NORME EUROPÉENNE EUROPÄISCHE NORM

EUROPEAN STANDARD

EN 1991-1-4

Avril 2005

ICS 91.010.30

Remplace ENV 1991-2-4:1995

Version Française

Eurocode 1: Actions sur les structures - Partie 1-4: Actions générales - Actions du vent

Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen - Windlasten Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions

La présente Norme européenne a été adoptée par le CEN le 4 juin 2004.

Les membres du CEN sont tenus de se soumettre au Règlement Intérieur du CEN/CENELEC, qui définit les conditions dans lesquelles doit être attribué, sans modification, le statut de norme nationale à la Norme européenne. Les listes mises à jour et les références bibliographiques relatives à ces normes nationales peuvent être obtenues auprès du Centre de Gestion ou auprès des membres du CEN.

La présente Norme européenne existe en trois versions officielles (allemand, anglais, français). Une version dans une autre langue faite par traduction sous la responsabilité d'un membre du CEN dans sa langue nationale et notifiée au Centre de Gestion, a le même statut que les versions officielles.

Les membres du CEN sont les organismes nationaux de normalisation des pays suivants: Allemagne, Autriche, Belgique, Chypre, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Lettonie, Lituanie, Luxembourg, Malte, Norvège, Pays-Bas, Pologne, Portugal, République Tchèque, Royaume-Uni, Slovaquie, Slovénie, Suède et Suisse.

COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION

Centre de Gestion: rue de Stassart, 36 B-1050 Bruxelles

Sommaire

Page

Avant-	-propos	4
1 1.1 1.2 1.3 1.4 1.5 1.6	Généralités	9 10 10 10 10
2	Situations de projet	17
3 3.1 3.2 3.3 3.4 3.5	Modélisation des actions du vent	18 18 18
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	Vitesse du vent et pression dynamique Base de calcul Valeurs de référence Vent moyen Variation avec la hauteur Rugosité du terrain Orographie du terrain	19 20 20
4.3.4 4.3.5 4.4 4.5	Constructions avoisinantes de grandes dimensions et de hauteur bien plus élevée Bâtiments et obstacles rapprochés Turbulence du vent Pression dynamique de pointe	22 23
5 5.1 5.2 5.3	Actions du vent	25
6 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3	Coefficient structural $c_s c_d$	29 30 30
7 7.1 7.1.1 7.1.2 7.1.3	Coefficients de pression et de force	32 32 32
7.2 7.2.1 7.2.2 7.2.3 7.2.4	Coefficients de pression pour les bâtiments	34 34 35

7.2.5	Toitures à deux versants	
7.2.6	Toitures à quatre versants	
7.2.7	Toitures multiples (shed)	
7.2.8	Toitures en voûte et dômes	
7.2.9	Pression intérieure	
7.2.10	Pression exercée sur les murs ou les toitures comportant plusieurs parois (ou envelop	
7.3	Toitures isolées	
7.4	Murs isolés, acrotères, clôtures et panneaux de signalisation	
7.4.1	Murs isolés et acrotères	
7.4.2	Facteurs de protection applicables aux murs et aux clôtures	
7.4.3	Panneaux de signalisation	
7.5	Çoefficients de frottement	
7.6	Éléments structuraux de section rectangulaire	
7.7	Profilés à angles vifs	67
7.8	Éléments structuraux de section polygonale régulière	
7.9	Cylindres à base circulaire	
7.9.1	Coefficients de pression extérieure	
7.9.2	Coefficients de force	
7.9.3	Coefficients de force applicables aux cylindres verticaux disposés en file	
7.10	Sphères	
7.11	Structures en treillis et échafaudages	
7.12	Drapeaux	
7.13	Élancement effectif λ et facteur d'effet d'extrémités ψ_{λ}	82
В	Actions du vent sur les ponts	
8.1	Généralités	
8.2	Choix de la procédure de calcul de la réponse (à l'action du vent)	
8.3	Coefficients de force	
8.3.1	Coefficients de force dans la direction x (méthode générale)	
8.3.2	Force dans la direction x – Méthode simplifiée	
8.3.3	Forces du vent sur les tabliers de ponts dans la direction z	
8.3.4	Forces du vent exercées sur les tabliers de ponts dans la direction y	
8.4	Piles de ponts	
8.4.1	Directions du vent et situations de projet	
8.4.2	Effets du vent sur les piles	
Annex	e A (informative) Effets du terrain	95
Annex	e B (informative) Procédure 1 de détermination du coefficient structural $c_{ m s}c_{ m d}$	106
Annex	e C (informative) Procédure 2 de détermination du coefficient structural $c_{ m s}c_{ m d}$	113
Annex	e D (informative) Valeur de $c_{ m s}c_{ m d}$ pour divers types de constructions	116
Annex	e E (informative) Détachement tourbillonnaire et instabilités aéroélastiques	119
Annex	e F (informative) Caractéristiques dynamiques des structures	142
	graphie	

Avant-propos

Le présent document (EN 1991-1-4:2005) a été élaboré par le Comité Technique CEN/TC 250 "Eurocodes Structuraux", dont le secrétariat est tenu par BSI.

Cette Norme européenne devra recevoir le statut de Norme nationale, soit par publication d'un texte identique, soit par entérinement, au plus tard en Octobre 2005, et toutes les Normes nationales en contradiction devront être retirées au plus tard en Mars 2010.

L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. Le CEN et/ou le CENELEC ne saurait [sauraient] être tenu[s] pour responsable[s] de ne pas avoir identifié de tels droits de propriété et averti de leur existence.

Le présent document remplace l'ENV 1991-2-4:1995.

Le CEN/TC 250 est responsable de tous les Eurocodes Structuraux.

Selon le Règlement Intérieur du CEN/CENELEC, les instituts de normalisation nationaux des pays suivants sont tenus de mettre cette Norme européenne en application : Allemagne, Autriche, Belgique, Chypre, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Lettonie, Lituanie, Luxembourg, Malte, Norvège, Pays-Bas, Pologne, Portugal, République Tchèque, Royaume-Uni, Slovaquie, Slovénie, Suède et Suisse.

Historique du programme Eurocodes

En 1975, la Commission des Communautés européennes arrêta un programme d'action dans le domaine de la construction, sur la base de l'article 95 du Traité. L'objectif du programme était l'élimination des obstacles techniques au commerce et l'harmonisation des spécifications techniques.

Dans le cadre de ce programme d'action, la Commission prit l'initiative d'établir un ensemble de règles techniques harmonisées pour le dimensionnement des ouvrages ; ces règles, en premier stade, serviraient d'alternative aux règles nationales en vigueur dans les États Membres et, finalement, les remplaceraient.

Pendant quinze ans, la Commission, avec l'aide d'un Comité directeur comportant des représentants des États Membres, pilota le développement du programme Eurocodes, ce qui conduisit au cours des années 1980 à la première génération de codes européens.

En 1989, la Commission et les États Membres de l'Union Européenne et de l'AELE décidèrent, sur la base d'un accord¹⁾ entre la Commission et le CEN, de transférer à ce dernier, par une série de Mandats, la préparation et la publication des Eurocodes, afin de leur donner par la suite le statut de Norme européenne (EN). Ceci établit *de facto* un lien entre les Eurocodes et les dispositions de toutes les Directives du Conseil et/ou Décisions de la Commission traitant de Normes européennes (par exemple, la Directive du Conseil 89/106/CEE sur les produits de construction - CPD - et les Directives du Conseil 93/37/CEE, 92/50/CEE et 89/440/CEE sur les travaux et les services publics, ainsi que les Directives équivalentes de l'AELE destinées à la mise en place du marché intérieur).

¹⁾ Accord entre la Commission des Communautés européennes et le Comité européen de normalisation (CEN) concernant le travail sur les EUROCODES pour le dimensionnement des ouvrages de bâtiment et de génie civil (BC/CEN/03/89).

Le programme des Eurocodes structuraux comprend les normes suivantes, chacune étant en général constituée d'un certain nombre de parties :

EN 1990	Eurocode :	Bases de calcul des structures
EN 1991	Eurocode 1 :	Actions sur les structures
EN 1992	Eurocode 2 :	Calcul des structures en béton
EN 1993	Eurocode 3 :	Calcul des structures en acier
EN 1994	Eurocode 4 :	Calcul des structures mixtes acier-béton
EN 1995	Eurocode 5 :	Calcul des structures en bois
EN 1996	Eurocode 6 :	Calcul des structures en maçonnerie
EN 1997	Eurocode 7 :	Calcul géotechnique
EN 1998	Eurocode 8 :	Calcul des structures pour leur résistance aux séismes
EN 1999	Eurocode 9 :	Calcul des structures en aluminium

Les normes Eurocodes reconnaissent la responsabilité des organismes de réglementation de chaque État membre et ont sauvegardé le droit de ceux-ci de déterminer, au niveau national, des valeurs relatives aux questions relevant de la réglementation en matière de sécurité, là où ces valeurs continuent à différer d'un État à l'autre.

Statut et domaine d'application des Eurocodes

Les États Membres de l'UE et de l'AELE reconnaissent que les Eurocodes servent de documents de référence pour les usages suivants :

- comme moyen de prouver la conformité des bâtiments et des ouvrages de génie civil aux exigences essentielles de la Directive du Conseil 89/106/CEE, en particulier à l'Exigence Essentielle n° 1 – Stabilité et résistance mécanique - et à l'Exigence Essentielle n° 2 – Sécurité en cas d'incendie;
- comme base de spécification des contrats pour les travaux de construction et les services techniques associés;
- comme cadre d'établissement de spécifications techniques harmonisées pour les produits de construction (EN et ATE).

EN 1991-1-4:2005 (F)

Les Eurocodes, dans la mesure où ils concernent les ouvrages eux-mêmes, ont une relation directe avec les Documents interprétatifs²⁾ visés à l'Article 12 de la DPC, bien qu'ils soient d'une nature différente de celle des normes harmonisées de produits³⁾. En conséquence, les aspects techniques résultant des travaux effectués pour les Eurocodes nécessitent d'être pris en considération de façon adéquate par les Comités techniques du CEN et/ou les groupes de travail de l'EOTA travaillant sur les normes de produits en vue de parvenir à une complète compatibilité de ces spécifications techniques avec les Eurocodes.

Les Normes Eurocodes fournissent des règles de conception structurale communes d'usage quotidien pour le calcul des structures entières et des produits composants de nature traditionnelle ou innovatrice. Les formes de construction ou les conceptions inhabituelles ne sont pas spécifiquement couvertes, et il appartiendra en ce cas au concepteur de se procurer des bases spécialisées supplémentaires.

Normes nationales transposant les Eurocodes

Les Normes nationales transposant les Eurocodes comprendront la totalité du texte de l'Eurocode (toutes annexes incluses), tel que publié par le CEN ; ce texte peut être précédé d'une page nationale de titre et d'un Avant-Propos National, et peut être suivi d'une Annexe Nationale.

L'Annexe Nationale peut contenir seulement des informations sur les paramètres laissés en attente dans l'Eurocode pour choix national, sous la désignation de Paramètres déterminés au niveau national, à utiliser pour les projets de bâtiments et ouvrages de génie civil à construire dans le pays concerné ; il s'agit :

- de valeurs et/ou classes là où des alternatives figurent dans l'Eurocode ;
- de valeurs à utiliser là où seul un symbole est donné dans l'Eurocode ;
- de données propres à un pays (géographiques, climatiques, etc.), par exemple carte des vents ;
- de la procédure à utiliser là où des procédures alternatives sont données dans l'Eurocode.

Elle peut également contenir :

- des décisions sur l'usage des annexes informatives ; et
- des références à des informations complémentaires non contradictoires pour aider l'utilisateur à appliquer l'Eurocode.

Liens entre les Eurocodes et les spécifications techniques harmonisées (EN et ATE) pour les produits

La cohérence est nécessaire entre les spécifications techniques harmonisées pour les produits de construction et les règles techniques pour les ouvrages⁴⁾. En outre, il convient que toute information accompagnant la marque CE des produits de construction se référant aux Eurocodes, fasse clairement apparaître quels Paramètres déterminés au niveau national ont été pris en compte.

Les Eurocodes, de facto, jouent un rôle similaire pour l'E.E 1 et une partie de l'E.E 2.

4) Voir le paragraphe 3.3 et l'article 12 de la DPC, ainsi que les paragraphes 4.2, 4.3.1, 4.3.2 et 5.2 du DI 1.

²⁾ Selon l'article 3.3 de la DPC, les exigences essentielles (EE) doivent recevoir une forme concrète dans des Documents Interprétatifs pour assurer les liens nécessaires entre les exigences essentielles et les mandats pour Normes européennes (EN) harmonisées et guides pour les agréments techniques européens (ATE), et ces agréments eux-mêmes.

³⁾ Selon l'Article 12 de la DPC, les documents interprétatifs doivent :

a) donner une forme concrète aux exigences essentielles en harmonisant la terminologie et les bases techniques et en indiquant, lorsque c'est nécessaire, des classes ou niveaux pour chaque exigence;

b) indiquer des méthodes pour relier ces classes ou niveaux d'exigences avec les spécifications techniques, par exemple méthodes de calcul et d'essai, règles techniques pour la conception, etc. ;

c) servir de référence pour l'établissement de normes harmonisées et de guides pour agréments techniques européens.

Informations additionnelles spécifiques à l'EN 1991-1-4

L'EN 1991-1-4 donne des principes directeurs de conception et des procédures pour le calcul structurel des bâtiments et des ouvrages de génie civil exposés au vent.

L'EN 1991-1-4 est destinée à être utilisée par les clients, les concepteurs, les entrepreneurs et les autorités compétentes.

L'EN 1991-1-4 est destinée à être utilisée avec l'EN 1990, les autres Parties de l'EN 1991 et les EN 1992-1999 pour le calcul des structures.

Annexe Nationale pour l'EN 1991-1-4

La présente norme donne des procédures alternatives, des valeurs et des recommandations de classes, avec des notes indiquant où des choix peuvent être faits au niveau national. Il convient donc que la Norme nationale mettant en application l'EN 1991-1-4 comporte une Annexe Nationale contenant tous les paramètres déterminés au niveau national qui doivent être utilisés pour le calcul des bâtiments et les ouvrages de génie civil devant être construits dans le pays concerné.

Un choix national est autorisé dans l'EN 1991-1-4 aux paragraphes suivants :

```
1.1 (11) Note 1
1.5 (2)
4.1 (1)
4.2 (1)P Note 2
4.2 (2)P Notes 1, 2, 3 et 5
4.3.1 (1) Notes 1 et 2
4.3.2 (1)
4.3.2 (2)
4.3.3 (1)
4.3.4 (1)
4.3.5 (1)
4.4 (1) Note 2
4.5 (1) Notes 1 et 2
5.3 (5)
6.1 (1)
6.3.1 (1) Note 3
6.3.2 (1)
7.1.2 (2)
7.1.3 (1)
7.2.1 (1) Note 2
7.2.2 (1)
7.2.2 (2) Note 1
7.2.8 (1)
7.2.9 (2)
7.2.10 (3) Notes 1 et 2
7.4.1 (1)
7.4.3.(2)
7.6 (1) Note 1
7.7 (1) Note 1
7.8 (1)
7.10 (1) Note 1
7.11 (1) Note 2
7.13 (1)
```

7.13 (2)

EN 1991-1-4:2005 (F)

8.1 (1) Notes 1 et 2 8.1 (4) 8.1 (5) 8.2 (1) Note 1 8.3 (1) 8.3.1 (2) 8.3.2 (1) 8.3.3 (1) Note 1 8.3.4 (1) 8.4.2 (1) Notes 1 et 2 A.2 (1) E.1.3.3 (1) E.1.5.1 (1) Notes 1 et 2 E.1.5.1 (3) E.1.5.2.6 (1) Note 1 E.1.5.3 (2) Note 1 E.1.5.3 (4) E.1.5.3 (6) E.3 (2)

1 Généralités

1.1 Domaine d'application

- (1) L'EN 1991-1-4 indique comment déterminer les actions du vent naturel pour le calcul structurel des bâtiments et des ouvrages de génie civil, pour chacune des zones affectées par ces actions. Ceci inclut l'ensemble de la structure, certains de ses éléments constitutifs, voire des éléments qui y sont fixés, par exemple des composants, des éléments de façade et leurs fixations, des glissières de sécurité et des écrans antibruit.
- (2) La présente partie s'applique aux :
- bâtiments et ouvrages de génie civil dont la hauteur peut atteindre 200 m. Voir également (11);
- ponts dont aucune travée n'est supérieure à 200 m, à condition qu'ils satisfassent aux critères relatifs à la réponse dynamique, voir (11) et 8.2.
- (3) La présente partie est destinée à prévoir les actions caractéristiques du vent sur les structures terrestres, leurs composants et accessoires.
- (4) Certains aspects nécessaires pour déterminer les actions du vent sur une structure dépendent du lieu, de la disponibilité et de la qualité des données météorologiques, du type de terrain, etc. Ils doivent être fournis dans l'Annexe Nationale et dans l'Annexe A, par un choix national comme l'indiquent les notes insérées dans le texte. Les valeurs par défaut et les méthodes à utiliser sont données dans le texte principal, lorsque l'Annexe Nationale ne fournit pas d'informations.
- (5) L'Annexe A fournit des illustrations de catégories de terrain ainsi que des règles pour les effets de l'orographie y compris la hauteur de déplacement, le changement de rugosité, l'influence du terrain et l'influence des structures avoisinantes.
- (6) Les Annexes B et C indiquent des procédures alternatives pour le calcul du coefficient structural $c_s c_{d}$.
- (7) L'Annexe D donne les facteurs $c_s c_d$ pour différents types de structures.
- (8) L'Annexe E donne les règles relatives à la réponse au détachement tourbillonnaire ainsi que certaines recommandations concernant d'autres effets aéroélastiques.
- (9) L'Annexe F donne les caractéristiques dynamiques de structures ayant un comportement linéaire.
- (10) La présente partie ne fournit pas de recommandations concernant les effets thermiques locaux sur le vent caractéristique, par exemple forte inversion thermique au sol dans les régions polaires, effet d'entonnoir ou tornades.
- (11) La présente partie ne fournit pas de recommandations concernant les aspects suivants :
- les actions du vent sur les pylônes en treillis à membrures non parallèles ;
- les actions du vent sur les mâts haubanés et les cheminées haubanées ;
- les vibrations de torsion, par exemple de bâtiments élevés avec noyau central ;
- les vibrations des tabliers de ponts dues à la turbulence transversale du vent ;
- les ponts à câbles ;
- les vibrations lorsque d'autres modes que le mode fondamental doivent être pris en considération.

EN 1991-1-4:2005 (F)

- NOTE 1 L'Annexe Nationale peut fournir des recommandations concernant ces aspects en qualité d'informations complémentaires non contradictoires.
- NOTE 2 Pour les actions du vent sur les mâts haubanés, les cheminées haubanées et les pylônes en treillis à membrures non parallèles, voir EN 1993-3-1, Annexe A.
- NOTE 3 Pour les actions du vent sur les candélabres, voir EN 40.

1.2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

EN 1990, Eurocode: Bases de calcul des structures.

EN 1991-1-3, Eurocode 1: Actions sur les structures : Partie 1-3 : Charges de neige.

EN 1991-1-6, Eurocode 1: Actions sur les structures: Partie 1-6: Actions pendant l'exécution.

EN 1991-2, Eurocode 1: Actions sur les structures: Partie 2: Charges dues au trafic sur les ponts.

EN 1993-3-1, Eurocode 3: Calcul des structures en acier: Partie 3-1: Mâts et tours.

1.3 Hypothèses

(1) P Les hypothèses générales données dans l'EN 1990, 1.3 s'appliquent à la présente partie.

1.4 Distinction entre les principes et les règles d'application

(1) P Les règles énoncées dans l'EN 1990, 1.4 s'appliquent à la présente partie.

1.5 Calcul au moyen d'essais et de mesures

- (1) Il est possible, en complément des calculs, de recourir à des essais en soufflerie et/ou à des méthodes numériques dûment validées afin d'obtenir des informations concernant les charges et la réponse, à l'aide de modèles appropriés de la structure et du vent naturel.
- (2) Des données appropriées obtenues en vraie grandeur peuvent fournir des informations concernant les charges et la réponse ainsi que les paramètres relatifs au terrain.

NOTE L'Annexe Nationale peut donner des indications sur l'utilisation des essais et des mesures dans la conduite du projet.

1.6 Termes et définitions

Pour les besoins du présent document, les termes et définitions donnés dans l'ISO 2394, l'ISO 3898 et l'ISO 8930 ainsi que les termes et définitions suivants s'appliquent. Une liste de définitions de base est également fournie dans l'EN 1990, 1.5, toujours pour les besoins de la présente norme.

1.6.1

valeur de base de la vitesse de référence du vent

vitesse moyenne du vent observée sur une période de 10 min, avec une probabilité de dépassement sur une période d'un an égale à 0,02, toutes directions de vent confondues, à une hauteur de 10 m au dessus d'un terrain plat de type « rase campagne » et compte tenu des effets d'altitude (le cas échéant)

1.6.2

vitesse de référence du vent

valeur de base de la vitesse de référence du vent modifiée afin de tenir compte de la direction du vent pris en considération et de la saison (le cas échéant)

1.6.3

vitesse moyenne du vent

vitesse de référence du vent modifiée afin de tenir compte de l'effet de la rugosité du terrain et de l'orographie

1.6.4

coefficient de pression

les coefficients de pression extérieure donnent l'effet du vent sur les surfaces extérieures des bâtiments ; les coefficients de pression intérieure donnent l'effet du vent sur les surfaces intérieures des bâtiments

Les coefficients de pression extérieure sont répartis en coefficients globaux et en coefficients locaux. Les coefficients locaux donnent les coefficients de pression pour les surfaces chargées d'aire inférieure ou égale à 1 m², par exemple pour le calcul des éléments et des fixations de petites dimensions ; les coefficients globaux donnent les coefficients de pression pour les surfaces chargées d'aire supérieure à 10 m².

Les coefficients de pression nette donnent l'effet résultant du vent sur une structure, voire sur un élément ou un composant de ladite structure par unité d'aire.

1.6.5

coefficient de force

les coefficients de force donnent l'effet global du vent sur une structure, un élément de structure ou un composant de la structure, considéré dans sa totalité, y compris le frottement, lorsqu'il n'est pas spécifiquement exclu

166

coefficient de réponse quasi-statique

coefficient de réponse quasi-statique tenant compte de l'absence de corrélation parfaite de la pression sur la surface de la structure

1.6.7

coefficient de réponse résonante

coefficient de réponse résonante, tenant compte de l'effet de la turbulence en résonance avec le mode de vibration

1.7 Symboles

(1) Pour les besoins de la présente Norme européenne, les symboles suivants s'appliquent.

NOTE La notation utilisée est fondée sur l'ISO 3898:1999. Dans la présente partie, le symbole "." dans les expressions représente le signe de la multiplication. Cette notation est utilisée pour éviter toute confusion avec les expressions de fonction.

(2) Une liste fondamentale de notations est fournie dans l'EN 1990, 1.6, et les notations supplémentaires ci-dessous sont particulières à l'EN 1991-1-4.

