Ty
We will regard these relations as equations for u, and think of f as a
given right-hand side. Next we write the solution u = {um} in the form of

a sum, setting

u = o + Bm, m=0, 1, «c., M, (11)
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where the a are the components of the bounded solution a = {am} of the
following equation:

(1 TrT XO]Qm + L I"m =
0, 1ifm<O
={fp 1fm=0,1, ..., M1, (12)
0, if m > M.

Then, by virtue of linearity, the vector B = {Bm}, whose components enter
into Eq. (11), is the solution of the equation

(1 -r - AO)Bm +1B =0, m=0,1, .., M1,
(13)
_XOBM =f,t XoaM.
To prove bound (9), which for the given choice of norm can be written
in the form u_ < (max|f |)/A it is sufficient (since u_=oa_ + B ) to
m m m m m m

establish bounds of the form
laml < A max lfml, (14)
|Bm| < Ay max |fm|, (15)

where Al and A2 are constants. Let us begin with bound (14). Note that
Eq. (12) is an equation of first order of the form

ae + bam+l = Fm’ m=0, +1, ...,
where a =1 -r - X, , b =r. An equation of this form was discussed in §2

0 ]
where we arrived at the bound

max|F_| max|f |
Lm m

- m
lonl STaT=ToT “ TaT =TT (16)

In the example considered here |a| - }b[ > 50/2, where 60 is the
distance from the point XO to the set X + Kk + &, Inequality (16), there-
fore, implies (14), the inequality we set out to prove. Bound (15) follows
from (13), written in the following form

fy * A% mem

Bmi__T_qO s (17)
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where 4, is defined by the relation (1 - r - AOJ + rqy. By assumption, the
point AO does not belong to the set A, and therefore lies outside the
circle with radius r and center at 1 -~ r. But in this case [qol > 1.
Further IXOI = 51 > 0, since if it were true that Ag = 0, then AO would
belong to the set i+%+1. Thus, using Eq. (17), and taking account of
the already-demonstrated bound (14), we get inequality (15):

£+ Aa | £, ]
_ M oMt m—M M
'Bm' - AO qo _<_']AO| + laMl ﬁ
max | f [

5.'—?T—11_ + Almaxlfml = A2max’fm|.
1

And thus it has been shown that the spectrum of a family of operators {Rh},
defined by Eq. (1), coincides with the union of the sets F+% +3% 1n the

complex plane.

*® k & & & %

2. Algorithm for computing the spectrum in the general case.

Theorem. [Let the operator Ry, b = R a, a,b in Uy, be given by the
equation By b = A a, where A, and By are linear operators, defined on a
finite-dimensional linear normed space Uy, with values in some linear
normed space ¥, . Suppose, further, that the operators Ay and B, are
bounded uniformly in h, and that E?e operator B, has a uniformly bounded
inverse B+ [la |l 118 ([, []8 "] < c.

In this casge the spectrum of the family {Rh} excludes those and only
those A, in the complex plane, for which the operator A - XBh has, for all
suffieiently small h, an inverse operator uniformly bounded in h.

The proof 1is obvious, and we will not present it here.

Suppose, now, the operator Rh’ v = Rhu’ is given by the difference

relations
0 ko
DooBveme = L Mg kg Sm <M -k,
k=—k k=—k
0 0
(18)
2;0 zgo 2‘;0 Zg
b,v, = a,u,, Bov. ., = Y au 1
Lo P T bt L PN T e

and, moreover, that the problem
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kg
Lo BeVome =t Ko Sm M kg,
K=k
0
(19)
2, 2;0
) b,v Y., B.v,_ v
Lo P T Ve L P T

is well conditioned.
It will be assumed that

where A (x) and Bk(x) are square matrices, defined on the interval 0 < x <
1, and satisfying, on this interval, the smoothness conditions (14) §4:

a5, bi’ oy and Bi are rectangular numerical matrices not depending on M.

In this case the theorem is applicable, and the spectrum of the family of
operators {Rh} consists of all those A's for which the difference boundary-
value problem

2 x
k=%k0 (B = AU = 8 kg Sm LM = Ky,
(20)
2, 2, ?
1£0 by = agJuy = vy 120 (08; = agduy ) =¥,
./

is ill~conditioned. To determine whether problem (20) is well-conditioned,
for each ) one can use the criterion of Sect. 7§4.

PROBLEMS

1. Prove that for the family of difference operators {Rh}’ v = Rhu’
given by the equatlons

v =(1 - t)um + ru_ m=20, 1, ..., M1,

+1°

vy = 0, Mh = 1,

and considered in this section, the spectrum does not change if the norm is
defined, not by the equation ||u|]| = maxlum|, but by the equation

Nall = (n 3 Ju | )Y2

m
m
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2. Prove that the spectrum of the family of difference operators

{Rh}, v = Rhu, given by the equations
v, © (1 -r + Yh)um toru g, m=0, 1, ..., M~1,
Wy < 0, Mh = 1,

does not depend on the value of the constant Y, and coincides with the
spectrum constructed in this section for v = 0.

3. Compute the spectrum of the family of operators {Rh}’ v = Rhu’
given by the equations

v, = (1 - r)um + r(um_1 + um+l)’

au, + bu1 = 0, Uy = 0, Mh = l,m r = const,

where a and b are given numbers. Consider the case ]al > |b| and lal <
o]

§46. The kernels of the spectra of families of operators

* k x & & %

Suppose that Rh reflects the linear normed space U;, of dimension N,
N = N(h), into itself. We will write, in place of Rh and U;, respectively,
RN and UN’ so that the notation will indicate the dimensionality explicit-
ly. It is to be assumed that N + @ as h + 0.

Here we consider to what extent the spectrum of a family of operators
{Rh} depends on the choice of a sequence of norms Il-l}N in the spaces Uy
and, thus, to what extent the spectral criterion for the boundedness of the
norms of powers of the operator RN (Theorem 1 of §44) is invariant with
respect to the choice of norm.

As regards the family of operators {RN} we will postulate that the

eigenvalues of all the operators R, are bounded in totality, i.e. lie in

N
some clrcle

[A] < ¢ = const. (D

Clearly, for the validity of condition (1) it is sufficient that there
exist at least one sequence of norms, ||‘||N, such that the inequality
IIRN|| < ¢” = const will be satisfied. Thus 1t is clear that bound (1) is
natural: it 1s satisfied for the families of operators {RN}, effecting
transitions from level to level, and arising in the course of the
consideration of evolutiunal difference boundary-value problems. Let us
now go on to the definition of the concept of the kernel of a spectrum,
which we will use to formulate the results of this section.
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Suppose we are glven: some sequence of norms ]I']IN, a number a in
[0,11, and an integer k > 0. Denote by A(a,k,N) the set of points, A, for
which the inequality ||R u - Xul] < a N k||u|| has a solution u in UN' In
the notation for the norm, the subscript N will be omitted.

Definition. The kernel, of index a, of a family of operators {RN}
(with a in the interval [0,1]) we define to be the following set, A(a),
the complex plane:

——
AMa) = N N iJ Ma, k, N) |.
k>0 >0\ N>s

Here

U Aa, k, N) = A (a, k)

N>s
is the set~theoretical closure of the union of sets A(a, k, N) for all
N > s; further

M A (a, k) = Aa, k)
s>0

is the intersection of all sets As(a, k) while

M Ala, k) = A(a)
k>0
is the intersection of all sets A(a, k).
Theorem 1. The kernel A(a), a in [0,1], is completely contained in
the spectrum of the family of operators {RN}, and is closed.
Proof. We will prove that, if X  does not belong to the spectrum of
the family of operators {RN}, then neither does it belong to the kernel.
In fact there is an € > 0 and an N, such that, for all N > N_ and any u in
Uy» the inequality []RNu = X uf’ > el]u]] is satisfied. But then for all A
in the circle |A - A | < 5 & the inequality '|R u - Aull pd 5 E'lu|| is
also satisfied. Therefore for N > N not one set A(a, k, N) contains a
point of the circle |A - AO! < % €. But this implies the validity of the
first assertion of the theorem. To prove that the kernel A(a) is closed we
note that the As(a,k) are closed by construction, and the set A(a), as the
intersection of closed sets, is also closed.
Example. Let us compute the kernel A(a), a in [0,1], of the family of
operators {RN}, if the operator RN+1’ v = RN+1u, is given by the equations

v, = (1 - r)un tru o, n=0, 1, .., N,
(2)
vy = 0,
and the norm by the equation ||u|] = ]I(uo, Ugs eosy uN)|| = maxlun|. We

will show that A(a) consists of the point A = O, along with the closed
circle of radius ar, with center at 1l-r:
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[A = (1 - )] £ ar. (3)

In fact A = 0, as we saw in 1§42, is an eigenvalue for all operators

RN, so that it belongs to all the sets A(a, k, N), and therefore to the
kernel. Further, for any AO lying strictly inside circle (3) there is a
real a > 0 and real b > 1 for which we may write

A= - +£ 1(1.

