Cours de géométrie differentielle ,Chapitre2

Zoubida Souici Benhammadi Master1 systèmes dynamiques,UBMA

April 8, 2020

-Plan:

Chapitre2:Champ de vecteurs

§1:Fibré tangent

§2:Champs de vecteurs

§3:Courbes intégrales d'un champ de vecteurs.

§4:Flots de champ de vecteurs

1 Fibré tangent.

1.1 Coordonnées locales et base de l'espace tangent

Soit M une variété differentielle de classe \mathbb{C}^p et de dimension n

Definition 1 On appelle coordonnées locales associées à une carte $C = (U, \varphi)$ de M, les n fonctions réelles $\varphi_1 = pr_1 \circ \varphi,, \varphi_n = pr_n \circ \varphi$

soit $x \in M$ et soit T_xM l'espace tangent à M en x dim $T_xM=\dim M=n$ Soit $C=(U,\varphi)$ une carte de M en x

Definition 2 Une base de l'espace vectoriel tangent T_xM est donnée par les vecteurs $\frac{\partial}{\partial x_1},...,\frac{\partial}{\partial x_n}$ où $x_i=pr_i\circ\varphi$ (i=1,...,n) sont les coordonnées locales associées à la carte $C=(U,\varphi)$

Remark 3 Soit $\xi \in T_x M$ alors $\xi = \sum_{i=1}^n a_i \cdot \frac{\partial}{\partial x_i}$ où $a_i \in \mathbb{R}$

1.2 Fibré tangent

Soit M une variété differentielle de classe C^p et de dimension n Soit l'ensemble $TM=\bigcup_{x\in M}T_xM$

On définit l'application pied notée $p:TM\to M$ par:

$$p(\xi) = x \Leftrightarrow \xi \in T_x M$$

Theorem 4 (i) Pour toute carte $C = (U, \varphi, n)$ de M, le triple $C' = (U', \varphi', 2n)$ est une carte de l'ensemble TM où $U' = p^{-1}(U)$ et $\varphi'(\xi) = ((\varphi \circ p)(\xi), d_{p(\xi)}\varphi(\xi)), \forall \xi \in U'$

C' est dite carte associée à la carte C

- (ii)L'ensemble (A) de toutes les cartes sur TM associées aux cartes de M est un C^{p-1} -atlas de TM
- (iii)L'ensemble TM muni de la classe d'équivalence de l'atlas (A) est une variété differentielle de classe C^{p-1} et de dimension 2n

Definition 5 L'ensemble TM muni de la structure de variété donnée par le théorème précédent est appelé fibré tangent de la variété differentielle M

1.3 Application tangente à f et differentielle de f.

1.3.1 Application tangente à f

Soient M et M' deux variétés differentielles et $f \in C^q (M, M'), q \geq 1$

Definition 6 On appelle application tangente à f, l'application notée $Tf:TM \to TM'$ définie par:

$$\forall x \in M, Tf \mid_{T_xM} = T_x f$$

où $T_x f$ est l'application tangente à f en x

1.3.2 Differentielle de f

Soit M une variété differentielle et E un \mathbb{R} -espace vectoriel de dimension finie $f \in C^q$ (M, E) $q \geq 1$

On va d'abord donner la définition de la differentielle de f en x

Definition 7 On appelle differentielle de f en x l'application notée $d_x f$ définie par :

$$d_x f = \theta_{f(x)} \circ T_x f$$

où $\theta_{f(x)}: T_{f(x)}E \to E$ est l'isomorphisme canonique défini par $\theta_{f(x)} = \varphi^{-1} \circ d_x \varphi$ avec $C = (E, \varphi)$ carte de E et où φ est l'isomorphisme de E sur \mathbb{R}^n

Remark 8 Soit M une variété differentielle de classe C^p et de dimension m et $C=(U,\varphi)$ est une carte de M

$$si\ f \in C^q(M,\mathbb{R}^n)$$
, $p \ge q \ge 1$ alors $d_x f = D(f \circ \varphi^{-1})_{\varphi(x)} \circ d_x \varphi$

Remark 9 L'isomorphisme $d_x \varphi$ défini au chapitre1 est un exemple de differentielle de φ en x