Majuscules latines

A aire

 A_{fr} aire balayée par le vent

A_{ref} aire de référence

*B*² partie quasi-statique de la réponse

C coefficient de force du vent pour les ponts

EN 1991-1-4:2005 (F)

Е module d'Young force de frottement résultante F_{fr} F_{i} force d'excitation par le détachement tourbillonnaire au point *j* de la structure force résultante exercée par le vent Н hauteur d'un élément topographique intensité de turbulence I_{v} K facteur de déformée modale ; paramètre de forme facteur d'interférence pour le détachement tourbillonnaire K_{iv} facteur de réduction pour acrotère K_{rd} facteur de longueur de corrélation K_{w} coefficient adimensionnel K_{x} Llongueur de la travée d'un tablier de pont ; échelle de turbulence longueur réelle de la pente du versant sous le vent L_{d} longueur effective de la pente du versant au vent L_{e} longueur de corrélation L_{i} longueur réelle de la pente du versant au vent $L_{\rm II}$ Nnombre de cycles dus au détachement tourbillonnaire nombre de chargements pour la réponse à la turbulence N_{g} R^2 partie résonante de la réponse Renombre de Reynolds admittance aérodynamique $R_{\mathsf{h}}, R_{\mathsf{b}}$ Saction du vent Scnombre de Scruton fonction adimensionnelle de densité spectrale de puissance S_{I} St nombre de Strouhal poids des éléments structuraux contribuant à la rigidité d'une cheminée W_{s} W_{t} poids total d'une cheminée

Minuscules latines

coefficient d'instabilité en galop a_{G} paramètre de stabilité combinée pour le galop d'interférence a_{IG} largeur de la construction (la dimension perpendiculaire à la direction du vent, sauf spécification b contraire) coefficient d'altitude c_{alt} coefficient dynamique c_{d} coefficient de direction c_{dir} coefficient d'exposition $c_{e}(z)$ coefficient de force c_{f} coefficient de force des constructions ou éléments de construction en l'absence d'écoulement de $c_{f,0}$ contournement aux extrémités coefficient de portance $c_{\mathsf{f.l}}$ coefficient de frottement c_{fr} coefficient d'excitation aérodynamique c_{lat} coefficient de moment c_{M} coefficient de pression c_{p} coefficient de probabilité c_{prob} coefficient de rugosité c_{r} coefficient d'orographie c_{o} coefficient de dimension $c_{\mathbf{s}}$ coefficient de saison c_{season} d profondeur de la construction (la dimension parallèle à la direction du vent, sauf spécification contraire) excentricité d'une force ou largeur de la zone de rive е fréquence adimensionnelle f_{I} h hauteur de la construction hauteur d'obstruction h_{ave} h_{dis} hauteur de déplacement

EN 1991-1-4:2005 (F)

k	rugosité équivalente
k_{p}	facteur de pointe
k_{r}	facteur de terrain (rugosité)
k_{θ}	rigidité en torsion
1	longueur d'une construction horizontale
m	masse par unité de longueur
m_1	masse équivalente par unité de longueur
n_{i}	fréquence propre du mode i de la structure
<i>n</i> _{1,x}	fréquence fondamentale de vibration dans la direction du vent
<i>n</i> _{1,y}	fréquence fondamentale de vibration perpendiculaire à la direction du vent
n_{O}	fréquence d'ovalisation
p	probabilité annuelle de dépassement
q_{b}	pression dynamique moyenne de référence
q_{p}	pression dynamique de pointe
r	rayon
,	layon
s	coefficient ; coordonnée
S	coefficient ; coordonnée
s t	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque
s t v _{CG}	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop
s t v_{CG}	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence
s t v _{CG} v _{CIG}	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire
t VCG VCIG Vcrit Vdiv	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire vitesse du vent de divergence
s t vCG vCIG vcrit vdiv vm	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire vitesse du vent de divergence vitesse moyenne du vent
s t vCG vCIG vcrit vdiv vm vb,0	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire vitesse du vent de divergence vitesse moyenne du vent valeur de base de la vitesse de référence du vent
s t vCG vCIG vcrit vdiv vm vb,0 vb	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire vitesse du vent de divergence vitesse moyenne du vent valeur de base de la vitesse de référence du vent vitesse de référence du vent
s t vCG vCIG vCrit vdiv vm vb,0 vb	coefficient ; coordonnée temps d'intégration de la vitesse de référence du vent, épaisseur d'une plaque vitesse du vent de déclenchement du phénomène de galop vitesse du vent de déclenchement du galop d'interférence vitesse critique du vent de détachement tourbillonnaire vitesse du vent de divergence vitesse moyenne du vent valeur de base de la vitesse de référence du vent vitesse de référence du vent pression aérodynamique

amplitude maximale perpendiculairement au vent, pour la vitesse critique du vent y_{max} hauteur au-dessus du sol z hauteur moyenne z_{ave} direction verticale z-direction longueur de rugosité z_0 hauteur de référence pour l'action extérieure du vent, pour la pression intérieure z_{e}, z_{i} distance entre le sol et le composant pris en considération z_{g} hauteur maximale z_{max} hauteur minimale z_{\min} hauteur de référence pour le calcul du coefficient structural

Majuscules grecques

 z_{S}

Φ pente du versant au vent

déformée du mode fondamental dans la direction du vent $\Phi_{1.X}$

Minuscules grecques

paramètre d'instabilité en galop α_{G} paramètre de stabilité combinée pour le galop d'interférence $lpha_{\mathsf{IG}}$ δ décrément logarithmique d'amortissement δ_a décrément logarithmique d'amortissement aérodynamique décrément logarithmique d'amortissement dû à des dispositifs particuliers $\delta_{\! \mathsf{d}}$ $\delta_{\!\scriptscriptstyle \rm S}$ décrément logarithmique d'amortissement structural facteur ε facteur de largeur de bande ε_0 facteur de fréquence ε_1 variable η taux de remplissage ; obstruction d'une toiture isolée élancement λ μ rapport d'ouverture ; perméabilité d'une paroi

EN 1991-1-4:2005 (F)

fréquence de franchissement ; coefficient de Poisson ; viscosité cinématique ν angle de torsion ; direction du vent θ masse volumique de l'air ρ écart type de la turbulence $\sigma_{\!\scriptscriptstyle \sf V}$ écart type de l'accélération dans la direction du vent $\sigma_{\!\mathsf{a},\mathsf{x}}$ coefficient de réduction pour les toitures multiples isolées ψ_{mc} facteur de réduction du coefficient de force des sections carrées à angles arrondis ψ_{r} facteur de réduction du coefficient de force des éléments structuraux, pour effet d'extrémités ψ_{λ} facteur d'effet d'extrémités pour les cylindres circulaires $\psi_{\lambda\alpha}$ facteur de protection pour les murs et clôtures $\psi_{\rm S}$ ζ exposant de la déformée modale Indices crit critique externe; exposition е frottement fr i interne; indice du mode j numéro de l'élément de surface courant ou du point courant d'une construction m moyen pointe ; acrotère р ref référence vitesse du vent ٧ direction du vent Х direction perpendiculaire à celle du vent у direction verticale Z

2 Situations de projet

- (1) P Les actions exercées par le vent doivent être déterminées pour chaque situation de projet identifiée conformément à l'EN 1990, 3.2.
- (2) Il convient de prendre en compte, conformément à l'EN 1990, 3.2 (3)P les autres actions (telles que celles de la neige, du trafic ou de la glace) qui modifient les effets dus au vent.

NOTE Voir également les EN 1991-1-3, EN 1991-2 et ISO FDIS12494.

(3) Il convient de prendre en compte, conformément à l'EN 1990, 3.2 (3)P, les évolutions de la construction lors des phases d'exécution (telles que les différentes phases de la géométrie de la construction, des caractéristiques dynamiques, etc.), susceptibles de modifier les effets dus au vent.

NOTE Voir également l'EN 1991-1-6.

(4) Lorsque le calcul pose comme hypothèse que les fenêtres et les portes seront fermées en cas de tempête, il convient de traiter l'effet de leur ouverture comme une situation de projet accidentelle.

NOTE Voir également l'EN 1990, 3.2 (2) (P).

(5) Il est recommandé de tenir compte de la fatigue due aux effets des actions du vent pour les structures qui lui seraient sensibles.

NOTE Le nombre de cycles de chargement peut être obtenu à partir des Annexes B, C et E.

3 Modélisation des actions du vent

3.1 Nature

(1) Les actions du vent varient en fonction du temps et s'appliquent directement sur les surfaces extérieures des constructions fermées et, du fait de la porosité de la surface extérieure, agissent également indirectement sur les surfaces intérieures. Elles peuvent également affecter directement la surface intérieure des constructions ouvertes. Les pressions qui s'exercent sur les éléments de la surface engendrent des forces perpendiculaires à la surface de la construction ou des éléments de façade individuels. Par ailleurs, lorsque le vent balaye de larges surfaces de la construction, des forces de frottement non négligeables peuvent se développer tangentiellement à la surface.

3.2 Représentations des actions du vent

(1) L'action du vent est représentée par un ensemble simplifié de pressions ou de forces dont les effets sont équivalents aux effets extrêmes du vent turbulent.

3.3 Classification des actions du vent

(1) Sauf spécification contraire, il convient de classer les actions du vent comme des actions fixes variables, voir l'EN 1990, 4.1.1.

3.4 Valeurs caractéristiques

(1) Les actions du vent calculées selon l'EN 1991-1-4 sont des valeurs caractéristiques (voir EN 1990, 4.1.2). Elles sont déterminées à partir des valeurs de référence de la vitesse ou de la pression dynamique. Conformément à l'EN 1990 4.1.2 (7)P, les valeurs de référence sont des valeurs caractéristiques dont la probabilité de dépassement sur une période d'un an, est égale à 0,02, ce qui équivaut à une période moyenne de retour de 50 ans.

NOTE Tous les coefficients ou modèles, permettant de calculer les actions du vent à partir des valeurs de référence, sont choisis de sorte que la probabilité des actions du vent calculées ne soit pas supérieure à la probabilité de ces valeurs de référence.

3.5 Modèles

(1) L'effet du vent sur la construction (à savoir la réponse de la structure), dépend de la taille, de la forme et des propriétés dynamiques de la construction. La présente partie couvre la réponse dynamique due à la turbulence longitudinale (dans la direction du vent) en résonance avec les vibrations également dans la direction du vent d'un mode fondamental de flexion dont la déformée garde le même signe en tous points.

Il convient de calculer la réponse des structures, selon la section 5 à partir de la pression dynamique de pointe, $q_{\rm p}$, à la hauteur de référence dans le champ de vent non perturbé, et avec les coefficients de force et de pression ainsi que le coefficient structural $c_{\rm s}c_{\rm d}$ (voir section 6). $q_{\rm p}$ dépend du climat du lieu, de la rugosité du terrain et de l'orographie, ainsi que de la hauteur de référence. $q_{\rm p}$ est égale à la pression dynamique moyenne du vent augmentée de la contribution des fluctuations rapides de pression.

(2) Il convient de prendre en considération la réponse aéroélastique pour les structures souples telles que les câbles, les mâts, les cheminées et les ponts.

NOTE L'Annexe E donne des recommandations simplifiées concernant la réponse aéroélastique.

4 Vitesse du vent et pression dynamique

4.1 Base de calcul

(1) La vitesse du vent et la pression dynamique comprennent une composante moyenne et une composante fluctuante.

Il convient de déterminer la vitesse moyenne du vent $v_{\rm m}$ à partir de la vitesse de référence du vent $v_{\rm b}$ qui dépend du climat du lieu, telle que décrite en 4.2, ainsi que la variation du vent en fonction de la hauteur déterminée à partir de la rugosité du terrain et de l'orographie telles que décrit en 4.3. La pression dynamique de pointe est déterminée en 4.5.

La composante fluctuante du vent est caractérisée par l'intensité de turbulence définie en 4.4.

NOTE L'Annexe Nationale peut fournir des informations climatiques nationales à partir desquelles il est possible d'obtenir directement, pour les catégories de terrain considérées, la vitesse moyenne du vent $v_{\rm m}$, la pression dynamique de pointe $q_{\rm p}$ et d'autres valeurs supplémentaires.

4.2 Valeurs de référence

- (1) P La valeur de base de la vitesse de référence du vent, $v_{\rm b,0}$ est la vitesse moyenne sur 10 min caractéristique, indépendamment de la direction du vent et de la période de l'année, à une hauteur de 10 m au dessus du sol en terrain dégagé, de type « rase campagne », à végétation basse telle que de l'herbe et des obstacles isolés séparés les uns des autres d'au moins 20 fois leur hauteur.
- NOTE 1 Ce terrain correspond à une catégorie de terrain II dans le Tableau 4.1.
- NOTE 2 La valeur de base de la vitesse de référence du vent, $v_{\rm h,0}$, pour un pays donné, est donnée dans l'Annexe Nationale.
- (2) P La vitesse de référence du vent doit être calculée à partir de l'expression (4.1).

$$v_{\rm b} = c_{\rm dir} \cdot c_{\rm season} \cdot v_{\rm b,0} \tag{4.1}$$

οù

- v_b est la vitesse de référence du vent, définie en fonction de la direction de ce dernier et de la période de l'année à une hauteur de 10 m au-dessus d'un sol relevant de la catégorie de terrain II
- $v_{\rm b,0}$ est la valeur de base de la vitesse de référence du vent, voir (1)P
- c_{dir} est le coefficient de direction, voir Note 2
- $c_{
 m season}$ est le coefficient de saison, voir Note 3
- NOTE 1 Lorsque l'influence de l'altitude sur la vitesse de référence du vent v_b n'est pas incluse dans la valeur de base spécifiée $v_{b,0}$, l'Annexe Nationale peut indiquer une procédure permettant de la prendre en compte.
- NOTE 2 La valeur du coefficient de direction, $c_{\rm dir}$, pour différentes directions du vent, est indiquée dans l'Annexe Nationale. La valeur recommandée est 1,0.
- NOTE 3 La valeur du coefficient de saison, c_{season} , peut être donnée dans l'Annexe Nationale. La valeur recommandée est 1,0.
- NOTE 4 La vitesse moyenne du vent sur 10 minutes présentant la probabilité p de dépassement, sur une période d'un an, est déterminée en multipliant la vitesse de référence du vent $v_{\rm b}$ donnée en 4.2 (2)P par le coefficient de probabilité, $c_{\rm prob}$ donné par l'expression (4.2). Voir également l'EN 1991-1-6.

$$c_{\text{prob}} = \left(\frac{1 - K \cdot \ln\left(-\ln\left(1 - p\right)\right)}{1 - K \cdot \ln\left(-\ln\left(0.98\right)\right)}\right)^{n}$$
(4.2)

οù

- K est le paramètre de forme dépendant du coefficient de variation de la loi des valeurs extrêmes
- n est l'exposant
- NOTE 5 Les valeurs de K et de n à utiliser dans un pays donné peuvent être données dans l'Annexe Nationale. Les valeurs recommandées sont 0,2 pour K et 0,5 pour n.
- (3) Pour les constructions provisoires et pour toutes les constructions en phase d'exécution, il est possible d'utiliser le coefficient de saison $c_{\rm season}$. Pour les constructions mobiles, qui peuvent être utilisées à tout moment de l'année, il convient que le coefficient $c_{\rm season}$ soit pris égal à 1,0.

NOTE Voir également l'EN 1991-1-6.

4.3 Vent moyen

4.3.1 Variation avec la hauteur

(1) La vitesse moyenne du vent $v_{\rm m}(z)$ à une hauteur z au-dessus du sol dépend de la rugosité du terrain et de l'orographie, ainsi que de la vitesse de référence du vent, $v_{\rm b}$, et il convient de la déterminer à l'aide de l'expression (4.3).

$$v_{\mathbf{m}}(z) = c_{\mathbf{r}}(z) \cdot c_{\mathbf{0}}(z) \cdot v_{\mathbf{b}} \tag{4.3}$$

οù

- $c_r(z)$ est le coefficient de rugosité, indiqué en 4.3.2
- $c_0(z)$ est le coefficient orographique, égal à 1,0 sauf spécification contraire en 4.3.3
- NOTE 1 Les informations concernant c_0 figurent dans l'Annexe Nationale. Lorsque l'orographie est prise en compte dans la vitesse de référence du vent, la valeur recommandée est 1,0.
- NOTE 2 Des abaques ou des tableaux donnant $v_m(z)$ peuvent être donnés dans l'Annexe Nationale.

Il est recommandé de prendre en considération l'influence des constructions avoisinantes sur la vitesse du vent (voir 4.3.4).

4.3.2 Rugosité du terrain

- (1) Le coefficient de rugosité, $c_r(z)$, tient compte de la variabilité de la vitesse moyenne du vent sur le site de la construction due à :
- la hauteur au-dessus du niveau du sol ;
- la rugosité du terrain en amont de la construction dans la direction du vent considérée.

NOTE La procédure permettant de déterminer la valeur $c_r(z)$ peut être donnée dans l'Annexe Nationale. La procédure recommandée pour déterminer le coefficient de rugosité à la hauteur z est donnée par l'expression (4.4) et est fondée sur un profil logarithmique de la vitesse.

$$c_{r}(z) = k_{r} \cdot \ln \left(\frac{z}{z_{0}}\right) \text{pour } z_{\text{min}} \le z \le z_{\text{max}}$$

$$c_{r}(z) = c_{r}(z_{\text{min}}) \text{ pour } z \le z_{\text{min}}$$
(4.4)

οù

z₀ est la longueur de rugosité

 k_r est le facteur de terrain dépendant de la longueur de rugosité z_0 , calculé à l'aide de la formule suivante

$$k_{\Gamma} = 0.19 \cdot \left(\frac{z_0}{z_{0,|I|}}\right)^{0.07}$$
 (4.5)

οù

 $z_{0,\parallel}$ 0,05 m (catégorie de terrain II, Tableau 4.1)

 $z_{
m min}$ est la hauteur minimale définie dans le Tableau 4.1

 $z_{
m max}$ doit être considérée comme étant égale à 200 m

z₀, z_{min} dépendent de la catégorie de terrain. Les valeurs recommandées sont données dans le Tableau 4.1 en fonction de cinq catégories de terrain représentatives

L'expression (4.4) est valable lorsque la rugosité uniforme de terrain s'étend sur une distance au vent suffisamment grande pour stabiliser le profil de vitesse de manière suffisante. Voir (2).

Tableau 4.1 — Catégories et paramètres de terrain

Catégorie de terrain	z_0	^z min
Gutogonio do torram	[m]	[m]
0 Mer ou zone côtière exposée aux vents de mer	0,003	1
l Lacs ou zone plate et horizontale à végétation négligeable et libre de tous obstacles	0,01	1
Il Zone à végétation basse telle que de l'herbe, avec ou non quelques obstacles isolés (arbres, bâtiments) séparés les uns des autres d'au moins 20 fois leur hauteur	0,05	2
III Zone avec une couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes)	0,3	5
IV Zone dont au moins 15 % de la surface sont recouverts de bâtiments dont la hauteur moyenne est supérieure à 15 m	1,0	10
NOTE Les catégories de terrain sont illustrées en A.1.		

(2) La rugosité du terrain à utiliser pour une direction du vent donnée dépend de la rugosité du sol et de la distance sur laquelle s'étend cette rugosité, supposée uniforme, dans un secteur angulaire avoisinant la direction du vent. Les zones de faible surface (inférieure à 10 % de la zone considérée) présentant une rugosité différente peuvent être ignorées. Voir Figure 4.1.

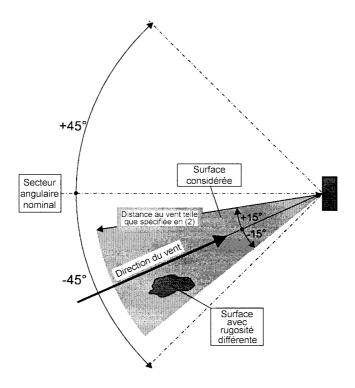


Figure 4.1 — Évaluation de la rugosité du terrain

NOTE L'Annexe Nationale peut fournir des définitions du secteur angulaire et de la distance au vent. La valeur recommandée du secteur angulaire peut être celle d'un secteur angulaire de 30° à ±15° par rapport à la direction du vent. La valeur recommandée pour la distance au vent peut être obtenue en A.2.

- (3) Lorsqu'un coefficient de pression ou de force est défini pour un secteur angulaire nominal, il convient d'utiliser la plus faible des longueurs de rugosité relatives aux différents secteurs angulaires de 30°.
- (4) Lorsque la définition d'une zone donnée laisse le choix entre au moins deux catégories de terrain, il convient alors d'utiliser la catégorie ayant la plus faible longueur de rugosité.

4.3.3 Orographie du terrain

(1) Lorsque l'orographie (par exemple collines, falaises, etc.) augmente les vitesses du vent de plus de 5%, il est recommandé d'en prendre en compte les effets en utilisant le coefficient c_0 .

NOTE La procédure à utiliser pour déterminer c_0 peut être donnée dans l'Annexe Nationale. La procédure recommandée est donnée en A.3.

(2) Les effets de l'orographie peuvent être négligés lorsque la pente moyenne du terrain au vent est inférieure à 3°. Le terrain au vent peut être pris en considération jusqu'à une distance équivalant à 10 fois la hauteur de l'élément orographique isolé.

4.3.4 Constructions avoisinantes de grandes dimensions et de hauteur bien plus élevée

(1) Lorsque la construction doit se situer à proximité d'une autre construction dont la hauteur est au moins égale à deux fois la hauteur moyenne des constructions avoisinantes, elle pourrait alors être exposée (selon les caractéristiques de la construction) à des vitesses augmentées pour certaines directions de vent. Il convient de tenir compte de ce type de cas.

NOTE L'Annexe Nationale peut définir une procédure permettant de tenir compte de cet effet. En première approximation, un calcul prudent recommandé est donné en A.4.

4.3.5 Bâtiments et obstacles rapprochés

(1) L'effet de bâtiments et autres obstacles rapprochés peut être pris en compte.

NOTE L'Annexe Nationale peut décrire une procédure. Un premier calcul approché recommandé est donné en A.5. Sur un terrain rugueux, les bâtiments rapprochés modifient l'écoulement moyen du vent à proximité du sol, comme si le niveau du sol était élevé à une hauteur appelée hauteur de déplacement $h_{\rm dis}$.

4.4 Turbulence du vent

(1) L'intensité de la turbulence $I_{v}(z)$ à la hauteur z est définie comme l'écart type de la turbulence divisé par la vitesse moyenne du vent.

NOTE 1 La composante turbulente de la vitesse du vent a une valeur moyenne nulle et un écart type σ_v . L'écart type de la turbulence σ_v peut être déterminé à l'aide de l'expression (4.6).

$$\sigma_{V} = k_{r} \cdot v_{b} \cdot k_{l} \tag{4.6}$$

Pour le facteur de terrain k_r , voir l'expression (4.5); pour la vitesse de référence du vent v_b , voir l'expression (4.1) et pour le coefficient de turbulence k_l , voir Note 2.

NOTE 2 Les règles recommandées pour déterminer $I_{\mu}(z)$ sont données dans l'expression (4.7).

$$l_{v}(z) = \frac{\sigma_{v}}{v_{m}(z)} = \frac{k_{l}}{C_{o}(z) \cdot \ln(z/z_{0})} \text{ pour } z_{\min} \le z \le z_{\min}$$

$$l_{v}(z) = l_{v}(z_{\min}) \text{ pour } z < z_{\min}$$

$$(4.7)$$

οù

- $k_{\rm l}$ est le coefficient de turbulence. La valeur de $k_{\rm l}$ peut être donnée dans l'Annexe Nationale. La valeur recommandée est $k_{\rm l}$ = 1,0
- c_o est le coefficient orographique tel que décrit en 4.3.3
- z₀ est la longueur de rugosité, indiquée dans le Tableau 4.1

4.5 Pression dynamique de pointe

(1) Il y a lieu de déterminer la pression dynamique de pointe $q_p(z)$ à la hauteur z, qui est induite par la vitesse moyenne et les fluctuations rapides de vitesse.

NOTE 1 L'Annexe Nationale peut fournir les règles permettant de déterminer $q_p(z)$. La règle recommandée est donnée dans l'expression (4.8).

$$q_{p}(z) = [1 + 7 \cdot l_{v}(z)] \cdot \frac{1}{2} \cdot \rho \cdot v_{m}^{2}(z) = c_{e}(z) \cdot q_{b}$$
(4.8)

οù

- ho est la masse volumique de l'air, qui dépend de l'altitude, de la température et de la pression atmosphérique prévues dans la région lors des tempêtes
- $c_{\rm e}(z)$ est le coefficient d'exposition indiqué dans l'expression (4.9)

$$c_{\mathsf{e}}(z) = \frac{q_{\mathsf{p}}(z)}{q_{\mathsf{b}}} \tag{4.9}$$

 $q_{\rm b}$ est la pression dynamique de référence du vent donnée dans l'expression (4.10)

$$q_{\mathsf{b}} = \frac{1}{2} \cdot \rho \cdot v_{\mathsf{b}}^2 \tag{4.10}$$

NOTE 2 Les valeurs de ρ peuvent être données dans l'Annexe Nationale. La valeur recommandée est 1,25 kg/m³.

NOTE 3 La valeur 7 dans l'expression (4.8) est fondée sur un facteur de pointe de 3,5, en cohérence avec les valeurs des coefficients de pression et de force indiquées en section 7.

Dans le cas d'un terrain plat où $c_0(z)$ = 1,0 (voir 4.3.3), le coefficient d'exposition $c_e(z)$ est représenté à la Figure 4.2 en fonction de la hauteur au-dessus du sol et de la catégorie de terrain telle que définie dans le Tableau 4.1.

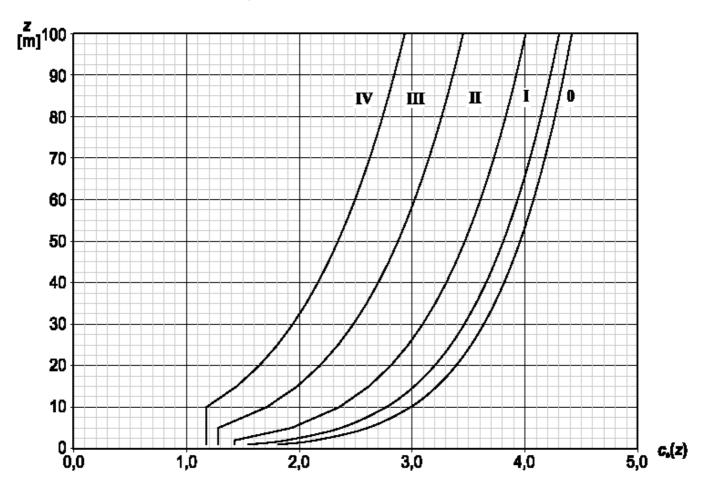


Figure 4.2 — Représentation du coefficient d'exposition $c_{\rm e}(z)$ pour $c_{\rm o}$ = 1,0 et $k_{\rm l}$ = 1,0

5 Actions du vent

5.1 Généralités

(1) P Les actions du vent sur les constructions et les éléments de construction doivent être déterminées en tenant compte tant de la pression extérieure que de la pression intérieure du vent.

NOTE Le Tableau 5.1 présente un résumé des procédures de calcul pour déterminer les actions du vent.

Tableau 5.1 — Procédures de calcul pour la détermination des actions du vent

Paramètre	Renvoi
Pression dynamique de pointe q_{p}	
vitesse de référence du vent $v_{\rm b}$	4.2 (2)P
hauteur de référence $z_{ m e}$	Section 7
catégorie de terrain	Tableau 4.1
pression dynamique de pointe caractéristique $q_{ m p}$	4.5 (1)
intensité de turbulence $I_{\rm V}$	4.4
vitesse moyenne du vent v_{m}	4.3.1
coefficient d'orographie $c_{\rm o}(z)$	4.3.3
coefficient de rugosité $c_{\rm r}(z)$	4.3.2
Pressions exercées par le vent, par exemple sur les revêtements, fixations et éléments de construction	
coefficient de pression intérieure $c_{ m pi}$	Section 7
coefficient de pression extérieure c_{pe}	Section 7
coefficient de pression nette $c_{\mathrm{p,net}}$	Section 7
pression aérodynamique extérieure : $w_{\rm e}$ = $q_{\rm p}$ $c_{\rm pe}$	5.2 (1)
pression aérodynamique intérieure : $w_{\rm i}$ = $q_{\rm p}$ $c_{\rm pi}$	5.2 (2)
Forces exercées par le vent sur les constructions, par exemple pour les effets globaux du vent	
coefficient structural : $c_{\rm s}c_{\rm d}$	6
force exercée par le vent $F_{ m W}$ calculée à partir des coefficients de force	5.3 (2)
force exercée par le vent $F_{\rm W}$ calculée à partir des coefficients de pression	5.3 (3)

5.2 Pression aérodynamique sur les surfaces

(1) Il convient de déterminer la pression aérodynamique agissant sur les surfaces extérieures, w_e , à partir de l'expression (5.1).

$$w_{\mathsf{e}} = q_{\mathsf{p}}(z_{\mathsf{e}}) \cdot c_{\mathsf{pe}} \tag{5.1}$$

où:

 $q_{\rm p}(z_{\rm e})$ est la pression dynamique de pointe

 $z_{\rm e}$ est la hauteur de référence pour la pression extérieure indiquée en Section 7

 $c_{\rm pe}$ est le coefficient de pression pour la pression extérieure, voir Section 7

NOTE $q_{\rm p}(z)$ est défini en 4.5.

