

Plan du cours

- Introduction
- Physiopathologie
- Les antiviraux
- Les limites de la chimiothérapie antivirale
- Conclusion

Introduction

- Les infections virales sont le plus souvent bénignes et ne requière aucun traitement.
- D'autres peuvent aussi être évitées grâce à la vaccination.
- Mais certaines sont graves et chroniques comme l'herpès et le zona ou carrément mortelles (Infection à VIH ou hépatite C) et justifie le recours à des médicaments appelés Antiviraux.

- Le virus est un agent infectieux caractérisé par un parasitisme intracellulaire strict.
- Peut infecter de nombreux hôtes : plantes, animaux, bactéries.

Les deux ou trois éléments constituant un virus

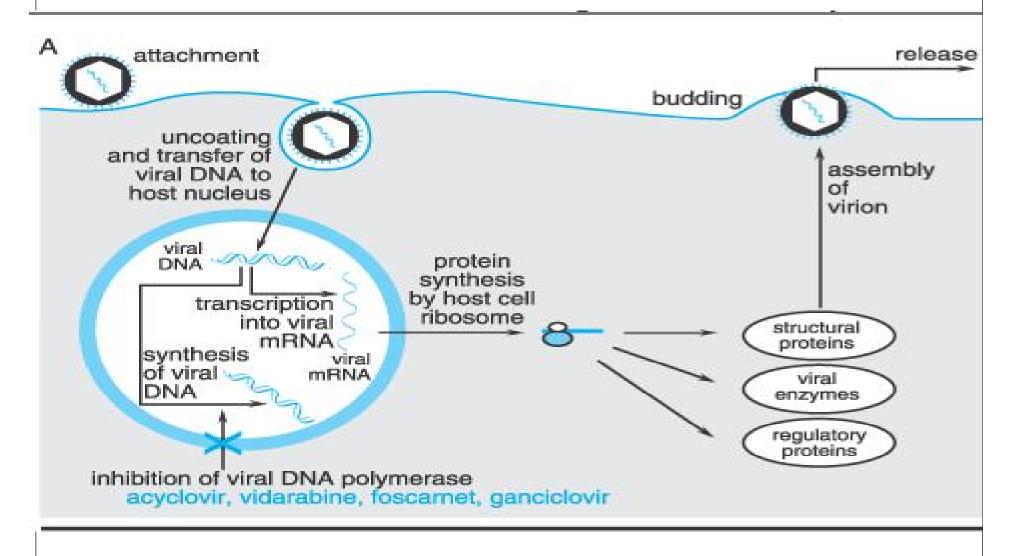
1) Génome : ARN ou ADN

2) Capside

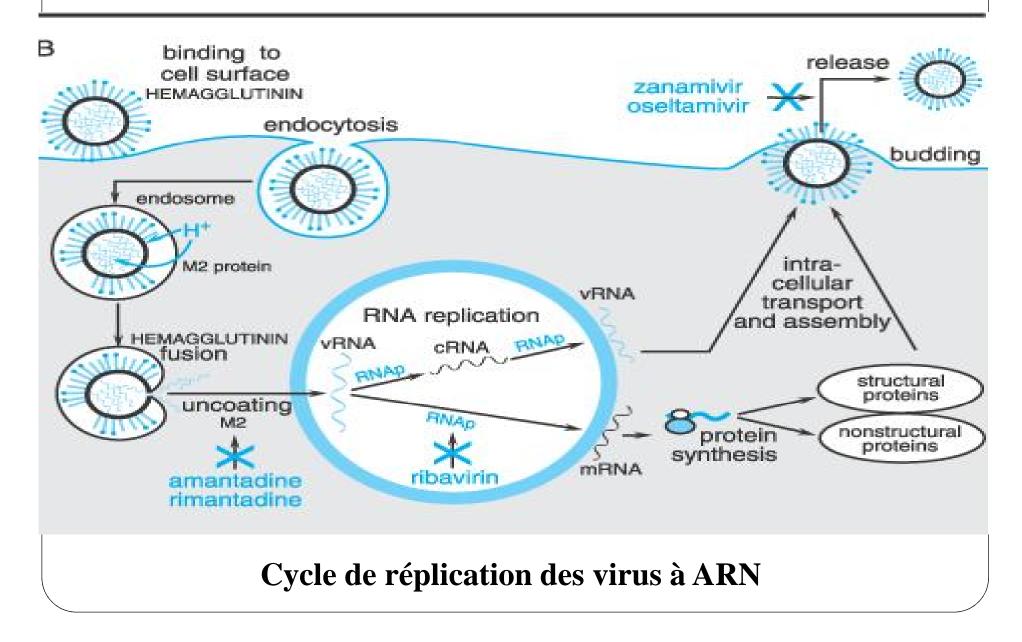
3) + ou - Enveloppe

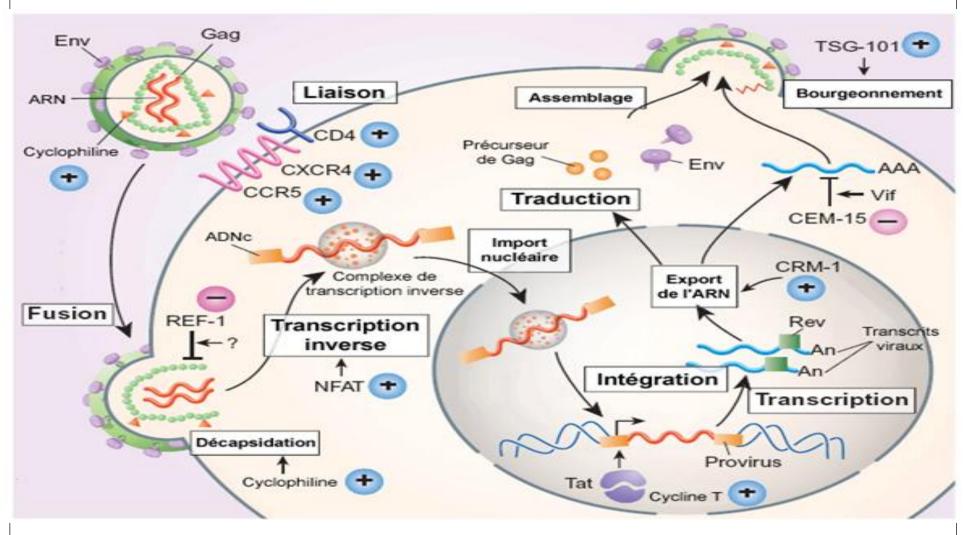
Virus nu

Virus enveloppe

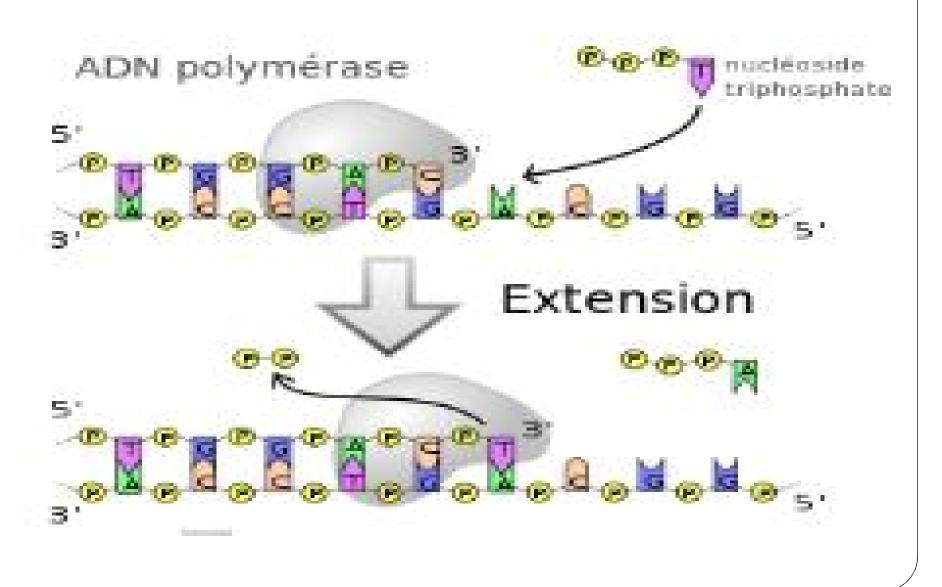

• Classification:

Basée sur:


- 1) Le type d'acide nucléique, ARN ou ADN, sa structure (simple ou double brin, sens positif ou négatif).
- 2) La présence ou non de l'enveloppe.
- 3) Les propriétés biologiques (voies de transmission, vecteurs, pathogénie).


