Chapitre 2

Abscisse Curviligne

I Définition et Propriétés d'une Abscisse Curviligne

Dans ce chapitre nous allons considérer la longueur d'arc comme paramètre d'une courbe paramétrée (Γ, M) .

Définition 1.1: Soit (Γ, M) une courbe paramétrée de classe C^1 . Pour t_0 fixé appartenant à l'intervalle I (I est le domaine de définition de la représentation paramétrique M), on appelle *abscisse curviligne* de la courbe paramétrée (Γ, M) , la fonction suivante :

$$s = S(t) = \int_{t_0}^{t} \left\| \overrightarrow{M'(\tau)} \right\| d\tau.$$

La fonction $\tau \to \left\| \overrightarrow{M'(\tau)} \right\|$ est continue sur I, donc S est une primitive de cette fonction.

Si $t \ge t_0$, S(t) est égale à la longueur de l'arc de Γ pris entre M(t) et $M(t_0)$.

Si $t \le t_0$, S(t) est égale à moins la longueur de l'arc de Γ pris entre M(t) et $M(t_0)$.

De sa définition, l'abscisse curviligne S est une fonction continue sur I. Son image $J = S(I) \subset \mathbb{R}$ est donc un intervalle de \mathbb{R} .

Le point $M(t_0) \in M(I) = \Gamma$, correspondant à $s = S(t_0) = \int_{t_0}^{t_0} \left\| \overline{M'(\tau)} \right\| d\tau = 0$, est l'origine de l'abscisse curviligne S.

Proposition 1.1: Si l'ensemble des valeurs du paramètre t, pour lesquelles M(t) est un point régulier de (Γ, M) , est dense dans I = DomM, c-a-d tout intervalle $(\emptyset \neq)]\alpha, \beta[\subset I$ contient un t tel que M(t) est régulier, la fonction S (c-a-d l'abscisse curviligne) est alors un homéomorphisme de I vers l'intervalle J = S(I).

Par conséquent, avec les hypothèses de la proposition ci-dessus, on peut définir une reparamétrisation $\widetilde{M} = M \circ S^{-1}$ de (Γ, M) , appelée reparamétrisation de (Γ, M) par une

abscisse curviligne ; autrement dit (Γ, \widetilde{M}) , $\widetilde{M}: J \subset \mathbb{R} \to \mathbb{R}^n$, est une courbe paramétrée par une abscisse curviligne.

En général une reparamétrisation de (Γ, M) par une abscisse curviligne n'est pas de classe C^1 ; cependant, dans le cas particulier où tous les points M(t), $t \in I$, sont des points réguliers, on a le théorème suivant :

Théorème 1.1: Soit (Γ, M) une courbe paramétrée de classe C^r et dont tous les points M(t) sont réguliers. Une reparamétrisation $\widetilde{M} = M \circ S^{-1}$ par une abscisse curviligne est alors de classe C^r et de plus on a :

$$\left\| \frac{\overrightarrow{d\widetilde{M}}}{ds}(s) \right\| = 1.$$

Démonstration:

- 1) Montrons que \widetilde{M} est de classe C^r .
- Si r=1, c-a-d que M est de classe C^1 , donc la fonction $t\to \left\|\overrightarrow{M'(t)}\right\|$ est continue et donc l'abscisse curviligne $t\to S(t)=\int_{t_0}^t \left\|\overrightarrow{M'(\tau)}\right\| d\tau$ est une fonction dérivable et on a $t\to S'(t)=\left\|\overrightarrow{M'(t)}\right\|$ qui est continue ; ainsi S est de classe C^1 . De plus, comme par hypothèse tous les points M(t) sont réguliers, alors $\forall t\in I, \left\|\overrightarrow{M'(t)}\right\|\neq 0$ et donc S est un C^1 -difféomorphisme (conséquence de la proposition 4.1 du chapitre précédent).
- Si $r \ge 2$, c-a-d que M est de classe C^r , donc l'application $t \to \overline{M'(t)}$ est de classe C^{r-1} et il en est de même de la fonction $t \to \overline{M'(t)}$. $\overline{M'(t)}$ ainsi que de la fonction $t \to S'(t) = \|\overline{M'(t)}\| = (\overline{M'(t)}.\overline{M'(t)})^{1/2}$ (car $S'(t) \ne 0$, $\forall t \in I$). Ceci implique que S est de classe C^r et par la proposition 4.1 du chapitre précédent S est un C^r -difféomorphisme.
- 2) Montrons que $\left\| \frac{\overrightarrow{dM}}{ds}(s) \right\| = 1$.

Comme la fonction $t \to \left\| \overline{M'(t)} \right\|$ est continue, alors la fonction $t \to S(t) = \int_{t_0}^t \left\| \overline{M'(t)} \right\| d\tau$ est dérivable et on a : $\forall t \in I$, $S'(t) = \left\| \overline{M'(t)} \right\| \neq 0$ (puisque par hypothèse tous les points M(t) sont réguliers).

En dérivant l'application composée $M = \widetilde{M} \circ S$ on obtient :

$$\frac{\overrightarrow{dM}}{dt}(t) = \frac{\overrightarrow{dM}}{ds}(S(t)).\frac{dS}{dt}(t) = \frac{\overrightarrow{dM}}{ds}(S(t)). \|\overrightarrow{M'(t)}\|$$

d'où, en prenant les normes des deux membres :

$$\left\| \overrightarrow{M'(t)} \right\| = \left\| \frac{\overrightarrow{dM}}{ds} (S(t)) \right\| \cdot \left\| \overrightarrow{M'(t)} \right\|$$

et, comme $\|\overrightarrow{M'(t)}\| \neq 0$:

$$\left\| \frac{\overrightarrow{dM}}{ds} (S(t)) \right\| = 1, \ \forall t \in I$$

ou encore:

$$\left\| \frac{\overrightarrow{dM}}{ds}(s) \right\| = 1, \ \forall s \in J. \blacksquare$$

Dans la suite on posera :

$$\overrightarrow{T(s)} = \frac{\overrightarrow{dM}}{ds}(s).$$

Comme $\frac{\overrightarrow{dM}}{ds}(s) \neq \overrightarrow{0}$ puisque $\left\| \frac{\overrightarrow{dM}}{ds}(s) \right\| = 1$, $\overrightarrow{T(s)}$ est donc un vecteur unitaire tangent à $\Gamma\left(=\widetilde{M}(J)=M(I)\right)$ au point $\widetilde{M}(s)(=M\circ S^{-1}(s))$.

