Série 1: Thermodynamique classique , 1 - Phon a pe, 25

1- Prince pe, 2 p les apres shound

EXERCICE 1:

Un compresseur formé par un récipient, fermé par un piston mobile, contient 2 g de l'hélium (gaz parfait, monoatomique) dans les conditions (P_1 , V_1). On opère une compression adiabatique, de façon réversible, qui amène le gaz dans les conditions (P_2 , V_2). Sachant que $P_1 = 1$ atm, $V_1 = 10$ litres et $P_2 = 3$ atm. Déterminer :

- a Le volume final V₂?
- b Le travail reçu par le gaz?
- c La variation d'énergie interne du gaz ?
- d En déduire l'élévation de température du gaz, sans calculer la température initiale T₁ On donne :
- le rapport des chaleurs massiques à pression et volume constants: $\gamma = \frac{C_{\mathbb{R}}}{C_{\mathbb{T}}} = \frac{5}{3}$
- constante des gaz parfaits : R = 8,3 S.I.

Solution 1:

a- on a
$$P_1 \mathbb{V}_1^{\frac{\pi}{2}} = P_2 \mathbb{V}_2^{\frac{\pi}{2}}$$
 soit $V_2 = V_1 \left(\frac{\mathbb{P}_1}{\mathbb{P}_2}\right)^{\frac{1}{2}}$ d'où $V_2 = 10 \left(\frac{1}{3}\right)^{\frac{3}{5}} = 5,161$

b- Pour une transformation adiabatique on écrit :

$$W = - \int_{\mathbb{R}^2} \mathbb{P} dV \text{ avec } P V^{*} = \text{cte} = K1 \text{ d'où } W = - \int_{\mathbb{R}^2} \mathbb{K}_1 V^{-*} dV = \left[\frac{\mathbb{P} V}{V - 1} \right]^2 \mathbb{O}$$

$$W = 822 J$$

c-La variation de l'énergie interne est égale à :

$$U_2 - U_2 = W + Q = W \text{ (car } Q = 0 \text{)}; \text{ donc } U_2 - U_1 = 822 \text{ J}$$

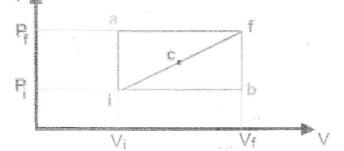
d- Pour n moles de gaz parfait, on a :

$$U_2 - U_2 = W = n C_V (T2 - T1)$$

or
$$y = \frac{C_y}{C_w}$$
 et $C_P - C_V = R$ (pour une mole) $\Rightarrow C_V = \frac{R}{y-1}$

d'où
$$② \Rightarrow W = n \frac{\mathbb{R}}{\Psi - 1} (T2 - T1)$$

ou bien
$$(T2 - T1) = \frac{W(Y-1)}{nR}$$
 $(T2 - T1) = 132 ° K$



autre méthode: Dans ① on remplace P V = n R T et on trouve ③

EXERCICE 2:

Pour vérifier que la quantité de chaleur est une fonction qui dépend du chemin suivi, on considère un gaz parfait diatomique ($C_V = 5/2 \text{ R}$) qui est porté réversiblement d'un état initial i à un état final f par 3 chemins différents $i \rightarrow a \rightarrow f$, $i \rightarrow b \rightarrow f$, $i \rightarrow c \rightarrow f$.

- · i-a-f: isochore suivie d'une isobare
- · i >b >f: isobare suivie d'une isochore
- · i-c-f: chemin rectiligne direct.

Calculer la quantité de chaleur échangée dans les trois cas en fonction de la température de l'état initial T_i sachant que : $P_f = 2$ P_i et $V_f = 2$ V_i . Conclusion ?.

Solution 2:

La quantité de chaleur élémentaire peut s'exprimer en fonction de deux variables que l'or choisira. Les trois formes classiques sont (pour 1 mole):

$$\delta Q = C_V dT + 1 dT$$

$$\delta Q = C_P dT + h dT$$

$$\delta O = \lambda dP + \mu dV$$

♦ 1→a→f: isochore suivie d'une isobare

$$Q = \left[\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \right] C_{\mathbb{P}} d\mathbb{T} + \left[\begin{array}{c} \\ \\ \end{array} \right] C_{\mathbb{P}} d\mathbb{T} = C_{V} \left(\begin{array}{c} \\ T_{a} - T_{i} \end{array} \right) + C_{P} \left(\begin{array}{c} \\ T_{f} - T_{a} \end{array} \right) \end{array} \right]$$

En f on a $P_f V_f = R T_f$ et en i on a $P_i V_i = R T_i$ d'où $T_f = 4 T_i$

De même en a on a $P_f V_i = R Ta$ (car $P_f = P_a$ isobare et $V_a = V_i$ isochore)