La multiplication virale comporte de manière générale 6 étapes et chacune de ces étapes est une cible thérapeutique potentielle :

- 1) Attachement du virus sur des récepteurs de la membrane cytoplasmique.
- 2) Pénétration dans la cellule par endocytose ou par fusion.
- 3) Décapsidation qui libère le génome viral.
- 4) Réplication: transcription et traduction des protéines précoces de régulation; synthèse des acides nucléiques viraux; production des protéines virales tardives structurales
- 5) Formation de nouveaux virions.
- 6) Libération de nouveaux virions.



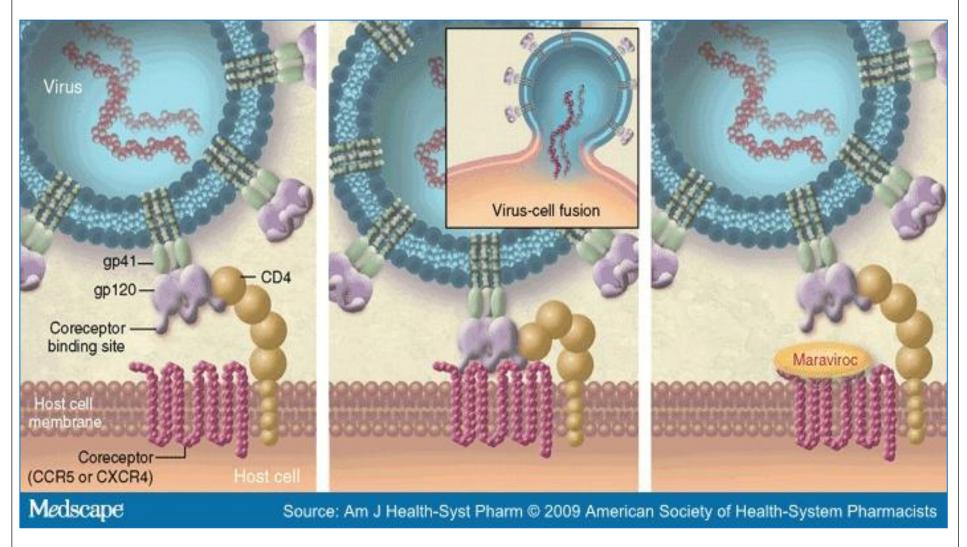
Cycle de réplication des virus à ADN

Cycle de réplication du VIH

Les antiviraux sont utilisés dans le traitement des maladies virales suivantes:

- ➤ Infections à VIH (SIDA).
- ➤ Infections à herpesviridae (Herpesvirus):
 - Groupe HSV (Herpes Simplex Virus) responsable de l'herpes cutanéo-muqueux et génital ainsi que de la méningite à HSV.
 - Groupe VZV responsable de la varicelle et du zona.
 - Groupe du Cytomégalovirus (CMV).
- > Hépatites virales chroniques C et B (VHC et VHB).
- ➤ Infections respiratoires basses à virus respiratoire syncytial (VRS).
- ➤ Infection grippale.

- Molécules capables d'interférer avec le métabolisme du virus pour inhiber son cycle de multiplication, et ce en agissant sur l'une des étapes clés de ce cycle.
- Ils sont virostatiques et pas virucides.
- Ces molécules possèdent des limites :
- 1) toxicité cellulaire secondaire(interférence avec le métabolisme cellulaire normal).
- 2) Inefficacité sur les virus latents comme VIH.
- 3) Acquisition des résistances dues aux variabilités génétiques (mutations).


1) Mécanisme d'action:

Agissent sur l'une des étapes de la multiplication des virus.