II Etude Géométrique Locale d'une Courbe Paramétrée

II.1 Courbure

Dans tout ce paragraphe (Γ, M) est une courbe paramétrée de classe C^2 dont tous les points sont réguliers.

Soit $M(t_0)$ un point fixé de $\Gamma(=M(I))$, et soit la C^2 -reparamétrisation $\widetilde{M}=M\circ S^{-1}\colon J\to\mathbb{R}^n$ où $S:t\in I\to S(t)=s\in J\ (=S(I))$ est une abscisse curviligne de la courbe (Γ,M) (la C^2 -reparamétrisation \widetilde{M} existe en vertu de la proposition 4.1 du chapitre précédent et du théorème 1.1), et posons $s_0=S(t_0)$.

<u>Définition 2.1:</u> La courbure de $\Gamma\left(=\widetilde{M}(J)=M(I)\right)$ au point $\widetilde{M}(s_0)$ $(=M(t_0))$ est le nombre réel

$$\rho(s_0) = \left\| \frac{\overrightarrow{dT}}{ds}(s_0) \right\| \ (\geq 0).$$

Ce nombre existe car la dérivée $\frac{\overrightarrow{dr}}{ds}$ existe (puisque $\overline{T(s)} = \frac{\overrightarrow{dM}}{ds}(s)$ et \widetilde{M} est de classe C^2).

Exemple 1 : Soit la droite paramétrée (Γ, M) de \mathbb{R}^n définie par :

 $\overrightarrow{OM(t)}=t.\overrightarrow{u}, \quad t\in\mathbb{R} \quad \text{et} \quad \overrightarrow{u}=(u_1,\cdots,u_n)\neq \overrightarrow{0} \quad (\overrightarrow{u} \text{ vecteur directeur de la droite}).$ L'équation de cette droite peut s'écrire aussi : $M(t)=t(u_1,\cdots,u_n)=(u_1,t,\cdots,u_n.t).$ M est de classe C^{∞} et $\forall t\in\mathbb{R}, M'(t)=(u_1,\cdots,u_n)\neq (0,\cdots,0),$ donc $\forall t\in\mathbb{R}, M(t)$ est régulier. On peut donc reparamétriser la droite par une abscisse curviligne (proposition 1.1) et calculer la courbure en chaque point de Γ puisque (théorème 1.1) \widetilde{M} est de même classe que M (il suffit que \widetilde{M} soit de classe C^2).

Si on prend par exemple $t_0 = 0$, on a :

$$s = S(t) = \int_{t_0=0}^{t} \left\| \overrightarrow{M'(\tau)} \right\| d\tau = \int_{0}^{t} \| \vec{u} \| d\tau = \| \vec{u} \|.t$$

qui est une abscisse curviligne de (Γ, M) (pour chaque t_0 on peut définir une abscisse curviligne).

Soit $\widetilde{M} = M \circ S^{-1}$ la reparamétrisation associée à cette abscisse curviligne.

$$s=S(t)=\|\vec{u}\|.t \iff t=S^{-1}(s)=\frac{s}{\|\vec{u}\|} \ , \ s\in\mathbb{R}.$$
 Ceci implique

$$\widetilde{M}(s) = M(S^{-1}(s)) = M\left(\frac{s}{\|\vec{u}\|}\right) = \frac{s}{\|\vec{u}\|} \cdot (u_1, \dots, u_n).$$

En dérivant \widetilde{M} on obtient $\overline{T(s)}$ le vecteur unitaire tangent à Γ

$$\overrightarrow{T(s)} = \frac{\overrightarrow{dM}}{ds}(s) = \frac{d\left(\frac{s}{\|\overrightarrow{u}\|} \cdot \overrightarrow{u}\right)}{ds} = \frac{\overrightarrow{u}}{\|\overrightarrow{u}\|}$$

Donc

 $\forall s \in \mathbb{R}, \ \frac{\overrightarrow{dt}}{ds}(s) = \overrightarrow{0}$ et par conséquent $\forall s \in \mathbb{R}, \ \rho(s) = \left\| \frac{\overrightarrow{dt}}{ds}(s) \right\| = 0$. C'est-à-dire que la courbure d'une droite est nulle en chacun de ses points (logique).

Exemple 2 : Soit le cercle paramétré (Γ, M) définie par :

$$M(t) = (R \cos t, R \sin t), t \in [0, 2\pi]$$

M est de classe C^{∞} et M'(t) est égale à :

$$\overrightarrow{M'(t)} = (-R \sin t, R \cos t) \neq (0,0), \quad \forall t \in [0,2\pi].$$

Ceci implique que M(t) est régulier, $\forall t \in [0, 2\pi]$.

On peut donc reparamétriser le cercle par une abscisse curviligne s = S(t) (proposition 1.1) et $\widetilde{M} = M \circ S^{-1}$ est de classe C^{∞} (théorème 1.1).

Soit l'abscisse curviligne de (Γ, M)

$$s = S(t) = \int_0^t \left\| \overline{M'(\tau)} \right\| d\tau = \int_0^t R d\tau = Rt.$$

$$s = S(t) = Rt \iff t = S^{-1}(s) = \frac{s}{R}, \text{ où } s = Rt \in [0, 2\pi R]. \text{ Ceci implique}$$

$$\widetilde{M}(s) = M(S^{-1}(s)) = M\left(\frac{S}{D}\right) = \left(R\cos\frac{S}{D}, R\sin\frac{S}{D}\right).$$

Donc

$$\overrightarrow{T(s)} = \frac{\overrightarrow{dM}}{ds}(s) = \left(-\sin\frac{s}{R}, \cos\frac{s}{R}\right)$$

et donc

$$\rho(s) = \left\| \frac{\overrightarrow{dT}}{ds}(s) \right\| = \left\| \left(-\frac{1}{R} \cos \frac{s}{R}, -\frac{1}{R} \sin \frac{s}{R} \right) \right\| = \frac{1}{R}, \quad \forall s \in [0, 2\pi R].$$

La courbure d'un cercle est donc constante (logique) et égale à l'inverse de son rayon.

