Module d' Analyse 4 Licence Maths 2^{eme} Année

23-02 2020

Série 2 (Dérivées partielles, différentiabilité)

Excercice 1: Soit la fonction f définie par $f(x,y) = \frac{\ln(1+xy^2)}{x^2+y^2}$

a) fest-elle continue en tout point intérieur à son domaine de définition (préciser le domaine en premier).

b) Montrer que f se prolonge par continuité en (0,0).

Excercice 2 : Calculer les dérivées partielles premières des fonctions suivantes :

$$f_1(x,y) = \ln(x + \sqrt{x^2 + y^2}), \quad f_2(x,y) = e^{x^2 + y^3}, \quad f_3(x,y) = Arc \tan(\frac{y}{x}), \quad f_4(x,y) = \exp(\frac{x^2}{y}),$$

 $f_5(x,y) = x^y, \quad x > 0, \quad y > 0.$

Excercice 3: Soit la fonction $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0

1) Montrer que $\frac{\partial f}{\partial x}(0,0) = 1$ et $\frac{\partial f}{\partial y}(0,0) = -1$.

2) Montrer que les dérivées partielles $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial x}(x,y)$ ne sont pas continues au point (0.0). **Excercice 4:** Soit la fonction $f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

Montrer que f est de classe C^1 .

Excercice 5 : Etudier la différentiabilité en (0,0) pour les fonctions suivantes

Excercice 5: Etudier la differentiabilité en (0,0) pour les fonctions suivantes :
$$f_1(x,y) = \begin{cases} \frac{yx^2 + 3y^3}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}; \quad f_2(x,y) = \begin{cases} \frac{(\ln(|yx| + 1)^2}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}$$

$$f_3(x,y) = \begin{cases} (x^2 + y^2)^3 \cos\left(\frac{1}{x^2 + y^2}\right) & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}.$$

Excercice 6: Soit la fonction $f(x,y) = \frac{x^2y}{x^4 + u^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0

Montrer que f admet une dérivée suivant tout vecteur en (0,0) sans être différentiable.

Excercice7: Soit f une fontion (réelle) continue au voisinage de $X_0 = (a, b)$.

a) Montrer que si f est différentiable au point X_0 alors la dérivée suivant une direction $u, D_u f(X_0) =$ $f'_u(X_0) = \nabla f(X_0).u.$

b) Calculer $f'_u(a,b)$ si $f(x,y) = x^2 + y^2$ et $u = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

Excercice 8:

Soit la fonction définie par : $f(x,y) = (x-y)^2 \sin\left(\frac{1}{x-y}\right)$ si $x \neq y$ et f(x,y) = 0 si x = y.

a) Calculer les dérivées partielles de f en un point qlq $(x,y) \in \mathbb{R}^2$. Est -ce qu'elles sont continues sur la la droite $\triangle : y = x$?

b Est -ce que f est différentiable en un point $(x_0, x_0) \in \Delta$.