0 i T 5

N, —k

The inequality IIRNu - X0u|| < aN “|lu]|, for any fixed k and all large
enough N, has the solution

n ian

(a/b)e

i
o
-
—
-

veey N-1,

0 . n

I
-4
.

It follows that, for all large enough N, the set A(a, k, N) contains the
point AO and, therefore, this point 1s also contained in A(a). Thus the
interior points of circle (3) belong to the kernel A(a), and in view of the
fact that the kernel is closed it must also contain the boundary of circle
(3).

If the point AO # 0 does not belong to circle (3), i.e.

A =1-r+-‘;£ei°‘, a>0, b=1-2, 6>0,
then, writing out the Green's function for the first-order difference
equation (§2), it is possible to establish that, for any A in the circle
X = ' < min[lX |, ar/(1 = 8)],for all large enough N and all u in Uy
we have the inequality ||R u - Xull > a ||ul| It follows that the points
of this circle do not belong to the sets A(a, k, N) if N is large enough
and, therefore, neither can they belong to the union of their closures
As(a, k), nor to the kernel A(a).

Note that the kernel A(0) of index a = 0 in the above example consists
of the two points A = 0 and A = 1 - r, and the kernel A(l) coincides with
the whole spectrum of the family of operators {RN}, computed in §45.

At this point we conclude our discussion of the example, and return to
general considerations.

Definition. The kernel A(0) will be called the “"absolute kernel”.

Theorem 2. The absolute kernel of the family of operators {RN} does
not depend on the choice of the sequence of norms ][',]N

The proof follows from the fact that, for a = 0, the set A(a, k, N)
coincides for each N with the set of eigenvalues of the operator RN’ which
does not depend on the norm in the space UN.
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Theorem 3. Under condition (1) the sequence of norms, [ 1lys ean
always be so chosen that the spectrum of the family of operators TRN} will
coineide with ite absolute kermel,

Proof. We will demonstrate the construction of norms whose existence
1s asserted by the theorem. Choose a basis in the space UN in such a way
that the transformation matrix RN’ in this basis, will be in Jordan form,
with the absolute values of all off-diagonal elements smaller than 1/N.
Introduce a scalar product, and the assoclated norm, stipulating that the
basis 1s orthonormal. If AO is an arbitrary point not belonging to A(O0),
and € > 0 is the distance from this point to the set A(0) (closed by virtue
of theorem 1) then one can verify that ||Ru - X0u|| Z}%~||u]| for all N >
8/€ and all u in UN’ so that AO does not belong to the spectrum of the
family of operators {RN}.

Thus, 1f the spectrum of the family of operators {RN} does not coin-
cide with its kernel A(0) of index a = O for the given choice of norm, as
in the above example (2) with norm ||ul| = max|un|, then by choosing
another sequence of norms one can get as a spectrum the narrower set A(0).

However, in the theory of difference schemes one uses norms which are
not completely arbitrary.

We designate by ||° |c the norm equal to the maximum of the absolute

values of all components wh¥ch constitute a net function (or vector
function) in UN. Now we single out a class of sequences of norms [l'llN
for which there exists a positive integer, s, depending on the sequence,

and such that for all large enough N

sup HuHNgNSHinf Hullye (4)

[fo]], =1 all, =t
N N

Clearly the norm | !c itself, and all the norms we have encountered in

dealing with differenceNequations will, as N increases, form sequences
belonging to class (4).

Theorem 4. The kermel A(a) of index a in [0,1] does not depend on the
choice of norm sequences from among those satisfying requirement (4).

The proof follows immediately from the definitions.

Let us now consider the family of operators, {Rh}, defined by Eqs.
(18) and (19) of 8§45, making the supplementary assumption that the matrix
coefficients Ak and Bk are constant: Ak(x) = Ak(O), Bk(x) H Bk(O).
For this family of operators we may state the following important

Theorem 5. (A. V. Sokolov). If in the spaces Uﬁ = Uy» in which the
operators R, = Ry act, one introduces the norms Il'llc » then the kermel

A1), with index a = 1, of the spectrum of operators {RN}, coincides with
the whole spectrum of this family.

From this theorem and theorem 4 it follows that, for any sequence of
norms satisfying (4), the spectrum of the family of operators {R
the spectrum of the family of operators {R

N} contains
N} obtained through use of the
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norm ||+]| ; which spectrum in turn may be computed by the methods used in
N

2§45, Therefore, 1f the spectral condition for the boundedness of norms of
powers of the operators RN (i.e. theorem 1 of §44) is not satisfied for the
norms Il-llc , then 1t will not be satisfied for any other choice of a

sequence of gorms from among those subject to condition (4).
The proof of this theorem of A. V. Sokolov involves a very complicated
line of reasoning, and we will not present it here.

§47. On the stability of iterative algorithms
for the solution of nonselfadjoint difference equations

The solution of stationary problems via the time—evolution of a steady
state may be regarded as a sort of iterative process, and the results
obtained on successive time levels as successive approximations. In §35 we
considered, as an example, the Dirichlet difference problem for the Poisson
equation.

For a vanishing solution on the boundary this 1is a selfadjoint dif-
ference problem. Correspondingly, in the approach to steady state it was
possible to expand the error in a complete orthogonal system of eigenfunc—
tions. Via arguments based on the eigenvalues one could draw conclusions,
simultaneously, about the rate of error reduction and, as well, about the
influence of roundoff errors committed at intermediate time-levels.

It turns out that, in solving nonselfadjoint difference equations by
the time-evolution method the situation, generally speaking, is differ-
ent. An instability may develop, in this case, in spite of the convergence
of the iterative process, as a result of a strong sensitivity to roundoff
errors. Here this phenomenon will first be defined more precisely, and
then discussed. In our discussion the concept of the spectrum, and the
kernels of the spectrum, of a famlly of difference operators will turn out
to be useful.

Let

u = RNu + fN (1)

be a family of linear equations (a "difference equation”) in some unknown
element u of an N-dimensional linear normed space UN’ a family depending on
the positive integer parameter N. We will consider the iterative process

+1
a7t = RNum + fN’ m=20,1, ..., (2)

for computing the solution u. It will be assumed that all the eigenvalues
Xk = Xk(N) of the operator RN are smaller then 1 in absolute magnitude,
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) ey <Ly (3

i.e. that the well-known criterion for the convergence of process (2) is
satisfied, with

a = o[ = o(sB). )

Suppose, now, that computation (2) 1s carried out approximately, with
some number, p = q + a, of significant digits, i.e. via the equation

o Ry + £+ LOTPI[T[[S (5)

where 5m is an arbitrary element of Uy with ||6m||_§ 1.
We now choose a positive integer q and require that, for arbitrary Sk,
e Il <1, k=0, 1, ...,

n fu - d"[] < 107 ul]. (6)
m*o
Inequality (6) guarantees that one can calculate the solution u, using
Eq. (5), with an error not exceeding one in the q'th decimal place (in the
sense of the norm in UN).
Lemma. To satisfy condition (6) it 18 necessary that the number & of
"extra decimal digits" in Eq. (5) satisfy the inequality

(1 - 107%)¢ < 10%,
and sufficient that it satisfy the inequality
(1 +107%)¢ < 10%,

where

m
¢ = lim  max ¥ RN_ 8y
mo (18 ]]=1

k=0

We leave the proof to the reader.

Note that the existence of ¢ = ¢(N) follows from condition (3). Below
we will mean, by the symbol o = a(N), the smallest integer which guarantees
that requirement (6) is satisfied. From the lemma it is clear that such a
number exists, 1s non-negative, and depends on q elther weakly or not at
all.

Definition. A convergent iteration algorithm (2) will be called
"stable" 1if there exists a constant C, independent of N, for which
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a(N) < C; 7

a convergent iterative algorithm will be called “"weakly stable” if there
exists a constant C, independent of N, for which

o(N) < C 2n N, (8)
but the algorithm 1s not stable. Finally, a convergent iterative process

will be called "unstable” if it is neither stable nor weakly stable.
Example. We write the equation

-2u_ 4+ u -f =0 n=20,1, ..., N-1
n+1 n ’ ’ ’ ’ £
6]
uy = 0
in the form
u = (1 - 2r)un +tru o+ rfn, n=20,1, ..., N-1,
(10)
uy = 0.
treating r as a parameter. One iteration algorithm (2) for Eq. (1Q)
proceeds as follows:
o™ S - 2e00™ 4 ™+ et n=0,1 N-1 (11)
n n n+l n’ > Tyttt >

so that the operator RN’ v = RNu 1s defined by the equations

v n=0,1, ..o, N=1,

n

vy = 0.

(1 - Zr)un + LA

This operator has, as can easily be seen, only the two eigenvalues XI(N) =
1 - 2r and XZ(N) = 0.