Montrons que, plus la courbure au point $M(t_0)$ est grande, plus rapidement M(t) s'éloigne de sa tangente en $M(t_0)$.

Soit Q la représentation paramétrique de la tangente à $\Gamma\left(=M(I)=\widetilde{M}(J)\right)$ en $M(t_0)=\widetilde{M}(s_0)$ définie par :

$$\overrightarrow{OQ}(s) = \overrightarrow{OM}(s_0) + (s - s_0) \frac{\overrightarrow{dM}}{ds}(s_0) = \overrightarrow{OM}(s_0) + (s - s_0) \overrightarrow{T(s_0)}$$

$$\iff \overrightarrow{\widetilde{M}(s_0)Q(s)} = (s - s_0) \overrightarrow{T(s_0)} \qquad (1).$$

Posons

$$F(s) = \delta(Q(s), \widetilde{M}(s)) = \left\| \overline{Q(s)}\widetilde{M}(s) \right\|$$
 (2)

F(s) est la distance entre un point $\widetilde{M}(s)$ de la courbe et un point Q(s) de sa tangente au point $\widetilde{M}(s_0)$ et ceci au voisinage de $s=s_0$.

Ecrivons la formule de Taylor à l'ordre 2 en $s = s_0$ pour l'application \widetilde{M} :

$$\widetilde{\widetilde{M}}(s_0)\widetilde{\widetilde{M}}(s) = \overrightarrow{O\widetilde{M}}(s) - \overrightarrow{O\widetilde{M}}(s_0) = (s - s_0)\overrightarrow{T(s_0)} + \frac{(s - s_0)^2}{2} \left(\frac{\overrightarrow{dT}}{ds}(s_0) + \overrightarrow{\varepsilon(s)}\right)$$
où $\lim_{s \to s_0} \overline{\varepsilon(s)} = \overrightarrow{0}$. (3),

D'où:

$$\overline{Q(s)}\widetilde{M}(s) = \overline{\widetilde{M}(s_0)}\widetilde{M}(s) - \overline{\widetilde{M}(s_0)}Q(s) \stackrel{(1)}{=} \overline{\widetilde{M}(s_0)}\widetilde{M}(s) - (s - s_0)\overline{T(s_0)} \stackrel{(3)}{=} \frac{(s - s_0)^2}{2} \left(\frac{dT}{ds}(s_0) + \overline{\varepsilon(s)}\right).$$

Si $\rho(s_0) \neq 0$, on a donc

$$\lim_{s \to s_0} \frac{F(s)}{\frac{(s-s_0)^2}{2} \rho(s_0)} \stackrel{(2)}{=} \lim_{s \to s_0} \frac{\left\| \overline{Q(s)} \widetilde{M}(s) \right\|}{\frac{(s-s_0)^2}{2} \rho(s_0)} = \lim_{s \to s_0} \frac{\frac{(s-s_0)^2}{2} \left\| \overline{\frac{dT}{ds}}(s_0) + \overline{\varepsilon(s)} \right\|}{\frac{(s-s_0)^2}{2} \rho(s_0)} = 1.$$

On en déduit que $F(s) \sim \frac{(s-s_0)^2}{2} \rho(s_0)$ quand $s \to s_0$. Par conséquent, au voisinage de s_0 , plus $\rho(s_0)$ est grande, plus l'écart entre les points $\widetilde{M}(s)$ et Q(s) est grand.

Définition 2.2: Soit (Γ, M) une courbe paramétrée de classe C^r , $r \ge 2$. Un point régulier $M(t_0)$ de Γ est dit *birégulier* si $\overline{M'(t_0)}$ et $\overline{M''(t_0)}$ sont linéairement indépendants. On dit que (Γ, M) est *birégulière*, si tous les points de Γ sont biréguliers.

Proposition 2.1: Un point $M(t_0) \in \Gamma = M(I)$ est birégulier si et seulement si la courbure de Γ en $M(t_0)$ est non nulle.

<u>Démonstration:</u> Dérivons deux fois l'application $M = \widetilde{M} \circ S$, où \widetilde{M} est la reparamétrisation de Γ par une abscisse curviligne S.

$$\frac{\overrightarrow{dM}}{dt}(t_0) = \frac{\overrightarrow{dM}}{ds}(S(t_0)).\frac{dS}{dt}(t_0) = \overline{T(S(t_0))}.\frac{dS}{dt}(t_0), \quad (1)$$

 $\frac{\overrightarrow{dM}}{dt}(t_0)$ et $\frac{\overrightarrow{dM}}{ds}(s_0) = \overrightarrow{T(s_0)}$ $(s_0 = S(t_0))$ sont donc colinéaires .

$$\frac{\overrightarrow{d^2M}}{dt^2}(t_0) = \frac{d}{dt} \left(\frac{\overrightarrow{dM}}{ds} (S(.)) \cdot \frac{dS}{dt} (.) \right) (t_0)$$

$$= \frac{d}{dt} \left(\frac{\overrightarrow{dM}}{ds} (S(.)) \right) (t_0) \cdot \frac{dS}{dt} (t_0) + \frac{\overrightarrow{dM}}{ds} (S(t_0)) \cdot \frac{d^2S}{dt^2} (t_0)$$

$$= \frac{\overrightarrow{d^2 M}}{ds^2} (S(t_0)) \cdot \left(\frac{dS}{dt}(t_0)\right)^2 + \overrightarrow{T(s_0)} \cdot \frac{d^2S}{dt^2}(t_0)$$

$$= \frac{\overrightarrow{dT}}{ds} (s_0) \cdot \left(\frac{dS}{dt}(t_0)\right)^2 + \overrightarrow{T(s_0)} \cdot \frac{d^2S}{dt^2}(t_0)$$
(2)

i) Condition nécessaire :

