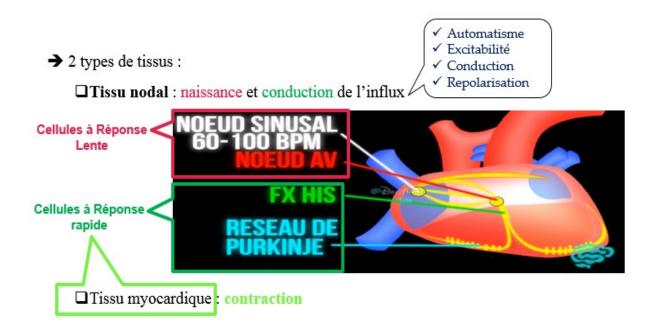
I- INTRODUCTION

Les antiarythmiques sont des médicaments qui modulent les propriétés d'excitabilité, d'automaticité et de conduction du tissu cardiaque.

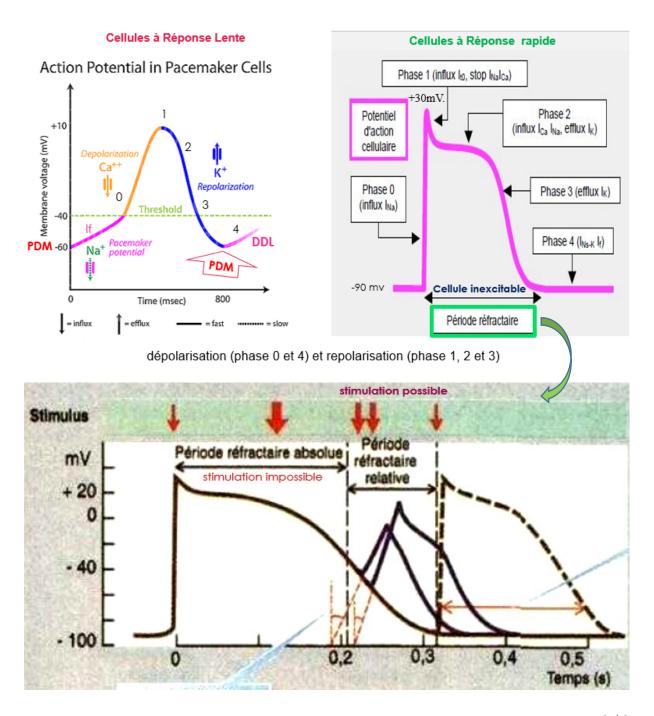
Les **médicaments** antiarythmiques sont **destinés à réduire la morbidité et si possible la mortalité** associées aux troubles du rythme cardiaque

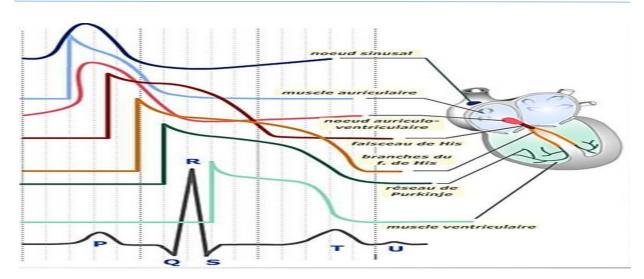
De nature très hétérogène du point de vue chimique, pharmacologique et thérapeutique.

Très difficiles à manier :

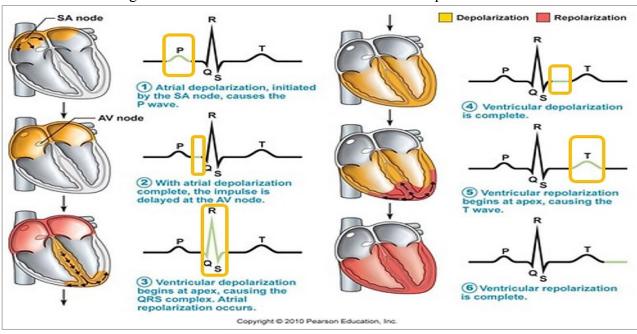

- Arythmies nombreuses et de physiopathologie complexe.
- Effets indésirables nombreux et importants (marge thérapeutique étroite, effet arythmogène).