Inequality (3) is satisfied and iterative process (11) converges for
r <1l. We will take, as a norm, ||u|| = maxlunl, and show that for r < 2/3

n
the algorithm is stable, while for r > 2/3 it is unstable. In fact if
r < 2/3, then

max(vn( £ max{ |1 - 3|, 1 - r|]max!un|,
n n

so that ||RN|| < max{ |1 - 3e{, {1 = £]) = p < 1. Therefore ¢(N) <
1/(1 - p), and by virtue of the lemma bound (7) holds for € = -2&n(l - p).



458 Stability of Nonselfadjoint Problems Chapter 14

Now suppose that r > 2/3. In (l1) let fn =0, ug = (- It is easy to

see that in this case u" = (1 - 3r)™-1)", n = 0, 1, ..., N-m. It follows,
then, that [|R[| > o™, m =1, 2, ..., N-1, where o 1 - 3r] > 1. There-

fore $(N) > DN, and we find from the lemma that @ = N g p, which proves
instability. One can show that for r = 2/3 the iteration algorithm (1l1) is
weakly stable.

Thus the spectral convergence criterion (3) for the iteration algo-
rithm does not determine its stability. The spectral criterion and sta-
bility conditions are properly formulated, not in terms of the disposition
of the spectra of each of the operators R, but in terms of the location of
the spectrum and kernels of the spectrum of the family of operators {RN}.
In fact under the assumption that the family of operators {RN} is uniformly
bounded, ifRN]‘ < C, it is easy to verlfy the following assertion.

Lemma. In order that, for all large enough N, the iteration algorithm
(2) be convergent, it is sufficient that the radius, ¢, of any kermel of
the spectrum of the family of operators {RN} be strictly less than unity.

Stability criterion. In order that the iteration algorithm (2) be
stable it 1is necessary and sufficient that the spectrum of the family of
operators {RN} lie strictly inside the unit circle.

Theorem. In order that the iteration algorithm (2) be convergent, and
either stable or weakly stable, it is sufficient that the radius, p, of the
kernel A(l) of the spectrum of the family of operators {RN} be strictly
less than unity; in order for a convergent iteration algorithm (2) to be
unstable it is sufficient that the radius, ¢, of this kernel of the family
of operators {RN} be strictly greater than unity.

In §46 it has been shown that the kernel A(l) of the spectrum of the

family of operators {R does not depend on the choice of norms from among

!
those of class (4)546,Na natural class of norms for difference equations.
From this it follows, in particular, that if the operators RN are
uniformly-in-N contracting, IIRNII < p <1, so that the spectrum (and thus
also the kernel A(l) of the spectrum) of the family of operators {RN} lies
in the circle |X‘ < p L1, then iteration algorithm (2) is stable and
remains stable (strongly or weakly) in any other norm (4)8§46, in which the
operators RN may no longer be contracting.

In the above example the spectrum of the family of operators consists
of the circle |A = (1 = 2r)| < r and the point A = 0, coinclding with its
kernel A(l). The assertion regarding the stability of algorithm (l1) for r
< 2/3, and its instability for r > 2/3 can, therefore be based on spectral
criteria as well as on the theorem.

To compute the solution of a (nonselfadjoint) equation

ANu + fN =0 (12)

one may try to construct an iteration algorithm of the form
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BNum+1 = BNum + (ANu

m

+ f (13)

W
Here the operator BN must be so chosen as to be easy to invert numerically,
and so that the spectrum of the family of operators {B;lAB} will have a
radius, p, smaller than one, and as small as possible. By virtue of the
bound IIREII < ce)(p + )™, (Eq. (13)§44) where € > 0 is arbitrary and
C(e) does not depend on N, this last condition guarantees rapid conver-
gence; and by virtue of the stability criterion, formulated above it also

guarantees the stability of iteration algorithm (13).
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APPENDIX
METHOD OF INTERNAL BOUNDARY CONDITIONS

* & & * k& %

In the theory of boundary-value problems for analytic functions (i.e.
for the solution of systems of Cauchy-Riemann equations) and also for'the
solution of more general systems of partial differential equations, one
sometimes applies the method of singular integral equations. This method
consists in the reduction of the boundary-value problem to an integral
equation with the integral taken over the boundary of the region under
consideration. In addition to the given boundary condition, one also makes
use of consequences of the system of differential equations itself, of the
relations which must be satisfied by functions (and their normal deriva-
tives) on the region boundary so that it will be possiblé to construct a
solution of the equation by extending the domain of definition of the func-
tions into the region's interior. In the case of analytic functions the
necessary relation is the classical Sokhotski-Plemelj condition, which may
be developed from the Cauchy integral formula
£(2)

-z

0(z2) =gy | Pt a

¥
by going to the limit where z tends to the boundary Y. In the case of a
differential equation of second order the corresponding condition falls out
of Green's formula, expressing the solution at each point of the region in
terms of values of this solution, and of its normal derivative, on the
boundary. To obtain this condition one must also go to the limit where a
point inside the region tends to its boundary, making use of the properties
of potentials of simple and double layers.

The method of internal boundary conditions 1s, in concept, analogous
to the above-described method, which reduces boundary-value problems for
partial differential equations to integral equations at the boundary. The
role of auxiliary boundary conditions, analogous to the Sokhotski-Plemelj
condition, is taken over by internal boundary conditions evolving from the
difference analogue of the integral formula of Cauchy (or the difference
analogue of Green's formula).

1. Class of systems of difference equations. We will be concerned,
here, with boundary-value problems for general systems of difference equa-
tions with constant coefficients which, in vector notation, take the form
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Lu s ) u,, -f =0, (1)
k in K Ak n+k n
where n = [nl, Ngy seey ns) and k = [kl, kZ’ ey ks] are multi-indices,
the Ak are quadratic matrices, fn is given and u, is the desired vector-
function, while K is a finite set (a “"stencil”). We will suppose that
system (1) satisfies the following algebraic condition: the characteristic
matrix

Ay = L Afs, (2)
Kk k k in K

(where Ek z [511, eeey ESS), and El’ ceey ES are complex parameters), is
not degenerate identically in &:

det A(E) # 0. (3

This restriction is a natural one: one can show that in the case det A(E)
2 0 Eq. (1) has no solution for any finite (in n) right—hand side fn‘

2. Funﬁamental solution. The matrix function Gn will be called a
"fundamental solution of system (1)" if it simultaneously satisfies the
following two equations:

_ &0
k 12 K Ao ™ S “
_ &0 .
. 1}1 . G A, = 82E. )

Lemma. Let Q[El, ooy Et) be an arbitrary polynomial in an arbitrary
number t of complex arguments, a polynomial not identically equal to
zero, Then it is possible to choose radii, ry, of circles ]Ejl =, 80
that Q(E;, vy E) # 0 if [E)] = 1)y ey |6 ] = 7 .

We carry out the proof by induction on the number of arguments, t.
For t = 1 the number of roots of Q[El) = 0 is finite and the assertion 1s
obviously true. Assuming that it has been proven for t = p we now esta-
blish that the assertion of the lemma is also true for t = p + l. Expand

the polynomial Q[El, eee; £ in powers of EP+

p+l) N

M
QEps «ees €P+1) = QyEys vees Ep)€p+1 e+ QB v, Ep),
where M 1s some positive integer, and QO[EE’ seey € ) does not vanish iden-

tically. Choose Tls sens rp such, that Q0 El’ RPN EP) #£ 0 for
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lgll =Ty oeee |€P| = rp. This is possible by our induction assumption.
Now by taking rp+1 great enough one can arrive at a situation such that
for |E,| = T j =1, +esy p+l we have Q(El, veey €p+1) # 0.

Theorem™ 1. The matrix G » defined by the equation

-1
_ 1 A "(8)
=g b b b dEy e (s)
(2mi) A 1 s
3j j El cee ES

18 a fundamental solution.

Here the rj are chosen, in accordance with the lemma, so that
det A(E) # 0 if |€j| =y

This theorem may be proven by direct substitution. Taking account of
the properties of residues we find that

-1
=1 A(E)A” () <0
o on g Ko (2n1)® b np+l ngtl B eee &g = 006
El ses &
s
-1
‘ =L A_(E)AE) _ <0
) 1% o Cach = P § . AT o g ... b = 80E.
£ oo &
1 s

3. Boundary of net-region. Consider Eq. (1) on some bounded set

Lu = X

£ n in D, (6)
k in K

Akun+k = o

where DO is an arbitrary net-domain of definition of the right-hand side
fn. Then the region of definition of the solution uy is the set D,
generated by the point n+k when n and k independently run through the
points of DO and K respectively. With each r in

D we associate a subset Kr of the set K, a

subset consisting of all those k in K for which

IVENV] VIRV)
LA A S o B A s W 4 T o

r—k is not in DO' We designate as the "boun- b -

" ; X X X X X X XX XX
dary” T the set of all those points r in D for & x % %
which Kr is non-empty. For example for the X x 3
simplest difference analog of the Poisson X X ¥
equation K x x X

x X X
Lu = + + + X X x X
v = unl—l,n2 unl,n2+1 un1+1,n2 j x x X
X X X X X X X X X X
+u g T = thn 0 IVEIVEEVIRVEIVEEVIRVEIEY
1M 12 12
In )] <N, Iyl <N; o N =L Flg. 57.

the set D. consists of those points (n,h, n2h) which fall inside the
square lel <1, |x2| < 1; the set K of the five vectors (1,0), (0,1),
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(-1,0), (0,-1), (0,0); the set D of the totality of all integer—points of
the square ’nll <N, |n2| £ N, except for the four corner-points !nlf =
lnzl = N, The boundary T' consists of two layers of points, marked by
crosses in Fig. 57.