Si $M(t_0)$ est birégulier, il résulte de (2) que $\frac{\overrightarrow{dt}}{ds}(s_0).\left(\frac{ds}{dt}(t_0)\right)^2 \neq \overrightarrow{0}$ sinon $\overline{M''(t_0)}$ serait colinéaire à $\overline{M'(t_0)}$ puisque de (1) ce dernier vecteur est colinéaire à $\overline{T(s_0)}$. Par conséquent $\frac{\overrightarrow{dt}}{ds}(s_0) \neq \overrightarrow{0}$ et donc $\rho(s_0) = \left\|\frac{\overrightarrow{dt}}{ds}(s_0)\right\| \neq 0$.

ii) Condition suffisante:

Si $\rho(s_0) \neq 0$, la combinaison linéaire

$$\alpha \frac{\overrightarrow{dM}}{dt}(t_0) + \beta \frac{\overrightarrow{d^2M}}{dt^2}(t_0) = \overrightarrow{0}, \qquad (\alpha, \beta) \in \mathbb{R}^2$$

s'écrit, en utilisant (1) et (2), comme suit :

$$\left(\alpha \frac{dS}{dt}(t_0) + \beta \frac{d^2S}{dt^2}(t_0)\right) \overline{T(s_0)} + \beta \left(\frac{dS}{dt}(t_0)\right)^2 \frac{\overrightarrow{dT}}{ds}(s_0) = \overrightarrow{0}.$$
 (3)

Comme $\|\overrightarrow{T(s)}\| = \|\overrightarrow{\widetilde{M}'(s)}\| = 1$, alors $|\overrightarrow{T(s)}| = \|\overrightarrow{\widetilde{M}'(s)}\|^2 = 1$. Ceci implique que $\frac{d\left(\overrightarrow{T(s)}.\overrightarrow{T(s)}\right)}{ds} = 2\overrightarrow{T(s)}.\frac{\overrightarrow{dT}}{ds}(s) = 0 \implies |\overrightarrow{T(s)}.\frac{\overrightarrow{dT}}{ds}(s) = 0.$

On en déduit qu'en faisant le produit scalaire de (3) par $\frac{d\vec{r}}{ds}(s_0)$, on obtient :

$$\beta\left(\frac{dS}{dt}(t_0)\right)^2 \overline{\frac{dT}{ds}}(s_0). \overline{\frac{dT}{ds}}(s_0) = \beta\left(\frac{dS}{dt}(t_0)\right)^2 \rho(s_0)^2 = \beta\left\|\overline{M'(t_0)}\right\|^2 \rho(s_0)^2 = 0.$$

Comme par hypothèse, dans ce paragraphe, tous les points M(t) sont réguliers, donc $\|\overrightarrow{M'(t_0)}\| \neq 0$, et comme condition suffisante $\rho(s_0) \neq 0$, alors $\beta = 0$ et en remplaçant dans (3), on aura aussi $\alpha = 0$. Par conséquent $\overrightarrow{M'(t_0)}$ et $\overrightarrow{M''(t_0)}$ sont linéairement indépendants, donc $M(t_0)$ est un point birégulier de (Γ, M) .

Remarque : Etant donnée une courbe paramétrée (Γ, M) de classe C^2 et birégulière. Il est souvent difficile d'exprimer, au moyen de fonctions élémentaires connues, une

reparamétrisation de Γ par une abscisse curviligne. Il est donc utile de connaître l'expression de la courbure de Γ en un point $M(t_0)$ en fonction de la représentation paramétrique M.

- Si $\Gamma \subset \mathbb{R}^n$

$$\rho(t_0) = \frac{1}{\left\|\overrightarrow{M'(t_0)}\right\|^3} \left[\left\| \overrightarrow{M''(t_0)} \right\|^2 \left\| \overrightarrow{M'(t_0)} \right\|^2 - \left(\overrightarrow{M''(t_0)} . \overrightarrow{M'(t_0)} \right)^2 \right]^{1/2}.$$

- Si Γ est une courbe plane et $\overline{M'(t_0)}$ et $\overline{M''(t_0)}$ sont exprimés par rapport à une base orthonormée de \mathbb{R}^2 , alors on a :

$$\rho(t_0) = \frac{\left| det\left(\overrightarrow{M'(t_0)}, \overrightarrow{M''(t_0)}\right) \right|}{\left\| \overrightarrow{M'(t_0)} \right\|^3}.$$

- Si Γ est une courbe dans l'espace, on a :

$$\rho(t_0) = \frac{\left\| \overrightarrow{M'(t_0)} \wedge \overrightarrow{M''(t_0)} \right\|}{\left\| \overrightarrow{M'(t_0)} \right\|^3}.$$

Rappel: Soient $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ deux vecteurs de \mathbb{R}^3 s'écrivant dans la base canonique $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$ comme suit :

$$\overrightarrow{u_1} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$
 et $\overrightarrow{u_2} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$.

