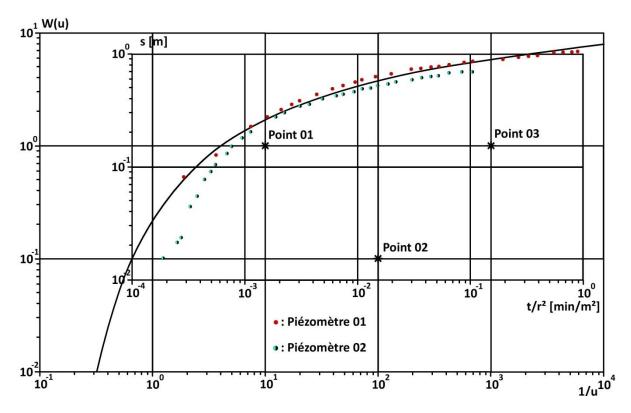
TP 03- Essai de nappe :


Application de la méthode de Theis (Bi-log)

Un essai de pompage a débit constant ($Q = 0.55 \text{ m}^3/\text{min}$) a été réalisé dans un forage de petit diamètre, pénétrant totalement l'aquifère horizontal d'Oude Korendijk au sud de Rotterdam – Hollande. Le dispositif d'observation comprend deux piézomètres alignés, P_1 et P_2 situés respectivement à 30 m et 90 m du forage. Les rabattements mesurés en fonction de temps sont donnés dans le tableau ci-dessous. Si l'épaisseur de l'aquifère est de 110 m; déterminer les différents paramètres hydrodynamiques de la nappe aquifère par l'interprétation des résultats de pompage.

1	Piézomètre N° 01			Piézomètre N° 02		
t [min]	s [m]	t/r² [min/m²]	t [min]	s [m]	t/r² [min/m²]	
0	0	0	0	0	0	
0,1	0,04	0,0001	1,5	0,015	0,0002	
0,25	0,08	0,0003	2	0,021	0,0002	
0,5	0,13	0,0006	2,16	0,023	0,0003	
0,7	0,18	0,0008	2,66	0,044	0,0003	
1	0,23	0,0011	3	0,054	0,0004	
1,4	0,28	0,0016	3,5	0,075	0,0004	
1,9	0,33	0,0021	4	0,09	0,0005	
2,33	0,36	0,0026	4,33	0,104	0,0005	
2,8	0,39	0,0031	5,5	0,133	0,0007	
3,36	0,42	0,0037	6	0,153	0,0007	
4	0,45	0,0044	7,5	0,178	0,0009	
5,35	0,5	0,0059	9	0,206	0,0011	
6,8	0,54	0,0076	13	0,25	0,0016	
8,3	0,57	0,0092	15	0,275	0,0019	
8,7	0,58	0,0097	18	0,305	0,0022	
10	0,6	0,0111	25	0,348	0,0031	
13,1	0,64	0,0146	30	0,364	0,0037	
18	0,68	0,0200	40	0,404	0,0049	
27	0,742	0,0300	53	0,429	0,0065	
33	0,753	0,0367	60	0,444	0,0074	
41	0,779	0,0456	75	0,467	0,0093	
48	0,793	0,0533	90	0,494	0,0111	
59	0,819	0,0656	105	0,507	0,0130	
80	0,855	0,0889	120	0,528	0,0148	
95	0,873	0,1056	150	0,55	0,0185	
139	0,915	0,1544	180	0,569	0,0222	
181	0,935	0,2011	248	0,593	0,0306	
245	0,966	0,2722	301	0,614	0,0372	
300	0,99	0,3333	363	0,636	0,0448	
360	1,007	0,4000	422	0,657	0,0521	
480	1,05	0,5333	542	0,679	0,0669	
600	1,053	0,6667	602	0,688	0,0743	
728	1,072	0,8089	680	0,701	0,0840	
830	1,088	0,9222	785	0,718	0,0969	
			845	0,716	0,1043	

Solution TP 03:

>>> On représente les valeurs mesurées du rabattement s en fonction de t/r^2 sur un papier bi-logarithmique transparent de même module que la courbe standard de Theis donnée en annexe, ensuite on superpose cette courbe $\left[\log(s) = f\left(\log(t/r^2)\right)\right]$ avec celle de Theis $\left[\log W(u) = f\left(\log(1/u)\right)\right]$ en conservant le parallélisme absolu entre les axes repères jusqu'à obtenir la meilleur coïncidence entre les deux courbes :

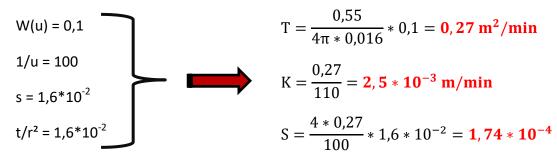
>>> Après l'obtention d'une meilleur coı̈ncidence entre les deux courbes, on sélectionne un point de référence dans la zone de chevauchement des deux feuilles; en fait, les calculs seront plus faciles si l'on choisit ce point de façon que W(u) = 1 et $^1/_u$ = 10. L'identification des coordonnées de ce point suivant les deux systèmes $[W(u), ^1/_u]$ et $[s, ^t/_{r^2}]$ permet de déterminer T, K et S par les formules suivantes :

$$T = \frac{Q}{4\pi * s} * W(u)$$
 ; $K = \frac{T}{e}$; $S = \frac{4T}{1/u} * t/r^2$

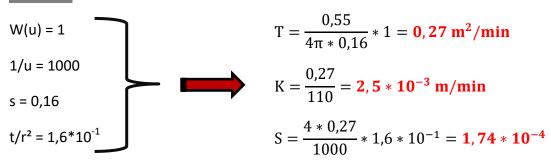
Point 01:

$$W(u) = 1$$

 $1/u = 10$
 $s = 0.16$
 $t/r^2 = 1.6*10^{-3}$


$$T = \frac{0,55}{4\pi * 0,16} * 1 = 0,27 \text{ m}^2/\text{min}$$

$$K = \frac{0,27}{110} = 2,5 * 10^{-3} \text{ m/min}$$


$$S = \frac{4 * 0,27}{10} * 1,6 * 10^{-3} = 1,74 * 10^{-4}$$

TP Hydrogéologie /// BOUGUERRA H.

Point 02:

Point 03:

>>> Les coordonnées des trois points suivant les deux systèmes [W(u), 1/u] et $[s, t/r^2]$ dans la zone de chevauchement des deux courbes, donnent même résultats des paramètres hydrodynamiques de l'aquifère, donc un seul point dans la zone de chevauchement suffisant pour déterminer ces paramètres.