4, Difference analogs of Cauchy and Cauchy-type integral formulas.

Lemma. Let B be an arbitrary matriz-function such that right-hand
multiplication of this function ig meaningful for any n'th order square
matrix defined at all points of an integer-net. Then one may write the
following identity:

J B I Au_, =
+

nin Dy, " kiaK k- ntk

= ) ) B AVYu - ¥ ) B A Yu_ . 7

+ _
n in D (k fnx YK k> " orinT <k mk T k> r
Proof. The vector—function U, m in D, may be written in the form
u, = Z Gﬁun.
t in D

The left~ and right-hand sides of identity (7) depend linearly on u.
Therefore to prove this identity it is sufficient to verify its validity
for the vector~function

0, if n # t,

Uy if n = t,

for each fixed t in D:

1

} B ) v 1 ) B_AV . =
nin D, "k fn K Hense k in K n in D, ks

z B_ v, - 2 B v, =
in K t+kAk t k in Kt —t+kAk t

il
™~

t-k -
8 B v =
X in K D0 t+kAk t "

) ( ) B-n+kAk> vy~ 1

B__ . A v o,
n in D\ k in K rin T (k in Kr THK k> r

where

1 for t-k in DO’

0 for t-k not in DO.

t-k _
60 =
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Theorem 2. Let {un}, n in D, be an arbitrary solution of Eq. (8),
while G ig any arbitrary fundamental solution. Then

L for n in D,

) ¥ G Alu+ ) G _f = (8)
A —rt -
rinTl k in Kr< noTH ¥)  minp, OO 0, for n not in D.

Proof. We multiply both sides of Eq. (6) on the left by the matrix
Gt—n and sum over all n in DO' Using identity (7), and then Eq. (47), we
get Eq. (8).

Consequences. Every solution {un} of Eq. (6) ig completely determined
by its values on T and may be constructed from these values via Eq. 8.

Theorew 3. Let {vr} be an arbitrary vector-function, of dimension m,

defined on T, and let Gn be any fundamental solution. Then the equation

u =

G __ A Yv_ + ] G _f , uninD, (9)
n Fin T (k in Kr n-r+k k) r n-m m

gives a solution of Eq. (6).
Proof. Applying the operator L to the vector-function {un} defined by
Eq. (9), we find that

Lu = ) 1121 ) [k %n . (LGn_H_kJAk] v+ ) (16 _)E, ninDy.  (10)
r

Let us now calculate the right-hand side. By virtue of (4) we have

E, for n =r - k,

LG =
-r+

T 0, for m # r - k.

But by the definition of the set Kr the point n = r-k does not belong to
DO’ so that the first term on the right-hand side of Eq. (10) 1s the null-
vector. The second term is, clearly, equal to fn’ so that Lun = fn’ and
the theorem is proven.

Equation (8) 1is analogous to the Cauchy integral formula for analytic
functions ¢(z) 1in the bounded region d with boundary Y:

$(z), for z in d,
= § —————i(f)z ac = (11)
¢ in Y o, for z not in dUy.

Here the roles of analytic functions, of the boundary region and the Cauchy
integrand 1/[2“1(@—2)] are taken over, respectively, by the solutions of
problem (6), the boundary T of the net~region D and the expression
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(k zn ‘ Gn-r+kAk): this expression takes into account, via set K within
which the summation is carried out, the structure of the boundary near the
point r in T,

It is natural, in this case, to compare Eq. (9) with integral formulas
of the Cauchy type. Equation (8) is analogous to Green's formula for the
Laplace equation.

We underscore, however, the following essential difference between
Eqs. (11) and (8): the Cauchy integral formula is valid only strictly
inside region d, while (8) is valid at all points of D, including its
boundary points. There 1s an analogous difference between Eq. (9) and
Green's formula.

5. Internal boundary conditions.

Theorem 4. Suppose G_ 18 gome fundamental solution of Eq. (1). If a
given vector function {ur}? given on T, (i.e with r in ') i8 to be extend-
able over the whole bounded net-region D so as to constitute a solution of
Eq. (6), it ig necessary and sufficient that, for all n in T

r
r in m in DO

y (k 1:21 KrG“"”k) u_ + ) 6 _f,=u, ninT. (12)

Proof. If {ur}’ with r in T, is to be extendable over D so as to form
a solution {un}, n in D then, applying Eq. (8) to this solution, and then
considering the resulting equation only for n in I', we verify that (12) is
satisfied. Conversely, 1if {ur}’ for r in I', satisfies Eq. (12), then we
take v, = u and construct a solution {u }, n in D, via Eq. (9). By virtue
of (12) the boundary values of this solution {ur}, r in ', colncide with
the given boundary values.

Theorenm 4, just demonstrated above, gives us justification to call
Eqs. (12) "internal boundary conditlions”: these conditions are not imposed
externally, but are a consequence of the differential equation itself.

If Eqs. (8) and (9) are regarded as analogs of Cauchy and Cauchy-type
integral formulas, then the internal boundary conditions can be thought of
as analogous to the Sokhotski-Plemelj conditions, by which a function ¢(z),
given on the boundary, Y, of a reglon d in the complex plane, may be
extended over the whole region d to form an analytic function.

Equation (8) may be considered as a difference-Green's~formula for
system (6) which implicitly takes into account the "potential jump” on the
boundary I', and tends to internal boundary conditions (12).

6. Boundary projection operator. It is possible to write the
internal boundary conditions in a form different from (12). We will
designate by U, the linear space of all net vector-functions u_ = {ul}, r
in T, and by U; the subspace of those among them which may be extended over
all of D to form a solution {un}, n in D, of the homogeneous equation cor-—
responding to Eq. (6).
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Define a linear mapping P, up = PVP' of space UF into itself, by the
following equation:

o = )

G A Vv, ninT. (13)
rinF(kinKrnr+kk> r

Theorem 5. Operator P 1s a projection operator, projecting UP onto
Uf.

Proof. In fact, for any Vo in UF’ by theorem 3 the element up = PVF
belongs to UE. If vp is in UE then, by theorem 2, we get PuF = up. The
theorem 1s proven.

The operator P, defined by Eq. (13), we will call the “boundary pro-
jection operator”. With its help internal boundary conditions (12), in the

case fn = 0, may be written in the form

up - PUF = 0, (14)
It should be stressed that the boundary projection operator depends on the
choice of a fundamental solution Gn'

7. General boundary—value problem. Given the stated consequence of
theorem 2, we see that each solution of Eq. (6) may be reconstructed from
its values on the boundary I'. This fact gives us the justification to
define the general linear boundary—-value problem for Eq. (6) as a boundary-
value problem of the form

Lu = 2 Akun+k = fn’ n in DO’
k in K (15)

Eur =¢, ¢ in o,
where £ is some linear operator mapping the space UF onto a linear space .

Natural difference schemes approximating the first, second or third
boundary-value problems for the Poisson equation, for example, may easily
be written in form (15).

The name "general boundary-value problem” is somewhat arbitrary: one
can find difference boundary-value problems which are not of form (15).
This is true, for example, of natural difference schemes for differential
boundary~value problems in which the order of the differential equation is
lower than the order of the differential boundary conditions.

8. Basic idea of the method of internal boundary conditions.
Suppose, for simplicity, that fn = 0. Between the difference boundary-
value problem

Lu =0, fu,=4¢ (16)

and the problem
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~Pu, =0, fu,=¢ (17)

Ur
there is a very close connection. Specifically, by Theorem 2 the boundary
values up = {ur} (with r in T), for each solution {un} (n in D) of problem
(16) must satisfy Eq. (17). Conversely, each solution up = {ur} (r in T)
of problem (17) must, by theorem 4 and the stated consequence of theorem 2,
be extendable uniquely, over all of D, to form a solution of problem
(16). The basic idea of the method of internal boundary conditions
consists in the passage, from the original boundary-value problem (16), to
the system of equations (17) on the boundary I'. Progress is achieved in
this way for two reasons. First, because the number of unknowns in problem
(17) is small compared with that in (16). Second, because of the special
form of system (7), whose structure contains the boundary projection
operator as a built-in integral component.

9, Stability of internal boundary conditions. One may, perhaps, fear

that the internal boundary condition up - Pu, = 0 is "almost degenerate”,

and that therefore problem (17) is ill—condigioned regardless of the form
of operator £, so that the passage from problem (16) to problem (17) is
connected with the loss of computational stability.

Assuming that space ¢ is contained in space U,, we will introduce in
space UP (and therefore also in space ¢ within UF) the norm ||°||, then
prove a theorem showing that, in the transition from problem (16) to
problem (17), there is no loss of computational stability.