Inhibition de la fixation du virus à la cellule cible:

Maraviroc:

- Inhibiteur du corécepteur CCR5 (inhibiteur allostérique).
- Empêche la fixation du VIH sur la cellule cible (utilisé pour le traitement du VIH).

Mécanisme d'action du Maraviroc

1) Mécanisme d'action:

Agissent sur l'une des étapes de la multiplication des virus.

Inhibition de la fusion des membranes du virus et de la cellule cible:

Enfuvirtide ou T20

- Peptide dérivé de la GP41, inhibe la fusion du virus à la cellule cible.
- Utilisé en association dans le traitement de l'infection à VIH-1.

1) Mécanisme d'action:

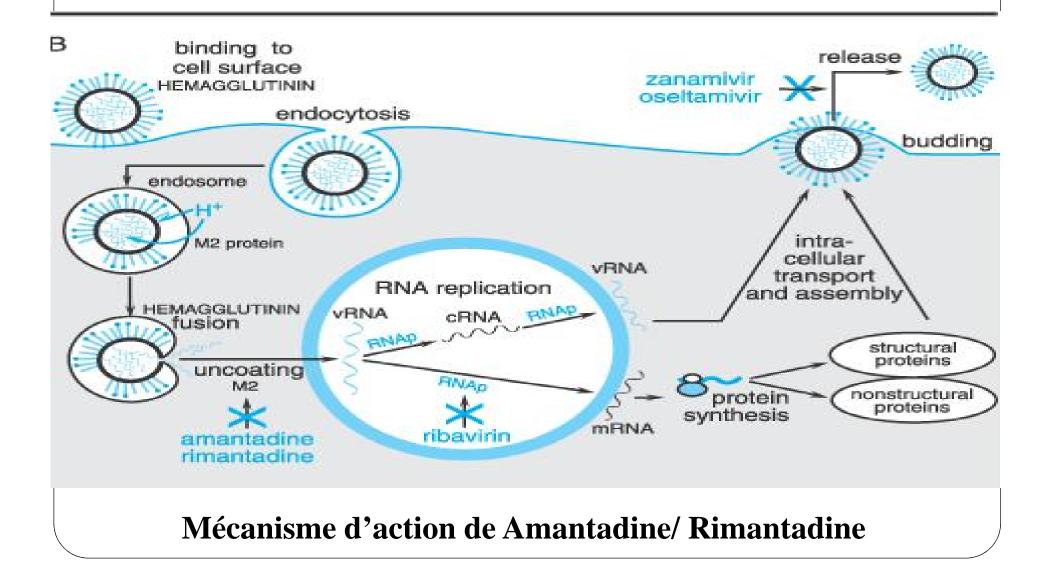
Agissent sur l'une des étapes de la multiplication des virus.

Inhibition de la fusion des membranes du virus et de la cellule cible:

Anticorps monoclonal humanisé anti-VRS (le

Palivizumab): monoclonal humanisé de type IgG1K, dirigé contre un épitope du site antigénique A de la protéine de fusion du VRS. Cet anticorps exerce une puissante activité neutralisante et d'inhibition de fusion vis-à-vis des variétés des sous-types des chaînes A et B du VRS.

1) Mécanisme d'action:


Agissent sur l'une des étapes de la multiplication des virus.

Inhibition de la décapsidation:

Amantadine et Rimantadine

- Cible spécifique : protéine M2 des virus grippaux type A virus reste encapsidé.
- Pas d'efficacité sur virus de grippe type B (absence de protéine M2).

1) Mécanisme d'action

1) Mécanisme d'action:

Agissent sur l'une des étapes de la multiplication des virus.

Inhibition de la réplication virale:

Mécanisme d'action de la plupart des antiviraux commercialisés.

La majorité sont des inhibiteurs d'ADN polymérase virale

1) Mécanisme d'action

Inhibition de la réplication virale

a) Les analogues des nucléotides et des nucléosides:

- Se distingue des nucléosides naturels par une modification de leur sucre ou base purique ou pyrimidique et l'absence de groupement -OH en position 3'.
- Ils doivent être **triphosphorylés** dans la cellules pour être actifs.