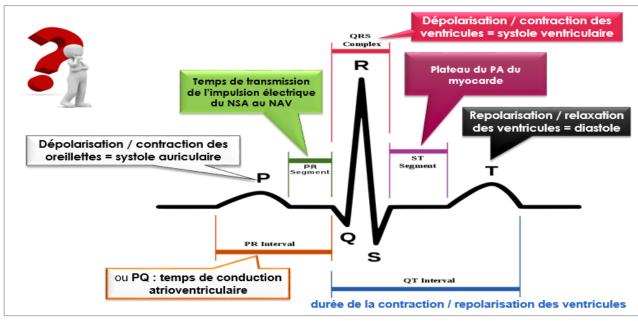
Physiologie du rythme et de l'activité électrique cardiaque


Différentes cellules participent à la genèse du rythme cardiaque et à sa propagation harmonieuse à l'ensemble du cœur : la finalité de ce processus est de permettre à l'ensemble des cellules musculaires cardiaques de se contracter de manière synchrone pour assurer le bon fonctionnement hémodynamique du cœur.



- tonus adrénergique surtout diurne
- tonus cholinergique permanent, s'accentuant pendant le sommeil




- ◆ Automatisme : Capacité de se dépolariser lentement et spontanément à partir d'un état polarisé au repos (au repos, l'intérieur des cellules est électriquement plus négatif que l'extérieur). L'automatisme assure l'émergence d'un rythme cardiaque.
- Excitabilité: Capacité de se dépolariser brutalement à partir d'un potentiel électrique (dit potentiel seuil) mettant fin à l'état de repos. L'excitabilité est nécessaire à la propagation des influx électriques.
- ◆ Conduction : Capacité de propager aux cellules voisines l'influx électrique résultant de la dépolarisation.
- ◆ Repolarisation : Capacité des cellules à se repolariser pour revenir à l'état (polarisé) de repos.

La sommation de tous les PA génère un signal enregistrable sur l'électrocardiogramme (ECG) de surface. Ce signal est le reflet des différentes activités électriques du cœur.

Physiopathologie des arythmies

Troubles du rythme cardiaque

ou « arythmies cardiaques », sont définis par l'existence de battements irréguliers, trop lents ou trop rapides, sans que ces modifications du rythme soient liées à une cause dite « physiologique ».

Dérèglement de l'activité électrique du cœur

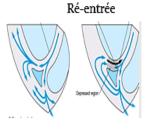
Oreillettes / NAV ventricules

Arythmie supraventriculaire Arythmie ventriculaire

Bradyarythmies < 60-100 < Tachyarythmies

→ anomalies dans la genèse de l'impulsion électrique et/ou de la conduction

1- Troubles de l'automatisme


2- Troubles de la conduction

Automaticité anormal

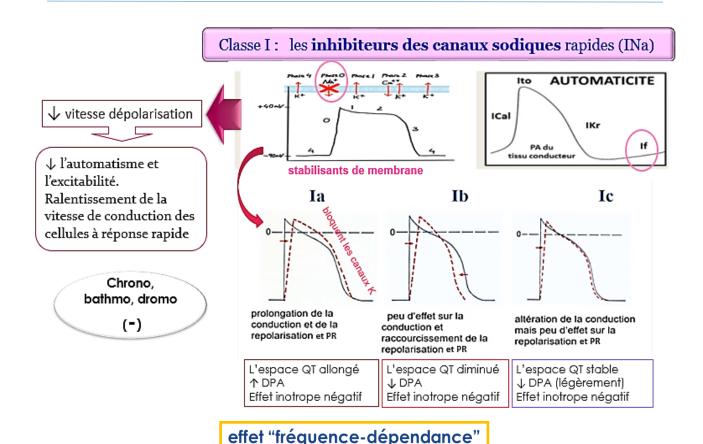
Activités déclenchées

Bloc

Les antiarythmiques

4 grandes classes (classification de Vaughan-Williams) :

Classe I : les **inhibiteurs des canaux sodiques** rapides (INa)


(Ia, Ib, Ic) selon l'intensité et la durée du blocage sodique (b < a < c)

	Durée du PA (Période réfractaire)	Dissociation de la drogue	Vitesse de conduction
la	Prolongent	Intermédiaire (entre lb et lc)	ħħ
ІЬ	Réduisent	rapide	ħ
le	Sans effet	lente	វាវាវា