(2) Il convient de déterminer la pression aérodynamique agissant sur les surfaces intérieures d'une construction, w_i , à partir de l'expression (5.2).

$$w_{\mathbf{i}} = q_{\mathbf{p}}(z_{\mathbf{i}}) \cdot c_{\mathbf{p}\mathbf{i}} \tag{5.2}$$

οù

 $q_{\rm D}(z_{\rm j})$ est la pression dynamique de pointe

z_i est la hauteur de référence pour la pression intérieure indiquée en Section 7

 $c_{\rm pi}$ est le coefficient de pression pour la pression intérieure indiquée en Section 7

NOTE $q_{\rm p}(z)$ est défini en 4.5.

(3) La pression nette exercée sur un mur, un toit ou un élément est égale à la différence entre les pressions s'exerçant sur les surfaces opposées en tenant bien compte de leurs signes. Une pression, exercée en direction de la surface est considérée comme positive, tandis qu'une succion, qui s'éloigne de la surface est considérée comme négative. Des exemples sont donnés à la Figure 5.1.

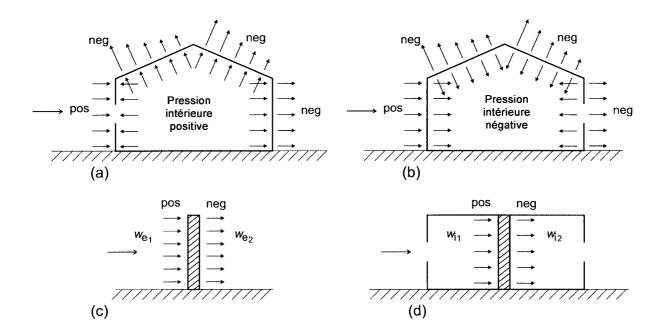


Figure 5.1 — Pression exercée sur les surfaces

5.3 Forces exercées par le vent

- (1) Il convient de déterminer les forces exercées par le vent sur l'ensemble de la construction ou un composant :
- en calculant les forces à l'aide des coefficients de force (voir (2)); ou
- en calculant les forces à partir des pressions de surface (voir (3)).
- (2) La force exercée par le vent $F_{\rm W}$ agissant sur une construction ou un élément de construction peut être déterminée directement en utilisant l'expression (5.3).

$$F_{\mathsf{W}} = c_{\mathsf{S}} c_{\mathsf{d}} \cdot c_{\mathsf{f}} \cdot q_{\mathsf{p}}(z_{\mathsf{e}}) \cdot A_{\mathsf{ref}} \tag{5.3}$$

ou par sommation vectorielle sur les éléments de construction individuels (tels qu'indiqués en 7.2.2) à l'aide de l'expression (5.4).

$$F_{W} = c_{s}c_{d} \cdot \sum_{\text{éléments}} c \cdot q_{p}(z_{e}) \cdot A_{\text{ref}}$$
(5.4)

οù

- $c_{\rm s}\,c_{\rm d}$ est le coefficient structural tel que défini en Section 6
- $c_{\rm f}$ est le coefficient de force applicable à la construction ou à l'élément de construction, donné en Section 7 ou en Section 8
- $q_{\rm p}(z_{\rm e})$ est la pression dynamique de pointe (définie en 4.5) à la hauteur de référence $z_{\rm e}$ (définie en Section 7 ou en Section 8)
- $A_{\rm ref}$ est l'aire de référence de la construction ou de l'élément de construction, indiquée en Section 7 ou en Section 8

NOTE La Section 7 donne les valeurs $c_{\rm f}$ applicables aux constructions ou aux éléments de construction tels que les prismes, cylindres, toitures, panneaux de signalisation, plaques et structures en treillis, etc. Ces valeurs incluent les effets de frottement. La Section 8 donne les valeurs $c_{\rm f}$ applicables aux ponts.

(3) La force exercée par le vent, $F_{\rm w}$ agissant sur une construction ou un élément de construction peut être déterminée par sommation vectorielle des forces $F_{\rm w,e}$, $F_{\rm w,i}$ et $F_{\rm fr}$ calculées à partir des pressions extérieure et intérieure en utilisant les expressions (5.5) et (5.6) et des forces de frottement résultant du frottement du vent parallèlement aux surfaces extérieures, elles-mêmes calculées à l'aide de l'expression (5.7).

forces extérieures :

$$F_{\text{W,e}} = c_{\text{s}}c_{\text{d}} \cdot \sum_{\text{surfaces}} w_{\text{e}} \cdot A_{\text{ref}}$$
 (5.5)

forces intérieures :

$$F_{\text{W,i}} = \sum_{\text{surfaces}} w_{\text{i}} \cdot A_{\text{ref}} \tag{5.6}$$

forces de frottement :

$$F_{\rm fr} = c_{\rm fr} \cdot q_{\rm p}(z_{\rm p}) \cdot A_{\rm ref} \tag{5.7}$$

οù

 $c_{\rm s}\,c_{\rm d}$ est le coefficient structural tel que défini en 6

- $w_{\rm e}$ est la pression extérieure exercée sur la surface élémentaire à la hauteur $z_{\rm e}$, donnée par l'expression (5.1)
- $w_{\rm i}$ est la pression intérieure exercée sur la surface élémentaire à la hauteur $z_{\rm i}$, donnée par l'expression (5.2)
- A_{ref} est l'aire de référence de la surface élémentaire
- $c_{\rm fr}$ est le coefficient de frottement issu de 7.5
- $A_{\rm fr}$ est l'aire de la surface extérieure parallèle au vent, indiquée en 7.5
- NOTE 1 Dans le cas des éléments (par exemple murs, toitures), la force exercée par le vent est égale à la différence entre les forces résultantes externe et interne.
- NOTE 2 Les forces de frottement F_{fr} agissent dans la direction des composantes du vent parallèles aux surfaces extérieures.
- (4) Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent (au vent et sous le vent).
- (5) Le manque de corrélation des pressions aérodynamiques entre les faces au vent et sous le vent peut être pris en compte dans la sommation des forces aérodynamiques agissant sur la structure des bâtiments.
- NOTE L'Annexe Nationale peut déterminer si ce manque de corrélation peut être appliqué de manière générale ou être limité aux murs tel qu'appliqué en 7.2.2 (3). Il est recommandé de prendre en considération le manque de corrélation uniquement pour les murs (voir 7.2.2 (3)).

6 Coefficient structural $c_s c_d$

6.1 Généralités

(1) Le coefficient structural $c_{\rm s}$ $c_{\rm d}$ est destiné à tenir compte de l'effet sur les actions du vent d'une part de l'absence de simultanéité des pointes de pression à la surface de la construction $(c_{\rm s})$ et d'autre part des vibrations de la structure engendrées par la turbulence $(c_{\rm d})$.

NOTE Le coefficient structural $c_{\rm s}$ $c_{\rm d}$ peut être décomposé en un coefficient de dimension $c_{\rm s}$ et un coefficient dynamique $c_{\rm d}$, sur la base de 6.3. Les informations relatives au fait qu'il convient ou non de dissocier le coefficient structural $c_{\rm s}$ $c_{\rm d}$ peuvent être indiguées dans l'Annexe Nationale.

6.2 Détermination de $c_s c_d$

- (1) $c_{\rm s}c_{\rm d}$ peut être déterminé comme suit :
- a) pour les bâtiments dont la hauteur est inférieure à 15 m, la valeur de c_s c_d peut être considérée comme égale à 1.
- b) pour les éléments de façade et de toiture dont la fréquence propre est supérieure à 5 Hz, la valeur de $c_{\rm s}$ $c_{\rm d}$ peut être considérée comme égale à 1 ;
- c) pour les bâtiments en charpente comportant des cloisons, d'une hauteur inférieure à 100 m, et dont ladite hauteur est inférieure à 4 fois la largeur mesurée dans la direction du vent, la valeur de $c_{\rm s}$ $c_{\rm d}$ peut être considérée comme égale à 1 ;
- d) pour les cheminées à sections transversales circulaires dont la hauteur est inférieure à 60 m et inférieure à 6,5 fois le diamètre, la valeur de $c_{\rm s}$ $c_{\rm d}$ peut être considérée comme égale à 1 ;
- e) dans les cas a), b), c) et d) ci-dessus, les valeurs de $c_{\rm s}$ $c_{\rm d}$ peuvent également être calculées à partir de 6.3.1 ;
- f) pour les ouvrages de génie civil (autres que les ponts, étudiés en Section 8), ainsi que les cheminées et les bâtiments ne relevant pas des limites données en c) et d) ci-dessus, il est recommandé de calculer $c_{\rm s}$ $c_{\rm d}$ à partir de 6.3 ou de prendre la valeur indiquée à l'Annexe D.
- NOTE 1 Les fréquences propres des éléments de façade et de toiture peuvent être calculées à l'aide de l'Annexe F (des travées de vitrage inférieures à 3 m conduisent généralement à des fréquences propres supérieures à 5 Hz).
- NOTE 2 Les figures de l'Annexe D donnent les valeurs de $c_{\rm S}$ $c_{\rm d}$ pour différents types de constructions. Les figures donnent des valeurs enveloppes, en terme de sécurité, calculées à partir de modèles conformes aux exigences définies en 6.3.1.

6.3 Procédure détaillée

6.3.1 Coefficient structural $c_s c_d$

(1) La procédure détaillée de calcul du coefficient structural $c_{\rm s}$ $c_{\rm d}$ est décrite dans l'expression (6.1). Cette procédure peut être utilisée uniquement si les conditions données en 6.3.1 (2) s'appliquent.

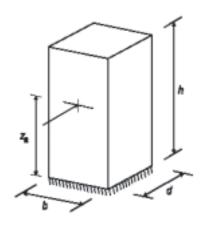
$$c_{s}c_{d} = \frac{1 + 2 \cdot k_{p} \cdot l_{v}(z_{s}) \cdot \sqrt{B^{2} + R^{2}}}{1 + 7 \cdot l_{v}(z_{s})}$$
(6.1)

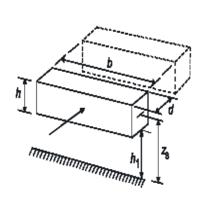
οù

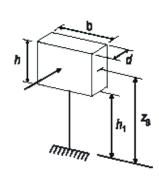
- z_s est la hauteur de référence, voir Figure 6.1. Pour les constructions pour lesquelles la Figure 6.1 ne s'applique pas, z_s peut être prise égale à h, la hauteur de la construction
- $k_{\rm p}$ est le facteur de pointe défini comme le rapport de la valeur maximale de la partie variable de la réponse à son écart type
- l_v est l'intensité de turbulence définie en 4.4
- B^2 est le coefficient de réponse quasi-statique traduisant l'imparfaite corrélation de la pression sur la surface de la construction
- R² est le coefficient de réponse résonante traduisant la résonance du mode de vibration engendrée par la turbulence

NOTE 1 Le coefficient de dimension c_s tient compte de l'effet de réduction sur l'action du vent dû à l'absence de simultanéité des pointes de pression sur la surface de la construction ; il peut être obtenu à partir de l'expression (6.2).

$$c_{s} = \frac{1 + 7 \cdot l_{v}(z_{s}) \cdot \sqrt{B^{2}}}{1 + 7 \cdot l_{v}(z_{s})}$$
(6.2)


NOTE 2 Le coefficient dynamique $c_{\rm d}$ tient compte de l'effet majorateur dû aux vibrations engendrées par la turbulence en résonance avec la structure ; il peut être obtenu à partir de l'expression (6.3).


$$c_d = \frac{1 + 2 \cdot k_p \cdot l_v(z_s) \cdot \sqrt{B^2 + R^2}}{1 + 7 \cdot l_v(z_s) \cdot \sqrt{B^2}}$$
(6.3)


- NOTE 3 La procédure à utiliser dans un pays donné afin de déterminer $k_{\rm p}$, B et R peut être donnée dans l'Annexe Nationale. La procédure recommandée est donnée à l'annexe B. Une autre procédure est donnée à l'Annexe C. A titre indicatif pour les utilisateurs, les différences entre les valeurs $c_{\rm s}c_{\rm d}$ obtenues en utilisant l'Annexe C et celles obtenues avec l'Annexe B ne dépassent pas 5 % environ.
- (2) P L'expression (6.1) doit être utilisée uniquement si toutes les exigences suivantes sont satisfaites :
- la construction correspond à l'une des formes générales représentées à la Figure 6.1;
- seules les vibrations dans la direction du vent, selon le mode fondamental, sont significatives, et la déformée de ce mode a un signe constant.

NOTE La contribution à la réponse du second mode ou d'un mode supérieur de vibrations dans la direction du vent est négligeable.

- a) Construction verticale telle que bâtiments, etc.
- b) Oscillateur parallèle, c'est-àdire constructions horizontales telles que poutres, etc.
- c) Constructions ponctuelles telles que panneaux de signalisation

NOTE Les limitations sont également données en 1.1 (2).

$$z_s = 0.6 \cdot h \ge z_{\min}$$

$$z_{s} = h_{1} + \frac{h}{2} \ge z_{\min}$$

$$z_{s} = h_{1} + \frac{h}{2} \ge z_{\min}$$

Figure 6.1 — Formes générales des constructions couvertes par la méthode de calcul.

Les dimensions de la construction et la hauteur de référence

utilisée sont également représentées

6.3.2 Évaluation de l'aptitude au service

(1) Il convient d'utiliser, pour l'évaluation de l'aptitude au service, le déplacement maximal dans la direction du vent et l'écart type de l'accélération caractéristique de la construction dans la direction du vent, à la hauteur z. Il est recommandé d'utiliser la force statique équivalente définie en 5.2 pour le calcul du déplacement maximal dans la direction du vent.

NOTE L'Annexe Nationale peut décrire une méthode de détermination du déplacement dans la direction du vent ainsi que de l'écart type de l'accélération dans la direction du vent. La méthode recommandée est donnée à l'Annexe B. Une autre méthode est donnée à l'Annexe C.

6.3.3 Excitation par la turbulence de sillage

- (1) Pour les bâtiments élancés (h/d > 4) et les cheminées (h/d > 6,5) disposées en paires ou en groupes, il convient de prendre en compte l'effet de turbulence accrue dans le sillage des constructions avoisinantes (excitation par la turbulence de sillage).
- (2) L'excitation par la turbulence de sillage peut être supposée négligeable si au moins l'une des conditions suivantes s'applique :
- la distance entre deux bâtiments ou cheminées est supérieure à 25 fois la dimension, mesurée perpendiculairement au vent, du bâtiment ou de la cheminée situé en amont :
- la fréquence propre du bâtiment ou de la cheminée en aval est supérieure à 1 Hz.

NOTE Si aucune des conditions énoncées en 6.3.3 (2) n'est satisfaite, il est recommandé d'effectuer des essais en soufflerie ou de demander l'avis d'un spécialiste.

7 Coefficients de pression et de force

7.1 Généralités

(1) II	convien	ıt d	'utiliser	la	présente	section	pour	déterr	miner	les	coeff	icients	aérodynar	niques	app	ropriés	aux
constr	uctions.	Le	coeffic	ient	aérodyna	amique	approp	orié se	prése	ente	de la	maniè	re suivante	e, selor	ı la d	constru	ction
conce	rnée :																

 coefficients de pression intérieure et extérieure, voir 7.1.1 (1) ;
 coefficients de pression nette, voir 7.1.1 (2);
 coefficients de frottement, voir 7.1.1 (3);

— coefficients de force, voir 7.1.1 (4).

7.1.1 Choix du coefficient aérodynamique

- (1) Il convient de déterminer les coefficients de pression pour :
- les bâtiments, en utilisant 7.2 tant pour les pressions intérieures que pour les pressions extérieures;
- les cylindres à base circulaire, en utilisant 7.2.9 pour les pressions intérieures et 7.9.1 pour les pressions extérieures.
- NOTE 1 Les coefficients de pression extérieure donnent l'effet du vent sur les surfaces extérieures des bâtiments ; les coefficients de pression intérieure donnent l'effet du vent sur les surfaces intérieures des bâtiments.
- NOTE 2 Les coefficients de pression extérieure sont répartis en coefficients globaux et en coefficients locaux. Les coefficients locaux donnent les coefficients de pression pour les surfaces chargées d'aire égale à 1 m². Ils peuvent être utilisés pour le calcul des petits éléments et des fixations. Les coefficients globaux donnent les coefficients de pression pour les surfaces chargées d'aire égale à 10 m². Ils peuvent être utilisés pour les surfaces chargées d'aire supérieure à 10 m².
- (2) Il convient de déterminer les coefficients de pression nette pour :
- les toitures isolées, en utilisant les données de 7.3 ;
- les murs isolés, les acrotères et les clôtures, en utilisant les données de 7.4.
- NOTE Les coefficients de pression nette donnent l'effet résultant du vent par unité d'aire sur une construction, un élément de construction ou un composant.
- (3) Il convient de déterminer les coefficients de frottement pour les murs et les surfaces définis en 5.3 (3) et (4), en utilisant les données de 7.5.
- (4) Il convient de déterminer les coefficients de force pour :
- les panneaux de signalisation, en utilisant les données de 7.4.3;
- les éléments structuraux de section transversale rectangulaire, en utilisant les données de 7.6;
- les éléments structuraux de section à arêtes vives, en utilisant les données de 7.7;
- les éléments structuraux de section polygonale régulière, en utilisant les données de 7.8;
- les cylindres à base circulaire, en utilisant les données de 7.9.2 et 7.9.3 ;
- les sphères, en utilisant les données de 7.10 ;

- les structures en treillis et les échafaudages, en utilisant les données de 7.11;
- les drapeaux, en utilisant les données de 7.12.

Un facteur de réduction dépendant de l'élancement effectif de la construction peut être appliqué, en utilisant les données de 7.13.

NOTE Les coefficients de force donnent l'effet global du vent sur une construction, un élément ou un composant de la construction, considéré dans sa totalité, y compris le frottement, lorsqu'il n'est pas spécifiquement exclu.

7.1.2 Pressions et forces asymétriques ou en opposition

- (1) Lorsque les fluctuations instantanées du vent sur les surfaces peuvent entraîner une asymétrie significative de chargement et lorsque le type de structure est susceptible d'être sensible à un tel chargement (par exemple torsion dans le cas de bâtiments à noyau unique nominalement symétriques), il convient alors de prendre en compte leur effet.
- (2) Pour les toitures isolées et les panneaux de signalisation, il est recommandé d'utiliser 7.3 et 7.4.

NOTE L'Annexe Nationale peut fournir des procédures pour d'autres constructions. Les procédures recommandées sont les suivantes :

a) pour les constructions rectangulaires sensibles aux effets de torsion, il est recommandé d'appliquer la répartition de la pression indiquée à la Figure 7.1 pour la représentation des effets de torsion dus à un vent oblique ou à l'imparfaite corrélation entre les forces aérodynamiques agissant aux différents points de la construction;

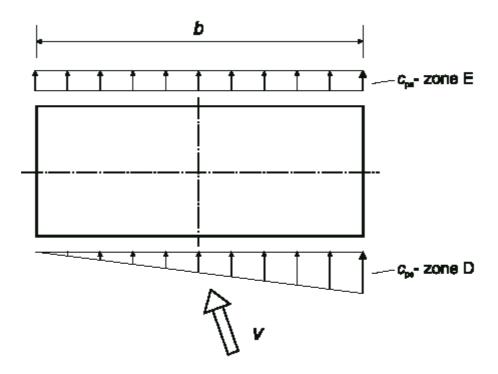


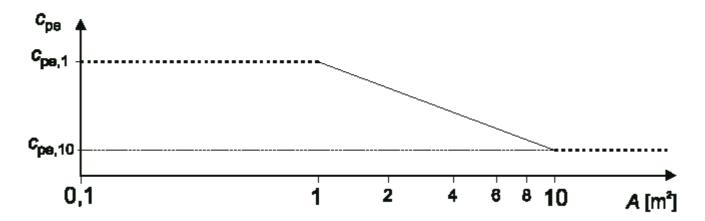
Figure 7.1 — Répartition de la pression permettant de prendre en compte les effets de torsion. Les zones et les valeurs $c_{\rm pe}$ sont indiquées dans le Tableau 7.1 et à la Figure 7.5.

b) pour les autres cas, la prise en compte de l'asymétrie du chargement est généralement obtenue en éliminant entièrement l'action de calcul du vent des parties de la construction sur lesquelles ladite action produit un effet bénéfique.

7.1.3 Effets de la glace et de la neige

(1) Il convient de prendre en compte toute modification de la géométrie d'une construction sous l'action de la glace ou de la neige qui entraînerait un changement de sa forme ou de la surface de référence.

NOTE Des informations supplémentaires peuvent être données dans l'Annexe Nationale.


7.2 Coefficients de pression pour les bâtiments

7.2.1 Généralités

(1) Les coefficients de pression extérieure $c_{\rm pe}$ applicables aux bâtiments et aux parties de bâtiments dépendent de la dimension de la surface chargée A, qui est la surface de la construction produisant l'action du vent dans la section à calculer. Les coefficients de pression extérieure sont donnés pour des surfaces chargées A de 1 m² et 10 m^2 dans les tableaux relatifs aux configurations de bâtiment appropriées ; ils sont notés $c_{\rm pe,1}$ pour les coefficients locaux, et $c_{\rm pe,10}$ pour les coefficients globaux, respectivement.

NOTE 1 Les valeurs de $c_{\rm pe,1}$ sont destinées au calcul des petits éléments et de leurs fixations, d'aire inférieure ou égale à 1 m² tels que des éléments de façade et de toiture. Les valeurs de $c_{\rm pe,10}$ peuvent être utilisées pour le calcul de la structure portante générale des bâtiments.

NOTE 2 L'Annexe Nationale peut fournir une méthode de calcul des coefficients de pression extérieure pour les surfaces chargées de plus de 1 m², sur la base des coefficients de pression extérieure $c_{\rm pe,1}$ et $c_{\rm pe,10}$. La procédure recommandée pour des surfaces chargées allant jusqu'à 10 m² est indiquée à la Figure 7.2.

La figure est fondée sur les éléments suivants :

pour 1 m² <
$$A$$
 < 10 m² $c_{pe} = c_{pe,1} - (c_{pe,1} - c_{pe,10}) \log_{10} A$

Figure 7.2 — Procédure recommandée pour la détermination du coefficient de pression extérieure $c_{\rm pe}$ dans le cas des bâtiments, pour une aire chargée comprise entre 1 m² et 10 m²

- (2) Il convient d'utiliser les valeurs $c_{\text{pe},10}$ et $c_{\text{pe},1}$ indiquées dans les Tableaux 7.1 à 7.5 pour les directions orthogonales du vent, à savoir 0°, 90° et 180°. Ces valeurs représentent les valeurs les plus défavorables obtenues dans une gamme de directions de vent θ = ± 45°, de chaque côté de la direction orthogonale considérée.
- (3) Pour les avancées de toit, la pression exercée sur la face inférieure de l'avant-toit est égale à la pression applicable à la zone du mur vertical directement relié à l'avancée de toit; la pression exercée sur la face supérieure de l'avant-toit est égale à la pression de la zone, définie pour la toiture elle-même.

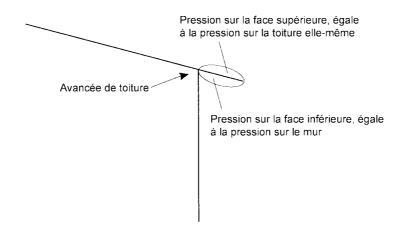
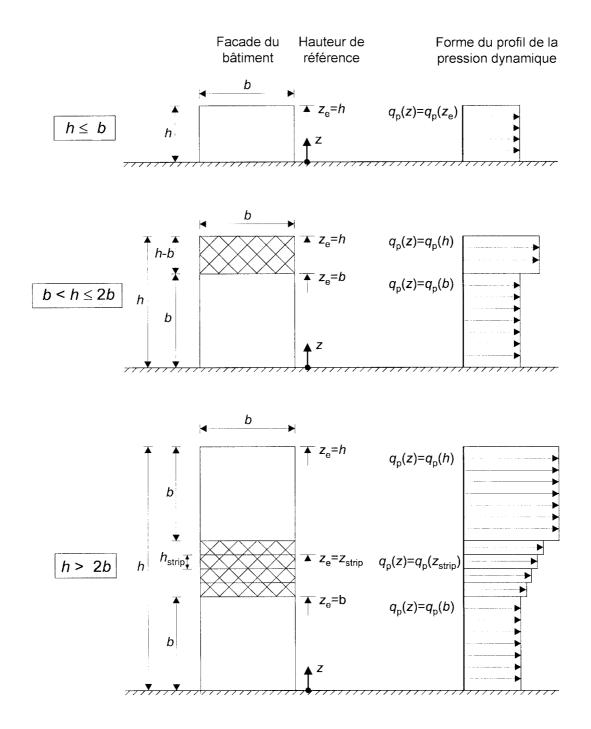



Figure 7.3 — Représentation des pressions pertinentes applicables aux avancées de toiture

7.2.2 Murs verticaux des bâtiments à plan rectangulaire

- (1) Les hauteurs de référence, $z_{\rm e}$, pour les murs au vent des bâtiments à plan rectangulaire (zone D, voir Figure 7.5) dépendent du facteur de forme h/b et sont toujours les hauteurs supérieures des différentes parties des murs. Elles sont indiquées à la Figure 7.4 pour les trois cas suivants :
- un bâtiment, dont la hauteur h est inférieure à b, peut être considéré comme un seul élément;
- un bâtiment, dont la hauteur h est supérieure à b, mais inférieure à 2b, peut être considéré comme deux éléments, comprenant : une partie inférieure qui s'étend à la verticale à partir du sol sur une hauteur égale à b et une partie supérieure constituée du reste ;
- un bâtiment, dont la hauteur h est supérieure à 2b, peut être considéré comme étant constitué de plusieurs éléments, comprenant : une partie inférieure qui s'étend à la verticale à partir du sol sur une hauteur égale à b; une partie supérieure qui s'étend à la verticale à partir du bord supérieur, sur une hauteur égale à b et une région médiane, comprise entre les parties supérieure et inférieure, qui peut être répartie en bandes horizontales avec une hauteur h_{strip} telle qu'indiquée à la Figure 7.4.