Par enzymes cellulaires.

Par enzymes virales: HSV et VZV:

thymidine Kinase (TK) / CMV : phosphotransférase.

1) Mécanisme d'action

- Inhibition de la réplication virale
- a) Les analogues des nucléotides et des nucléosides:
- Prennent la place des nucléosides normaux
- Cible principale : enzymes virales :

ADN polymérase virale pour les principaux antis herpétiques.

Transcriptase inverse pour VIH

- Affinité pour les polymérases virales >> polymérases cellulaires
- Incorporation dans l'ADN viral, blocage de l'élongation de l'ADN par manque du radical OH à la position 3' nécessaire à l'accrochage d'un autre nucléotide

1) Mécanisme d'action

Inhibition de la réplication virale

a) Les analogues des nucléotides et des nucléosides:

Molécules	Virus cible	Particularités
Aciclovir	Herpes virus Virus du zona	Analogue de la Guanosine
Ganciclovir	Herpes virus CMV	Analogue de la Guanosine
Penciclovir	Herpes virus Virus du zona	Analogue acyclique de la Guanine
Famciclovir		Précurseur du Penciclovir
Valaciclovir		Précurseur de l'aciclovir
Valganciclovir		Précurseur du

1) Mécanisme d'action

Inhibition de la réplication virale

a) Les analogues des nucléotides et des nucléosides:

Molécules	Virus cible	Particularités
Les inhibiteurs de la transcriptase inverse du VIH (Abacavir, Didanosine, Emtricitabine, Zalcitabine, Lamivudine, Stavudine, Zidovudine, Ténofovir).	VIH	Ce sont tous des inhibiteurs nucléosidiques de la transciptase inverse du VIH, sauf le Ténofovir qui est un inhibiteur nculéotidique.
Cidofovir	CMV	Analogue de Cytosine déjà phosphorylé.
Idoxuridine	HSV	Analogue iodé de la thymidine. Utilisé uniquement en traitement topique

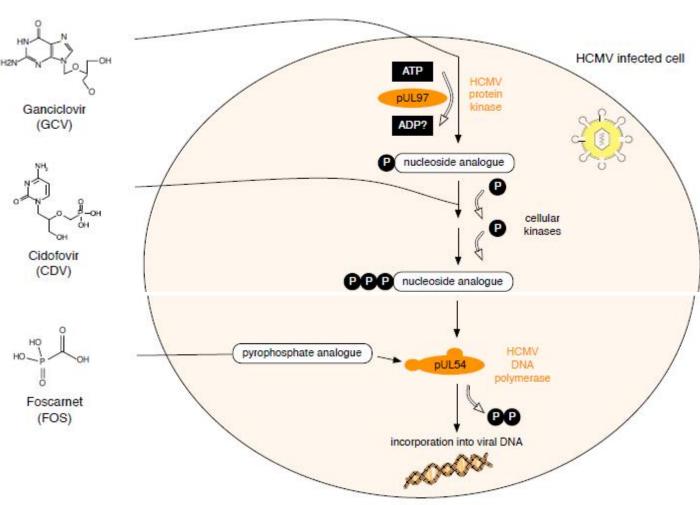
1) Mécanisme d'action

Inhibition de la réplication virale

a) Les analogues des nucléotides et des nucléosides:

Molécules	Virus cible	Particularités
Ténofovir.	VHB	Nucléotide analogue de l'Adénine
Adéfovir	VHB	Analogue de l'Adénosine.
Entécavir	VHB	Analogue de la Guanosine
Ribavirine	VHC VRS	Analogue de la Guanosine
Lamivudine	VHB	Analogue de la Cytidine
Telbivudine	VHB	Analogue nucléosidique