Classe II: les **B-bloquants**

Classe III : les inhibiteurs des canaux potassiques

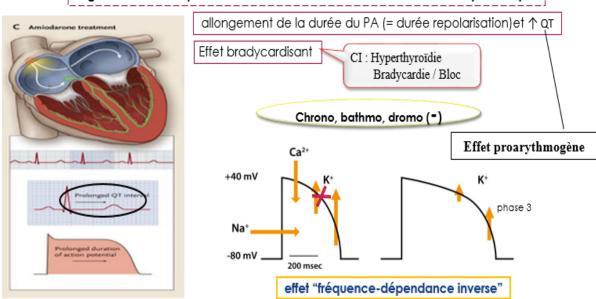
Classe IV: les inhibiteurs des canaux calciques lents (ICa_L)

Ia Ib Ic Exemples Quinidine, Disopyramide Lidocaïne, Mexilétine, Flécainide, Propafénone Hydroquinidine, tocainide, phénytoïne Cibenzoline Procainamide Tachycardies / arythmies Troubles du rythme Tachycardies / arythmies indication supraventriculaires ventriculaire / provoqués supraventriculaires et Troubles du rythme par digitaliques ventriculaires ventriculaires ΕI Allergie Allergie Allergie **Troubles digestifs Troubles digestifs Troubles digestifs** E. Proarythmogène: E. Proarythmogène E. Proarythmogène Bradycardie, bloc, torsades de E. Neurologiques / E. Neurologiques / psychiques pointe psychiques E. neurologiques E. Atropiniques (Disopyramide Contre-Allergie Allergie Allergie indication Bloc auriculoventriculaire Bloc auriculoventriculaire Bloc auriculoventriculaire Insuffisance cardiaque Insuffisance cardiaque Insuffisance cardiaque QT long / torsades de pointe QT long / torsades de pointe Certaines associations médicamenteuses Certaines associations + CI lié aux Effets médicamenteuses

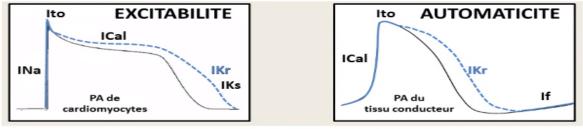
T hépatique grave

atropiniques (Disopyramide)

Classe II: les **B-bloquants**

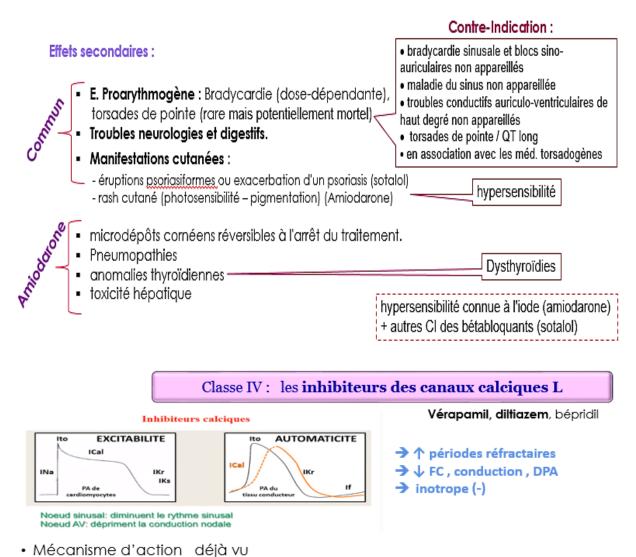

- · Propriétés pharmacologiques déjà vu
- Lutte contre les tachycardies d'origine sympathique
- inhibition du tonus adrénergique arythmogène (notamment postinfarctus et dans les hyperthyroïdies)
- · Certains ont un effet stabilisant de membrane

Médicaments	Médicaments non
stabilisants de	stabilisants de
membrane	membrane
propranolol	sotalol
acebutolol	timolol
metoprolol	nadolol
oxprénolol	atenolol


Classe III: les inhibiteurs des canaux potassiques

Amiodarone, sotalol, Brétylium

Augmentation de la période réfractaire et diminution de l'excitabilité myocardique


inhibition du courant potassique sortant (phase III)

tous les tissus myocardiques

- \Box Amiodarone : propriétés α et β bloquantes \rightarrow effet bradycardisant.
 - Biodisponibilité variable.
 - Inhibiteur enzymatique (CYP3A et CY2D6).
 - Longue **demi-vie (20 à 100 jours)** / grande variabilité inter-individuelle.
 - Métabolite actif : N- deséthylamiodarone.
 - Elimination fécale ++++ / pas ou peu rénale.
- \Box **Sotalol**: propriété β bloquante.
 - → **Bêtabloquant non sélectif** dépourvu d'activité sympathomimétique intrinsèque et d'effet stabilisant de membrane

Indications: arythmies ventriculaires et supraventriculaires.