Theorem 6. Suppose that problem (17) has a solution up for an ¢ in &
and, moreover, that

Hupll < ellell, (18)

where ¢ does not depend on ¢. Further let vr be any arbitrary element of

U Introduce the notation

e
v, = Pv, = $, v, = ¢, (19)

Then vp is subject to the bound

o1 < eCHIEH + el 1%+ [19]] (20)

If we regard (19) as an equation which determines Vs then bound (20)
signifies that the sensitivity of the solution of problem (19) to perturba—
tions ¥ of the right-hand side of the internal boundary conditions is
characterized by the constant ¢ of bound (18), i.e. by the sensitivity of
the solution to perturbations in the right~hand side of the given boundary
condition lur = ¢,

Proof. Define
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By theorem 5, zp = Py, with PVF in U;. Therefore

2, = Pz, =0, 2z, =2(u, - %) =% -7,
i.e. zZp satisfies an equation-system of form (17) and, by virtue of (18),
is subject to the bound

Hepll <ell® = 2811 < (181 + [lelT [1¥1D).

From this bound, taking account of the identity zZp = Vp T E, we get Eq.
(20).

10. Supplementary idea. We now develop an idea which is useful for
the computational solution of boundary-value problems for partial
differential equations, an idea applicable to the following problem.

Suppose the function u(x,y) is defined in some domain, d, with a
sufficiently smooth boundary Y, as the solution of the Dirichlet problem

2 2
u U, (x,y) in 4,
ax?  ay?

u'Y = a(s),

and one 1s required to determine the derivative

du _
i b(s)
Y

directed towards the inward normal. Such a problem arises if, for a
temperature u| = a(s) on the boundary, Y, one wants to find the steady-
state heat—flux through the boundary.

Let s be the arc—length along the boundary Y and assume, for the sake
of definiteness, that the whole length of the boundary Yy is 2m. We set out
to determine the function

Quf b(s)

an
v

approximately, in the form of a partial sum

k
b(s) = ) (o, cos js + B, sin js)
iz J J
]
of its Fourier series. To determine the coefficients aj and Bj we will use
the method of internal boundary conditions.
Given h > 0, we construct the net
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[xnl: y“2) = [nlh’ nzh)

and the difference equation

u u + u + u - 4y = 0.
n1+l,n nl-l,n2 nI,n2+1 nn, 1 nn,

+

2

Assign to D0 = Dg all points of the net which, along with their four

neighboring points, belong to dUY. One can then define the net region D =

D", its boundary T = T and the internal boundary condition up - PuF = 0.
The idea proposed here is that the function u'Y = a(s) and the

function

du

K = b(S),

Y
written in the form of a series with undetermined coefficients, be extended
by Taylor's formula from the boundary, Y, into the adjacent band containing
the boundary, Fh, of the net-region; the undetermined coefficients

would then be chosen so as to minimize the residual which develops when the
extension of the function, u(x,y), from the boundary into the near-boundary
region, is substituted into the boundary conditions.

11. Comparison of the method of internal boundary conditions with the
method of singular integral equations. At the beginning of this Appendix
we pointed out the analogy between the method of internal boundary condi-
tions and the method of singular integral equations, an analogy which is
not quite complete. Here we compare these methods, refining the analogy
and bringing out explicitly the essential differences.

For purposes of comparison we first describe the idea of the method of
singular integral equations for boundary-value problems, for example for
the problem

2
87u y 8w _u =0, x-=(x, x,) in 4, (21)
2 ol 1° %2
1 2
aguy * auy = #(x), x = (xl, x,) in Y, (22)

where u = const > 0 and d 1s a bounded region with Y as its boundary.
Boundary condition (22) connects the solution u = uo(x) on the region—
boundary with its derivative along the inward-pointing normal du/dv =
ul(x). The coefficients ag
Let us first write out the classical Green's formula for Eq. (21):

and a; are given operators.

W = [ [ety) 55 - u g do, (23)
y in ¥
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where g(x) is the fundamental solution of Eq. (21) tending to zero at
infinity. Now let x tend towards the boundary Y. Using the properties of
potentials of single and double layers we get, on the boundary y, a rela-
tion of the form

= b,yu, + b,u

ug = boug * bpuy, (24)

connecting the solution u(x) with its normal derivative 3u/dv = ul(x) on
the region-boundary; here b, and b, are known integral operators. The
transition from problem (21), (22), to the equivalent system of equations
(23), (24), for the functions uO(x) and ul(x) defined on the boundary Y, is
precisely the essential feature of the method of singular integral
equations.

For comparison let us now consider the method of internal boundary
conditions as applied to the following general boundary value problem for
the difference analog of Eq. (21) in a square net-region

u_ + u + u + u oy~ (4 + ) =0 (25)
n, 1,n2 nl,n2+1 n1+1,n2 ny,n, 1 n;,n, 4
-N < 0, 1, <N,
fun, = ¢. (26)

We will write the internal boundary conditiom up - PUF =0 in a form
which will be useful below. It is easy to verify that Eq. (9) in this case
may be rewritten in the form

u =) e

R () =u (s )+ 1 ud’, ninD, (27)

r in Q, n-r rtvoanor r 1n Q,

where QO is the set of all points, I, lying on the sides of the square ln
= N, |n2|
net-square region (Fig. 57), and Av is the difference analog of the

N
= N, i.e on the outer layer of the two—layer boundary I of the

derivative along the inward-directed normal.

We note that Eq. (27) would be completed analogous to the classical
Green's formula (23) in the absence, on the right-hand side, of the
"singular term” X 6;ur. However in this case Eq. (27) would be valid, not
for all n in D, but only for n in DO. It would then be impossible to
arrive at the internal boundary conditions up - PuF = 0, These conditions
are obtained from (27) if n runs over, not the whole region D, but only the

points on the boundary I'; they may be written as two systems of equations

u_ = Z [G

. n_r(Avur) - ur[Aan_r)] +u, ninQy, (28)
r in Q0
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u_ = X [G
n r in Q
0
corresponding, respectively, to the points n, n in Q,, of the outer layer,
and the points n in F\\QO of the inner layer of the double boundary T'. As
the function Gn’ in Eqs. (28) and (29), we take a bounded fundamental
solution. One can show that the internal boundary condition up = Pur =0,

(agu) = u (a6 )], ninTNQg, (29)

n-r Vv n-r

i.e. the system of equations (28), (29), is algebraically equivalent to
each of the subsystems, (28) or (29), taken separately.

Subsystem (28) 1s analogous to integral relation (24), so that the
difference analog of problem (22), (24) is problem (27), (28), but not the
problem

fun = &,

r - Pu, = 0,

ur r
specified by Eqs. (27)-(29), which is considered in the method of internal
boundary conditions.

There 1s an obvious difference between the internal boundary
conditions up - Pup = 0, 1.e system (28), (29), and subsystem (28) alone.
The internal boundary conditions

contain the extra equations (29). In this sense the difference-internal-
boundary-conditions

are similar, not to integral relation (24), but to the Sokhotski~Plemelj
conditions for analytic functions. These latter take the form of two real
relations connecting two real functions, but they are not independent, and
the manifold of pairs of functions satisfying the Sokhotski-Plemelj condi-
tions depends on one real arbitrary function.

We note that the internal boundary conditions

up Pur =0
have an advantage over the equivalent subsystem (28) in that within their

structure they contailn the boundary projection operator. Thanks to this
circumstance the problem

lur = ¢, up - Pur =y
is stable, in the sense of theorem 6, with respect to perturbations of the
right-hand side Y. 1In the general case one can, by striking some of the

equations from among those constituting the system up - PUF = 0, produce a
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subsystem algebraically equivalent to the original equation-set, but no
longer having this stability property.

One can show that, in our example (25), (26), instead of

up - Pur =0
it is more convenient to use, not subsystem (28), but subsystem (29) which
is stable and, in contrast to subsystem (28), consists of independent
equations; 1ts rank is equal to the number of equations it contains.

Thus in the above example the analogy between the method of internal
boundary conditions, and the method of singular integral equations like the
Sokhotski-Plemelj conditions, is not complete.

Moreover there is not a complete analogy with the classical method of
integral equations in which the function sought is not itself the solution
of the original problem (21), (22) on the boundary, but is some auxiliary
density of the potential of a single or double layer.

In conclusion we note that we use the expression "method of singular
integral equations™ because the Sokhotski-~Plemelj condition contains a
singular integral. In the example of this section condition (26) contains
a convergent improper integral.
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BIBLTOGRAPHICAL COMMENTARIES

Ch. 1, §§1,2. One can become acquainted with the general theory of
linear difference equations, for example, by reading Ch. 5 of Ref. 7.