NOTE Les règles relatives à la distribution de la pression dynamique sur le mur sous le vent et les murs latéraux (zones A, B, C et E, voir Figure 7.5) peuvent être données dans l'Annexe Nationale ou être définies pour le projet particulier. La procédure recommandée consiste à prendre la hauteur du bâtiment comme hauteur de référence.

NOTE Il convient de supposer que la pression dynamique est uniforme sur chaque bande horizontale considérée.

Figure 7.4 — Hauteur de référence, $z_{\rm e}$, dépendant de h et b, et profil correspondant de pression dynamique

(2) Les coefficients de pression extérieure $c_{\rm pe,10}$ et $c_{\rm pe,1}$ pour les zones A, B, C, D et E sont définis à la Figure 7.5.

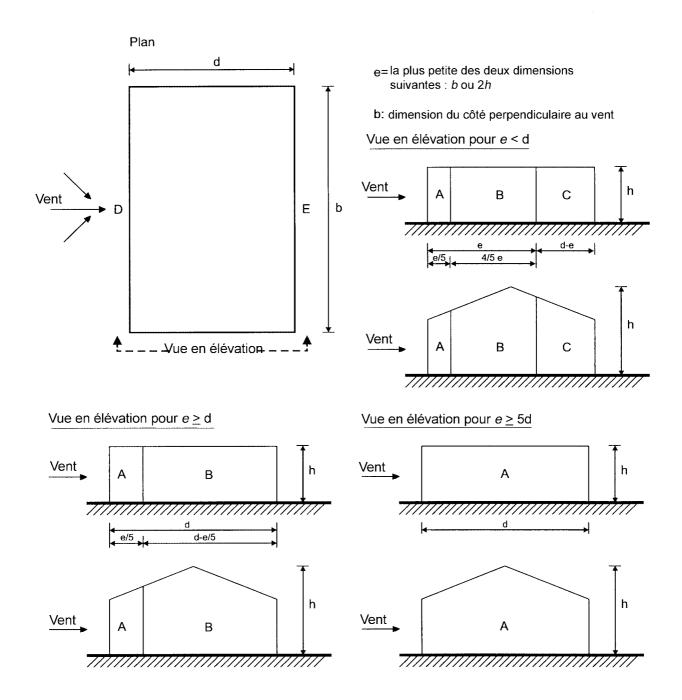
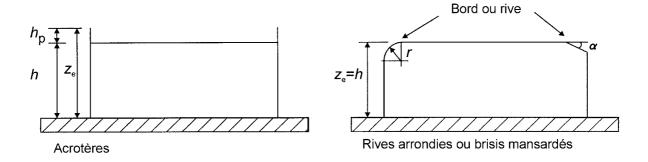


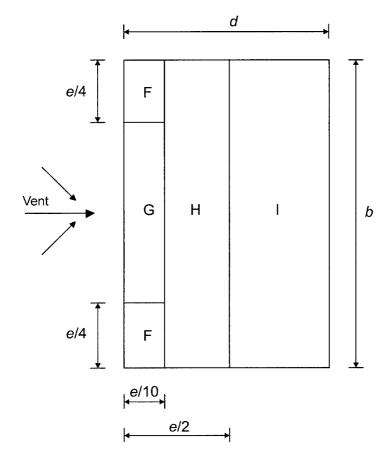
Figure 7.5 — Légende relative aux murs verticaux

NOTE 1 Les valeurs de $c_{\rm pe,10}$ et $c_{\rm pe,10}$ peuvent être indiquées dans l'Annexe Nationale. Les valeurs recommandées sont données dans le Tableau 7.1, selon le rapport h/d. Une interpolation linéaire peut être appliquée pour les valeurs intermédiaires de h/d. Les valeurs du Tableau 7.1 s'appliquent aussi aux murs des bâtiments à toitures inclinées, telles que les toitures à un ou deux versants.

Tableau 7.1 — Valeurs recommandées des coefficients de pression extérieure pour les murs verticaux des bâtiments à plan rectangulaire

Zone	,	4	E	3	С		[)	E	=
hld	^C pe,10	c _{pe,1}	с _{ре,10}	с _{ре,1}	^С ре,10	c _{pe,1}	^C pe,10	c _{pe,1}	с _{ре,10}	с _{ре,1}
5	-1,2	-1,4	-0,8	-1,1	-0	,5	+0,8	+1,0	-0	,7
1	-1,2	-1,4	-0,8	-1,1	-0	,5	+0,8	+1,0	-0	,5
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0),5	+0,7	+1,0	-0	,3


NOTE 2 Pour les bâtiments avec h/d > 5, la charge totale du vent peut être fondée sur les dispositions données aux Sections 7.6 à 7.8 et 7.9.2.


(3) Dans les cas où la force aérodynamique s'exerçant sur un bâtiment est calculée par l'application des coefficients de pression $c_{\rm pe}$ sur les faces au vent et sous le vent (zones D et E) du bâtiment de manière simultanée, le défaut de corrélation entre les pressions aérodynamiques au vent et sous le vent peut devoir être pris en considération.

NOTE Le défaut de corrélation entre les pressions aérodynamiques au vent et sous le vent peut être traité comme suit. Pour les bâtiments avec $h/d \ge 5$, la force résultante est multipliée par 1. Pour les bâtiments avec $h/d \le 1$, la force résultante est multipliée par 0,85. Il convient d'appliquer une interpolation linéaire pour les valeurs intermédiaires de h/d.

7.2.3 Toitures-terrasses

- (1) Les toitures-terrasses sont définies comme ayant une pente (α) telle que $-5^{\circ} < \alpha < 5^{\circ}$.
- (2) Il convient de diviser la toiture en zones telles que représentées à la Figure 7.6.
- (3) La hauteur de référence qu'il convient d'utiliser pour les toitures-terrasses et les toitures à rives arrondies ou à brisis mansardés est égale à h. La hauteur de référence qu'il convient d'utiliser pour les toitures-terrasses avec acrotères est égale à $h + h_p$, voir Figure 7.6.
- (4) Les coefficients de pression pour chaque zone sont donnés dans le Tableau 7.2.
- (5) Il convient de déterminer le coefficient de pression résultante exercée sur l'acrotère en utilisant les données de 7.4.

- e = la plus petite des deux dimensions suivantes : *b* ou 2*h*
- b : dimension du côté perpendiculaire au vent

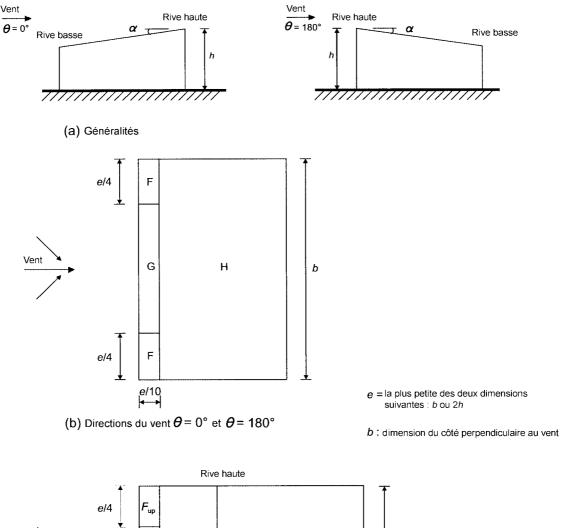
 ${\bf Figure~7.6-L\'egende~applicable~aux~toitures-terrasses}$

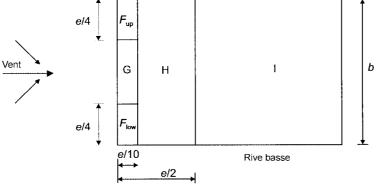
Tableau 7.2 — Coefficients de pression extérieure applicables aux toitures-terrasses

					Zo	ne			
Type d	e toiture	F	=	(3	H	1	ı	
		с _{ре,10}	c _{pe,1}	с _{ре,10}	<i>с</i> _{ре,1}	с _{ре,10}	<i>с</i> _{ре,1}	с _{ре,10}	с _{ре,1}
rives à arêtes	vives	-1,8	-2,5	-1,2	-2,0	-0,7	-1,2	+0	,2
Tives a aretes	VIVES	-1,0	-2,5	-1,2	-2,0	-0,7	-1,2	-0,	2
	$h_{\rm p}/h = 0.025$	-1,6	-2,2	-1,1	-1,8	-0,7	-1,2	+0	,2
	ρ ,	1,0	_,_	.,.	1,0	0,.	.,_	-0,	2
avec	$h_{\rm p}/h = 0.05$	-1,4	-2,0	-0,9	-1,6	-0,7	-1,2	+0	
acrotères	P	,	·	,	•			-0,	
	$h_{\rm p}/h = 0.10$	-1,2	-1,8	-0,8	-1,4	-0,7	-1,2	+0	
								-0,2 +0,2	
	r/h = 0.05	-1,0	-1,5	-1,2	-1,8	-0	,4		
								-0,2 +0,2	
rives arrondies	r/h = 0,10	-0,7	-1,2	-0,8	-1,4	-0	,3	-0,	
								+0	
	r/h = 0,20	-0,5	-0,8	-0,5	-0,8	-0	,3	-0,	
								+0	
	α = 30°	-1,0	-1,5	-1,0	-1,5	-0	,3	-0,	2
brisis	450	4.0	4.0	4.0	4.0	-0,4		+0	,2
mansardés	α = 45°	-1,2	-1,8	-1,3	-1,9	-0	1,4	-0,	2
	α = 60°	-1,3	10 10 10	-0,5	0 0 5		+0	,2	
	μ – 60	-1,5	-1,9	-1,3	-1,9	-0	,,,	-0,2	

NOTE 1 Pour les toitures avec acrotères ou rives arrondies, une interpolation linéaire peut être utilisée pour les valeurs intermédiaires de $h_{\rm D}/h$ et r/h.

7.2.4 Toitures à un seul versant


- (1) Il convient de diviser la toiture, y compris les avancées de toiture, en zones telles que représentées à la Figure 7.7.
- (2) La hauteur de référence $z_{\rm e}$ qu'il convient d'utiliser est égale à h.
- (3) Les coefficients de pression qu'il convient d'utiliser pour chaque zone sont donnés dans le Tableau 7.3.


NOTE 2 Pour les toitures à brisis mansardés, une interpolation linéaire entre α = 30°, 45° et α = 60° peut être utilisée. Pour α > 60°, une interpolation linéaire entre les valeurs pour α = 60° et les valeurs applicables aux toitures-terrasses à arêtes vives peut être utilisée.

NOTE 3 En zone I, où des valeurs positives et négatives sont données, chacune des deux valeurs doit être prise en considération.

NOTE 4 Pour le brisis mansardé lui-même, les coefficients de pression extérieure sont donnés dans le Tableau 7.4a "Coefficients de pression extérieure applicables aux toitures à deux versants" (direction du vent $\theta = 0^{\circ}$), en considérant les zones F et G selon l'angle de pente du brisis.

NOTE 5 Pour la rive arrondie elle-même, les coefficients de pression extérieure sont obtenus par interpolation linéaire le long de l'arrondi, entre les valeurs relatives au mur et celles relatives à la toiture.

(c) Direction du vent θ = 90°

Figure 7.7 — Légende applicable aux toitures à un seul versant

Tableau 7.3a — Coefficients de pression extérieure applicables aux toitures à un seul versant

	Zone pour la direction du vent θ = 0°							Zone pour	la directi	on du ve	nt <i>0</i> = 180	•
Angle de pente α		F	(3	ŀ	4	F	F	(3	ŀ	4
pente a	с _{ре,10}	c _{pe,1}	с _{ре,10}	с _{ре,1}	с _{ре,10}	c _{pe,1}	с _{ре,10}	с _{ре,1}	с _{ре,10}	c _{pe,1}	с _{ре,10}	c _{pe,1}
5°	-1,7	-2,5	-1,2	-2,0	-0,6	-1,2	2.2	2.5	4.0	2.0	0.0	4.0
5	+(0,0	+(0,0	+(0,0	-2,3	-2,5	-1,3	-2,0	-0,8	-1,2
15°	-0,9	-2,0	-0,8	-1,5	-0	,3	2.5	-2,8	4.0	2.0	-0,9	4.0
15	+(0,2	+(),2	+ (0,2	-2,5	-2,0	-1,3	-2,0	-0,9	-1,2
20%	-0,5	-1,5	-0,5	-1,5	-0	,2	4.4	2.2	0.0	4.5		. 0
30°	+(0,7	+(),7	+(),4	-1,1	-2,3	-0,8	-1,5	-0	,8
45°	-(0,0	-0),0	-0	,0	0.0	4.0				. 7
45	+(0,7	+(),7	+(),6	-0,6	-1,3	-0	,5	-0),7
60°	+(0,7	+(),7	+(),7	-0,5	-1,0	-0	,5	-0	,5
75°	+(0,8	+(),8	+(),8	-0,5	-1,0	-0	,5	-0	,5

Tableau 7.3b — Coefficients de pression extérieure applicables aux toitures à un seul versant

	Zone pour la direction du vent θ = 90°											
Angle de pente α	F _{up}		F _{lo}	ow .	G	i	н		I			
	^с ре,10	c _{pe,1}	^с ре,10	^с _{ре,1}	^с _{ре,10}	с _{ре,1}	с _{ре,10}	с _{ре,1}	^с ре,10	^с _{ре,1}		
5°	-2,1	-2,6	-2,1	-2,4	-1,8	-2,0	-0,6	-1,2	-0),5		
15°	-2,4	-2,9	-1,6	-2,4	-1,9	-2,5	-0,8	-1,2	-0,7	-1,2		
30°	-2,1	-2,9	-1,3	-2,0	-1,5	-2,0	-1,0	-1,3	-0,8	-1,2		
45°	-1,5	-2,4	-1,3	-2,0	-1,4	-2,0	-1,0	-1,3	-0,9	-1,2		
60°	-1,2	-2,0	-1,2	-2,0	-1,2	-2,0	-1,0	-1,3	-0,7	-1,2		
75°	-1,2	-2,0	-1,2	-2,0	-1,2	-2,0	-1,0	-1,3	-0),5		

NOTE 1 Avec θ = 0° (voir tableau a)), la pression varie rapidement entre des valeurs positives et négatives pour un angle de pente α allant de +5° à +45 ; c'est pourquoi des valeurs positives et négatives sont indiquées pour ces pentes. Pour ces toitures, il convient de prendre en considération deux cas : un cas présentant toutes les valeurs positives, et un cas présentant toutes les valeurs négatives. Un mélange de valeurs positives et négatives sur un même versant n'est pas admis.

NOTE 2 Pour les angles de pente intermédiaires, une interpolation linéaire peut être utilisée entre valeurs de même signe. Les valeurs égales à 0,0 sont données à cette fin d'interpolation.

7.2.5 Toitures à deux versants

- (1) Il convient de diviser la toiture, y compris les avancées de toiture, en zones telles que représentées à la Figure 7.8.
- (2) La hauteur de référence $z_{\rm e}$ qu'il convient d'utiliser est égale à h.
- (3) Les coefficients de pression qu'il convient d'utiliser pour chaque zone sont donnés dans le Tableau 7.4.

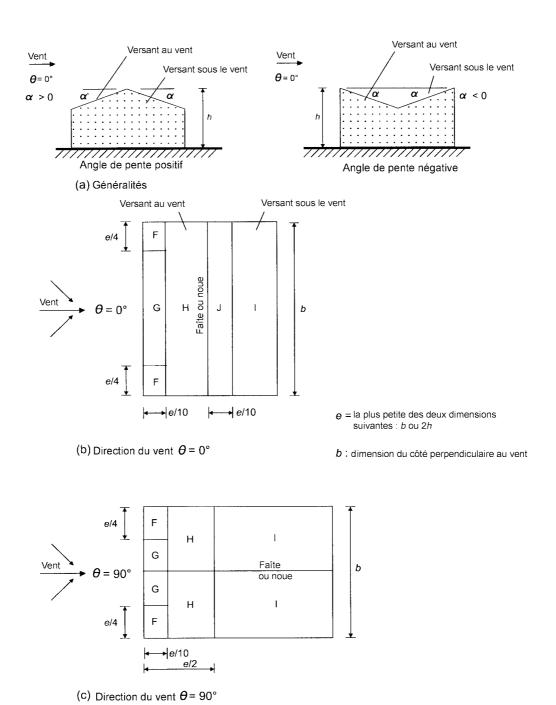


Figure 7.8 — Légende applicable aux toitures à deux versants

Tableau 7.4a — Coefficients de pression extérieure applicables aux toitures à deux versants

				Zone po	our la direc	ction du ve	ent θ= 0°									
Angle de pente α	F	i	G	;	ı	н		l		J						
,	c _{pe,10}	c _{pe,1}	с _{ре,10}	c _{pe,1}	с _{ре,10}	с _{ре,1}	c _{pe,10}	c _{pe,1}	c _{pe,10}	$c_{pe,1}$						
-45°	-0,	6	-0	,6	-0),8	-0	,7	-1,0	-1,5						
-30°	-1,1	-2,0	-0,8	-1,5	-0),8	-0	,6	-0,8	-1,4						
-15°	-2,5	-2,8	-1,3	-2,0	-0,9	-1,2	-C	,5	-0,7	-1,2						
5 0	0.0	0.5	4.0	0.0	0.0 1.0		+(),2	+(0,2						
-5°	-2,3	-2,5	-1,2	-2,0	-0,8	-1,2	-0,6		-(),6						
F°.	-1,7	-2,5	-1,2	-2,0	-0,6 -1,2		-0,6		+(0,2						
5°	+0	,0	+0	,0	+(0,0	-0	,6	-0,6							
450	-0,9	-2,0	-0,8	-1,5	-0),3	-0	,4	-1,0	-1,5						
15°	+0	,2	+0	,2	+(0,2	+(0,0	+0,0	+0,0						
20%	-0,5	-1,5	-0,5	-1,5	-0	-0,2		-0,2 -0,4		,4	-0,5					
30°	+0,7		+0	,7	+(0,4	+(0,0	+(0,0						
450	-0,	0	-0	-0,0		-0,0		-0,0		-0,2),3				
45°	+0	,7	+0	,7	+0,6		+0,6 +0,0		+(0,0						
60°	+0	,7	+0	,7	+0,7		+0,7 -0,2		,2	-0,3						
75°	+0	,8	+0	,8	+0,8		+0,8		+0,8		+0,8		-0,2		-0,3	

NOTE 1 Avec θ = 0°, la pression varie rapidement entre des valeurs positives et négatives sur le versant au vent, pour un angle de pente α allant de -5° à +45 ; c'est pourquoi des valeurs positives et négatives sont indiquées pour ces pentes. Pour ces toitures, il convient de prendre en considération quatre cas de figure avec lesquels les plus grandes ou les plus petites valeurs de toutes les zones F, G et H sont combinées aux plus grandes ou aux plus petites valeurs des zones I et J. Un mélange de valeurs positives et négatives sur un même versant, n'est pas admis.

NOTE 2 Pour les angles de pente intermédiaires de même signe, une interpolation linéaire peut être utilisée entre valeurs de même signe. (Ne pas effectuer d'interpolation entre α = +5° et α = -5°, mais utiliser les données relatives aux toitures-terrasses définies en 7.2.3). Les valeurs égales à 0,0 sont données à cette fin d'interpolation.

Tableau 7.4b — Coefficients de pression extérieure applicables aux toitures à deux versants

			Zone p	our la dire	ection du ve	ent <i>θ</i> = 90°		
Angle de pente α	ı	=	(3	H	1	1	l
	с _{ре,10}	с _{ре,1}	^с _{ре,10}	<i>с</i> _{ре,1}	с _{ре,10}	с _{ре,1}	с _{ре,10}	$c_{pe,1}$
-45°	-1,4	-2,0	-1,2	-2,0	-1,0	-1,3	-0,9	-1,2
-30°	-1,5	-2,1	-1,2	-2,0	-1,0	-1,3	-0,9	-1,2
-15°	-1,9	-2,5	-1,2	-2,0	-0,8	-1,2	-0,8	-1,2
-5°	-1,8	-2,5	-1,2	-2,0	-0,7	-1,2	-0,6	-1,2
5°	-1,6	-2,2	-1,3	-2,0	-0,7	-1,2	-0	,6
15°	-1,3	-2,0	-1,3	-2,0	-0,6	-1,2	-0	,5
30°	-1,1	-1,5	-1,4	-2,0	-0,8	-1,2	-0	,5
45°	-1,1	-1,5	-1,4	-2,0	-0,9	-1,2	-0	,5
60°	-1,1	-1,5	-1,2	-2,0	-0,8	-1,0	-0	,5
75°	-1,1	-1,5	-1,2	-2,0	-0,8	-1,0	-0	,5

7.2.6 Toitures à quatre versants

- (1) Il convient de diviser la toiture, y compris les avancées de toiture, en zones telles que représentées à la Figure 7.9.
- (2) La hauteur de référence $z_{\rm e}$ qu'il convient d'utiliser est égale à h.
- (3) Les coefficients de pression qu'il convient d'utiliser sont donnés dans le Tableau 7.5.

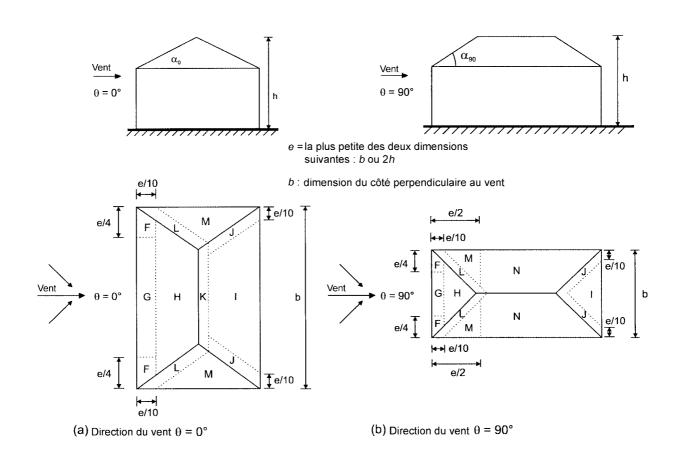


Figure 7.9 — Légende applicable aux toitures à quatre versants

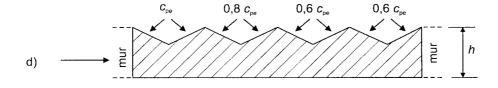
Tableau 7.5 — Coefficients de pression extérieure applicables aux toitures à quatre versants des bâtiments

Angle de pente α₀	Zone pour la direction du vent θ = 0° et θ = 90°																	
$pour \theta = 0^{\circ}$ $\alpha_{90} pour$ $\theta = 90^{\circ}$	F	:	G	ì	ŀ	+	I J		к		L		М		N			
	с _{ре,10}	с _{ре,1}	с _{ре,10}	$c_{ m pe,1}$	c _{pe,10}	$c_{ m pe,1}$	с _{ре,10}	$c_{ m pe,1}$	с _{ре,10}	$c_{\mathrm{pe,1}}$	с _{ре,10}	$c_{ m pe,1}$	с _{ре,10}	$c_{\mathrm{pe,1}}$	с _{ре,10}	$c_{\mathrm{pe,1}}$	с _{ре,10}	$c_{ m pe,1}$
5°	-1,7	-2,5	-1,2	-2,0	-0,6	-1,2),3	-0	6		,6	-1,2	-2,0	-0,6	-1,2	-0	1.4
3	+0	,0	+0	,0	+(),0	-0	1,3	-0	,0	-0	,0	-1,2	-2,0	-0,0	-1,2	-0	·, -
15°	-0,9	-2,0	-0,8	-1,5	-0	,3),5	-1,0	-1,5	-1,2	-2,0	-1,4	-2,0	-0,6	-1,2	0	,3
15	+0	,2	+0	,2	+(),2	-0	1,5	-1,0	-1,5	-1,2	-2,0	-1,4	-2,0	-0,0	-1,2	-0	,,,
30°	-0,5	-1,5	-0,5	-1,5	-0	,2),4	-0,7	-1.2		,5	-1,4	-2,0	-0.8	-1,2	-0	,2
30	+0	,5	+0	,7	+(),4		',-	-0,7	-1,2		,,,	-1,4	-2,0	-0,0	-1,2	-0	,,,
45°	-0,	,0	-0,	,0	-0	,0		1,3	-0	6		,3	-1,3	-2,0	-0,8	-1,2	-0	,2
75	+0	,7	+0	,7	+(),6		.,.	-0	,0		,,,,	-1,0	-2,0	-0,0	-1,2	-0	·, -
60°	+0	,7	+0	,7	+(),7	-0	,3	-0	,6	-0	,3	-1,2	-2,0	-0	,4	-0	,2
75°	+0	,8	+0	,8	+(),8	-0	,3	-0	,6	-0	,3	-1,2	-2,0	-0	,4	-0	,2

NOTE 1 Avec θ = 0°, la pression varie rapidement entre des valeurs positives et négatives sur le versant au vent, pour un angle de pente α allant de +5° à +45°; c'est pourquoi des valeurs positives et négatives sont indiquées pour ces pentes. Pour ces toitures, il convient de prendre en considération deux cas : un cas présentant toutes les valeurs positives, et un cas présentant toutes les valeurs négatives. Aucun mélange de valeurs positives et négatives n'est admis.