Dans ① on a
$$Q = C_V (2T_i - T_i) + C_P (4T_i - 2T_i)$$
; or $C_V = \frac{3}{2} R$ et $C_P = \frac{7}{2} R$
d'où $Q = \frac{19}{2} R T_i$

•
$$i \rightarrow b \rightarrow f$$
: isobare suivie d'une isochore On trouve $Q = \frac{17}{2}R T_i$

♦ i→c→f: chemin rectiligne direct.

$$\delta Q = \lambda dP + \mu dV = C_V \frac{V}{R} dP + C_P \frac{P}{R} dV$$

or P = k V car c'est une transformation linéaire

$$\begin{split} & \&Q = C_V \, \frac{V}{R} k \, dV + C_P k \, \frac{V}{R} dV = \left(\, C_V + C_P \, \right) \frac{k}{R} V \, dV \\ & Q = \left(\, CV + CP \, \right) \frac{k}{R} V \left[\frac{V^2}{2} \right]_{V_I}^{2V_I} = \frac{3}{2} \left(\, CV + CP \, \right) \, \frac{1}{R} k \, \, \mathbb{V}_i^2 \end{split}$$

or
$$k V_i = R T_i d'où$$

$$Q = \frac{18}{2} R T_i$$

Conclusion: δQ n'est pas une différentielle totale exacte.

EXERCICE 3:

Une ensileuse fonctionne selon un cycle ABCA décrit comme suit :

- 1 = Le gaz parfait est amené de l'état A (P_A , V_A , T_A) à l'état B (P_B , V_B , T_B) par une transformation à volume constant. Sachant que $P_B = 2 P_A$, calculer T_B en fonction de T_A ?
- 2 Le gaz subit ensuite une détente isotherme qui l'amène à un état C (P_C , V_C , T_C) de telle sorte que $P_C = P_A$. Calculer V_C en fonction de V_A ?
- 3 = Le gaz revient alors à son état initial A par une transformation à pression constante.
 - a Faire un schéma du cycle ABCA dans le diagramme de CLAPEYRON.
- **b** = Calculer le travail total W échangé par le gaz pendant le cycle ABCA avec le milieu extérieur. Exprimer ce travail en fonction des variables P_A et V_A
- 1°) D'après la loi des gaz parfaits on a :

$$\mathbf{n} \mathbf{R} = \frac{\mathbf{P}_{\mathbf{a}} \mathbf{V}_{\mathbf{b}}}{\mathbf{T}_{\mathbf{a}}} = \frac{\mathbf{P}_{\mathbf{a}} \mathbf{V}_{\mathbf{A}}}{\mathbf{T}_{\mathbf{a}}} \text{ or } \mathbf{P}_{\mathbf{B}} = 2 \mathbf{P}_{\mathbf{A}} \text{ et } \mathbf{V}_{\mathbf{B}} = \mathbf{V}_{\mathbf{A}}$$

D'où
$$2\frac{P_AV_A}{T_A} = \frac{P_AV_A}{T_A} \Rightarrow T_B = 2 T_A$$

2°) De B à C, le gaz a subit une transformation isotherme on écrit :

$$n \; R \; = \; \frac{\mathbb{P}_{\mathbb{C}} \mathbb{V}_{\mathbb{C}}}{\mathbb{T}} = \; \frac{\mathbb{P}_{\mathbb{D}} \mathbb{V}_{\mathbb{D}}}{\mathbb{T}^{c}} \; \; \text{Or} \quad P_{C} = \; P_{A} = \; \frac{\mathbb{P}_{\mathbb{D}}}{\mathbb{T}^{c}} \text{et} \; \; T_{C} = T_{B}$$

done
$$\frac{P_B V_B}{I_B} =$$

$$\frac{P_{_B}V_{_C}}{2T_{_B}} \qquad \Rightarrow \quad V_{_C} = 2 \ V_{_B} =$$

2VA

30)

b- Soit W le travail fournit au gaz pendant le cycle :

avec :

Was = O transformation isochore;

Wac =
$$\int_{0}^{c} P dV = nRT_B \int_{0}^{c} \frac{dV}{V} = -P_B V_B \ln \frac{V_c}{V_B} = -2 P_A V_A \ln 2 \text{ car la transformation est}$$

isotherme;

$$W_{CA} = -P_A(V_A - V_C) = P_AV_A$$
 transformation isobare;

Done:
$$W = W_{AB} + W_{BC} + W_{CA} = P_A V_A (1 - 2 \text{ Ln } 2) = -0.4 P_A V_A$$

Conclusion : Ce travail est négatif : c'est donc le gaz qui fournit du travail au milieu extérieur.

Le cycle parcouru dans le sens ABBCA est moteur.