- ,
- Traitement des tachycardies supraventriculaires
- Effets secondaires/CI:

bradycardie sinusale (vérapamil>diltiazem), blocs AV, bloc sino-auriculaire, dépression de l'inotropisme cardiaque (Cl : l. cardiaque)

Autres molécules

- Les digitaliques sont considérés comme une cinquième classe d'anti arythmiques, trouvant leurs indications dans les arythmies atriales par stimulation du tonus vagal
- L'adénosine: par stimulation des récepteurs de l'adénosine type A1 provoque l'ouverture des canaux potassique, l'hyperpolarisation et la réduction du flux calcique. D'où l'effet dromotrope négatif. L'action est rapide et brève utile pour arrêter les tachyarythmies paroxystiques
- Les anticoagulants
- Mg sulfate

Les anti-arythmiques

Interactions Médicamenteuses

L'association d'antiarythmiques

- ne pas associer 2 antiarythmiques d'une même classe ou sous classe (déconseillée)
- · Eviter d'associer 3 antiarythmiques
- · Eviter les associations dangereuses

contre-indiquée :

Antiarythmiques classe I + β -bloquants utilisés dans l'insuffisance cardiaque Antiarythmiques classe Ia + Antiarythmiques classe III Anti-arythmiques + Médicaments torsadogènes

Autres interactions

- médicaments bradycardisants
- médicaments hypokaliémiants

Abréviation:

SNA: système nerveux autonome PDM: potentiel diastolique max DDL: dépolarisation diastolique lente PDP: post dépolarisation précoce PDR: post dépolarisation retardée

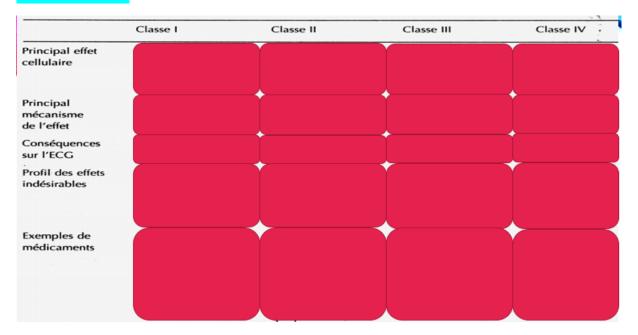
PA: potentiel d'action

DPA: durée du potentiel d'action

PR : période réfractaire FC : fréquence cardiaque

E:effet

AV : auriculoventriculaire


NAV: nœud auriculoventriculaire

NSA: nœud sino-auriculaire ou nœud sinusal

IDM: infarctus du myocarde

CI : contre-indication Chrono : effet chronotrope Bathmo : effet bathmotrope Dromo : effet dromotrope

Résumé et Mémo

Solution:

	Classe I	Classe II	Classe III	Classe IV .
Principal effet cellulaire	↓ V _{max} , ↓ vitesse de conduction	β-bloquants	† de la durée des PA † des périodes réfractaires	inhibition calcique
Principal mécanisme de l'effet	bloc de I _{Na}	bloc des récepteurs β_1 et β_2	bloc de I _K , I _{K1} et/ou I _{to}	bloc de I _{Ca}
Conséquences sur l'ECG	† QRS (± † PR)	↑ PR, ↓ FC	† QTc (± ↓ FC)	↑ PR, ↓ FC
Profil des effets indésirables	arythmogénicité inotropisme négatif blocs de conduction hissiens ou intraventriculaires Troubles digestifs et neurologiques	bradycardie BAV inotropisme négatif	torsades de pointes Troubles digestifs et neurologiques	bradycardie BAV inotropisme négatif
Exemples de médicaments	quinidine (a) disopyramide (a) lidocaïne (b) mexilétine (b) cibenzoline (a ou c) propafénone (c) flécaïnide (c)	propranolol acébutolol nadolol aténolol amiodarone (b) esmolol (amiodarone) (propafénone)	d-sotalol sotalol quinidine disopyramide sotalol brétylium*	vérapamil diltiazem bépridil cibenzoline adénosine (amiodarone)

- DDL dépolarisation diastolique lente (prépotentiel) → fréquence cardiaque
- Période réfractaire et potentiel seuil (threshold) → Excitabilité
- Vitesse de dépolarisation → conduction
- ↑ Ca2+ intracellulaire → inotropisme +
- Phase 2 (plateau = accumulation Ca) → contractilité