NOTE 2 Pour les angles de pente intermédiaires de même signe, une interpolation linéaire peut être utilisée entre valeurs de même signe. Les valeurs égales à 0,0 sont données à cette fin d'interpolation.


NOTE 3 Pour la détermination des coefficients de pression sur les différents versants, l'angle de pente à considérer est toujours celui du versant au vent.


7.2.7 Toitures multiples (shed)

(1) Les coefficients de pression applicables aux directions du vent 0°, 90° et 180° pour chaque travée d'une toiture multiple peuvent être calculés à partir du coefficient de pression pour chaque travée individuelle.

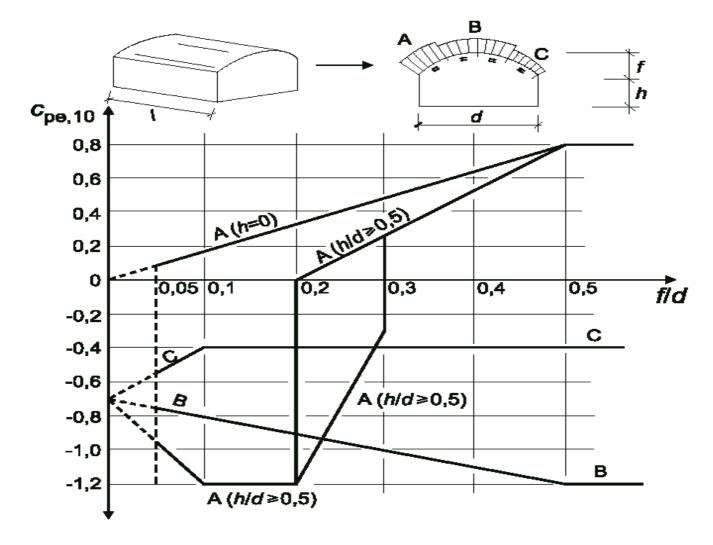
Il convient de calculer les coefficients de modification applicables aux pressions (locales et globales) relatives aux directions du vent 0° et 180° sur chaque travée à partir :

- des données définies en 7.2.4 pour les toitures à un seul versant, modifiées pour leur position selon la Figure 7.10 a et b.
- des données définies en 7.2.5 pour les toitures à deux versants pour α < 0, modifiées pour leur position selon la Figure 7.10 c et d.

NOTE 1 Pour la configuration b, il convient de considérer deux cas selon le signe du coefficient de pression $c_{\rm pe}$ applicable à la première toiture.

NOTE 2 Dans la configuration c, la première valeur $c_{\rm pe}$ est la valeur $c_{\rm pe}$ de la toiture à un seul versant, la deuxième valeur et toutes les valeurs suivantes $c_{\rm pe}$ sont les valeurs $c_{\rm pe}$ de la toiture à deux versants à noue.

Figure 7.10 — Légende applicable aux toitures multiples

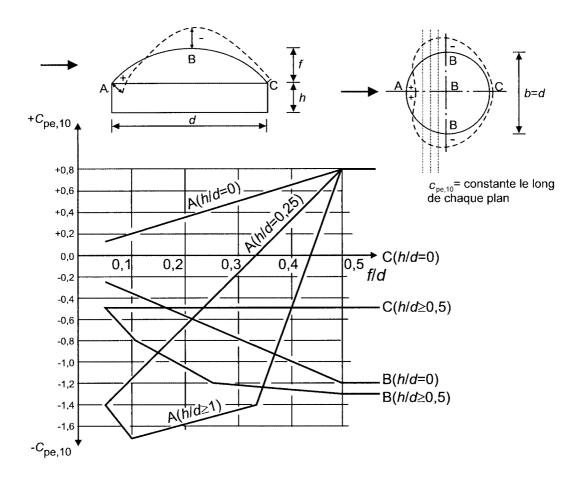

(2) Il convient de ne considérer les zones F / G / J que pour le versant au vent. Il est recommandé de prendre en considération les zones H et I pour chaque travée de la toiture multiple.

(3) La hauteur de référence z_e qu'il convient d'utiliser est égale à la hauteur h telle que définie à la Figure 7.10.

7.2.8 Toitures en voûte et dômes

(1) La présente section s'applique aux toitures cylindriques circulaires et aux dômes.

NOTE Les valeurs de $c_{\rm pe,10}$ et $c_{\rm pe,1}$ à utiliser pour les toitures cylindriques circulaires et les dômes peuvent être indiquées dans l'Annexe Nationale. Les valeurs recommandées de $c_{\rm pe,10}$ sont indiquées aux figures 7.11 et 7.12 pour différentes zones. La hauteur de référence qu'il convient d'utiliser est égale à $z_{\rm e}$ = h + f.



Pour 0 < h/d < 0,5, $c_{\rm pe,10}$ est obtenue par interpolation linéaire.

Pour $0.2 \le fld \le 0.3$ et $hld \ge 0.5$, deux valeurs de $c_{pe,10}$ doivent être prises en considération.

Le diagramme n'est pas applicable aux toitures-terrasses.

Figure 7.11 — Valeurs recommandées des coefficients de pression extérieure $c_{\rm pe,10}$ pour les toitures en voûte à base rectangulaire

 $c_{\mathrm{pe},10}$ est constante le long des arcs de cercle formés par les intersections de la sphère avec des plans perpendiculaires au vent. En première approche, cette valeur peut être déterminée par interpolation linéaire entre les valeurs en A, B et C le long des arcs de cercle formés par l'intersection de la calotte sphérique avec des plans passant par l'axe AC. De la même manière, les valeurs de $c_{\mathrm{pe},10}$ en A si 0 < h/d < 1 et en B ou C si 0 < h/d < 0,5 peuvent être obtenues par interpolation linéaire entre les valeurs lues sur la figure ci-dessus.

Figure 7.12 — Valeurs recommandées des coefficients de pression extérieure $c_{\rm pe,10}$ pour les dômes à base circulaire

(2) Il convient que les coefficients de pression utilisés pour les murs des bâtiments rectangulaires dont la toiture est en voûte, soient ceux définis en 7.2.2.

7.2.9 Pression intérieure

- (1) P Les pressions intérieure et extérieure doivent être considérées comme agissant simultanément. La combinaison la plus défavorable des pressions extérieure et intérieure doit être envisagée pour chaque combinaison d'ouvertures potentielles et autres sources de fuites d'air.
- (2) Le coefficient de pression intérieure, $c_{\rm pi}$, dépend de la dimension et de la répartition des ouvertures dans l'enveloppe du bâtiment. Lorsque, sur au moins deux faces du bâtiment (façades ou toiture), l'aire totale des ouvertures existant sur chacune des faces représente 30 % de l'aire de cette face, il convient de ne pas calculer les actions exercées sur la construction à partir des règles indiquées dans la présente section, mais il est en revanche recommandé d'utiliser les règles définies en 7.3 et 7.4.

NOTE Les ouvertures d'un bâtiment comprennent des ouvertures de petites dimensions telles que fenêtres ouvertes, ouvrants, cheminées, etc. ainsi qu'une perméabilité de fond telle que fuite d'air autour des portes, fenêtres, équipements techniques et fuites à travers l'enveloppe du bâtiment. La perméabilité de fond se situe généralement dans la plage comprise entre 0,01 % et 0,1 % de l'aire de la face. Des informations supplémentaires figurent dans l'Annexe Nationale.

(3) Lorsqu'une ouverture extérieure, telle qu'une porte ou une fenêtre, est dominante en position ouverte mais est considérée fermée à l'état limite ultime, lors de vents violents extrêmes, il convient de considérer la situation avec la porte ou la fenêtre ouverte comme une situation de projet accidentelle conformément à l'EN 1990.

NOTE La vérification de la situation de projet accidentelle se révèle importante pour les murs intérieurs de grande hauteur (avec un risque élevé de danger) lorsque le mur doit supporter entièrement l'action extérieure du vent du fait de la présence d'ouvertures dans l'enveloppe du bâtiment.

(4) Une face d'un bâtiment est généralement considérée comme dominante lorsque l'aire des ouvertures dans ladite face est au moins égale à deux fois l'aire des ouvertures et des fuites d'air dans les autres faces du bâtiment considéré.

NOTE Ceci peut également s'appliquer aux volumes internes individuels au sein du bâtiment.

(5) Dans le cas d'un bâtiment ayant une face dominante, il convient de considérer la pression intérieure comme une fraction de la pression extérieure au niveau des ouvertures de la face dominante. Il convient d'utiliser les valeurs données par les expressions (7.1) et (7.2).

Lorsque l'aire des ouvertures dans la face dominante est égale à deux fois l'aire des ouvertures dans les autres faces.

$$c_{\rm pi} = 0.75 \cdot c_{\rm pe}$$
 (7.1)

Lorsque l'aire des ouvertures dans la face dominante est au moins égale à trois fois l'aire des ouvertures dans les autres faces.

$$c_{\mathsf{pj}} = 0.90 \cdot c_{\mathsf{pe}} \tag{7.2}$$

οù

 $c_{
m pe}$ est la valeur du coefficient de pression extérieure au niveau des ouvertures de la face dominante. Lorsque ces ouvertures sont situées dans des zones avec des valeurs différentes de pressions extérieures, il est recommandé d'utiliser une valeur moyenne pondérée en surface de $c_{
m pe}$

Lorsque l'aire des ouvertures dans la face dominante est comprise entre 2 et 3 fois l'aire des ouvertures dans les autres faces, il peut être fait appel à l'interpolation linéaire pour calculer $c_{\rm pi}$.

(6) Pour les bâtiments sans face dominante, il convient de déterminer le coefficient de pression intérieure $c_{\rm pi}$ à partir de la Figure 7.13, ledit coefficient étant fonction du rapport de la hauteur à la profondeur du bâtiment, h/d, et du rapport d'ouverture μ pour chaque direction du vent θ , qu'il y a lieu de déterminer à partir de l'expression (7.3) :

NOTE Pour les valeurs comprises entre h/d = 0.25 et h/d = 1.0, une interpolation linéaire peut être utilisée.

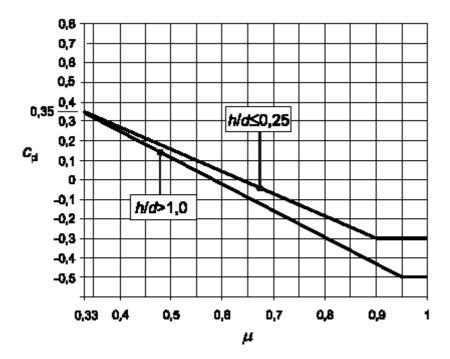


Figure 7.13 — Coefficients de pression intérieure applicables pour des ouvertures uniformément réparties

$$\mu = \frac{\sum \text{aire des ouvertures où } c_{\text{pe}} \text{ est négatif ou égal à 0}}{\sum \text{aire de toutes les ouvertures}}$$
 (7.3)

NOTE 1 Ceci s'applique aux façades et aux toitures des bâtiments avec et sans cloisons intérieures.

NOTE 2 Lorsqu'il se révèle impossible, ou lorsqu'il n'est pas considéré justifié d'évaluer μ pour un cas particulier, il convient alors de donner à $c_{\rm ni}$ la valeur la plus sévère de +0,2 et -0,3.

- (7) La hauteur de référence z_i qu'il convient d'utiliser pour les pressions intérieures est égale à la hauteur de référence z_e pour les pressions extérieures (voir 5.1 (1)P) exercées sur les faces qui contribuent, par leurs ouvertures, à la création de la pression intérieure. Lorsqu'il existe plusieurs ouvertures, il est recommandé d'utiliser la plus grande valeur de z_e pour déterminer z_i .
- (8) Le coefficient de pression intérieure qu'il convient d'appliquer aux silos ouverts et aux cheminées est fondé sur l'expression (7.4) :

$$c_{\rm pi} = -0.60$$
 (7.4)

Le coefficient de pression intérieure qu'il convient d'appliquer aux réservoirs ventilés par ouvertures de petites dimensions est fondé sur l'expression (7.5) :

$$c_{\rm pi} = -0.40$$
 (7.5)

La hauteur de référence z_i est égale à la hauteur de la construction.

7.2.10 Pression exercée sur les murs ou les toitures comportant plusieurs parois (ou enveloppes)

- (1) La force exercée par le vent doit être calculée séparément sur chaque paroi (ou enveloppe).
- (2) La perméabilité μ d'une paroi est définie comme le rapport de l'aire totale des orifices laissant passer l'air et de l'aire totale de la paroi. Une paroi est définie comme imperméable lorsque la valeur μ est inférieure à 0,1 %.

EN 1991-1-4:2005 (F)

(3)	Lorsqu'une seule	e paroi se rév	èle perméable,	il convient a	alors de dé	terminer la	force exercé	e par le	vent sur la
parc	i imperméable à	partir de la d	ifférence entre la	a pression i	ntérieure et	t extérieure	du vent tel d	que décri	t en 5.2 (3).
Lors	que deux parois	au moins se	révèlent perméa	bles, la forc	ce exercée	par le vent	sur chaque ¡	paroi dép	end alors:

 de la	rigidité	relative	des	parois	;

- des pressions extérieure et intérieure ;
- de la distance entre les parois ;
- de la perméabilité des parois ;
- des ouvertures en périphérie de la lame d'air entre les parois.

NOTE 1 L'Annexe Nationale peut indiquer les valeurs relatives aux effets du vent sur les murs et les toitures extérieurs comportant plusieurs parois. En première approximation, il est recommandé que la pression aérodynamique exercée sur la paroi la plus rigide soit prise égale à la différence entre les pressions intérieure et extérieure.

NOTE 2 L'Annexe Nationale peut indiquer les règles applicables aux cas où la périphérie de la lame d'air entre les parois est étanche à l'air (Figure 7.14(a)) et où la distance libre entre les parois est inférieure à 100 mm (en l'absence de toute circulation d'air dans le matériau d'isolation thermique, ce matériau est considéré comme faisant partie de l'une des parois). Les règles recommandées suivantes peuvent être appliquées en première approximation :

- pour les murs et les toitures comportant une paroi (enveloppe) intérieure imperméable et une paroi extérieure perméable avec une perméabilité à peu près uniformément répartie, la force exercée par le vent sur la paroi extérieure peut être calculée à partir de $c_{\rm p,net}$ = 2/3 · $c_{\rm pe}$ pour les surpressions et de $c_{\rm p,net}$ = 1/3 · $c_{\rm pe}$ pour les dépressions. La force exercée par le vent sur la paroi intérieure peut être calculée à partir de $c_{\rm p,net}$ = $c_{\rm pe}$ $c_{\rm pi}$;
- pour les murs et les toitures comportant une paroi intérieure imperméable et une paroi extérieure imperméable également, mais plus rigide, la force exercée par le vent sur la paroi extérieure peut être calculée à partir de $c_{\text{p.net}} = c_{\text{pe}} c_{\text{pi}}$;
- pour les murs et les toitures comportant une paroi intérieure perméable avec une perméabilité à peu près uniformément répartie et une paroi extérieure imperméable, la force exercée par le vent sur la paroi extérieure peut être calculée à partir de $c_{\text{p.net}} = c_{\text{pe}} c_{\text{pi}}$, et la force exercée par le vent sur la paroi intérieure peut être calculée à partir de $c_{\text{p.net}} = 1/3 \cdot c_{\text{pi}}$;
- pour les murs et les toitures comportant une paroi extérieure imperméable et une paroi intérieure également imperméable, mais plus rigide, la force exercée par le vent sur la paroi extérieure peut être calculée à partir de $c_{p,net} = c_{pe}$ et la force exercée par le vent sur la paroi intérieure peut être calculée à partir de $c_{p,net} = c_{pe}$ c_{pi} .

Les règles énoncées ci-dessus ne s'appliquent pas lorsque des entrées d'air mettent en communication la lame d'air avec des faces du bâtiment autres que la face sur laquelle le mur est situé (Figure 7.14(b)).

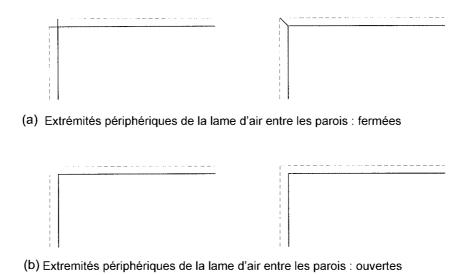


Figure 7.14 — Détails des angles des murs extérieurs comportant plusieurs parois

7.3 Toitures isolées

- (1) Une toiture isolée est définie comme la toiture d'une construction ne comportant pas de murs permanents, telles que stations-service, hangars agricoles ouverts, etc..
- (2) Le degré d'obstruction sous une toiture isolée est représenté à la Figure 7.15. Il dépend de l'obstruction φ , qui est le rapport de l'aire des obstructions éventuelles (mais vraisemblables) sous la toiture, divisée par l'aire de la section transversale sous la voûte, les deux aires étant mesurées perpendiculairement à la direction du vent.

NOTE φ = 0 représente une toiture isolée sans rien en dessous, et φ = 1 représente la toiture isolée entièrement obstruée par des objets disposés sur toute la hauteur de la seule rive sous le vent (il ne s'agit pas d'un bâtiment fermé).

- (3) Les coefficients de force globale, $c_{\rm f}$, et les coefficients de pression nette $c_{\rm p,net}$, indiqués dans les tableaux 7.6 à 7.8 pour φ = 0 et φ = 1 tiennent compte de l'effet combiné du vent agissant à la fois sur les surfaces supérieure et inférieure des toitures isolées quelles que soient les directions du vent. Les valeurs intermédiaires peuvent être déterminées par interpolation linéaire.
- (4) Il convient d'utiliser les valeurs $c_{\rm p,net}$ pour φ = 0 pour les éléments situés, dans la direction du vent, au-delà de la position de l'obstruction maximale.
- (5) Le coefficient de force globale représente la force résultante. Le coefficient de pression nette représente la pression locale maximale pour toutes directions du vent. Il est recommandé d'utiliser ce dernier pour le calcul des éléments de toiture et des fixations.

EN 1991-1-4:2005 (F)

- (6) Chaque toiture isolée doit pouvoir supporter les cas de charge définis ci-dessous :
- pour une toiture isolée à un seul versant (Tableau 7.6) il convient de placer le centre de pression à d/4 à partir du bord exposé au vent (d = dimension dans la direction du vent, Figure 7.16) ;
- pour une toiture isolée à deux versants (Tableau 7.7), il convient de placer le centre de pression au centre de chaque versant (Figure 7.17). Il est par ailleurs recommandé qu'une toiture isolée à deux versants puisse résister à un chargement maximal ou minimal sur un de ses versants, l'autre versant ne recevant pas de charge;
- dans le cas d'une toiture isolée multiple, comportant plusieurs travées, le chargement de chaque travée peut être calculé en appliquant les coefficients de réduction ψ_{mc} indiqués dans le Tableau 7.8, aux valeurs $c_{p,net}$ données dans le Tableau 7.7.

Pour les toitures isolées à double enveloppe, il convient de calculer la paroi imperméable et ses fixations avec $c_{\mathsf{p},\mathsf{net}}$ et la paroi perméable et ses fixations avec 1/3 $c_{\mathsf{p},\mathsf{net}}$.

- (7) Il convient de prendre en considération les forces de frottement (voir 7.5).
- (8) La hauteur de référence z_e qu'il convient d'utiliser est égale à h telle que représentée aux Figures 7.16 et 7.17.

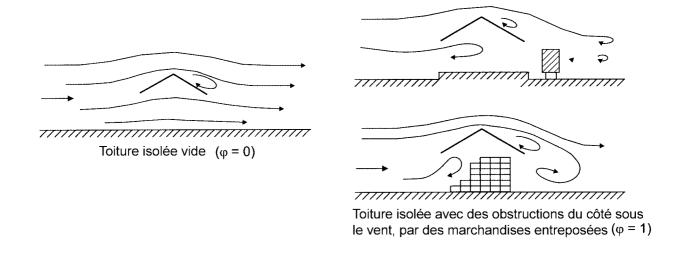


Figure 7.15 — Écoulement de l'air autour des toitures isolées

Tableau 7.6 — Valeurs de $c_{
m p,net}$ et $c_{
m f}$ pour les toitures isolées à un seul versant

		illet 1 ·	Coefficie	nts de pression i	nette $c_{p,net}$
				Plan repère B	<u></u>
			Vent	C A	C b/10
				В	b/10 ‡
				< → d/10 d/	10 -
				d	
Angle de toiture α	Obstruction $oldsymbol{arphi}$	Coefficients de force globaux c_{f}	Zone A	Zone B	Zone C
	Maximum, quel que soit $arphi$	+ 0,2	+ 0,5	+ 1,8	+ 1,1
0°	Minimum φ = 0	- 0,5	- 0,6	- 1,3	- 1,4
	Minimum φ = 1	- 1,3	- 1,5	- 1,8	- 2,2
	Maximum, quel que soit φ	+ 0,4	+ 0,8	+ 2,1	+ 1,3
5°	Minimum φ = 0	- 0,7	- 1,1	- 1,7	- 1,8
	Minimum φ = 1	- 1,4	- 1,6	- 2,2	- 2,5
	Maximum, quel que soit $arphi$	+ 0,5	+ 1,2	+ 2,4	+ 1,6
10°	Minimum φ = 0	- 0,9	- 1,5	- 2,0	- 2,1
	Minimum φ = 1	- 1,4	- 2,1	- 2,6	- 2,7
	Maximum, quel que soit φ	+ 0,7	+ 1,4	+ 2,7	+ 1,8
15°	Minimum φ = 0	- 1,1	- 1,8	- 2,4	- 2,5
	Minimum φ = 1	- 1,4	- 1,6	- 2,9	- 3,0
	Maximum, quel que soit φ	+ 0,8	+ 1,7	+ 2,9	+ 2,1
20°	Minimum φ = 0	- 1,3	- 2,2	- 2,8	- 2,9
	Minimum φ = 1	- 1,4	- 1,6	- 2,9	- 3,0
	Maximum, quel que soit $arphi$	+ 1,0	+ 2,0	+ 3,1	+ 2,3
25°	Minimum $\varphi = 0$	- 1,6	- 2,6	- 3,2	- 3,2
	Minimum φ = 1	- 1,4	- 1,5	- 2,5	- 2,8
	Maximum, quel que soit $arphi$	+ 1,2	+ 2,2	+ 3,2	+ 2,4
30°	Minimum φ = 0	- 1,8	- 3,0	- 3,8	- 3,6
	Minimum φ = 1	- 1,4	- 1,5	- 2,2	- 2,7
NOTE	Le signe + indique une action	nette du vent des	cendante.		
	Le signe - représente une action	on nette du vent a	scendante.		

ne - represente une action nette du vent ascendante

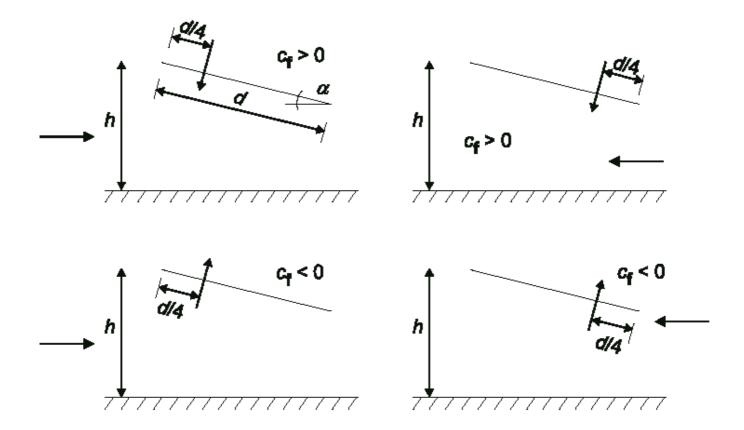


Figure 7.16 — Emplacement du centre de force pour les toitures isolées à un seul versant

Tableau 7.7 — Valeurs de $c_{
m p,net}$ et $c_{
m f}$ pour les toitures isolées à deux versants

Coefficients de pression nette $c_{\rm p,net}$ Plan repère C A D A C b/10 C A D A C b/10 d/5 d/5 d/5

Angle de		Coefficient				
toiture α[°]	Obstruction φ	de force globale c_{f}	Zone A	Zone B	Zone C	Zone D
	Maximum, quel que soit φ	+ 0,7	+ 0,8	+ 1,6	+ 0,6	+ 1,7
- 20	Minimum $\varphi = 0$	- 0,7	- 0,9	- 1,3	- 1,6	- 0,6
	Minimum φ = 1	- 1,3	- 1,5	- 2,4	- 2,4	- 0,6
	Maximum, quel que soit φ	+ 0,5	+ 0,6	+ 1,5	+ 0,7	+ 1,4
- 15	Minimum φ = 0	- 0,6	- 0,8	- 1,3	- 1,6	- 0,6
	Minimum φ = 1	- 1,4	- 1,6	- 2,7	- 2,6	- 0,6
	Maximum, quel que soit φ	+ 0,4	+ 0,6	+ 1,4	+ 0,8	+ 1,1
- 10	Minimum $\varphi = 0$	- 0,6	- 0,8	- 1,3	- 1,5	- 0,6
	Minimum φ = 1	- 1,4	- 1,6	- 2,7	- 2,6	- 0,6
	Maximum, quel que soit φ	+ 0,3	+ 0,5	+ 1,5	+ 0,8	+ 0,8
- 5	Minimum $\varphi = 0$	- 0,5	- 0,7	- 1,3	- 1,6	- 0,6
	Minimum φ = 1	- 1,3	- 1,5	- 2,4	- 2,4	- 0,6
	Maximum, quel que soit φ	+ 0,3	+ 0,6	+ 1,8	+ 1,3	+ 0,4
+ 5	Minimum $\varphi = 0$	- 0,6	- 0,6	- 1,4	- 1,4	- 1,1
	Minimum φ = 1	- 1,3	- 1,3	- 2,0	- 1,8	- 1,5
	Maximum, quel que soit φ	+ 0,4	+ 0,7	+ 1,8	+ 1,4	+ 0,4
+ 10	Minimum $\varphi = 0$	- 0,7	- 0,7	- 1,5	- 1,4	- 1,4
	Minimum φ = 1	- 1,3	- 1,3	- 2,0	- 1,8	- 1,8
						« à suivre »

Tableau 7.7 (fin)

Coefficients de pression nette $c_{ m p,net}$ Plan repère <u>‡</u> b/10 С Α Α D *b*/10 В Ŧ **↔** d/10 **┝** d/10 **→** d/5 Angle de Coefficient toiture Obstruction φ de force Zone A Zone B Zone C Zone D globale $c_{\rm f}$ α[°] Maximum, quel que soit + 0,4 + 0,9 + 1,9 + 1,4 + 0,4 + 15 Minimum $\varphi = 0$ - 0,9 - 1,4 - 0,8 - 1,7 - 1,8 Minimum $\varphi = 1$ - 1,3 - 1,3 - 2,2 - 1,6 - 2,1 Maximum, quel que soit + 0,6 + 1,1 + 0,4 + 1,9 + 1,5 + 20 Minimum $\varphi = 0$ - 0,9 - 1,2 - 1,8 - 1,4 - 2,0 - 1,4 - 2,2 - 1,6 - 2,1 Minimum $\varphi = 1$ - 1,3 Maximum, quel que soit + 0,7 + 1,2 + 1,9 + 1,6 + 0,5 + 25 Minimum $\varphi = 0$ - 1,4 - 1,0 - 1,9 - 1,4 - 2,0 Minimum $\varphi = 1$ - 1,3 - 1,4 - 2,0 - 1,5 - 2,0 Maximum, quel que soit + 0,9 + 1,3 + 1,9 + 1,6 + 0,7 + 30 Minimum $\varphi = 0$ - 1,0 - 1,4 - 1,9 - 2,0 - 1,4 - 1,8 Minimum $\varphi = 1$ - 1,3 - 1,4 - 1,4 - 2,0 NOTE Le signe + indique une action nette du vent descendante.