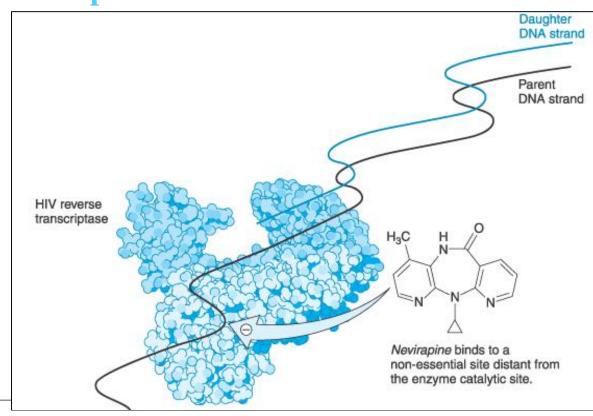
1) Mécanisme d'action *Inhibition de la réplication virale


b) Analogue du pyrophosphate inorganique:

Foscarnet:

- Inhibe directement l'ADN polymérase de l'herpes virus et la transcriptase inverse du VIH sans avoir besoin d'un métabolisme intracellulaire (sans phosphorylation préalable).
- Efficace aussi sur le virus varicelle zona et le CMV.
- Se lie réversiblement au site de fixation du pyrophosphate de ces polymérases, inhibe le clivage et la libération de la partie pyrophosphate des nouvelles molécules triphosphates-nucléotides et empêche l'allongement de la chaine d'ADN.
- Affinité 100 fois plus élevée pour les polymérases virales que pour les polymérases cellulaires.

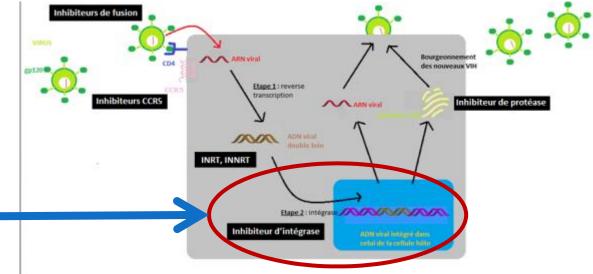
- 1) Mécanisme d'action
 - Inhibition de la réplication virale
 - b) Analogue du pyrophosphate inorganique:


Foscarnet:

- 1) Mécanisme d'action
 - Inhibition de la réplication virale
 - c) Les inhibiteurs non nucléosidiques de la transcriptase inverse du VIH-1 (INNITI):

Efavirenz/ Etravirine/ Névirapine.

Se fixent à proximité du site catalytique de l'enzyme au sein d'une poche hydrophobe, il en résulte une perte de flexibilité de la TI altérant son activité.


1) Mécanisme d'action

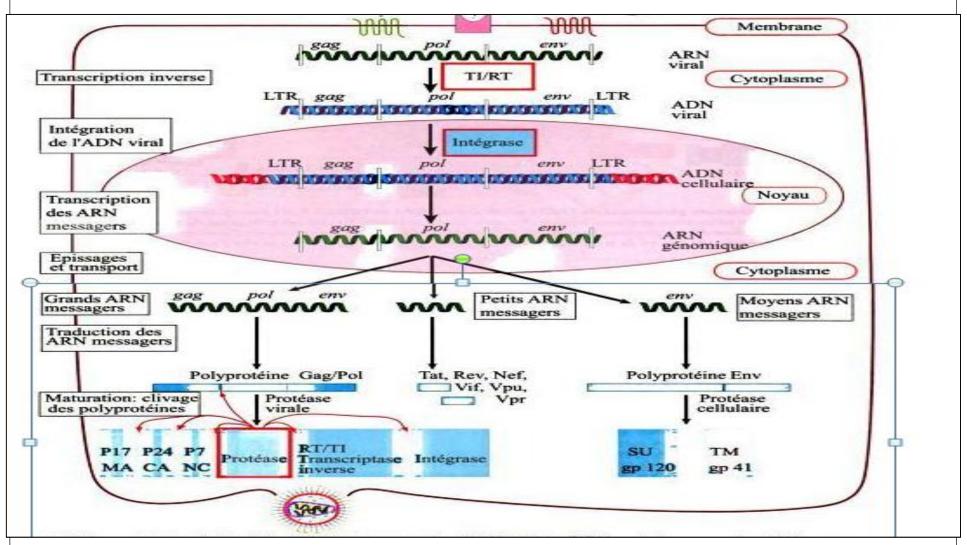
Inhibition de la réplication virale

d) Les inhibiteurs de l'intégrase du VIH:

Raltégravir

Inhibe l'enzyme qui assure l'intégration du DNA d'origine virale (obtenu à partir du RNA viral sous l'effet de la transcriptase inverse) dans le DNA humain (**intégrase**), étape nécessaire à la reproduction du virus.