 $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ est un vecteur orthogonal à $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ égal à :

$$\overrightarrow{u_1} \wedge \overrightarrow{u_2} = (y_1 z_2 - z_1 y_2) \overrightarrow{i} + (z_1 x_2 - x_1 z_2) \overrightarrow{j} + (x_1 y_2 - y_1 x_2) \overrightarrow{k} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.$$

Définition 2.3: Soit (Γ, M) une courbe paramétrée dans \mathbb{R}^n de classe C^2 et régulière, et soit $M(t_0)$ un point birégulier. Soit $\widetilde{M} = M \circ S^{-1} : J \to \mathbb{R}^n$ une reparamétrisation par une abscisse curviligne $t \in I \to s = S(t) \in J = S(I), \ s_0 = S(t_0).$

1) On appelle rayon de courbure de Γ en $M(t_0) = \widetilde{M}(s_0)$ le nombre

$$R(s_0) = \frac{1}{\rho(s_0)} \ (>0).$$

2) On appelle vecteur normal principal à Γ en $M(t_0) = \widetilde{M}(s_0)$ le vecteur

$$\overrightarrow{N(s_0)} = \frac{1}{\rho(s_0)} \frac{\overrightarrow{dT}}{ds}(s_0) = R(s_0) \frac{\overrightarrow{dT}}{ds}(s_0).$$

3) On appelle centre de courbure de Γ en $M(t_0) = \widetilde{M}(s_0)$, le point $C(s_0)$ tel que

$$\overrightarrow{OC}(s_0) - \overrightarrow{OM}(s_0) = \overrightarrow{M}(s_0)C(s_0) = R(s_0)\overrightarrow{N(s_0)}.$$

Le centre de courbure de Γ en $M(t_0)$ est le centre du cercle tangent à Γ en $M(t_0)$ et de rayon égal au rayon de courbure de Γ en $M(t_0)$.

De la définition du vecteur normal principal $\overrightarrow{N(s_0)}$ on en déduit que

$$\left\| \overrightarrow{N(s_0)} \right\| = \frac{1}{\rho(s_0)} \left\| \frac{\overrightarrow{dT}}{ds}(s_0) \right\| = \frac{1}{\rho(s_0)} \cdot \rho(s_0) = 1,$$

c-a-d $\overrightarrow{N(s_0)}$ est un vecteur unitaire. De plus comme $\overrightarrow{T(s)}.\overrightarrow{T(s)} = \left\|\overrightarrow{T(s)}\right\|^2 = 1^2 = 1$, alors

$$\frac{d\left(\overline{T(s)},\overline{T(s)}\right)}{ds} = 2\overline{T(s)}, \frac{d\overline{T}}{ds}(s) = 0.$$

Ceci implique que $\frac{\overrightarrow{dr}}{ds}(s)$ est orthogonal à $\overrightarrow{T(s)}$ et donc $\overrightarrow{N(s)}$, qui est colinéaire à $\frac{\overrightarrow{dr}}{ds}(s)$, est orthogonal à $\overrightarrow{T(s)}$. Par conséquent $\{\overrightarrow{T(s)}, \overrightarrow{N(s)}\}$ est une base orthonormée de \mathbb{R}^2 .

II.2 Courbes Planes

Soit (Γ, M) une courbe paramétrée plane de classe C^3 , le paramètre étant une abscisse curviligne s $(s \in I \to M(s) \in \Gamma)$. Supposons que tous les points de Γ soient biréguliers. Le rayon de courbure $R(s) = \frac{1}{\rho(s)}$ de Γ en un point quelconque M(s) est alors défini (puisque par hypothèse Γ est birégulier et donc de la proposition 2.1 $\forall s \in I$, $\rho(s) \neq 0$) et il en est de même du centre de courbure C(s) de Γ en M(s) $(\overline{M(s)C(s)} = R(s)\overline{N(s)})$.

Comme par hypothèse (Γ, M) est de classe C^3 , donc $\frac{\overrightarrow{dT}}{ds}$ est de classe C^1 puisque par définition $\overrightarrow{T} = \frac{\overrightarrow{dM}}{ds}$. Le rayon de courbure R(s) possède donc une dérivée continue s'exprimant par :

$$\frac{dR}{ds}(s) = -\frac{\overline{dT}(s).\overline{d^2T}(s)}{\rho^3(s)}.$$

En effet, on a:

$$\frac{dR}{ds}(s) = \frac{d}{ds} \left(\frac{1}{\rho(s)}\right)(s) = -\frac{\rho'(s)}{\rho^2(s)}.$$
 (1)

De plus, comme

$$\rho^{2}(s) = \left\| \frac{\overrightarrow{dT}}{ds}(s) \right\|^{2} = \frac{\overrightarrow{dT}}{ds}(s) \cdot \frac{\overrightarrow{dT}}{ds}(s), \quad (2)$$

Alors

$$(\rho^{2}(s))'_{s} = \left(\overline{\frac{dT}{ds}}(s).\overline{\frac{dT}{ds}}(s)\right)'_{s} \iff 2\rho(s)\rho'(s) \stackrel{(2)}{=} 2\overline{\frac{dT}{ds}}(s).\overline{\frac{d^{2}T}{ds^{2}}}(s) \implies$$

$$\Rightarrow \rho'(s) = \frac{\overline{dT}(s) \cdot \overline{d^2T}(s)}{\rho(s)}.$$

On en déduit que

$$\frac{dR}{ds}(s) \stackrel{(1)}{=} -\frac{\frac{\overrightarrow{dT}}{ds}(s).\frac{\overrightarrow{d^2T}}{ds^2}(s)}{\rho^3(s)}$$

et comme M est de classe C^3 , alors $\frac{dR}{ds}$ est continue.

Comme $\frac{d\vec{T}}{ds}$ est de classe C^1 et on vient de montrer que la fonction $s \to R(s)$ est aussi de classe C^1 , alors le vecteur normal principal $\vec{N} = R \frac{d\vec{T}}{ds}$ est de classe C^1 et ainsi, il en est de même de l'application $s \in I \to C(s) \in \mathbb{R}^2$ qui donne les centres de courbure de Γ $\left(\overrightarrow{OC}(s) = \overrightarrow{OM}(s) + R(s)\overrightarrow{N(s)}\right)$. Cette application définit une courbe paramétrée et son image $\Gamma_D = C(I)$ est appelée *la développée de la courbe* Γ .