Le signe - représente une action nette du vent accendante.

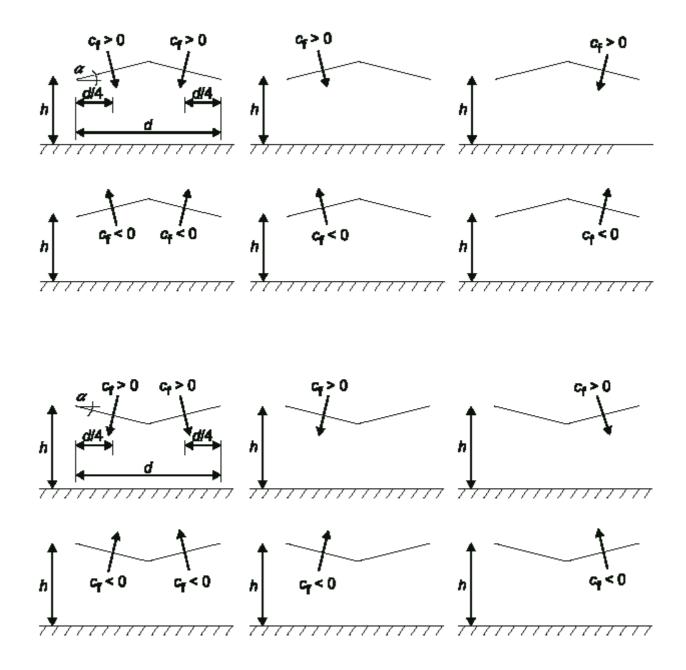


Figure 7.17 — Dispositions des charges obtenues à partir des coefficients de force pour les toitures isolées à deux versants

(9) Les charges s'exerçant sur chaque versant des toitures multiples isolées, telles que représentées à la Figure 7.18, sont déterminées par application des coefficients de réduction ψ_{mc} du Tableau 7.8 à la force globale, ainsi qu'aux coefficients de pression nette applicables aux toitures isolées à deux versants.

		Coefficients ψ_{mc} pour	ur toutes valeurs de $arphi$					
Baie	Emplacement	Emplacement sur coefficients de force et de pression maximum (force et pression descendantes)						
1	Travée d'extrémité	1,0	0,8					
2	Deuxième travée	0,9	0,7					
3	Troisième travée et travées suivantes	0,7	0,7					

Tableau 7.8 — Coefficients de réduction ψ_{mc} pour les toitures multiples isolées

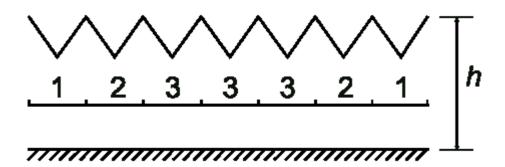


Figure 7.18 — Toitures multiples isolées

7.4 Murs isolés, acrotères, clôtures et panneaux de signalisation

(1) Les valeurs des coefficients de pression résultante $c_{\rm p,net}$ applicables aux murs isolés et aux acrotères dépendent du taux de remplissage φ . Pour les murs pleins, le taux de remplissage φ est égal à 1 ; pour les murs dont le taux de remplissage représente 80 % (c'est-à-dire que les ouvertures constituent les 20 % restants), φ = 0,8. Il convient de considérer les murs et les clôtures ajourés caractérisés par un taux de remplissage φ ≤ 0,8 comme des treillis plans conformément à 7.11.

NOTE Voir Section 8 pour les garde-corps et les écrans antibruit des ponts.

7.4.1 Murs isolés et acrotères

(1) Il convient de spécifier les coefficients de pression résultante $c_{\rm p,net}$ applicables aux murs isolés et aux acrotères pour les zones A, B, C et D définies par la Figure 7.19.

NOTE Les valeurs des coefficients de pression résultante $c_{\rm p,net}$ applicables aux murs isolés et aux acrotères peuvent être données dans l'Annexe Nationale. Les valeurs recommandées sont données dans le Tableau 7.9 pour deux valeurs du taux de remplissage ; voir 7.4 (1). Ces valeurs recommandées correspondent à une direction de vent oblique par rapport au mur sans retour d'angle (voir Figure 7.19) et, dans le cas du mur avec retour d'angle, aux deux directions opposées indiquées à la Figure 7.19. L'aire de référence est l'aire brute (enveloppe) dans les deux cas. Une interpolation linéaire peut être faite pour un taux de remplissage compris entre 0,8 et 1.

Tableau 7.9 — Coefficients de pression recommandés $c_{
m p,net}$ applicables aux murs isolés et aux acrotères

Taux de remplissage	Zone		A	В	С	D
<i>φ</i> = 1	sans retour d'angle	$\ell/h \leq 3$	2,3	1,4	1,2	1,2
		$\ell/h = 5$	2,9	1,8	1,4	1,2
		<i>ℓ/h</i> ≥ 10	3,4	2,1	1,7	1,2
	avec retour longueur $\geq h^{-a}$	U	2,1	1,8	1,4	1,2
φ = 0,8			1,2	1,2	1,2	1,2
a Une interpolation linéaire peut être utilisée pour les longueurs du retour d'angle comprises entre 0,0 et h.						

⁽²⁾ La hauteur de référence qu'il convient d'utiliser pour les murs isolés est égale à $z_{\rm e}=h$, voir Figure 7.19. La hauteur de référence qu'il convient d'utiliser pour les acrotères des bâtiments est égale à $z_{\rm e}=(h+h_{\rm p})$, voir Figure 7.6.

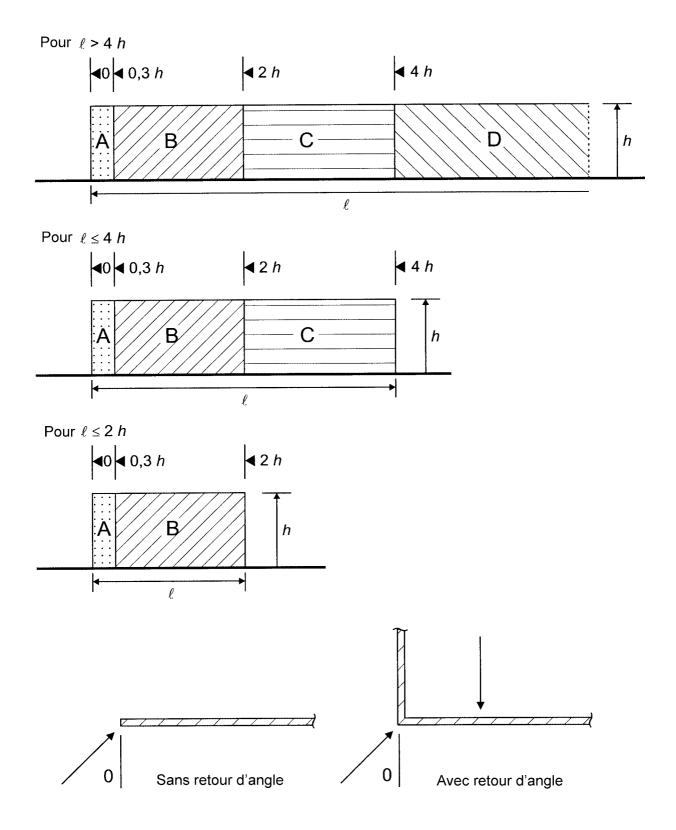


Figure 7.19 — Légende des zones pour les murs isolés et les acrotères

7.4.2 Facteurs de protection applicables aux murs et aux clôtures

(1) S'il existe, au vent du mur ou de la clôture considérée, d'autres murs ou clôtures de hauteur supérieure ou égale à la hauteur h du mur ou de la clôture considérée, un facteur de protection supplémentaire peut alors être utilisé en complément des coefficients de pression nette applicables aux murs et aux clôtures ajourées. La valeur du facteur de protection ψ_s dépend de l'espacement x entre les murs ou les clôtures, et du taux de remplissage φ de la clôture ou du mur (protecteur) situé au vent. Les valeurs de ψ_s sont indiquées à la Figure 7.20.

Le coefficient de pression nette résultante applicable au mur protégé, $c_{\rm p,net,s}$, est donné par l'expression (7.6).

$$c_{\mathsf{p},\mathsf{net},\mathsf{s}} = \psi_{\mathsf{s}} \cdot c_{\mathsf{p},\mathsf{net}}$$
 (7.6)

(2) Il est recommandé de ne pas appliquer le facteur de protection dans les zones d'extrémité sur une distance égale à *h* mesurée à partir de l'extrémité libre du mur.

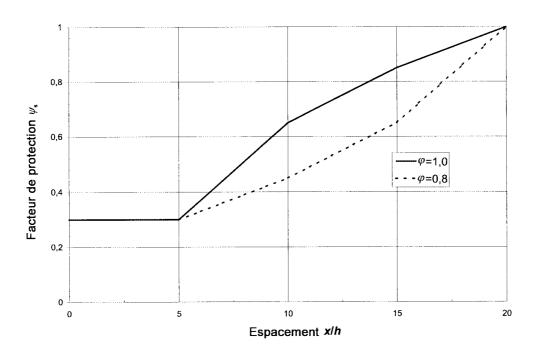
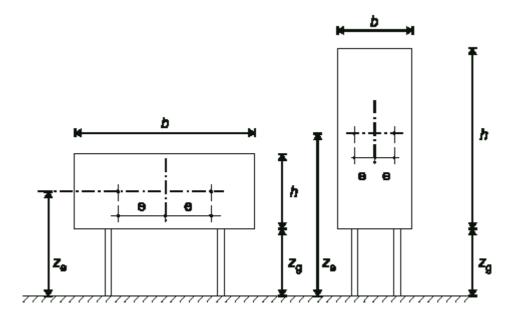


Figure 7.20 — Facteur de protection ψ_s applicable aux murs et aux clôtures pour des taux de remplissage φ compris entre 0,8 et 1,0

7.4.3 Panneaux de signalisation

(1) Le coefficient de force applicable aux panneaux de signalisation distants du sol d'une hauteur z_g supérieure à h/4 (voir Figure 7.21), est donné par l'expression (7.7).

$$c_{\rm f} = 1,80$$
 (7.7)


L'expression (7.7) s'applique aussi lorsque z_q est inférieur à h/4 et $b/h \le 1$.

(2) Il convient de considérer que la force résultante perpendiculaire au panneau de signalisation intervient à la hauteur du centre du panneau, avec une excentricité horizontale *e*.

NOTE La valeur de l'excentricité horizontale e peut être donnée dans l'Annexe Nationale. La valeur recommandée est :

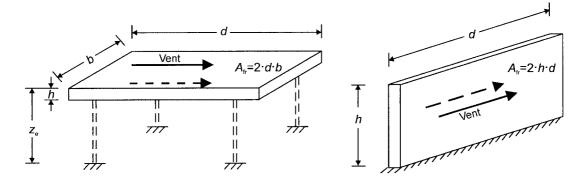
$$e = \pm 0.25 \cdot b \tag{7.8}$$

(3) Il convient de traiter les panneaux de signalisation distants du sol d'une hauteur z_g inférieure à h/4 et avec un rapport b/h > 1 comme des murs isolés ; voir 7.4.1.

NOTE 1 Hauteur de référence : $z_e = z_q + h/2$.

NOTE 2 Aire de référence : $A_{ref} A_{ref} = b \cdot h$.

Figure 7.21 — Légende applicable aux panneaux de signalisation


Il convient de vérifier l'absence d'instabilités aéroélastiques ou de divergence.

7.5 Coefficients de frottement

- (1) Il convient de prendre en considération le frottement pour les cas définis en 5.3 (3).
- (2) Il est recommandé d'utiliser les coefficients de frottement $c_{\rm fr}$, pour les murs et les toitures, donnés dans le Tableau 7.10.
- (3) L'aire de référence $A_{\rm fr}$ est indiquée à la Figure 7.22. Il convient d'appliquer les forces de frottement sur la partie des surfaces extérieures parallèle au vent, située au-delà d'une certaine distance des bords au vent ou des angles au vent de la toiture, distance égale à la plus petite valeur de $2 \cdot b$ ou $4 \cdot h$.
- (4) La hauteur de référence z_e qu'il convient d'utiliser est la hauteur au-dessus du sol de la construction ou la hauteur h du bâtiment ; voir Figure 7.22.

Tableau 7.10 — Coefficients de frottement c_{fr} applicables aux murs, acrotères et toitures

Surface	Coefficient de frottement c_{fr}	
lisse	0.01	
(à savoir acier, béton lisse)	U,U I	
rugueuse		
(à savoir béton brut, bardeaux bitumés (shingles))	0,02	
très rugueuse	0.04	
(à savoir ondulations, nervures, pliures)	0,04	

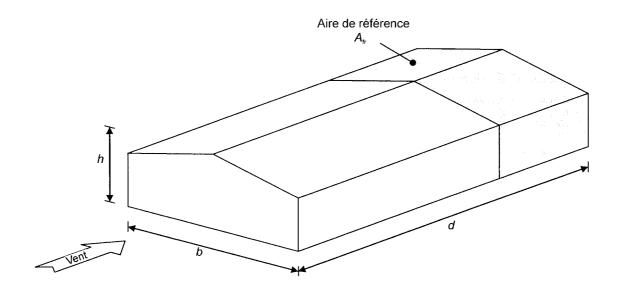


Figure 7.22 — Aire de référence pour le frottement

7.6 Éléments structuraux de section rectangulaire

(1) Il convient de déterminer le coefficient de force c_f des éléments structuraux de section rectangulaire, pour un vent soufflant perpendiculairement à une face, à l'aide de l'expression (7.9) :

$$c_{\mathsf{f}} = c_{\mathsf{f},\mathsf{0}} \cdot \psi_{\mathsf{f}} \cdot \psi_{\lambda} \tag{7.9}$$

οù

- $c_{\rm f,0}$ est le coefficient de force des sections rectangulaires à arêtes vives et sans écoulement de contournement aux extrémités tel qu'indiqué à la Figure 7.23
- ψ_{Γ} est le facteur de réduction applicable aux sections carrées à angles arrondis. La valeur ψ_{Γ} dépend du nombre de Reynolds
- ψ_{λ} est le facteur d'effet d'extrémités pour les éléments dont les extrémités peuvent être contournées par le vent, tels que définis en 7.13

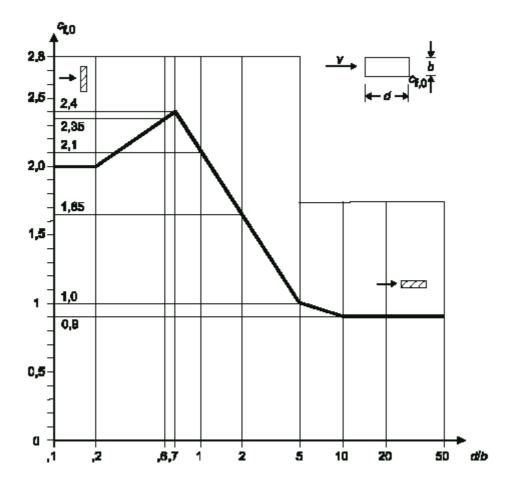


Figure 7.23 — Coefficients de force $c_{\rm f,0}$ de sections rectangulaires à angles vifs et sans écoulement de contournement aux extrémités

NOTE 1 Les valeurs de ψ_r peuvent être données dans l'Annexe Nationale. Les valeurs limites supérieures approchées recommandées de ψ_r sont indiquées à la Figure 7.24. Les dites valeurs sont obtenues dans des conditions de faible turbulence. Elles sont présumées sûres.

NOTE 2 La Figure 7.24 peut également être utilisée pour les bâtiments avec un rapport h/d > 5,0.

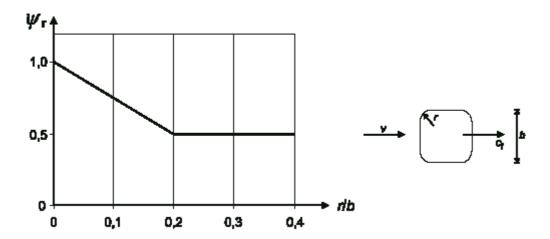


Figure 7.24 — Facteur de réduction ψ_r pour une section transversale carrée à angles arrondis

(2) Il convient de déterminer l'aire de référence A_{ref} à l'aide de l'expression (7.10) :

$$A_{\mathsf{ref}} = \ell \cdot b \tag{7.10}$$

οù

est la longueur de l'élément structural considéré

La hauteur de référence z_{e} est égale à la hauteur maximale au-dessus du sol, de la section considérée.

(3) Dans le cas des profilés en forme de plaque (d/b < 0.2), les forces de portance peuvent être supérieures à certains angles d'attaque du vent, l'augmentation de c_f pouvant atteindre 25 %.

7.7 Profilés à angles vifs

(1) Il convient de déterminer le coefficient de force c_f des profilés à angles vifs (des exemples de sections transversales de ce type sont représentés à la Figure 7.25) à l'aide de l'expression (7.11).

$$c_{\mathsf{f}} = c_{\mathsf{f},\mathsf{0}} \cdot \psi_{\lambda} \tag{7.11}$$

οù

 ψ_{λ} est le facteur d'effet d'extrémités (voir 7.13)

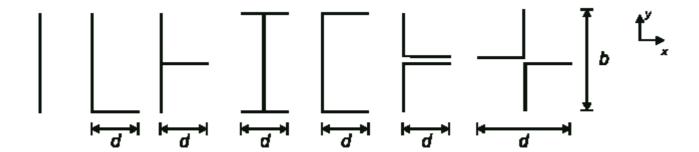


Figure 7.25 — Profilés à angles vifs

NOTE 1 L'Annexe Nationale peut spécifier la valeur de $c_{\rm f,0}$. La valeur recommandée est 2,0 pour tous les profilés sans écoulement de contournement aux extrémités. Cette valeur est fondée sur des mesures effectuées dans des conditions de faible turbulence. Elle est présumée être une valeur sûre.

NOTE 2 L'expression (7.11) et la Figure 7.25 peuvent également être utilisées pour un bâtiment avec un rapport h/d > 5,0

(2) Les aires de référence (voir Figure 7.25) qu'il convient d'utiliser sont les suivantes :

dans la direction x :
$$A_{\rm ref,x} = \ell \cdot b$$
 dans la direction y :
$$A_{\rm ref,y} = \ell \cdot b$$
 (7.12)

οù

- est la longueur de l'élément structural considéré
- (3) Dans tous les cas, la hauteur de référence z_e qu'il convient d'utiliser est égale à la hauteur maximale audessus du sol de la section considérée.

7.8 Éléments structuraux de section polygonale régulière

(1) Il convient de déterminer le coefficient de force c_f des éléments structuraux de section polygonale régulière comportant au moins 5 côtés à l'aide de l'expression (7.13).

$$c_{\mathsf{f}} = c_{\mathsf{f},\mathsf{0}} \cdot \psi_{\lambda} \tag{7.13}$$

οù

- ψ_{λ} est le facteur d'effet d'extrémités tel que défini en 7.13
- $c_{\rm f,0}$ est le coefficient de force des éléments structuraux sans écoulement de contournement aux extrémités

NOTE Les valeurs de $c_{\rm f,0}$ peuvent être données dans l'Annexe Nationale. Des valeurs prudentes recommandées fondées sur des mesures effectuées dans des conditions de faible turbulence sont données dans le Tableau 7.11.

Tableau 7.11 — Coefficient de force $c_{\mathrm{f,0}}$ applicable aux sections polygonales régulières

Nombre de côtés	Sections	Conditions de surface et d'angle	Nombre de Reynolds $Re^{(1)}$	c _{f,0}
5	Pentagone	toutes surfaces et tous angles	tous nombres de Reynolds	1,80
6	Hexagone	toutes surfaces et tous angles	tous nombres de Reynolds	1,60
8	Octogone	surface lisse $r/b < 0.075$ (2)	$Re \leq 2.4 \cdot 10^5$	1,45
			$Re \ge 3 \cdot 10^5$	1,30
		surface lisse $r/b \ge 0.075$ (2)	$Re \le 2 \cdot 10^5$	1,30
			$Re \ge 7 \cdot 10^5$	1,10
10	Décagone	toutes surfaces et tous angles	tous nombres de Reynolds	1,30
12	Dodécagone	surface lisse (3) angles arrondis	$2 \cdot 10^5 < Re < 1,2 \cdot 10^6$	0,90
		toutes autres surfaces et tous autres angles	$Re < 4 \cdot 10^5$	1,30
			$Re > 4 \cdot 10^5$	1,10
16-18	Hexadécagone	surface lisse (3) angles arrondis	$Re < 2 \cdot 10^5$	traiter comme un cylindre à base circulaire, voir 7.9
			$2 \cdot 10^5 \le Re < 1,2 \cdot 10^6$	0,70

Le nombre de Reynolds Re est défini en 7.9, avec $v = v_{\rm m}$ et $v_{\rm m}$ donné en 4.3.

À partir d'essais en soufflerie effectués sur des maquettes sectionnelles avec une surface en acier galvanisé, la section ayant les caractéristiques suivantes : b = 0,3 m et un rayon de courbure des angles de 0,06-b.

(2) Pour les bâtiments ayant un rapport h/d > 5, $c_{f,0}$ peut être déterminé à partir de l'expression (7.13) et des informations contenues dans le Tableau 7.11 et la Figure 7.26.

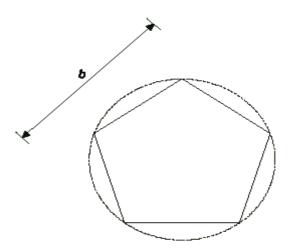


Figure 7.26 — Section polygonale régulière

r = rayon de courbure des angles, b = diamètre du cercle circonscrit, voir Figure 7.26.

EN 1991-1-4:2005 (F)

(3) Il convient de déterminer l'aire de référence A_{ref} à l'aide de l'expression (7.14) suivante :

$$A_{\mathsf{ref}} = \ell \cdot b \tag{7.14}$$

οù

- est la longueur de l'élément structural considéré
- b est le diamètre du cercle circonscrit, voir Figure 7.26
- (4) La hauteur de référence z_e est égale à la hauteur maximale au-dessus du sol, de la section considérée.

7.9 Cylindres à base circulaire

7.9.1 Coefficients de pression extérieure

(1) Les coefficients de pression des sections dépendent du nombre de Reynolds Re défini par l'expression (7.15).

$$Re = \frac{b \cdot v(z_e)}{v} \tag{7.15}$$

οù

- b est le diamètre
- ν est la viscosité cinématique de l'air (ν = 15·10⁻⁶ m²/s)
- $v(z_{\rm e})$ est la vitesse de pointe du vent définie dans la Note 2 de la Figure 7.27, à la hauteur $z_{\rm e}$
- (2) Il convient de déterminer les coefficients de pression extérieure $c_{\rm pe}$ des cylindres à base circulaire à partir de l'expression (7.16).

$$c_{\rm pe} = c_{\rm p,0} \cdot \psi_{\lambda\alpha} \tag{7.16}$$

οù

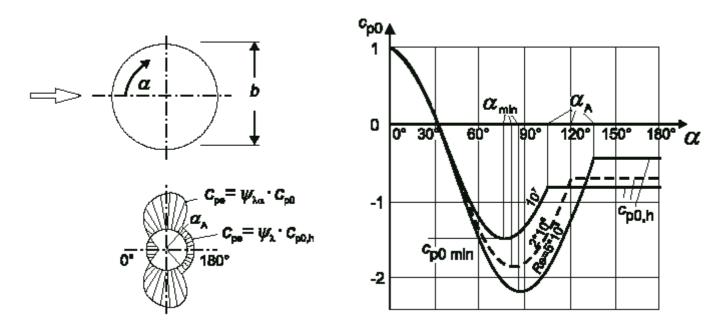
 $c_{\mathrm{p},0}$ est le coefficient de pression extérieure sans écoulement de contournement aux extrémités (voir (3))

 $\psi_{\lambda\alpha}$ est le facteur d'effet d'extrémités (voir (4))

(3) Le coefficient de pression extérieure $c_{\rm p,0}$ est indiqué à la Figure 7.27 pour différents nombres de Reynolds en fonction de l'angle α .