1) Mécanisme d'action

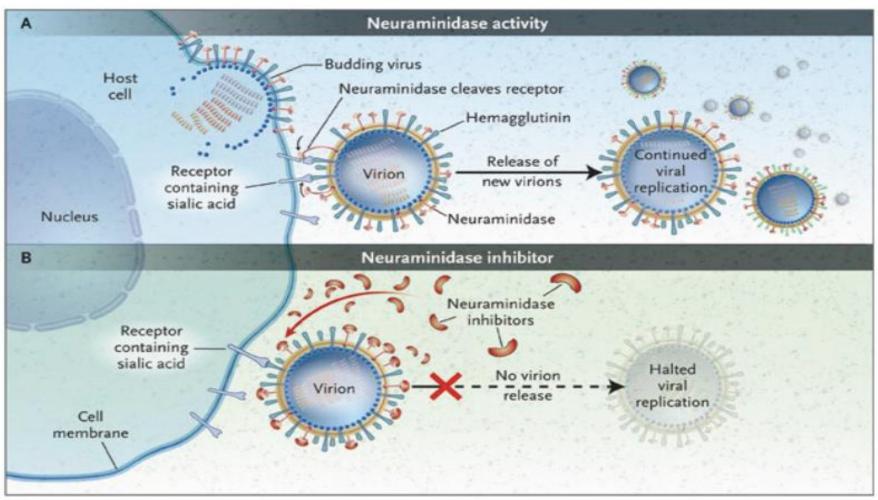

Inhibition des étapes finales de multiplication virale:

a) Inhibition de la maturation des particules virales (antiprotéases):

Saquinavir/ Ritonavir/ Atazanavir/ Indinavir...

Se lient de manière compétitive au site actif de la protéase du VIH-1 et empêchent ainsi le clivage des précurseurs polypeptidiques gag et pol viraux en protéines de structure définitive. Les particules virales nouvellement formées sont alors immatures et non infectieuses.

1) Mécanisme d'action



Mécanisme d'action des antiprotéases

- 1) Mécanisme d'action
 - Inhibition des étapes finales de multiplication virale:
 - b) Inhibition de la libération des particules virales: Oseltamivir, Zanamivir.

Inhibition de l'enzyme « neuraminidase » des virus de la grippe : Les nouvelles particules virales ne sont pas libérées par bourgeonnement limitant ainsi la propagation du virus.

1) Mécanisme d'action

Inhibition de la libération des particules virales (Oseltamivir, Zanamivir)

1) Mécanisme d'action

Immunomodulation:

Stimulation de l'immunité innée et acquise antivirale via l'administration d'interférons humains de type I recombinants (IFN-alpha 2a ou IFN-alpha 2b).

Les formes Pegylées des interférons permettent de maintenir des concentrations élevées d'IFN en retardant leur élimination, ce qui entraîne un accroissement de leur efficacité.

Sont utilisés dans la prise en charge des hépatites chronique (B et C).

2) Indications:

≻Hépatite virale B:

Interféron pégylé.

Antiviral en monothérapie: Entécavir/Ténofovir en 1ère intention.

Telbivudine/Adéfovir en 2ème

intention.

<u>Bithérapie antivirale</u>: Peut être envisagée notamment chez les patients co-infectés VHB-VIH (Lamivudine, Emtricitabine, Ténofovir).

Objectif du traitement: Séroconversion HBe.

Eradication exceptionnelle.

2) Indications

>Hépatite virale C:

Interféron pégylé associé à la Ribavirine.

Durée variable selon le génotype du VHC et la charge virale initiale.

>Herpès oro-facial:

Aciclovir (Primo-infection).

Aciclovir ou Valaciclovir (Prévention des récurrences).

>Herpès génital:

Aciclovir ou Valaciclovir (Primo-infection et prévention des récurrences).