Exprimons $\frac{d\vec{N}}{ds}(s)$ et $\frac{d\vec{O}\vec{C}}{ds}(s)$ dans la base orthonormée $\{T(s), N(s)\}$, mais montrons d'abord le résultat suivant :

Proposition 2.2: Soient u_1 et u_2 des applications de $I \subset \mathbb{R} \to \mathbb{R}^2$ tel que $\forall t \in I$, $\{\overline{u_1(t)}, \overline{u_2(t)}\}$ est une base orthonormée de \mathbb{R}^2 . Supposons que u_1 et u_2 soient dérivables sur I. Alors la matrice des coordonnées de $\overline{u'_1(t)}$ et $\overline{u'_2(t)}$, par rapport à $\{\overline{u_1(t)}, \overline{u_2(t)}\}$, est antisymétrique (c-a-d $\forall i, j \ a_{ij} = a_{ji}$).

<u>Démonstration</u>: Pour i = 1, 2, $\|\overline{u_i(t)}\| = 1 \implies \|\overline{u_i(t)}\|^2 = 1$ et on a :

$$0 = \frac{d(1)}{dt} = \frac{d}{dt} \left(\left\| \overrightarrow{u_l(t)} \right\|^2 \right) = \frac{d}{dt} \left(\overrightarrow{u_l(t)} \cdot \overrightarrow{u_l(t)} \right) = 2\overrightarrow{u_l(t)} \cdot \frac{d\overrightarrow{u_l(t)}}{dt}$$
 (*)

D'autre part, comme $\overrightarrow{u_1(t)}$ et $\overrightarrow{u_2(t)}$ sont orthogonaux $(\overrightarrow{u_1(t)}.\overrightarrow{u_2(t)}=0)$, alors

$$0 = \frac{d(0)}{dt} = \frac{d}{dt} \left(\overrightarrow{u_1(t)} \cdot \overrightarrow{u_2(t)} \right) = \frac{d\overrightarrow{u_1(t)}}{dt} \cdot \overrightarrow{u_2(t)} + \overrightarrow{u_1(t)} \cdot \frac{d\overrightarrow{u_2(t)}}{dt}$$
 (**)

Ecrivons $\overrightarrow{u'_1(t)}$ et $\overrightarrow{u'_2(t)}$ dans la base $\{\overrightarrow{u_1(t)}, \overrightarrow{u_2(t)}\}$:

$$\overrightarrow{u_1'(t)} = \alpha \overrightarrow{u_1(t)} + \beta \overrightarrow{u_2(t)}$$
 et $\overrightarrow{u_2'(t)} = \gamma \overrightarrow{u_1(t)} + \delta \overrightarrow{u_2(t)}$,

ceci implique que

$$\overrightarrow{u'_1(t)}.\overrightarrow{u_1(t)} \stackrel{(*)}{=} (\alpha \overrightarrow{u_1(t)} + \beta \overrightarrow{u_2(t)}).\overrightarrow{u_1(t)} = \alpha = 0,$$

$$\overrightarrow{u'_2(t)}.\overrightarrow{u_2(t)} \stackrel{(*)}{=} (\gamma \overrightarrow{u_1(t)} + \delta \overrightarrow{u_2(t)}).\overrightarrow{u_2(t)} = \delta = 0$$

et

$$\begin{split} \beta &= \left(\alpha \overrightarrow{u_1(t)} + \beta \overrightarrow{u_2(t)}\right). \overrightarrow{u_2(t)} = \overrightarrow{u'_1(t)}. \overrightarrow{u_2(t)} \stackrel{(**)}{=} - \overrightarrow{u_1(t)}. \overrightarrow{u'_2(t)} \\ &= -\overrightarrow{u_1(t)} \left(\gamma \overrightarrow{u_1(t)} + \delta \overrightarrow{u_2(t)}\right) = -\gamma. \end{split}$$

Par conséquent

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}. \blacksquare$$

Cette proposition implique que la matrice des coordonnées de $\frac{\overrightarrow{dr}}{ds}(s)$ et $\frac{\overrightarrow{dN}}{ds}(s)$ par rapport à la base $\{\overrightarrow{T(s)}, \overrightarrow{N(s)}\}$ est antisymétrique, c-a-d

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{pmatrix}. \tag{*}$$

Par définition du vecteur normal principal, on a :

$$\frac{\overrightarrow{dT}}{ds}(s) = \rho(s) \, \overrightarrow{N(s)} = 0. \, \overrightarrow{T(s)} + \rho(s) \, \overrightarrow{N(s)} = a_{11}(s) \overrightarrow{T(s)} + a_{12}(s) \, \overrightarrow{N(s)}. \tag{**}$$

De (*) et (**) on a donc

$$\frac{\overrightarrow{dN}}{ds}(s) = a_{21}(s)\overrightarrow{T(s)} + a_{22}(s)\overrightarrow{N(s)} = -\rho(s)\overrightarrow{T(s)} + 0.\overrightarrow{N(s)} = -\rho(s)\overrightarrow{T(s)}.$$

Calculons $\frac{\overrightarrow{doc}}{ds}(s)$:

$$\frac{\overrightarrow{dOC}}{ds}(s) = \frac{\overrightarrow{dOM}}{ds}(s) + \frac{dR}{ds}(s)\overrightarrow{N(s)} + R(s)\frac{\overrightarrow{dN}}{ds}(s) = \overrightarrow{T(s)} + \frac{dR}{ds}(s)\overrightarrow{N(s)} - R(s)\rho(s)\overrightarrow{T(s)}$$
$$= \overrightarrow{T(s)} + \frac{dR}{ds}(s)\overrightarrow{N(s)} - 1.\overrightarrow{T(s)} = \frac{dR}{ds}(s)\overrightarrow{N(s)}.$$

On en déduit de cette dernière formule que, si le point C(s) de $\Gamma_D = C(I)$ (la développée de Γ) est régulier (c-a-d $\frac{\overrightarrow{doc}}{ds}(s) \neq \overrightarrow{0}$), la tangente à Γ_D au point C(s) coïncide avec la normale à $\Gamma = M(I)$ au point M(s).