(4) Le facteur d'effet d'extrémités $\psi_{\lambda\alpha}$ est donné par l'expression (7.17).

$$\psi_{\lambda\alpha}$$
 = 1 pour $0^{\circ} \le \alpha \le \alpha_{\min}$


$$\psi_{\lambda\alpha} = \psi_{\lambda} + (1 - \psi_{\lambda}) \cdot \cos\left(\frac{\pi}{2} \cdot \left(\frac{\alpha - \alpha_{\min}}{\alpha_{A} - \alpha_{\min}}\right)\right) \quad \text{pour } \alpha_{\min} < \alpha < \alpha_{A}$$
(7.17)

$$\psi_{\lambda\alpha} = \psi_{\lambda}$$
 pour $\alpha_{A} \le \alpha \le 180^{\circ}$

οù

 $\alpha_{\rm A}$ est la position du point de décollement de l'écoulement (voir Figure 7.27)

 ψ_{λ} est le facteur d'effet d'extrémités (voir 7.13)

NOTE 1 Les valeurs intermédiaires peuvent être obtenues par interpolation linéaire.

NOTE 2 Les points caractéristiques de la figure ci-dessus sont donnés dans le Tableau 7.12. La figure et le tableau sont fondés sur le nombre de Reynolds calculé avec $v = \sqrt{\frac{2 \cdot q_{\rm p}}{\rho}}$ et $q_{\rm p}$ donné en 4.5.

NOTE 3 La figure ci-dessus correspond à une rugosité équivalente k/b inférieure à 5 · 10⁻⁴. Des valeurs courantes de la rugosité équivalente k sont données dans le Tableau 7.13.

Figure 7.27 — Répartition de la pression sur les cylindres à base circulaire, pour différents nombres de Reynolds et sans effet d'extrémités

Tableau 7.12 — Valeurs caractéristiques relatives à la répartition de la pression sur les cylindres à base circulaire pour différents nombres de Reynolds et sans effet d'extrémités

Re	$lpha_{ m min}$	$c_{p0,min}$	$lpha_{A}$	$c_{\sf p0,h}$	
5 · 10 ⁵	85	-2,2	135	-0,4	
2 · 10 ⁶	80	-1,9	120	-0,7	
10 ⁷	75	-1,5	105	-0,8	
où	•				
$lpha_{min}$	est la position de la pression minimale en [°]				
$c_{p0,min}$	est la valeur du coefficient de pression minimale				
α_{A}	est la position du point de décollement de l'écoulement en [°]				
c _{p0,h}	est le coefficient de pression de base				

(5) Il convient de déterminer l'aire de référence $A_{\rm ref}$ à partir de l'expression (7.18) :

$$A_{\mathsf{ref}} = \ell \cdot b \tag{7.18}$$

(6) La hauteur de référence $z_{\rm e}$ est égale à la hauteur maximale au-dessus du sol, de la section considérée.

7.9.2 Coefficients de force

(1) Il convient de déterminer le coefficient de force c_f applicable à un cylindre à base circulaire de longueur finie à partir de l'expression (7.19).

$$c_{\mathsf{f}} = c_{\mathsf{f},0} \cdot \psi_{\lambda} \tag{7.19}$$

οù

 $c_{\rm f,0}$ est le coefficient de force des cylindres sans écoulement de contournement aux extrémités (voir Figure 7.28)

 ψ_{λ} est le facteur d'effet d'extrémités (voir 7.13)

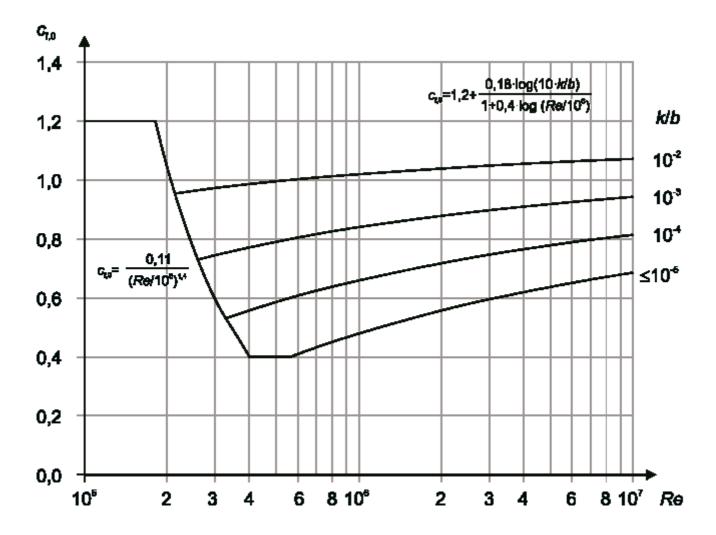


Figure 7.28 — Coefficient de force $c_{\rm f,0}$ des cylindres à base circulaire sans écoulement de contournement d'extrémités et pour différentes rugosités équivalentes klb

NOTE 1 La Figure 7.28 peut également être utilisée pour un bâtiment avec un rapport h/d > 5.0.

NOTE 2 La Figure 7.28 est fondée sur le nombre de Reynolds calculé avec
$$v = \sqrt{\frac{2 \cdot q_p}{\rho}}$$
 et q_p donné en 4.5.

- (2) Diverses valeurs de rugosité de surface équivalente *k* sont données dans le Tableau 7.13.
- (3) Pour les câbles toronnés, $c_{\rm f,0}$ est égal à 1,2 pour toutes les valeurs du nombre de Reynolds $\it Re.$

Type de surface	Rugosité équivalente <i>k</i>	Type de surface	Rugosité équivalente <i>k</i>
	[mm]		[mm]
verre	0,0015	béton lisse	0,2
métal poli	0,002	bois raboté	0,5
peinture lisse	0,006	béton brut	1,0
peinture appliquée au pistolet	0,02	bois brut	2,0
acier (produits clairs)	0,05	rouille	2,0
fonte	0,2	maçonnerie de brique	3,0
acier galvanisé	0,2		

(4) Il convient de déterminer l'aire de référence $A_{\rm ref}$ à l'aide de l'expression (7.20) suivante :

$$A_{\mathsf{ref}} = \ell \cdot b \tag{7.20}$$

οù

- ℓ est la longueur de l'élément structural considéré
- (5) La hauteur de référence $z_{\rm e}$ est égale à la hauteur maximale au-dessus du sol, de la section considérée.
- (6) Des recommandations spéciales se révèlent nécessaires pour les cylindres proches d'une surface plane avec un rapport de distance $z_{\rm g}/b$ < 1,5 (voir Figure 7.29).

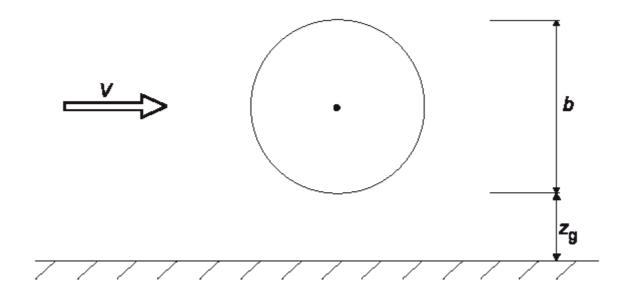
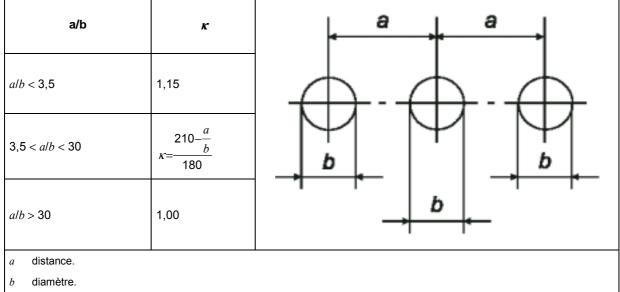


Figure 7.29 — Cylindre proche d'une surface plane

7.9.3 Coefficients de force applicables aux cylindres verticaux disposés en file

Dans le cas des cylindres à base circulaire verticaux disposés sur une rangée, le coefficient de force $c_{\mathrm{f}\,0}$ dépend de la direction du vent par rapport à l'axe de la rangée et du rapport de la distance a au diamètre b, tels que définis dans le Tableau 7.14. Le coefficient de force, $c_{\rm f}$ applicable à chaque cylindre peut être déterminé à l'aide de l'expression (7.21) suivante :


$$c_{\mathsf{f}} = c_{\mathsf{f},\mathsf{0}} \cdot \psi_{\lambda} \cdot \kappa \tag{7.21}$$

οù

- est le coefficient de force des cylindres sans écoulement de contournement aux extrémités (voir $c_{\mathsf{f.0}}$ Figure 7.9.2)
- est le facteur d'effet d'extrémités (voir 7.13) ψ_{λ}
- est le coefficient indiqué dans le Tableau 7.14 (pour la direction du vent la plus défavorable) K

а а

Tableau 7.14 — Coefficient rapplicable aux cylindres verticaux disposés en file

7.10 Sphères

(1) Il convient de déterminer le coefficient de force dans le sens du vent c_{fx} des sphères en fonction du nombre de Reynolds Re (voir 7.9.1) et de la rugosité équivalente klb (voir Tableau 7.13).

NOTE 1 Les valeurs de $c_{\mathrm{f,x}}$ peuvent être indiquées dans l'Annexe Nationale. Des valeurs recommandées, fondées sur des mesures effectuées dans des écoulements peu turbulents, sont données à la Figure 7.30. Cette dernière est fondée sur le nombre de Reynolds calculé avec $v = \sqrt{\frac{2 \cdot q_p}{\rho}}$ et q_p donné en 4.5.

Les valeurs indiquées à la Figure 7.30 sont limitées aux valeurs $z_{\rm g} > b/2$, où $z_{\rm g}$ est la distance entre la sphère et une surface plane, b est le diamètre (voir Figure 7.31). Pour $z_{\rm g} < b/2$, le coefficient de force $c_{\rm f,x}$ doit être multiplié par le coefficient 1,6.

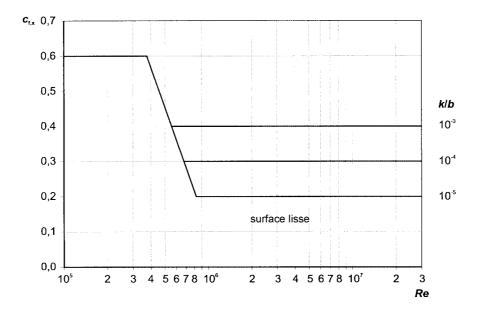


Figure 7.30 — Coefficient de force d'une sphère dans le sens du vent

(2) Le coefficient de force verticale $c_{\rm f,x}$ des sphères est indiqué par l'expression (7.22).

$$c_{\rm f,x} = 0 \qquad \qquad {\rm Pour} \ \ z_{\rm g} > \frac{b}{2} \ \\ c_{\rm f,x} = +0.60 \qquad \qquad {\rm Pour} \ \ z_{\rm g} < \frac{b}{2} \ \eqno(7.22)$$

(3) Dans les deux cas, il convient de déterminer l'aire de référence $A_{\rm ref}$ à l'aide de l'expression (7.23) :

$$A_{\text{ref}} = \pi \cdot \frac{b^2}{4} \tag{7.23}$$

(4) La hauteur de référence qu'il convient d'utiliser est égale à :

$$z_{e} = z_{g} + \frac{b}{2}$$
 (7.24)

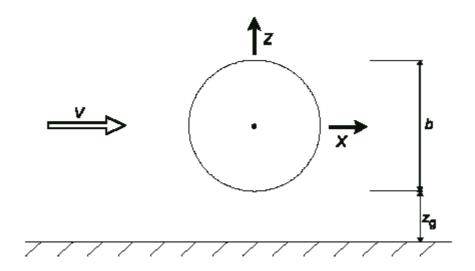


Figure 7.31 — Sphère à proximité d'une surface plane

7.11 Structures en treillis et échafaudages

(1) Il convient de déterminer le coefficient de force, c_f des structures en treillis et des échafaudages à membrures parallèles, à l'aide de l'expression (7.25).

$$c_{\mathsf{f}} = c_{\mathsf{f},0} \cdot \psi_{\lambda} \tag{7.25}$$

οù

- $c_{\rm f,0}$ est le coefficient de force des structures en treillis et des échafaudages sans effets d'extrémités. Il est donné par les Figures 7.33 à 7.35 en fonction du taux de remplissage φ (7.11 (2)) et du nombre de Reynolds Re
- Re est le nombre de Reynolds calculé en utilisant le diamètre moyen des éléments b_i ; voir Note 1
- ψ_{λ} est le facteur d'effet d'extrémités (voir 7.13) fonction de l'élancement de la structure, λ étant calculé avec ℓ et b=d; voir Figure 7.32.

NOTE 1 Les Figures 7.33 à 7.35 sont fondées sur le nombre de Reynolds calculé avec
$$v = \sqrt{\frac{2 \cdot q_p}{\rho}}$$
 et q_p donné en 4.5.

NOTE 2 L'Annexe Nationale peut indiquer un facteur de réduction pour les échafaudages non équipés de dispositifs d'étanchéité à l'air et affectés par la présence de façades pleines du bâtiment. Une valeur recommandée est donnée dans le prEN 12811.

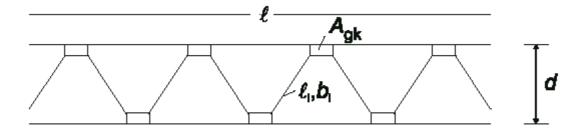


Figure 7.32 — Structure en treillis ou échafaudage

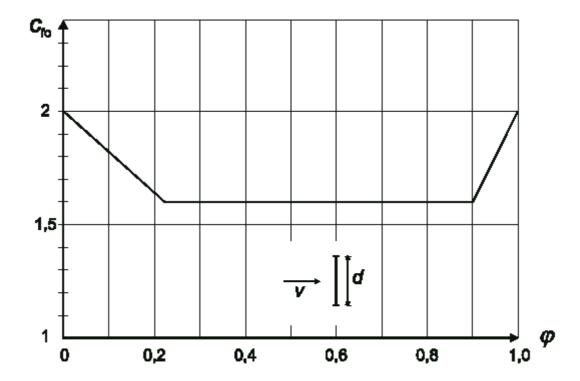


Figure 7.33 — Coefficient de force $c_{\rm f,0}$ d'une structure en treillis plane composée de profilés en fonction du taux de remplissage φ

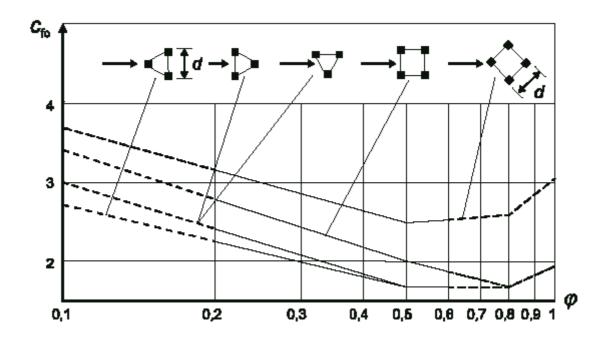


Figure 7.34 — Coefficient de force $c_{\rm f,0}$ d'une structure spatiale en treillis composée de profilés en fonction du taux de remplissage φ

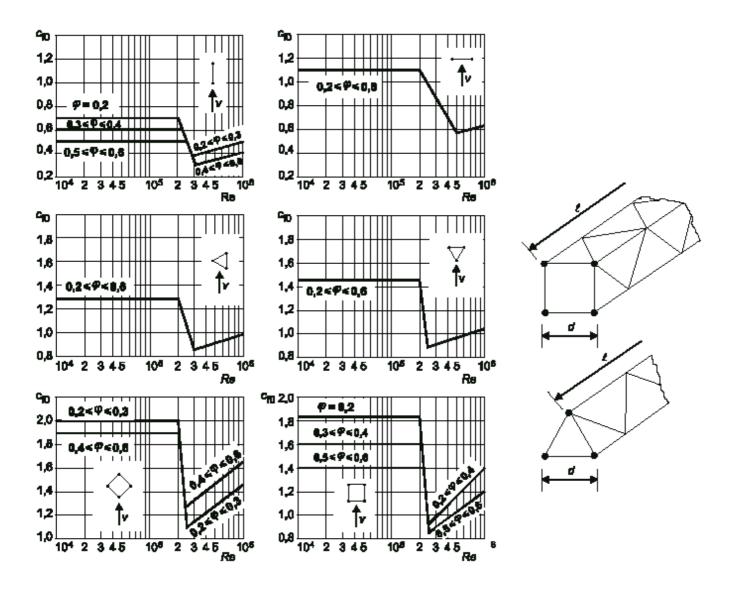


Figure 7.35 — Coefficient de force $c_{\rm f,0}$ de structures en treillis plane et spatiale composée d'éléments à section (transversale) circulaire

(2) Le taux de remplissage, φ , est défini par l'expression (7.26) :

$$\varphi = \frac{A}{A_{\rm C}} \tag{7.26}$$

οù

- A est la somme des aires des éléments et des goussets d'assemblage de la face, projetés dans le plan de cette face, perpendiculairement à ce plan : $A = \sum_{i} b_i \cdot \ell_i + \sum_{k} A_{gk}$
- $A_{\rm C}$ est l'aire circonscrite par les limites périphériques de la face, en projection normale à cette dernière = $d~\ell$
- est la longueur du treillis
- d est la largeur du treillis
- b_i , ℓ_i sont respectivement la largeur et la longueur de l'élément individuel i (voir Figure 7.32), projeté perpendiculairement à la face
- A_{gk} est l'aire du gousset d'assemblage k
- (3) Il convient de déterminer l'aire de référence A_{ref} à l'aide de l'expression (7.27) :

$$A_{\text{ref}} = A \tag{7.27}$$

(4) La hauteur de référence $z_{\rm e}$ est égale à la hauteur maximale de l'élément au-dessus du sol.

7.12 Drapeaux

- (1) Les coefficients de force $c_{\rm f}$ et les aires de référence $A_{\rm ref}$ applicables aux drapeaux sont donnés dans le Tableau 7.15
- (2) La hauteur de référence $z_{\rm e}$ est égale à la hauteur du drapeau au-dessus du sol.

 A_{ref} **Drapeaux** c_{f} drapeaux fixes 1,8 $h \cdot \ell$ Force perpendiculaire au plan drapeaux libres $h \cdot \ell$ a) $0.02 + 0.7 \cdot \frac{m_{\mathsf{f}}}{\rho \cdot h} \cdot$ b) $0.5 \cdot h \cdot \ell$ Force dans le plan οù masse par unité d'aire du drapeau masse volumique de l'air (voir 7.1) hauteur du drapeau au-dessus du sol NOTE L'équation applicable aux drapeaux libres prend en compte les forces dynamiques dues à l'effet de flottement des drapeaux

Tableau 7.15 — Coefficients de force c_f applicables aux drapeaux

7.13 Élancement effectif λ et facteur d'effet d'extrémités ψ_{λ}

(1) Le cas échéant, il convient de déterminer le facteur d'effet d'extrémités ψ_λ en fonction de l'élancement $\tilde{\lambda}$

NOTE Les coefficients de force $c_{\rm f,0}$ des paragraphes 7.6 à 7.12 sont fondés sur des mesures effectuées sur des constructions éloignées du sol et sans écoulement de contournement aux extrémités. Le facteur d'effet d'extrémités traduit la réduction de la force exercée par le vent du fait des possibilités qui lui sont offertes de contourner la construction à ses extrémités (effet d'extrémités). La Figure 7.36 et le Tableau 7.16 sont fondés sur des mesures en écoulement peu turbulent. Des valeurs tenant compte des effets de la turbulence, peuvent être spécifiées dans l'Annexe Nationale.

(2) Il convient de définir l'élancement effectif λ en fonction des dimensions de la construction et de sa position.

L'Annexe Nationale peut fournir des valeurs pour λ et ψ_{λ} . Les valeurs recommandées pour λ sont données dans le Tableau 7.16 et des valeurs indicatives pour ψ_{λ} sont données à la Figure 7.36 pour différentes valeurs du taux de remplissage φ .

Tableau 7.16 — Valeurs recommandées de λ pour les cylindres, sections polygonales, sections rectangulaires, profilés structuraux à arêtes vives et structures en treillis

N°	Position de la structure, vent perpendiculaire au plan de l'élément	Élancement effectif λ
1	$ \begin{array}{c cccc} \hline b & \downarrow & \downarrow & \downarrow \\ \hline l & \downarrow & \downarrow & \downarrow \\ \hline z_g \ge b & z_g \ge 2b \\ \hline for b \le \ell \end{array} $	Pour les sections polygonales, rectangulaires et à arêtes vives et pour les structures en treillis : - pour $\ell \geq 50$ m, la plus petite des deux valeurs : $\lambda = 1,4 \; \ell/b$ ou $\lambda = 70$; - pour $\ell < 15$ m, la plus petite des deux valeurs : $\lambda = 2 \; \ell/b$ ou $\lambda = 70$.
2	$b \leftarrow b_1 \le 1,5b$ $b \leftarrow b_1 \le 1,5b$ $b \leftarrow b \leftarrow b_1 \le 1,5b$ $b \leftarrow b \leftarrow$	Pour les cylindres à base circulaire : $ -\text{ pour } \ell \geq 50 \text{ m, la plus petite des } \\ \text{deux valeurs : } \lambda = 0,7 \ \ell/b \text{ ou } \lambda = 70 \text{ ;} \\ -\text{ pour } \ell < 15 \text{ m, la plus petite des } \\ \text{deux valeurs : } \lambda = \ell/b \text{ ou } \lambda = 70. $
3	$\frac{b}{2}$	Pour les valeurs intermédiaires de ℓ , il convient d'utiliser l'interpolation linéaire.
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pour $\ell \geq 50$ m, la plus grande des deux valeurs : $\lambda = 0.7 \ \ell/b$ ou $\lambda = 70$, Pour $\ell < 15$ m, la plus grande des deux valeurs : $\lambda = \ell/b$ ou $\lambda = 70$. Pour les valeurs intermédiaires de ℓ , il convient d'utiliser l'interpolation linéaire.

EN 1991-1-4:2005 (F)

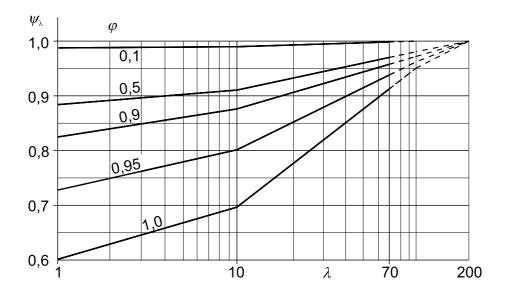


Figure 7.36 — Valeurs indicatives du facteur d'effet d'extrémités ψ_{λ} en fonction du taux de remplissage φ et de l'élancement λ

(3) Le taux de remplissage φ (voir Figure 7.37) est donné par l'expression (7.28).

$$\varphi = \frac{A}{A_{\rm C}} \tag{7.28}$$

οù

A est la somme des aires projetées des éléments de la structure

 $A_{\rm C}$ $\,$ est l'aire de la surface circonscrite à la structure $A_{\rm C}$ = $\ell \cdot b$

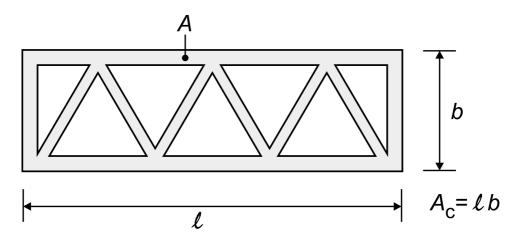


Figure 7.37 — Définition du taux de remplissage φ

8 Actions du vent sur les ponts

8.1 Généralités

- (1) La présente section s'applique uniquement aux ponts d'épaisseur constante et avec des sections transversales telles qu'indiquées à la Figure 8.1, ces ponts comprenant un tablier unique avec une ou plusieurs travées.
- NOTE 1 Les actions du vent pour les autres types de ponts (par exemple ponts en arc, ponts à câbles suspendus ou à haubans, ponts couverts, ponts mobiles et ponts à tabliers multiples ou en courbe prononcée) peuvent être définies dans l'Annexe Nationale.
- NOTE 2 L'angle entre la direction du vent et le tablier, dans le plan vertical et dans le plan horizontal, peut être défini dans l'Annexe Nationale.

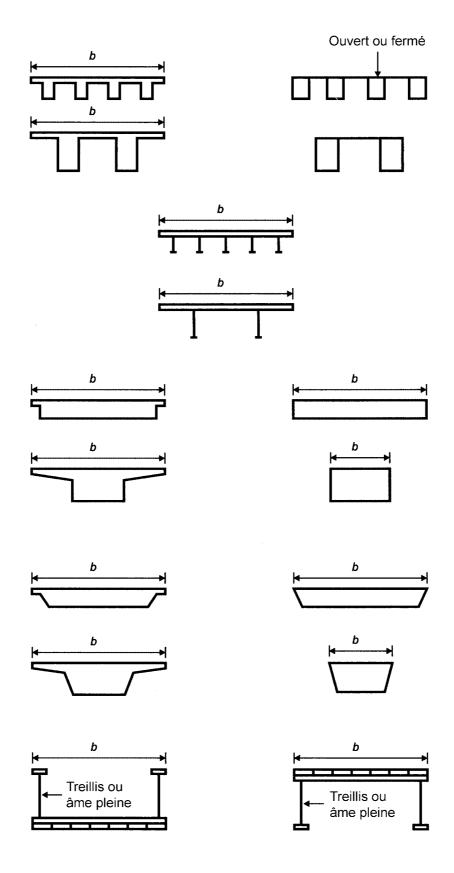


Figure 8.1 — Exemples de sections transversales de tabliers de construction courante

- (2) Les forces exercées par le vent sur les tabliers sont traitées en 8.2 et 8.3. Celles qui s'exercent sur les piles sont traitées en 8.4. Il convient de considérer comme simultanées les forces qui s'exercent sur les différentes parties d'un pont, dues à un vent soufflant dans la même direction, si leur effet est défavorable.
- (3) Les actions du vent sur les ponts produisent des forces dans les directions x, y et z telles qu'indiquées à la Figure 8.2 :

οù

la direction x est la direction parallèle à la largeur du tablier, perpendiculaire à la travée

la direction y est la direction dans le sens de la travée

la direction z est la direction perpendiculaire au tablier

Les forces produites dans les directions x et y sont dues à des vents de directions différentes et ne sont normalement pas simultanées. Les forces produites dans la direction z peuvent être dues à des vents soufflant dans une large gamme de directions ; lorsque ces forces sont significatives et défavorables, il convient de les prendre en compte comme forces simultanées aux forces produites dans toute autre direction.