Série E; Le premier principe de la thermodynamique

EXERCICE L:

En hiver et afin d'éviter le gel, on chauffe une serre contenant 812 g d'air (gaz supposé parfait) dont la température s'élève de 2° C à 16° C. Calculer :

- a la variation d'énergie interne de l'air au cours de cet échauffement?
- b = la quantité de chaleur reçue par le gaz, si ce dernier a fourni un travail de 846,4 joules.

On donne: La masse molaire de l'air M = 29 g/mole, R = 8,32 S.I.;

Le rapport des chaleurs massiques de l'air $\gamma = C_P/C_v = 1,4$

Solution 1:

a - La variation d'énergie interne de n moles de gaz parfait : $\Delta U = n C_V \Delta T$

L'air est un gaz parfait diatomique : $C_V = \frac{5}{2}R$ donc :

$$\Delta U = \frac{812}{29} \times \frac{5}{2} \times 8,32 \times 14 = 8153,6 \text{ J}$$

b - On a: $\Delta U = W + Q$ ou $\Delta U = \Delta W + \Delta Q$

La quantité de chaleur échangée par le gaz (l'air) est :

$$Q = \Delta U - W$$
 Or $W = -846.4$ car l'air a fourni un travail, d'où $Q = 8153.6 - (-846.4) = 9000 J$

EXERCICE 2:

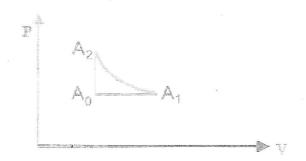
L'état initial d'une mole de gaz parfait est caractérisé par $\mathbb{P}_0 = 2.10^5$ Pascals, $\mathbb{V}_0 = 14$ Ntres. On fait subir successivement à ce gaz:

- une détente isobare, qui double son volume,
- une compression isotherme, qui le ramène à son volume initial,
- un refroidissement isochore, qui le ramène à l'état initial $(\mathbb{P}_0, \mathbb{V}_0)$.
- \mathbf{a} A quelle température s'effectue la compression isotherme ? En déduire la pression maximale atteinte. Représenter le cycle de transformation dans le diagramme (\mathbf{P} , \mathbf{V})
- Calculer le travail, la quantité de chaleur et la variation d'énergie interne échangés par le système au cours de chaque transformation?
 Faire le bilan du cycle?
 On donne: constante des gaz parfaits: R = 8,314 J.K⁻¹.

Solution 2:

a = L'état initial du gaz, représenté par le point A_0 , est caractérisé par :

$$P_0 = 210^5 \text{ Pa}$$
 ; $V_0 = 1410^3 \text{ m}^3$; $T_0 = \frac{P_0 V_0}{R} = 336,78 \text{ °K}$



■ A la fin de la détente isobare, l'état du gaz, représenté par le point A₁, est caractérisé par :

$$P_1 = P_0$$
; $V_1 = 2 V_0$; $T_1 = \frac{P_1 V_2}{R} = \frac{2P_0 V_0}{R} = 2 T_0 = 673,56 \text{ oK}$

 \blacksquare A la fin de la compression isotherme, l'état du gaz représenté par le point \mathbb{A}_2 , est caractérisé par

$$P_2 = \frac{P_1 V_1}{V_0} = 2 P_0$$
 (d'après la loi de Mariotte); V_0 ; $2 T_0$

La pression maximale du gaz est donc : $P_2 = 2 P_0 = 4 \cdot 10^5 Pa$

h =

u Au cours de la détente isobare A₀A₁ on a :

$$W_1 = -P_0 (2 V_0 - V_0) = -P_0 V_0 = -2800 J$$

$$Q_1 = C_P (T_1 - T_0) = \frac{7}{2} 8,314 \times 336,78 = 9800 J$$

u Au cours de la compression isotherme A₁A₂ on a:

$$W_2 = R T_1 \ln \frac{P_2}{P_0} = 2 R T_0 \ln 2 = 3881,61 J$$

$$Q_2 = \int_{RR}^{AR} PdV = R T_1 \ln \frac{V_2}{V_1} = -2 R T_0 \ln 2 = -3881,61 J$$

u Au cours du refroidissement isochore A2A0 on a:

 $W_3 = 0 J$ (à volume constant)

$$Q_3 = C_V (T_0 - T_1) = -\frac{5}{2}8,314 \times 336,78 = -7000 J$$

Transformation	on WenJ	Q en J	∆U= W+Q en J	
Isobare	-2800	9800	7000	
Isotherme	3881,61	-3881,61	0	
Isochore	0	-7000	-7000	
total	1081,61	- 1081,61	0	

Au cours du cycle:

Le bilan mécanique du cycle est donc : $W = W_1 + W_2 + W_3 = 1081,61 \text{ J/mole.}$

La quantité de chaleur échangée est donc : Q = -W = -1081,61 J/mole

La variation de l'énergie interne est nulle car c'est une fonction d'état.

W est positif, Q est négatif; par conséquent, le système a reçu un travail qu'il a intégralement restitué au milieu extérieur sous forme de chaleur.