II.3 Courbes de l'espace – Repère de Frénet

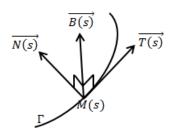
Soit (Γ, M) , $M: I \to \mathbb{R}^3$, une courbe paramétrée de l'espace (appelée aussi courbe gauche), de classe C^3 , dont tous les points sont biréguliers. Le paramètre étant une abscisse curviligne s.

Définition 2.4:

1) Le vecteur $\overrightarrow{B(s)} = \overrightarrow{T(s)} \wedge \overrightarrow{N(s)}$ est appelé vecteur binormal à Γ au point M(s).

$$\left\|\overrightarrow{B(s)}\right\| = \left\|\overrightarrow{T(s)} \wedge \overrightarrow{N(s)}\right\| = \sqrt{\left\|\overrightarrow{T(s)}\right\|^2 \left\|\overrightarrow{N(s)}\right\|^2 - \left(\overrightarrow{T(s)} \cdot \overrightarrow{N(s)}\right)^2} = \sqrt{1^2 \cdot 1^2 - 0^2} = 1.$$

2) Le repère orthonormé $(M(s), \{\overline{T(s)}, \overline{N(s)}, \overline{B(s)}\})$ s'appelle repère de Frénet de Γ au point M(s).



- 3) Le plan défini par $\left(M(s), \left\{\overline{T(s)}, \overline{N(s)}\right\}\right)$ s'appelle plan osculateur à Γ au point M(s) (c'est le plan qui contient le mieux Γ).
- Le plan défini par $(M(s), \{\overrightarrow{N(s)}, \overrightarrow{B(s)}\})$ s'appelle plan normal à Γ au point M(s).
- Le plan défini par $\left(M(s),\left\{\overrightarrow{T(s)},\ \overrightarrow{B(s)}\right\}\right)$ s'appelle plan rectifiant à Γ au point M(s).

Comme (Γ, M) est de classe C^3 , donc $\overline{N(s)} = \frac{1}{\rho(s)} \frac{\overrightarrow{dT}}{ds}(s)$ est dérivable. Par conséquent $\overline{B(s)} = \overline{T(s)} \wedge \overline{N(s)}$ est aussi dérivable.

<u>Définition 2.5:</u> Le réel $\tau(s) = \overrightarrow{B(s)} \cdot \frac{\overrightarrow{dN}}{ds}(s)$ est appelé *torsion* de la courbe Γ au point M(s).

Théorème 2.1: Les dérivées des vecteurs du repère de Frénet de Γ en un point M(s) s'expriment, par rapport à ce même repère, par :

$$\begin{cases} \frac{\overrightarrow{dT}}{ds}(s) &= \rho(s)\overrightarrow{N(s)} \\ \frac{\overrightarrow{dN}}{ds}(s) &= -\rho(s)\overrightarrow{T(s)} + \tau(s)\overrightarrow{B(s)} \\ \frac{\overrightarrow{dB}}{ds}(s) &= -\tau(s)\overrightarrow{N(s)} \end{cases}$$

Ces formules sont dites formules de Frénet.

<u>Démonstration</u>: Par définition du vecteur normal principal, on a :

$$\frac{\overrightarrow{dT}}{ds}(s) = \rho(s)\overrightarrow{N(s)},$$

c'est-à-dire la première formule de Frénet.

On sait que la matrice des coordonnées de $\frac{\overrightarrow{dr}}{ds}(s)$, $\frac{\overrightarrow{dN}}{ds}(s)$ et $\frac{\overrightarrow{dB}}{ds}(s)$ dans la base $\{\overrightarrow{T(s)}, \overrightarrow{N(s)}, \overrightarrow{B(s)}\}$ est antisymétrique, donc on a :

$$\begin{pmatrix}
\frac{\overrightarrow{dT}}{ds}(s) \\
\frac{\overrightarrow{dN}}{ds}(s) \\
\frac{\overrightarrow{dB}}{ds}(s)
\end{pmatrix} = \begin{pmatrix}
0 & \rho(s) & 0 \\
-\rho(s) & 0 & \alpha \\
0 & -\alpha & 0
\end{pmatrix} \begin{pmatrix}
\overline{T(s)} \\
\overline{N(s)} \\
\overline{B(s)}
\end{pmatrix} = \begin{pmatrix}
\rho(s)\overline{N(s)} \\
-\rho(s)\overline{T(s)} + \alpha\overline{B(s)} \\
-\alpha\overline{N(s)}
\end{pmatrix} (*)$$

Il reste à déterminer α pour trouver les deux dernières formules de Frénet.

Le vecteur $\overrightarrow{B(s)} = \overrightarrow{T(s)} \land \overrightarrow{N(s)}$ est orthogonal aux vecteurs $\overrightarrow{T(s)}$ et $\overrightarrow{N(s)}$, donc

$$\overrightarrow{B(s)} \cdot \overrightarrow{N(s)} = 0 \implies 0 = \frac{d(0)}{ds} = \frac{d}{ds} \left(\overrightarrow{B(s)} \cdot \overrightarrow{N(s)} \right) = \frac{\overrightarrow{dB}}{ds} (s) \cdot \overrightarrow{N(s)} + \overrightarrow{B(s)} \cdot \frac{\overrightarrow{dN}}{ds} (s) \\
= \frac{\overrightarrow{dB}}{ds} (s) \cdot \overrightarrow{N(s)} + \tau(s) \\
\Rightarrow \frac{\overrightarrow{dB}}{ds} (s) \cdot \overrightarrow{N(s)} = -\tau(s). \quad (**)$$

De (*) et (**) on a:

$$-\tau(s) \stackrel{(**)}{=} \frac{\overrightarrow{dB}}{ds}(s).\overrightarrow{N(s)} \stackrel{(*)}{=} -\alpha \overrightarrow{N(s)}.\overrightarrow{N(s)} = -\alpha \left\| \overrightarrow{N(s)} \right\|^2 = -\alpha.1 \implies \alpha = \tau(s). \blacksquare$$

Projection de (Γ, M) sur les plans osculateur, normal et rectifiant :

Soit (Γ, M) une courbe dans l'espace, paramétrée par une abscisse curviligne s, de classe C^3 , birégulière et dont la torsion $\tau(s_0)$ en un point $M(s_0)$ est non nulle. La formule de Taylor à l'ordre 3 en s_0 de l'application M s'écrit :

$$\overrightarrow{OM}(s) = \overrightarrow{OM}(s_0) + (s - s_0) \frac{\overrightarrow{dOM}}{ds}(s_0) + \frac{(s - s_0)^2}{2!} \frac{\overrightarrow{d^2OM}}{ds^2}(s_0) + \frac{(s - s_0)^3}{3!} \frac{\overrightarrow{d^3OM}}{ds^3}(s_0) + \frac{(s - s_0)^3}{3!} \overrightarrow{u}(s), \tag{1}$$

avec $\lim_{s \to s_0} \vec{u}(s) = \vec{0}$.