2) Indications

>Varicelle:

Varicelle non compliquée du sujet immunocompétent: Trt symptomatique.

Formes graves et patients à risque: Aciclovir.

>Zona:

Le traitement antiviral concerne:

- Les sujets immunocompétents, dans l'objectif de prévention des douleurs post-zostériennes (Valaciclovir ou Famciclovir).
- Les sujets présentant un zona ophtalmique, afin d'éviter

La complicatione (Acidovir Valacialovir ou Famaiolovir)

2) Indications

>Infections à CMV:

Le traitement s'adresse aux sujets immunodéprimés.

Ganciclovir ou Foscarnet en 1ère intention.

Valganciclovir en cas de rétinite à CMV.

Cidfovir en cas de rétinite à CMV chez le patient HIV+.

>L'infection grippale:

Traitement et prévention des complications chez les sujets à risque.

Zanamivir et Oseltamivir (+++): Doivent être commencés dans les 48 heures qui suivent l'apparition des symptômes.

2) Indications

> Infection à VRS:

Le palivizumab: indiqué chez de très jeunes enfants qui souffrent de dysplasie bronchopulmonaire ou de cardiopathie congénitale.

Ribavirine: En aérosol.

> L'infection à VIH:

Objectif du Trt: Diminuer la morbidité et la mortalité de l'infection par le VIH (infections opportunistes, cancers...) en restaurant un nombre de lymphocytes CD4 adéquat.

- Associer les médicaments antirétroviraux.
- S'assurer de la bonne observance du Trt.
- Généralement on recommande une trithérapie:

2 INTI + 1 INNTI

2 INTI + 1 IP

3) Effets indésirables:

Manque de spécificité des virus Interférences avec le métabolisme cellulaire de l'hôte Effets secondaires.

Classe d'antivirus	Effets indésirables
Antiherpétiques	Néphrotoxicité Troubles électrolytiques (Foscarnet et Cidofovir +++). Toxicité hématologique dose dépendante Troubles digestifs
Interférons	Troubles hématologique (Myélosuppression) Troubles psychiatriques (syndrome dépressif) Syndrome pseudo-grippal.
Antirétroviraux	Anomalies glucido-lipidiques Atteintes mitochondriales Anomalies osseuses. Réactions cutanées.

3) Effets indésirables:

Manque de spécificité des virus Interférences avec le métabolisme cellulaire de l'hôte Effets secondaires.

Classe d'antivirus	Effets indésirables
Antiviraux de la grippe	Généralement bien tolérés. Troubles digestifs. Insomnies, vertiges. Oseltamivir et Zanamivir sont mieux tolérés que l'amantadine.
Ribavirine Efavirenz	Tératogène
Ténofovir	Néphrotoxicité

4) Interactions médicamenteuses:

- Antirétroviraux (Inhibiteurs de la protéase):

 Métabolisme hépatique important (Cyp 450 3A4+++)

 Interactions avec les inducteurs et les inhibiteurs de ce Cyp (Ex Anticonvulsivants inducteurs enzymatiques).
- Antirétroviraux (Efavirenz, Névirapine):
- Ce sont des inducteurs enzymatiques beaucoup d'interactions (oestroprogestatifs contraceptifs, saquinavir...). Leur métabolisme peut être inhibé par les inhibiteurs enzymatique (Rifampicine, Kétoconazole).
- L'administration de **médicaments néphrotoxiques** (aminosides) potentialise la toxicité rénale des

Les limites de la chimiothérapie antivirale

- > Toxicité cellulaire non négligeable (médullaire, rénale...).
- > Spécificité étroite (pas de thérapie à large spectre).
- > Activité antivirale limitée (action virostatique et impossibilité d'éradiquer les infections latentes).
- ➤ Un coût financier assez important.
- > Risque d'émergence de virus résistants (mutations).

Conclusion

Malgré les limites de cette chimiothérapie antivirale dont une activité non virucide et une émergence rapide de mutants résistants, les antiviraux permettent pour certaines infections la guérison complète et pour d'autres au moins une amélioration du pronostic de la maladie et de la qualité de vie des patients.