Ch. 2, $5. The author first was introduced to the FEBS method and its
underlying theory, as applied to several classes of difference boundary-
value problems, in 1953 via the manuscript of an article by I. M. Gelfand
and O. V. Lokytsievskii, entitled "The forward-elimination, back substitu-
tion method for the solution of difference equations”. (See, for example,
Ref. 10.) There exist variants of the FEBS method, designed for the compu—
tational solution of difference boundary-value problems not considered 1in
this book. Various results along with a bibliography, will be found in
Refs. 4, 15, 23, and others.

Ch. 3. The idea of using directly, as a basis for forward-
elimination, back-substitution, the good—conditioning property of differ-
ence boundary-value problems. was proposed by N. S. Bakhvalov. Some steps
toward realization of this idea were taken in the presentation of FEBS in
Ref. 10, and then by V. V. Ogneva (U.S.S.R. Comp. Math. and Math. Phys. 7,
#4 (1967)) who 1s responsible for the idea of considering the truncated
systems. A modified presentation of this work will be found in Ref. 8.

The mathematical theory of good—-conditioning of difference boundary-
value problems, as presented in §6, uses the thesis work of Bagisbaev, a
student at Novosibirsk University who is responsible in particular for the
example showing that the coefficient—smoothness conditions cannot be ig-
nored.

Ch. 6, $§19,20, One can acquire a more detailed familiarity with
methods for the numerical solution of ordinary differential equations
through Ref. 4, and through the literature cited there.

Difference schemes for some important classes of differential equa-
tions with discontinuous coefficients are constructed by A. N. Tikhonov and
A. A, Samarskii in their theory of homogeneous difference schemes, and are
presented in one of the chapters of Ref. 23.

Ch. 7 $21. The concept of stability of difference schemes with re-
spect to rounding errors, for given initial conditions, was first described
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by J. Von Neumann and R. D. Richtmeyer in 1950% in work devoted to the
computation of gas—dynamics discontinuities. The first overall system for
determining stability and approximation, in which convergence is a conse-
quence of approximation and stability, was proposed by V. S. Ryabenkii,
Soviet Math., Doklady, 86, #6 (1952), in the case of the difference analog
of Cauchy's problem for partial differential equations.

The system of basic definitions adopted in this book, and the theorem
stating that approximation and stability imply convergence, are close to
those proposed by A. F. Filippov, Soviet Math., Doklady, 100, #6 (1955).
See also Ref. 22 or Ref. 0. The main difference consists in that we use a
more universal definition of approximation.

There exist other natural systems of definition of the basic concepts,
for which approximation and stability guarantee convergence. Among these
the best known is the system of definitions of P. D. Lax, proposed in 1956
(see, for example, Ref., 20). 1In Lax's theory he considers difference
schemes for nonstationary problems but postulates that the difference
schemes act, not in the space of net functions, but in the same function
space as the differential equations. With this (supplementary) assumption
it is demonstrated that, for an approximating difference scheme, stability
and convergence take place simultaneously. This equivalence theorem of Lax
is one of the concrete forms of the more general construct of L. V.
Kantorovich, Russian Math. Surveys 3, issue 6 (1948).

In the last few years A. A. Samarskii, jointly with A, V. Gulin, has
proposed and developed a stability theory applicable to a whole wide class
of difference schemes (see Refs. 23 and 24, and $43 of this book).

New results, along with a bibliography and surveys of work on the
stability of difference schemes, may be found in Refs. 10, 15 and 20-28.

It should be sald that in the 1928 work of R. Courant, K. Friedrichs
and G, Levy (see Russian Math. Surveys 8 (1940)) and in much other work
where the method of finite differences is used to prove the existence of
solutions of differential equations, the authors proved inequalities which,
in modern terminology, could be interpreted as stability in one norm or
another. However the concept of stability developed in connection with the
use of difference schemes for the computation of approximate solutions
assuming that these solutions exist. Therefore stability is usually
studied in weaker norms than those used for proof of existence. Note that
the method of finite differences was first used to prove the existence of
solutions of partial differential equations in 1924 by L. A. Lyusternik
(see Russian Math. Surveys 8 (1940)), in work which dealt with Laplace's
equation.

*J. von Neumann and R. D. Richtmeyer, "A Method for the Numerical
Calculation of Hydrodynamical Shocks, J. Appl. Phys. 21 #3 (1950).
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Ch. 7, 3522, The method presented here for the construction of
difference schemes, was proposed in the works of: P. L. I. Brian,
A.I.Ch.E. J. 7 (1961); J. Douglas, Num. Math. 4 (1962); J. Douglas, Trans.
Amer. Math. Soc. 89 (1958); and S. K. Godunov, Difference Methods for the
Solution of the Equations of Gas Dynamics, Novosibirsk (1962) (in Russian).
The two-dimensional variant of the predictor—-corrector Lax-Wendroff scheme
(Ref. 20), considered in this sectlon, was proposed for gas dynamics
problems by L. A, Chudov. (See the review article by G. S. Roslyakov and
G. F. Telenin in the collection “Computational Methods of Gas Dynamics”
Moscow, Moscow University Press, issue 2 (1963) (in Russian)). The idea of
the Runga-Kutta method was used by V. V. Rusanov (preprint, In-t prikl.
matematika AN SSSR(1967, in Russian)) for the construction of difference
schemes of third-order accuracy for gas—-dynamics calculations.

L. A. Chudov (article in the collection "Some applications of net
methods in Gas Dynamics"”, Vol. 1 "Flow in the boundary layer"”, Moscow State
University Press, (1971) (in Russian)), has, for equations of parabolic
type, constructed a difference scheme of Runge-Kutta type with second-order
accuracy and good smoothing properties. Predictor-corrector schemes are
used in many gas—dynamics calculations. See, for example, Ref. 1. There
are, in addition, other methods for the construction of difference schemes
(see Refs. 4, 13, 19-28).

Ch. 8, 55%25. So fas as is known by the authors, the possibility of
using differential approximations for the study of difference equations was
first noted in the 1950's by A. I. Zhukov (communications of a seminar of
the Institute for Applied Math), who proposed the example used here. The
theory of differential approximations, in which one studies the asymptotic
and group properties of interesting classes of difference equations, was
constructed by N, N, Yanenko and Yu. I. Shokin, Sib. Matem. Zh. 10, #5
(1969); Chislennie Metodi Mekh. Sploshnoy Sredi 2, #2 (1971) (in
Russian). The same class of problems was addressed by N. N. Kuznetsov,
Soviet Math., Doklady 200, #5 (1971); Soviet Math., Doklady 204, #2 (1972);
U.S.S.R. Comp. Math. and Math. Physics 12, #12 (1972).

Ch. 8, 1826. The idea of freezing coefficilents at interior points was
proposed in the above—cited article of Von Neumann and Richtmeyer (see
comments on §21).

Ch. 8, 2§26. The criterion of K. I. Babenko and I. M., Gelfand was
reported in their paper, authored jointly with 0. V. Lokutszevskii, and
presented at a conference on functional analysis in 1956 in Moscow. See
also Ref. 2 and the comments, below, on Ch. 14,

Ch. 8, §27. There exists an algorithm for the calculation of coeffi-
clents in finite Fourier series, wich is very economical in the number of



478 Bibliographical Commentaries

arithmetic operations, and is commonly called the “Fast Fourier Trans-
form.” See, for example, Refs. 4 or 5.%

Finite Fourier series were, apparently, first used for the analysis of
nonstationary difference equations by O. A. Ladizhenska. With the aid of
this apparatus she found a convergent implicit difference scheme for equa-
tion-systems hyperbolic in the sense of Petrovski. Apparently this was the
first example of a convergent implicit difference scheme (0. A. Ladizhenska,
author's summary of dissertation, Leningrad State University, March 1949,
in Russian. See also Ref. 13.).

Ch. 9. See Refs., 1-3, 9, 13, 14, 21, 26 and their bibliographies. In
journals and collections of papers one constantly finds new work on compu-
tational methods applied to the mechanics of continuous media.

Ch. 10. The alternating direction scheme (12) §32 was constructed by
D. Peaceman and G. Rachford in 1956 (see, for example, Refs. 5 or 28).
Splitting scheme (7) §31 was proposed by N. N. Yanenko, Soviet Mathematics,
Doklady 125, #6 (1959). At this point splitting schemes have been con-
structed for many of the basic problems of mathematical physics. See, for
example, Refs. 5, 15, 23, 27 and 28; also the monograph by E. G. Dyakonov
entitled "Difference Methods for the Solution of Boundary-Value Problems,
Part ! (1971) and Part 2 (1972)", (Moscow State University Press, in
Russian) and its bibliography.

A variant of the alternating direction method, obtained via combina-
tion of this method with the Ritz variational method, has been proposed and
used for the computation of eigenvalues of strongly-elliptic operators, and
for the solution of Laplace difference equation in: G. P. Prokopov,
U.S,S.R. Comp. Math. and Math. Phys. 8, #1 (1968); S. K. Godunov and G. P.
Prokopov, U.S.5.R. Comp. Math. and Math. Phys. 9, #2 (1969); S. K. Godunov,
V. V. Ogneva and G. P. Prokopov, in "Partial Differential Equations”, a
collection of papers, proceedings of a symposium dedicated to the 60th
birthday of academician C. L., Sobolev, 1970 (in Russian). The original
locally one-dimensional scheme was proposed by I. V. Fryazinov, U.S.S.R.
Comp. Math. and Math. Phys. 13, #3 (1973).