Comme $\frac{\overrightarrow{doM}}{ds}(s_0) = \overrightarrow{T(s_0)}$ et $\frac{\overrightarrow{d^2oM}}{ds^2}(s_0) = \frac{\overrightarrow{dT}}{ds}(s_0) = \rho(s_0)\overrightarrow{N(s_0)}$, et en utilisant les formules de Frénet, la formule de Taylor ci-dessus, par rapport au repère de Frénet $\left(M(s_0), \left\{\overrightarrow{T(s_0)}, \overrightarrow{N(s_0)}, \overrightarrow{B(s_0)}\right\}\right)$, s'écrit :

$$\overrightarrow{OM}(s) - \overrightarrow{OM}(s_0) = \overrightarrow{M(s_0)M(s)}$$

$$= (s - s_0) \left(1 + \alpha(s) \right) \overrightarrow{T(s_0)} + \frac{(s - s_0)^2}{2!} \left(\rho(s_0) + \beta(s) \right) \overrightarrow{N(s_0)}$$

$$+ \frac{(s - s_0)^3}{3!} \left(\rho(s_0) \tau(s_0) + h(s) \right) \overrightarrow{B(s_0)},$$

où

$$\vec{u}(s) = f(s)\overline{T(s_0)} + g(s)\overline{N(s_0)} + h(s)\overline{B(s_0)},$$

$$\alpha(s) = \frac{(s - s_0)^2}{3!}(-\rho^2(s_0) + f(s)),$$

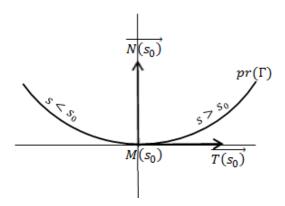
$$\beta(s) = \frac{(s - s_0)}{3} \left(\frac{d\rho}{ds}(s_0) + g(s)\right)$$

et

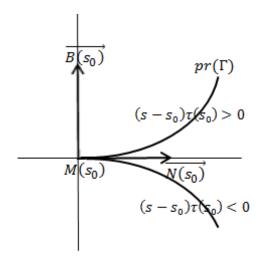
$$\lim_{s \to s_0} \alpha(s) = \lim_{s \to s_0} \beta(s) = \lim_{s \to s_0} f(s) = \lim_{s \to s_0} g(s) = \lim_{s \to s_0} h(s) = 0.$$

On en déduit la forme, au voisinage de $M(s_0)$, des projections orthogonales de la courbe Γ sur ses plans osculateur, normal et rectifiant au point $M(s_0)$.

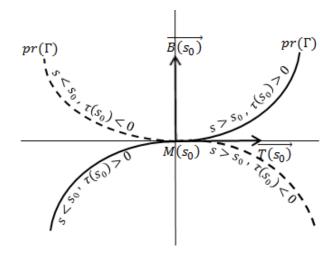
1 - Projection orthogonale de Γ sur son plan osculateur au point $M(s_0)$



2 - Projection orthogonale de Γ sur son plan normal au point $M(s_0)$



3 - Projection orthogonale de Γ sur son plan rectifiant au point $M(s_0)$



Expression de la torsion par rapport à un paramètre t quelconque

Soit (Γ, M) une courbe paramétrée dans l'espace, de classe C^3 et dont tous les points M(t) sont biréguliers. La torsion $\tau(t)$ de Γ en un point M(t) est égale à :

$$\tau(t) = \frac{\left(\overrightarrow{M'(t)}, \overrightarrow{M''(t)}, \overrightarrow{M'''(t)}\right)}{\left\|\overrightarrow{M'(t)} \wedge \overrightarrow{M''(t)}\right\|^{2}},$$

où

$$\left(\overrightarrow{M'(t)}, \ \overrightarrow{M''(t)}, \ \overrightarrow{M'''(t)}\right) = \overrightarrow{M'(t)} \cdot \left(\overrightarrow{M'(t)} \wedge \overrightarrow{M''(t)}\right)$$

est le produit mixte des vecteurs $\overrightarrow{M'(t)}$, $\overrightarrow{M''(t)}$ et $\overrightarrow{M'''(t)}$.

Le produit mixte est une forme multilinéaire alternée ; ceci implique que

$$\left(\overrightarrow{M'(t)}, \ \overrightarrow{M''(t)}, \ \overrightarrow{M'''(t)}\right) = -\left(\overrightarrow{M''(t)}, \ \overrightarrow{M'(t)}, \ \overrightarrow{M''(t)}\right).$$

Dans la base canonique $\{\vec{l}, \vec{j}, \vec{k}\}$ ou dans une base orthonormée directe, le produit mixte est égale a :

$$\left(\overrightarrow{M'(t)}, \overrightarrow{M''(t)}, \overrightarrow{M'''(t)}\right) = det\left(\overrightarrow{M'(t)}, \overrightarrow{M''(t)}, \overrightarrow{M'''(t)}\right).$$

Théorème 2.2: Soit (Γ, M) une courbe paramétrée dans l'espace, de classe C^3 et dont tous les points M(t) sont biréguliers. La courbe Γ est plane si et seulement si sa torsion est identiquement nulle (c-a-d $\forall t \in domM$, $\tau(t) = 0$).