Definition 10 On appelle differentielle de f l'application de classe C^{q-1} notée $df:TM \to E$ définie par:

$$df \mid_{T_xM} = d_x f$$

2 Champs de vecteurs

2.1 Champs de vecteurs

Soit M une variété differentielle de classe \mathbb{C}^p et de dimension n

Definition 11 On appelle champ de vecteurs sur M une application $X:TM\to M$ telle que $p\circ X=Id_M$

 $où p: M \to TM$ est l'application pied

Proposition 12 Pour qu'un champ de vecteurs X sur M soit de classe C^q il faut et il suffit que $\forall x \in M$, il existe une carte $C = (U, \varphi)$ de M en x telle que l'application $d\varphi \circ X : U \to \mathbb{R}^n$ soit de classe C^q .

Definition 13 $d\varphi \circ X$ est appelée expression locale du champ de vecteurs X dans la carte $C = (U, \varphi)$

Notation 14 On notera l'ensemble des champs de vecteurs par C^qTM , $(q \le p-1)$ ou bien par $\chi(M)$.

Proposition 15 L'ensemble C^qTM a une structure de $C^q(M)$ -module(c'est à dire que C^qTM est un espace vectoriel sur l'anneau des fonctions $C^q(M)$)

Remark 16 Soit $X \in C^qTM$ alors $X = \sum_{i=1}^n f_i(x_1,...,x_n) \cdot \frac{\partial}{\partial x_i}$ où f_i sont des fonctions réelles

Remark 17 Soient $X \in C^qTM$ et $f \in C^s(M)$ $(s \ge 1)$ alors $df \circ X \in C^t(M)$ avec $t = \inf\{q, s - 1\}$, on notera $df \circ X$ par X(f)

Notation 18 Si U est un ouvert de M et si $f \in C^s(U)$, on notera aussi $df \circ X \in C^t(U)$ par X(f)

2.2 Crochet de champs de vecteurs

2.2.1 Crochet de champs de vecteurs

On va dans ce qui suit énoncer un lemme ensuite un théorème qui donnera à partir de deux champs de vecteurs l'existence d'un champ de vecteurs qu'on appellera crochet de ces deux champs de vecteurs

Lemma 19 Soient M,M' deux variétés de classe C^p , $p \ge 2$ et soient $X,Y \in C^qTM$ et $X',Y' \in C^qTM'$, $1 \le q \le p-1$ et $f \in C^pM,M'$)

Si les champs de vecteurs satisfont $Tf \circ X = X' \circ f$ et $Tf \circ Y = Y' \circ f$ Alors

$$\xi' = T_x f(\xi)$$

où $\xi = (d_x \varphi)^{-1}((d(d\varphi \circ Y) \circ X)(x) - (d(d\varphi \circ X) \circ Y)(x)) \in T_x M$ et $\xi' = (d_{f(x)}\varphi')^{-1}((d(d\varphi' \circ Y') \circ X' \circ f)(x) - (d(d\varphi \circ X') \circ Y' \circ f)(x)) \in T_{f(x)} M'$ (U, φ) étant une carte de M en xet $(U'\varphi')$ étant une carte de M 'en f(x)

Theorem 20 Soit M une variété differentielle de classe C^p , $p \ge 2$ et soient $X, Y \in C^qTM$, $q \ge 1$.

(i)il existe un unique champ de vecteurs noté [X,Y] sur M tel que ,pour tout ouvert U de M et toute fonction $f \in C^p(U)$ on a:

$$[X, Y](f) = X(Y(f)) - Y(X(f))$$

(ii) $[X, Y] \in C^{q-1}TM$

(iii)Si $C = (U, \varphi)$ est une carte de M alors l'expression locale de [X, Y] dans cette carte est:

$$d\varphi \circ [X,Y] = d(d\varphi \circ Y) \circ X - d(d\varphi \circ X) \circ Y$$

Definition 21 Le champ de vecteurs [X,Y] défini ci-dessus est appelé crochet des champs de vecteurs X et Y

Propriétés du crochet des champs de vecteurs:

- $(i)[Y,X] = -[X,Y] \quad \forall X,Y \in C^qTM(q \ge 1)$
- (ii) $[X, Y + Z] = [X, Y] + [X, Z] \quad \forall X, Y, Z \in C^q TM(q \ge 1)$
- (iii) $[X, f.Y] = f.[X, Y] + X(f).Y \quad \forall X, Y \in C^qTM \text{ et } \forall f \in C^q(M); (q \ge 1)$
- $(vi)[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 \quad \forall X,Y,Z \in C^q TM(q \ge 2)$

Remark 22 Si la variété M est de classe C^{∞} , alors $C^{\infty}TM$ est une algèbre de Lie car on a l'antisymétrie (i) et l'identité de Jacobi(iv)

2.2.2 Crochet de champ de vecteurs et champ de vecteurs tangent

Definition 23 On dit qu'un champ de vecteurs X sur M est tangent à la sous variété N de M si $\forall x \in N$ on a $X(x) \in T_x N$

Proposition 24 Si $X \in C^qTM$ est tangent à la sous variété N alors $X \mid_N \in C^qTN$

Theorem 25 SiX et $Y \in C^qTM(q \ge 1)$ sont tangents à la sous variété N alors [X,Y] l'est aussi et on a:

$$[X,Y]\mid_{N}=[X\mid_{N},Y\mid_{N}]$$

2.2.3 Crochet de champ de vecteurs et difféomorphisme

Definition 26 Soient M et M' deux variétés de classe $C^p(p \ge 2)$ et soit $f \in Diff^p(M,M')$

Soit $X \in C^qTM$, on appelle image de X par f, le champ de vecteurs de C^qTM 'défini par:

$$f_*X = Tf \circ X \circ f^{-1}$$

Theorem 27 Si $X, Y \in C^qTM \ (q \ge 1)$ alors $f_*[X, Y] = [f_*X, f_*Y]$

3 Courbes intégrales d'un champ de vecteurs

Soit M une variété de classe $C^p(p \geq 2)$ et $X \in C^qTM; 1 \leq q \leq p-1$

Definition 28 Une courbe intégrale de X de condition initiale $x \in M$ est une courbe (I, u) de M de classe C^{q+1} telle que:

- (i) $0 \in I \ et \ u(0) = x$
- (ii) $\frac{du}{dt} = X \circ u$

Theorem 29 $\forall x \in M$, il existe une unique courbe intégrale (I_x, u_x) de X de condition initiale x et telle que pour toute courbe intégrale (I, u) de X de condition initiale x on a:

$$I \subset I_x \ et \ u = u_x \mid_I$$

Definition 30 La courbe intégrale (I_x, u_x) est appelée courbe intégrale maximale de condition initiale x

Notation 31 On notera I_x , =] $t^-(x)$, $t^+(x)$ [où $t^-(x)$, $t^+(x) \in \mathbb{R}$ et $t^-(x) \le 0 \le t^+(x)$

4 Flot d'un champ de vecteurs

4.1 Flot de champ de vecteurs

Soit M une variété de classe C^p et soit $X \in C^qTM$; $1 \le q \le p-1$

Notation 32 On note $D(X) \subset \mathbb{R} \times M$ le sous ensemble défini par:

$$(t,x) \in D(X) \Leftrightarrow t^-(x) \le t \le t^+(x)$$

Definition 33 On appelle flot du champ de vecteurs X l'application $\lambda : D(X) \rightarrow M$ définie par:

$$\lambda(t,x) = u_x(t) \ \forall (t,x) \in D(X)$$

où u_x est la courbe intégrale maximale de condition initiale x et D(X) est appelé domaine du flot de X

Definition 34 Le champ de vecteurs $X \in C^qTM$ est dit complet si $D(X) = \mathbb{R} \times M$

Proposition 35 (i)Si $(t, x) \in D(X)$ alors

$$t^{-}(\lambda(t,x)) = t^{-}(x) - t$$
 et $t^{+}(\lambda(t,x)) = t^{+}(x) - t$

(ii)Soit $(t,x) \in D(X)$ alors $(t',\lambda(t,x)) \in D(X) \Leftrightarrow (t+t',x) \in D(X)$ et on a:

$$\lambda(t+t',x) = \lambda(t',\lambda(t,x))$$

Theorem 36 D(X) est un ouvert de la variété $\mathbb{R} \times M$ et $\lambda \in C^q(D(X), M)$