Ch. 10, $33. Relating to the method of super—particles of 0. M.
Belotserkovski and Yu. M, Davidov, and to its applications, aside from the
work cited in §33 see Ref. 3; also the text of the review paper by O. M.
Belotserkovski and V. E. Yanitsko given at the Fourth U.S.S.R. Conference
on the Dynamics of Rarified Gases in 1975 at Zvenigorod (in Russian); and
the text of the lecture given by 0. M. Belotserkovski at the Von Karman
lectures in Brussels, 1976,

Ch. 11, $34, TFor the Poisson difference equation in a rectangle the
most economical computational solution method 1s the fast Fourler transform

*Also, for example, "The Fast Fourier Transform,” E. O. Brigham, Prentice
Hall (1974). (Translator's note.)



Bibliographical Commentaries 479

(see the comments on §27). Many authors, starting with L., A. Lyusternik in
1924, have worked on difference schemes for the Laplace and Polsson equa-
tions in regions with curvilinear boundaries. See, for example, Refs. 4,
16, 23 and their bibliographies.

Error estimates, expressed directly in terms of the initial condi-
tions, have been obtained for a series of schemes approximating the Dirich-
let and von Neumann problems, and the mixed boundary-value problem for the
Laplace and Poisson equations in a rectangle, a rectangular parallelopiped
and certain triangles. See E. A. Volkov, Tr. Matem. in-ta im. V. A.
Steklova, 74 (1966) 105 (1969) (in Russian), and I. A. Sultanova, U.S.S.R.
Comp. Math. and Math. Phys. 11, #5 (1971), with bibliography. E. A. Volkov
also established (Tr. Matem. in-ta im. V. A. Steklova, 117 (1972) (in
Russian) that, if the difference operator at the boundary net-points .
satisfies a certain adequacy condition with respect to the standard five-
point Laplace difference-operator, then the solution of the Poisson differ-
ence equation extended from the net onto a closed reglon with curvilinear
boundaries will, for smooth enough initial data, approximate to second
order in the net step-width the solution itself, and all its derivatives up
to and including the n'th, for arbitrary n.

We also mention, in particular, an error bound for a difference
solution of the Poisson equation obtained by E. A. Volkov (Tr, Matem. in-ta
im. V. A. Steklova, 117 (1972) (in Russian) in a situation where the
Laplace operator is not approximated to second order in the number of net-
levels, a number which grows without bound as the net 1s refined. This
bound is, at the same time, stronger than a uniform second-order bound
since it implies an additional falling-off of the error near the boundary.

Ch. 11, $§35. The idea of considering solutions of stationary problems
as limits of solutions of nonstationary problems as t » © was first used,
in the 1930's, by A. N. Tikhonav.

One of the approach-to-steady—state difference schemes for the treat-
ment of supersonie gas flow around immersed bodies was proposed by S. K.
Godunov, A. V. Zabrodin and G. P, Prokopov, U.S.S.R. Comp. Math. and Math.
Phys. 1, #6 (1961), (see Ref. 9). It is interesting to note that the argu-
ments relating to the stability of this scheme, described in the work of K.
A. Bagrinovski and S. K. Godunov (Soviet Mathematics, Doklady, 115 #3
(1957)) make use of the splitting of the difference operator. There now
exlsts a whole series of works, by many authors, directed towards the com—
putational treatment of stationary problems via the establishment of a
steady state.

One of the first effective methods for accelerating the solution of
the Poisson difference equation was indicated by Lyusternik (Tr. Matem. in-
ta im, V. A. Steklova 20 (1947) (in Russian)).

Ch. 11, $36. Chebyshev polynomials have been used for optimizing sets
of iteration parameters in various problems, starting with the works of
A. A. Abramov, M. K. Gaburin and Flanders and Shortley, all appearing in
about 1950.
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New results, bibliographies, and review papers written from various
points of view, relating to iterative methods for solving elliptic differ-
ence-boundary value problems, can be found in Refs. 5, 16, 23 and 28. Also
in the monographs “"Iterative Methods for the Solution of Difference Analogs
of Boundary-Value Problems of Elliptic Type™, E. G. Dyakonov, Kiev
(1970): “Iterative Methods and Quadratic Functionals,” G. I. Marchuk and
Yu. A. Kuznetsov, Novosibirsk, Nauka, Siberian Section, 1972, both in
Russian; and in the review paper by R. P. Fedorenko, Russian Mathematical
Surveys 28, #2 (1973), as well as other works.

Ch. 12. The basic 1dea underlying the construction of variational-
difference schemes 1s contained in the work of R. Courant (Courant R.,
Bull, Amer. Math. Soc. 49, #1 (1943)). Independently, in englneering cal-
culations of structural strength, various realizations of variational-
difference schemes were often used without theoretical justification, under
the name "finite-element methods”.

The monograph by L. A. Oganesyan, V. Ya. Rivkind and L. A. Rykhobetz,
entitled "Variational-Difference Methods for the Solution of Elliptic Equa~-
tions”™ (in Parts 1 and 2 of Tr. seminara po differents. uravneniam, In-t
fiziki 1 matemateki AN Litovskoy SSR, issue 5, Vilna, 1973 and issue 8,
Vilna 1974, (in Russian)) is devoted to a systematic presentation of the
foundations of the theory of varlational-difference schemes, and of some of
1ts applications. This monograph was used In the preparation of Ch. 12.
See also, for example, Refs. 12, 18 and 25.

At the present time variational-difference schemes have been imple-
mented in the- form of well-developed programs on fast computers, for a
whole series of problems in the theory of elasticity. See, for example,
Ref., 12. There are also numerical implementations of the projection—
difference method for some other (not only elliptic) problems. A series of
recent works has been collected in "Variational-Difference Methods in Math-
ematical Physics, Novosibirsk, 1974 and Novosibirsk, 1976 (in Russian).

Ch. 13, $42. Stationary solutions are often used to elucidate the
character of convergence close to boundaries. See, for example, S. K.
Godunov, Matem. Sb. 47 (89), 3 (1957, in Russian).

Ch. 13, 4§43. Here we have used Sect. 456, of Ref. 22, written by A.
F. Fillipov.

Ch. 13, 5%43. The choice of scalar product (u,v)B via Eq. (21),

apparently, was first proposed by N. Min'o in 1953, for the special case of
the difference analog of the heat—equation with variable coefficients, and

then presented in more general form in §15 of Ref. 22, which also contains

a modified presentation of the above—cited work of N. Min'‘o.

Ch. 13, 6843. The first of the Samarski stability criteria introduced
in this section is obtalned from theorem 5, section 6§1, Chapter VI of Ref.
23, if, instead of Hilbert space, one considers Euclidean space, and sets
p = 1. See also Sec. 7§81, Chapter VI of Ref. 23.
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Ch. 14, $44, The concept of the spectrum of a family of operators was
introduced in Ref. 10 where in particular the authors, with the help of
this concept, derived the criterion of K. I. Babenko and I. M. Gelfand for
stability of nonstationary problems on line—segements. There it was also
shown that disposition of the spectrum of a family of operators in the unit
circle is necessary for stability.

Theorem 2 was derived by V. C. Ryaben'kii, Soviet Math. Doklady, 185,
#2 (1969).

Ch. 14, $46. The concept of the kernel of the spectrum of a family of
operators was introduced by Ryaben'kii, Soviet Math. Doklady, 185, #2
(1969). There, also, the author formulated theorems 1-4,

The theorem of A. V. Sokolov for the case of scalar coefficients Ay
and By was published in Soviet Math., Doklady, 208, #2 (1973). A proof in
the general cases of matrix coefficlents 1s contained in his article, Tr.
Mosk. matem. obsch. 35, Moscow State University Press, 1976 (in Russian).

Ch. 14, §47. Here we present a paper of V. S. Ryaben'kii, Soviet
Math., Doklady 193, #3 (1970).

Appendix. The method of internal boundary conditions (MIBC) was pro-
posed by V. S. Ryaben'kil, Doctoral Dissertation, In-t prikl. matematiki AN
SSSR (1969) (in Russian). In Sects. 1-9 and 1l we present part of a paper
by V. S. Ryaben'kii, Math. Surveys 26, #3 (1971). This paper also
describes some applications of MIBC to the study and computational solution
of boundary-value problems in simple and compound regions.

The content of Sect 10 was published in a report presented by V. S.
Ryaben'kii at a conference honoring the 70'th birthday of academician I. G.
Petrovskl, held at Moscow State University (January 1976).

Appendix, Sect. 2. A. Ya. Belyankov, Matem. Zametki 18, #5 (1975, in
Russian), proved the existence of a fundamental solution which grows, for
Ilnllz = ni + ...t ni + @, no faster than some power of llnll.

