Module d' Analyse 4 Licence Maths 2^{eme} Année

Fevrier 2020

Série 1 (Fonctions de plusieurs variables. Limite, continuité)

Excercice 1. a) Trouver $\lim_{n\to\infty} X_n$ si $X_n = (n\sin\frac{\pi}{n}, \cos\frac{\pi}{n}, e^{-n}\sin n^2)$.

b) Soit E e.v muni de deux normes équivalentes N_1 et N_2 .Montrer que pour toute suite $(X_k)_{k\in\mathbb{N}}$ de E et pour tout $l\in E$ on a :

$$\underset{k\longrightarrow +\infty}{\lim} X_k = l$$
 pour la norme $N_1 \Longleftrightarrow \underset{k\longrightarrow +\infty}{\lim} X_k = l$ pour la norme N_2

c) Soient
$$x, y, z \in \mathbb{R}^n$$
. Montrer que : $\frac{\|x - z\|}{1 + \|x - z\|} \le \frac{\|x - y\|}{1 + \|x - y\|} + \frac{\|y - z\|}{1 + \|y - z\|}$

Excercice 2 : Trouver le domaine de définition $D \subset \mathbb{R}^2$ et le représenter, pour les fonctions suivantes :

a)
$$f(x,y) = \frac{\ln x + \ln y}{x - y}$$
, b) $f(x,y) = \frac{x^2 - y^2}{\sqrt{x^2 - y}}$.
c) $f(x,y) = \sqrt{1 - x^2} + \sqrt{1 - y^2}$, d) $f(x,y) = \arcsin \frac{y}{x}$

Excercice 3.: Soit la fonction $f(x,y) = \frac{xy + y^2}{\sqrt{x^2 + y^2}}$, $(x,y) \neq (0,0)$, en utilisant la définition de la limite, montrer que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Excercice 4.: Soient $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$ la fonction définie par $f(x,y) = \frac{2y^4}{x^2 + u^4}$.

- 1°) Montrer que pour tout $\alpha \in \mathbb{R}$: $\lim_{t \to 0} f(t, \alpha t) = 0$.
- 2°) Peut-on en déduire que $\lim_{(x,y)\to(0,0)} \overline{f(x,y)}$ existe ?.

Excercice 5. : Etudier la limite à l'origine de la fonction f définie par

a)
$$f(x,y) = \frac{x^2y^2}{x^2 + y^4}$$
, b) $f(x,y) = \frac{\sin x \sin y}{\tan \sqrt{x^2 + y^2}}$ c) $f(x,y) = \frac{x^3y^4}{(x^2 + y^6)^2}$.

Excercice 6: a) Peut on prolonger par continuité en (0,0) les fonctions suivantes : $f_1(x,y) = \frac{x^2 + y^2}{|x| + |y|}$, $f_2(x,y) = \frac{|x+y|}{x^2 + y^2}$, $f_3(x,y) = \frac{1 - \cos(xy)}{x^2 + y^2}$.

b) Etudier la continuité des fonctions suivantes :

$$f(x,y) = \begin{cases} \frac{\sin\sqrt{xy} - \sqrt{xy}}{xy} & si \ (x,y) \neq 0 \\ 0 & si \ (x,y) = 0 \end{cases}; \quad g(x,y) = \begin{cases} \frac{4x^2 + xy}{\sqrt{x^2 + y^2}} & si \ (x,y) \neq 0 \\ 0 & si \ (x,y) = 0 \end{cases}.$$

$$h(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} & si \ (x,y) \neq 0 \\ 0 & si \ (x,y) = 0 \end{cases}...f(x,y) = \begin{cases} y + Arc\tan(x^2y) & si \ y \neq 0 \\ 0 & si \ y = 0 \end{cases}.$$