Corollary 37 $\forall t \in \mathbb{R}$, l'ensemble $D_t(X) = \{x \in M : t^-(x) \leq t \leq t^+(x)\}$ est un ouvert dans M

Theorem 38 $\forall t \in \mathbb{R}$ l'application $\lambda_t = \lambda(t, .) \in Diff^{\infty}(D_t(X), D_{-t}(X))$ et $(\lambda_t)^{-1} = \lambda_{-t}$

4.2 Flot et crochet de champ de vecteurs

Soit M une variété de classe $C^p(p \ge 2)$ et soit $X \in C^qTM$; $1 \le q$ et $\lambda : D(X) \to$ M le flot de X

Theorem 39 $\forall X, Y \in C^qTM(q \geq 2)$ on a équi valence:

$$(i)[X,Y] = 0$$

(ii)
$$\forall t \in \mathbb{R} \text{ on } a (\lambda_{-t})_* Y = Y \text{ sur } D_t(X)$$

5 Serie d'exercices de TD:

Exercice1

Démontrer le théorème sur la structure de variété du fibré tangent

Exercice2:

Soient M une variété differentielle $x \in M, \xi \in T_xM$.

Démontrer $\forall f, g \in C^q(M), q \geq 1$ on a :

$$d_x(f.g)(\xi) = f(x).d_x g(\xi) + g(x).d_x f(\xi)$$

Exercice3:

Démontrer que si $f \in C^q (M, M')$ alors $Tf \in C^{q-1} (TM, TM')$

Exercice4:

Soient les champs de vecteurs de \mathbb{R}^3 définis par :

$$X = x^2 \cdot \frac{\partial}{\partial x} + y \cdot \frac{\partial}{\partial z}$$
 et $Y = y^3 \cdot \frac{\partial}{\partial y}$

 $X = x^2 \cdot \frac{\partial}{\partial x} + y \cdot \frac{\partial}{\partial z} \quad \text{et} \quad Y = y^3 \cdot \frac{\partial}{\partial y}$ et soit $f : \mathbb{R}^3 \to \mathbb{R}$ définie par $: f(x, y, z) = x^2 \cdot y \cdot z$ Calculer Y(f) et [X,Y](f) au point (1,2,-3)

Exercice5:

Soient les champs de vecteurs de
$$\mathbb{R}^3$$

définis par :
$$X=z.\frac{\partial}{\partial y}-y.\frac{\partial}{\partial z}, Y=x.\frac{\partial}{\partial z}-z.\frac{\partial}{\partial x}, Z=y.\frac{\partial}{\partial x}-x.\frac{\partial}{\partial y}$$
 1)
Montrer que X,Y,Z sont linéairement indépendants

- 2) Montrer que l'ensemble $V = Eng[\{X,Y,Z\}$ est stable par le crochet des champs de vecteurs
- 3) Montrer que l'application $\Psi: V \to \mathbb{R}^3$ définie par $\Psi(aX + bY + cZ) =$ (a,b,c) est un isomorphisme d'espaces vectoriels vérifiant:

$$\Psi([x,Y]) = \Psi(X) \wedge \Psi(Y)$$

4) Déterminer le flot de aX + bY + cZ

Exercice6:

Démontrer que:

Si
$$(t,x) \in D(X)$$
 alors $(t',\lambda(t,x)) \in D(X) \Leftrightarrow (t+t',x) \in D(X)$ et on a:

$$\lambda(t+t',x) = \lambda(t',\lambda(t,x))$$

Exercice7:

Soient $X,Y\in C^qTM$ et soient $f,g\in C^q(M);q\geq 1$

Démontrer que:

i)
$$[X, f.Y] = f.[X, Y] + X(f).Y$$

$$\begin{array}{l} {\rm i)} \ [X,f.Y] = f.[X,Y] + X(f).Y \\ {\rm ii)} \ [f.X,g.Y] = f.g.[X,Y] + f.X(g).Y - g.Y(f).X \end{array}$$

Exercice8:

Soient M et M' deux variétés de classe $C^p(p \geq 2)$ et soit $f \in Diff^p(M,M')$; soit $X \in C^qTM$

- i) Démontrer que $f_*X\in C^qTM$ 'où $f_*X=Tf\circ X\circ f^{-1}$
- ii) Démontrer que $f_*[X,Y] = [f_*X, f_*Y]$