He also constructed the so-called cyclic fundamental solution, which
allows one to construct internal boundary conditions and makes possible an
effective construction technique based on the fast Fourier transform. See
his article in the collection "Problems of Mechanics and Mathematical Phy-—
sics” (in Russian) dedicated to the memory of academician I. G. Petrovski,
Nauka, 1976.

A. V. Zabrodin and V. V. Ogneva (preprint, In-t prikl. matematiki AN
SSSR, 1973, in Russian) used their own variant of MIBC for the
computational treatment of a nonlinear heat conduction problem.
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INDEX

Absolute kernel, properties of Cauchy difference problem 241:

453-454
Adams scheme 172-176
Approximation 94ff, 186-190:
~—- of a derivative
77,78,105-106:
—— of a differential boundary-
value problem by a difference
scheme 91-93, 94-108,
186-191:
~— of order h¥ 98-99, 186-190
Approximational viscosity 259-260
Alternating-direction scheme 313-
314, 338-340, 349-352

Babenko—-Gelfand criterion 264-270
Belotserkovskii-Davidov, method of
macroparticles 323-324, 478

Boundary conditions:
~- for difference schemes,
examples of construction 221-
226:
~— internal 461-~470
Boundary of a net region 463
Boundary-value problem - see
differential boundary-value
problem

—— analysis of stability of 242-
244

—-— Dbased on integral conser-—
vation equations 303-308:

~= boundary-value problem 180-
183, 185-195:

-- criterion for good-
conditioning of 32-37:

~— for equations with discon-
tinuous coefficients 475:

-- for heat-conduction equation
203-205, 276-282, 332-335,
403-406

-~ for integral equation 118~
120:

—-— for partial differential
equations 185ff:

-- for systems of acoustic
equations 406:

—— for vibrating string 282-284:

—= integral representation of
solution 252-256:

-- method for construction of

198-219:
-— stability criterion for 241-
252, 254-256:

—— stability of 128~142:

~= symbolic notation for 89:

-- well-conditioned 31-37, 53-
63:

-= Von Neumann spectral cri-
terion for stability of 242-
252, 422-424:

Cauchy integral formula, difference

analog 464-465
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Characteristic equation 17
Computationally unstable algorithm,
example of 50
Conditioning, good 32-33
Courant-Friedricks-Levy condition
228-237
Criterion for good conditioning:
-— of a difference boundary-
value problem 34-42, 57-61
-— of a general system of
difference equations on a
difference interval 42-46
Criterion for self-adjointness of a
difference operator 425
stability of

schemes:

Criterion for
difference
-= for solution of Cauchy

problem 128-141, 252-257:

-—- of Babenko-Gelfand for
stability of nonstationary
problem on an interval 264-—
270, 477:

-— of Samarskii for stability of
difference scheme 429-431:

-—- spectral for boundedness of
powers of selfadjoint
operator 425:

-- spectral, of Von Neumann, for
stability of Cauchy
difference problem 242-252,
422-424:

-- sufficlent 142, 254-257, 400~
403, 406, 425-426, 429-431

Derivative, replacement of by
difference relation 105-107
Decay of discontinuities 298-299,

305
Difference analog of Cauchy and
Cauchy-type integral forms 464
Difference equation in divergence
form 305

Index

Difference equations:
-- convergence rate of solutions
of 75-77, 112-118:
—- differential approximation to
257-260, 477:
-~ of second order 8, 17-27:
-- of second order, fundamental
solution 21-26:
Difference problem:
-- accuracy of formulation 154-
157:
-- convergent 88-92, 112-118,
185-191:
-~ differential approximation to
257-260, 477:
-— divergence property of 303-
308
-- methods of construction of
105-109, 169-179, 186-190,
198-219, 221-226, 300-303,
309-314, 477:
-- splitting by physical factors
323-325:
~— splitting of 309-324:
-- stability criterion for 128-
142, 144-152, 154-157, 228-
235, 400-406, 422-425:
-— stable 109-112, 128-143, 190~
197:
~— subdivision into subsystems
102-105:
~= time-evolution of steady-
state 332-240, 479:
-- verification of convergence
of 91-93, 123, 185-186
Differential approximation of
difference equations 257-260, 477
Differential boundary-value problem:
-— generalized solution for 293~
300:
-- symbolic notation for 89
Dirichlet difference problem 217-
219, 235-238, 325-331
Douglas—-Rachford method 349-352
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Energy inquality 278

Euler scheme 108, 112, 170

Fast Fourier transform 477-478

FEBS - see Forward-elimination, back
substitution

Fedorenko relaxation method 353-356

Forward-elimination, back substi-
tution 47-50

Fourier series for net function 272-
276

Freezing coefficients at interior
points 261-264

Friedrichs inequality 364

Fundamental solution 12-14, 21-26,
462-463, 481:
~—  bounded 21-26:
-~ condition for boundedness 13-

14

~- estimate of 2628

Galerkin method 371-377
Generalized solution of differential
equation 293-299

Index kernel of spectrum of family
of operators 451-455
Integral formula of Cauchy,
difference analog 464-465
Integral representation of solution
of Cauchy difference problem 252-
257
Iteration methods:
—=~ choice of degree of conver-
gence 340:
~~ of Douglas—Rachford 349-352:
-~ of Fedorenko 354-356:
-- of Richardson 341-342
—- parameters for, Chebyshev set
342-346:
-- parameters for, ordering 346-
349:
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—— parameters for, optimum
choice 338-340, 342-346

Kolmogorov diameter 369, 379

Lax equivalence theorem 476

Linear normed space 88

Maximum principle 192, 328
Measure of conditioning of system of
linear equations 32
Method:
—~ of characteristics 301-303:
—-  of Douglas—Rachford 349-352:
-~ of finite differences 1, 83-
88, 300-301:
-- of forward-elimination, back
substitution 47-50, 63-65:
—— of forward-elimination, back
substitution, theoretical
foundation 53-65
—— of internal boundary condi-
tions 461-470, 481:
—— of macroparticles,
Belotserkovskii-Davidov 323-
324, 478:
-~ of nets 83-88:
-— of Newton 183:
—-- of relaxation, Fedorenko
method 353-356:
— of shooting 50-51, 180-182:
—— of undetermined coefficients
206-217
Model problems 226, 272-282, 284

Nets 1, 6, 83-88
Net functions 83-88:
~— analysis of in finite Fourier
series 272-285
Newton method 183



488

88, 89, 120-128, 393, 421:
energy 278, 429-431

Norms

of accuracy of difference
scheme 71-78, 91, 124, 154-
157

of difference equation 8-11

Parseval equality 253,274

Partial derivative, replacement by
difference expression 206, 217

Plemelj condition — see Sokhotski-
Plemelj condition

Points of spectrum of operator 437-
439

Principle of frozen coefficients
261-264

Problem of Cauchy:

decay of discontinuities 298-

299, 305:

evolutional 241-260, 361ff:

for heat equation, difference

schemes 203-205, 247-248

for wave equation, difference

schemes 249

model problem 226, 272

Rate of convergence of solutions of
difference equations 75-77, 112,
191

Relaxation method of Fedorenko 323-
326

Residual 94-98

Richardson iteration process 341-342

Riemann invariant 407

Ritz method 365-371, 375

Roundoff errors 49-51, 53-57, 154-
159, 346-349

Index

Samarskii criterion for stability of

difference scheme 429-431
Selfadjolntness of operators 425-—

426, 428-429
Smoothness of solution of difference

problem 257-260
Spectral criterion for boundedness

of powers of selfadjoint operator

425-426
Spectrum of family of operators:
computational algorithm for
441-450:
definition of 435-436:
kernel of 451-455
Stability:

-- of Cauchy difference problem,
necessary and sufficient con-
ditions for 254-257:
of Cauchy difference problem
for perturbations of initial
conditions 241-242:
of difference schemes 109-
112, 120-143, 190-197, 422~
425:
of a difference scheme, quan-
titative characterization
159-166:
of internal boundary condi-
tions 468-469
of nonlinear problems, method
of study 166-169, 261

Theorem:
-- of Lax, equivalence theorem

476:

on connection between

approximation, stability and

convergence 112-118, 120-128,

475-476:

on identity between absolute

kernel of spectrum and

spectrum 454-455, 481:

on inclusions of kernel of

spectrum within spectrum 452:
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== on Invariance of index kernel
454

-- on properties of absolute
kernel 451-454

—— on stability of perturbed
scheme 154-157:

—=- on structure of family of
operators 437-439

Transition operator 132, 145, 397:

-- construction of 408-421:

—— criterion for selfadjointness
of 425-426:

~- estimate of eigenvalues of
426-428:

-- estimate of norms of powers
of 397, 421-428, 437-439

Variational formulation of Dirichlet
problem 359:
-- of third boundary-value
problem 385-388:
Variation method:
—— for estimation of eigenvalues
426-428:
—— for solution of boundary-
value problems 357~371:
Von Neumann method for studying
evolutional difference problems
241-252
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