NOTE La notation utilisée pour les ponts diffère de celle définie en 1.7. Les notations suivantes sont utilisées pour les ponts :

- L longueur dans la direction y
- b largeur dans la direction x
- d épaisseur dans la direction z

À la Figure 8.2, les valeurs à attribuer à L, b et d dans divers cas sont, lorsque c'est utile, définies de manière plus précise dans les articles suivants. Lorsqu'il est fait référence aux Sections 5 à 7, il est nécessaire de réadapter les notations applicables à b et à d.

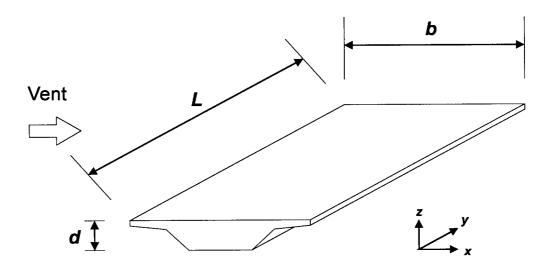


Figure 8.2 — Directions des actions du vent sur les ponts

(4) Lorsque le trafic routier est considéré comme simultané à l'action du vent (voir A2.2.1 et A2.2.2 de l'Annexe A2 de l'EN 1990), il convient de limiter la valeur de combinaison $\psi_0 F_{wk}$ de l'action du vent sur le pont et sur les véhicules à une valeur F_w^* déterminée en substituant une valeur $v_{b,0}^*$ à la valeur de base de la vitesse de référence $v_{b,0}$.

EN 1991-1-4:2005 (F)

NOTE L'Annexe Nationale peut fournir une valeur pour $v_{b,0}^*$. La valeur recommandée est 23 m/s.

(5) Lorsque le trafic ferroviaire est considéré comme simultané à l'action du vent (voir A2.2.1 et A2.2.4 de l'Annexe A2 de l'EN 1990), il convient de limiter la valeur de combinaison $\psi_0 F_{\rm wk}$ de l'action du vent sur le pont et sur les trains à une valeur $F_{\rm w}^{***}$ déterminée en substituant une valeur $v_{\rm b,0}^{**}$ à la valeur de base de la vitesse de référence $v_{\rm b,0}$.

NOTE La valeur de $v_{\mathrm{b},0}^{**}$ peut être définie dans l'Annexe Nationale. La valeur recommandée de $v_{\mathrm{b},0}^{**}$ est 25 m/s.

8.2 Choix de la procédure de calcul de la réponse (à l'action du vent)

- (1) Il convient d'évaluer la nécessité d'une procédure de calcul de réponse dynamique dans le cas des ponts.
- NOTE 1 L'Annexe Nationale peut donner des critères et des procédures.
- NOTE 2 Lorsqu'une procédure de calcul d'une réponse dynamique ne se révèle pas nécessaire, $c_{\rm s}c_{\rm d}$ peut être considéré comme égal à 1,0.
- NOTE 3 Une procédure de calcul de réponse dynamique n'est généralement pas nécessaire pour les tabliers des ponts routiers et ferroviaires normaux, d'une travée inférieure à 40 m. Les ponts normaux peuvent, pour les besoins de la présente catégorisation, être considérés comme incluant les ponts en acier, béton, aluminium ou bois d'œuvre, y compris les constructions mixtes, et dont la forme des sections transversales est généralement couverte par la figure 8.1.

8.3 Coefficients de force

(1) Il convient de déterminer les coefficients de force applicables aux garde-corps, aux portiques de signalisation et aux nacelles d'inspection des ponts le cas échéant.

NOTE L'Annexe Nationale peut donner les coefficients de force applicables aux garde-corps, aux portiques de signalisation et aux nacelles d'inspection des ponts. Il est recommandé d'utiliser la Section 7.4.

8.3.1 Coefficients de force dans la direction x (méthode générale)

(1) Les coefficients de force applicables aux actions du vent sur les tabliers de ponts dans la direction x sont donnés par l'équation suivante :

$$c_{\mathsf{f}\,\mathsf{x}} = c_{\mathsf{f}\mathsf{x}\,\mathsf{0}} \tag{8.1}$$

οù

 $c_{\text{fx 0}}$ est le coefficient de force sans écoulement de contournement aux extrémités (voir 7.13)

NOTE 1 Un pont n'est généralement soumis à aucun écoulement de contournement aux extrémités dans la mesure où l'écoulement est dévié uniquement le long de deux côtés (au dessus et en dessous du tablier du pont).

NOTE 2 Pour les ponts normaux, $c_{fx,0}$ peut être considéré comme étant égal à 1,3. Ladite valeur $c_{fx,0}$ peut également être tirée de la Figure 8.3.

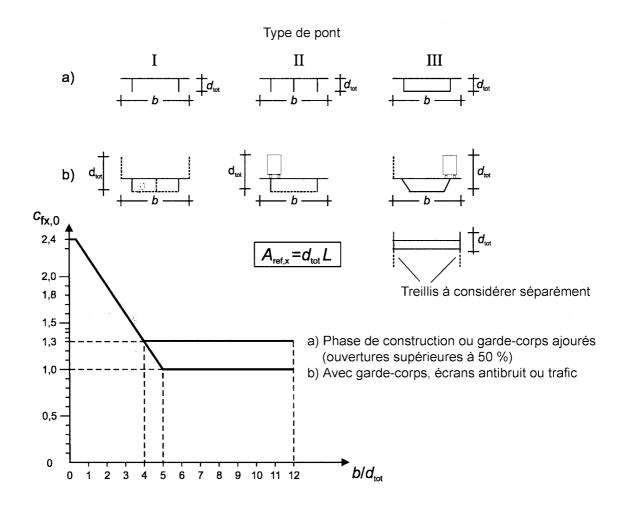


Figure 8.3 — Coefficient de force applicable aux tabliers de pont, $c_{fx,0}$

NOTE 3 Lorsque l'angle d'inclinaison du vent est supérieur à 10°, le coefficient de traînée peut être obtenu au moyen d'études spéciales. Cet angle d'inclinaison peut être dû à la pente du terrain dans la direction d'où vient le vent.

NOTE 4 Lorsque deux tabliers, globalement similaires, se situent au même niveau et sont séparés transversalement par un espace n'excédant pas significativement 1 m, la force du vent sur la structure au vent peut être calculée comme s'il s'agissait d'une structure unique. Dans les autres cas, il peut être nécessaire d'accorder une attention particulière à l'interaction vent-structure.

(2) Lorsque la face au vent est inclinée sur la verticale (voir Figure 8.4), le coefficient de traînée $c_{\rm fx,0}$ peut être réduit de 0,5 % par degré d'inclinaison, α_1 sur la verticale, sans dépasser une réduction maximale de 30 %.

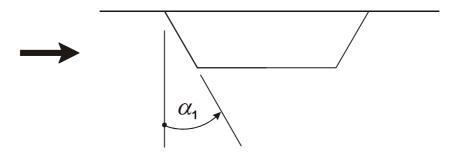


Figure 8.4 — Tablier de pont présentant une face au vent inclinée

NOTE Cette réduction n'est pas applicable à F_{w} , défini en 8.3.2, sauf spécification contraire dans l'Annexe Nationale.

- (3) Lorsqu'un tablier de pont présente une pente transversale, il convient d'augmenter $c_{fx,0}$ de 3 % par degré d'inclinaison, sans toutefois dépasser 25 %.
- (4) Il convient de définir comme suit les aires de référence $A_{ref,x}$ correspondant aux combinaisons d'actions sans charges de trafic :
- a) pour les tabliers à poutres à âmes pleines, la somme de (voir Figure 8.5 et Tableau 8.1) :
 - 1) l'aire frontale de la poutre principale de rive ;
 - 2) l'aire frontale des parties des autres poutres principales faisant saillie sous cette première poutre (poutres inférieures);
 - 3) l'aire frontale de la partie d'une corniche, d'un trottoir ou d'un ballast faisant saillie au-dessus de la poutre principale de rive ;
 - 4) l'aire frontale des dispositifs de retenue pleins ou des écrans antibruit, le cas échéant, au-dessus de l'aire décrite en 3) ou, en l'absence d'un équipement de cette nature, une aire correspondant à une hauteur de 0,3 m pour chaque garde-corps ou glissière (de sécurité) ajourés ;
- b) pour les tabliers à poutres en treillis, la somme de :
 - 1) l'aire frontale d'une corniche, d'un trottoir ou d'un ballast ;
 - 2) les projections, perpendiculairement à leur élévation, des parties pleines de toutes les poutres en treillis principales, situées au dessus ou en dessous de l'aire décrite en 1);
 - 3) l'aire frontale des dispositifs de retenue pleins ou des écrans antibruit, le cas échéant, situés au-dessus de l'aire décrite en 1) ou, en l'absence d'équipement de cette nature, une aire correspondant à une hauteur de 0,3 m pour chaque garde-corps ou glissière ajourés ;

Il convient, toutefois, que l'aire de référence totale ne dépasse pas celle d'une poutre à âme pleine équivalente de la même hauteur totale, y compris toutes les parties faisant saillie.

 pour les tabliers comprenant plusieurs poutres principales lors de la construction, avant la mise en place d'une dalle sous chaussée : la surface frontale de deux poutres principales.

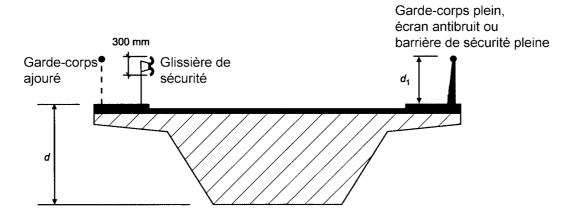


Figure 8.5 — Hauteur à prendre en compte pour $A_{ref,x}$

Tableau 8.1 — Hauteur à prendre en compte pour $A_{ref,x}$

Dispositif de retenue sur la chaussée	sur un côté	des deux côtés
Garde-corps ajouré ou glissière de sécurité	d + 0,3 m	d + 0,6 m
Garde-corps plein ou barrière de sécurité pleine	$d + d_1$	d + 2 d ₁
Garde-corps ajouré et glissière de sécurité	d + 0,6 m	d + 1,2 m

- (5) Les aires de référence $A_{\text{ref},x}$ correspondant aux combinaisons d'actions avec charges de trafic sont telles que spécifiées en (4), avec la modification suivante. Il convient de prendre en considération les éléments suivants, lorsqu'ils présentent une plus grande dimension, en lieu et place des aires décrites ci-dessus en a) 3) et 4) et b) 3) :
- a) pour les ponts-routes, une hauteur de 2 m à partir du niveau de la chaussée, sur la longueur la plus défavorable, indépendamment de la position des charges verticales de trafic ;
- b) pour les ponts-rails, une hauteur de 4 m à partir du dessus des rails, sur la longueur totale du pont.
- (6) la hauteur de référence, z_e , peut être considérée comme la distance entre le niveau du sol le plus bas et celui du centre de la structure du tablier du pont, en ne tenant pas compte des autres parties (par exemple garde-corps) des aires de référence.
- (7) Les effets de pression du vent dus aux véhicules circulant sur le pont ne relèvent pas du domaine d'application de la présente partie. Pour les effets du vent dus à la circulation des trains, voir l'EN 1991-2.

8.3.2 Force dans la direction x – Méthode simplifiée

(1) Lorsqu'il a été établi qu'une procédure de réponse dynamique ne se révèle pas nécessaire, la force du vent dans la direction x peut être obtenue à l'aide de l'expression (8.2) suivante :

$$F_{\mathsf{W}} = \frac{1}{2} \cdot \rho \cdot v_{\mathsf{b}}^2 \cdot C \cdot A_{\mathsf{ref},\mathsf{x}} \tag{8.2}$$

οù

v_b est la vitesse de référence du vent (voir 4.2 (2))

est le coefficient de force du vent. $C = c_e \cdot c_{f,x}$, où c_e est le coefficient d'exposition donné en 4.5 et $c_{f,x}$ est donné en 8.3.1(1)

 $A_{\text{ref.x}}$ est l'aire de référence indiquée en 8.3.1

 ρ est la masse volumique de l'air (voir 4.5)

NOTE Les valeurs de *C* peuvent être définies dans l'Annexe Nationale. Les valeurs recommandées sont données dans le Tableau 8.2.

Tableau 8.2 — Valeurs recommandées du coefficient de force C applicable aux ponts

bld _{tot}	z _e ≤ 20 m	z _e = 50 m
≤ 0,5	6,7	8,3
≥ 4,0	3,6	4,5
Le présent tableau es	et fondé sur les hypothèses suivantes :	
— catégorie de terrain II selon le Tableau 4. ;		
— coefficient de force $c_{\mathrm{f,x}}$ selon 8.3.1 (1) ;		
$$ $c_0 = 1.0$;		
$ k_1 = 1,0.$		
Une interpolation lide $z_{\rm e}$.	néaire peut être utilisée pour les	valeurs intermédiaires de $\mathit{bld}_{\mathrm{tot}}$, et

8.3.3 Forces du vent sur les tabliers de ponts dans la direction z

(1) Il convient de définir les coefficients de force $c_{\rm f,Z}$ applicables à l'action du vent sur les tabliers de ponts dans la direction z, à la fois dans les sens ascendant et descendant (coefficients de force de portance). Il est recommandé de ne pas utiliser $c_{\rm f,Z}$ pour calculer les vibrations verticales du tablier de pont.

NOTE 1 L'Annexe Nationale peut donner les valeurs de $c_{\rm f,z}$. En l'absence d'essais en soufflerie, la valeur recommandée peut être prise égale à \pm 0,9. Cette valeur prend globalement en compte l'influence d'une pente transversale éventuelle du tablier, de la pente du terrain et des fluctuations de l'angle d'incidence du vent par rapport au tablier dues à une turbulence.

 $c_{\mathrm{f,Z}}$ peut également être obtenu avec la Figure 8.6. Dans ce cas :

- l'épaisseur d_{tot} peut être limitée à l'épaisseur de la structure du tablier, en ne tenant pas compte du trafic ni d'aucun équipement du pont ;
- pour un terrain plat horizontal, l'angle α du vent avec l'horizontale peut être considéré comme étant égal à \pm 5° du fait de la turbulence. Ceci est également valable pour les terrains onduleux lorsque le tablier de pont se situe au moins à 30 m du sol.

NOTE 2 Cette force ne peut avoir des effets significatifs que si elle est du même ordre que le poids propre.

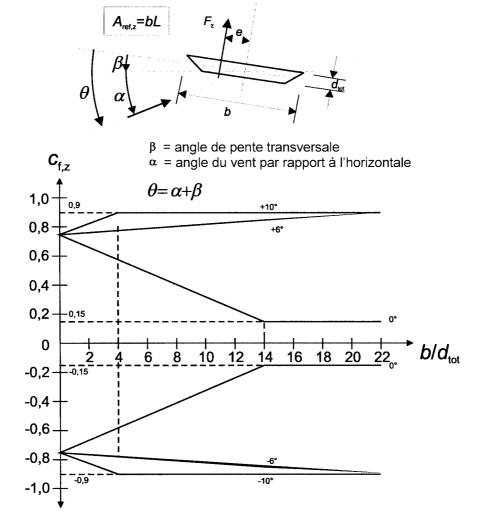


Figure 8.6 — Coefficient de force $c_{\rm f,z}$ applicable aux ponts ayant une pente transversale et avec un vent incliné

(2) L'aire de référence $A_{\rm ref,X}$ est égale à l'aire en plan (voir Figure 8.2) :

$$A_{\text{ref,x}} = b \cdot L \tag{8.3}$$

- (3) Il convient de ne prendre en compte aucun facteur d'effet d'extrémités.
- (4) La hauteur de référence est la même que pour $c_{\rm f,x}$ (voir 8.3.1(6)).
- (5) Sauf spécification contraire, l'excentricité de la force dans la direction x peut être fixée à e = b/4.

8.3.4 Forces du vent exercées sur les tabliers de ponts dans la direction y

- (1) Il convient, si nécessaire, de prendre en compte les forces du vent longitudinales dans la direction y.
- NOTE L'Annexe Nationale peut fournir les valeurs y afférant. Les valeurs recommandées sont les suivantes :
- pour les ponts à poutres pleines, 25 % des forces du vent dans la direction x;
- pour les ponts à poutres en treillis, 50 % des forces du vent dans la direction x.

8.4 Piles de ponts

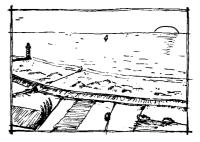
8.4.1 Directions du vent et situations de projet

- (1) Il convient de calculer les actions du vent sur les tabliers de ponts et leurs piles d'appui en identifiant la direction la plus défavorable du vent sur l'ensemble de la structure pour l'effet considéré.
- (2) Il est recommandé d'effectuer des calculs distincts des actions du vent pour des situations de projet transitoires au cours des phases de construction, lorsque le tablier ne permet aucune transmission ou redistribution horizontale des actions du vent. Lorsque, au cours de ces phases, une pile doit supporter des éléments de tablier en console ou des échafaudages, il convient de tenir compte de toute asymétrie potentielle des actions du vent sur lesdits éléments.

NOTE Les situations transitoires de réalisation sont généralement plus critiques pour les piles et pour certains types de tabliers soumis à des méthodes de réalisation particulières que les situations durables. Voir l'EN 1991-1-1-6 pour les valeurs caractéristiques au cours des situations de projet transitoires. Pour les échafaudages, voir 7.11.

8.4.2 Effets du vent sur les piles

- (1) Il convient de calculer les effets du vent sur les piles en utilisant le format général défini dans le présent Eurocode. Il est recommandé de faire appel aux dispositions des paragraphes 7.6, 7.8 ou 7.9.2 pour les charges globales appliquées.
- NOTE 1 Des règles simplifiées peuvent être données dans l'Annexe Nationale.
- NOTE 2 L'Annexe Nationale peut fournir des procédures pour le traitement d'un chargement asymétrique. La procédure recommandée consiste à supprimer entièrement la charge de calcul du vent des parties de la structure sur lesquelles elle a un effet bénéfique (voir 7.1.2 (1)).


Annexe A (informative)

Effets du terrain

A.1 Illustrations de la rugosité supérieure de chaque catégorie de terrain

Catégorie de terrain 0

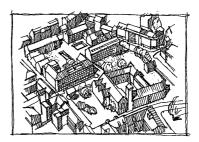
Mer ou zone côtière exposée aux vents de mer

Catégorie de terrain I

Lacs ou zone à végétation négligeable et libre de tout obstacle


Catégorie de terrain II

Zone à végétation basse telle que de l'herbe, avec ou non quelques obstacles isolés (arbres, bâtiments) séparés les uns des autres d'au moins 20 fois leur hauteur


Catégorie de terrain III

Zone avec une couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes)

Catégorie de terrain IV

Zone dont au moins 15 % de la surface sont recouverts de bâtiments, dont la hauteur moyenne est supérieure à 15 m

A.2 Transition entre les catégories de rugosité 0, I, II, III et IV

(1) Le calcul de $q_{\rm p}$ et $c_{\rm s}c_{\rm d}$ doit tenir compte de la transition entre les différentes catégories de rugosité.

NOTE La procédure à utiliser peut être donnée dans l'Annexe Nationale. Deux procédures recommandées, à savoir la Procédure 1 et la Procédure 2, sont données ci-dessous.

Procédure 1

Si la structure est située à proximité d'un changement de rugosité du terrain à une distance :

- de moins de 2 km d'un terrain de catégorie 0 :
- de moins de 1 km d'un terrain moins rugueux appartenant aux catégories I à III,

il convient d'utiliser la catégorie du terrain le moins rugueux dans la direction d'où vient le vent.

Les petites étendues (d'aire inférieure à 10 % de la zone considérée) présentant une rugosité différente peuvent être ignorées.

Procédure 2

- Déterminer les catégories de rugosité applicables au terrain en amont dans les secteurs angulaires à prendre en considération :
- pour chaque secteur angulaire, déterminer la distance x entre le bâtiment et le changement de rugosité en amont ;
- si la distance x entre le bâtiment et un terrain dont la longueur de rugosité est plus faible, est inférieure aux valeurs données dans le Tableau A.1, il convient alors d'utiliser, pour le secteur angulaire considéré, la plus faible valeur de la longueur de rugosité. Lorsque cette distance x est supérieure à la valeur indiquée dans le Tableau A.1, il est recommandé d'utiliser la valeur la plus élevée pour la longueur de rugosité.

Les petites étendues (d'aire inférieure à 10 % de la zone considérée) présentant une rugosité différente peuvent être ignorées.

Quand aucune distance x n'est spécifiée dans le Tableau A.1 ou pour des hauteurs supérieures à 50 m, il est recommandé d'utiliser la longueur de rugosité la plus faible.

Une interpolation linéaire peut être utilisée pour les valeurs intermédiaires de la hauteur z.

Un bâtiment situé dans une certaine catégorie de terrain peut être calculé comme s'il était dans une catégorie de terrain inférieure, si ledit bâtiment est situé dans les limites de distance définies dans le Tableau A.1.

Tableau A.1 — Distance x

Hauteur z	I vers II	I vers III
5 m	0,50 km	5,00 km
7 m	1,00 km	10,00 km
10 m	2,00 km	20,00 km
15 m	5,00 km	
20 m	12,00 km	
30 m	20,00 km	
50 m	50,00 km	
Hauteur z	II vers III	II vers IV
5 m	0,30 km	2,00 km
7 m	0,50 km	3,50 km
10 m	1,00 km	7,00 km
15 m	3,00 km	20,00 km
20 m	7,00 km	
30 m	10,00 km	
50 m	30,00 km	

Hauteur z	III vers IV
5 m	0,20 km
7 m	0,35 km
10 m	0,70 km
15 m	2,00 km
20 m	4,50 km
30 m	7,00 km
50 m	20,00 km

A.3 Calcul numérique des coefficients d'orographie

(1) Sur les collines isolées ou en chaîne, ou les falaises et les escarpements la vitesse du vent varie en fonction de la pente, dans la direction du vent, du versant amont $\Phi = H/L_{\rm u}$; la hauteur H et la longueur $L_{\rm u}$ sont définies à la Figure A.1.

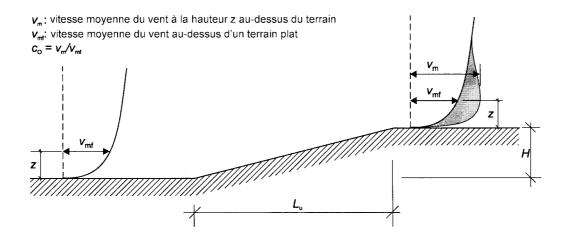


Figure A.1 — Illustration de l'augmentation des vitesses du vent due à l'orographie

(2) L'augmentation la plus importante des vitesses du vent se produit à proximité du sommet du versant et est déterminée à partir du coefficient d'orographie c_0 , voir Figure A.1. La pente n'a pas d'effet significatif sur l'écart type de la turbulence définie en 4.4 (1).

NOTE L'intensité de la turbulence diminue du fait de l'augmentation de la vitesse du vent et de la constance de l'écart type.

- (3) Le coefficient d'orographie, $c_0(z) = v_{\rm m}/v_{\rm mf}$ tient compte de l'augmentation de la vitesse moyenne du vent passant au-dessus des collines et des escarpements (mais non dans des régions ondulées et montagneuses). Il est lié à la vitesse du vent à la base de la colline ou de l'escarpement. Il convient de prendre en compte les effets de l'orographie dans les situations suivantes :
- a) pour les sites (de construction) situés sur les versants au vent de collines et de chaînes de collines :
 - lorsque 0,05 < Φ ≤ 0,3 et pour $|x| ≤ L_1/2$;
- b) pour les sites situés sur les versants sous le vent de collines et de chaînes de collines :
 - lorsque Φ < 0,3 et pour $x < L_d / 2$;
 - lorsque $\Phi \ge 0.3$ et pour x < 1.6 H;
- pour les sites situés sur les versants au vent de falaises et d'escarpements :
 - lorsque $0.05 < \Phi \le 0.3$ et pour $|x| \le L_1/2$;
- c) pour les sites situés sur les versants sous le vent de falaises et d'escarpements :
 - lorsque Φ < 0,3 et x < 1,5 $L_{\rm e}$;
 - lorsque $\Phi \ge 0.3$ et x < 5 H.

Le coefficient d'orographie est défini par :

$$c_0 = 1$$
 pour $\Phi < 0.05$ (A.1)

$$c_0 = 1 + 2 \cdot s \cdot \Phi$$
 pour $0.05 < \Phi \le 0.3$ (A.2)

$$c_0 = 1 + 0.6 \cdot s$$
 pour $\Phi > 0.3$ (A.3)

οù

- est le coefficient obtenu à partir de la Figure A.2 ou de la Figure A.3 (figures où les longueurs sont rapportées à la longueur effective du versant au vent, $L_{\rm P}$)
- Φ est la pente du versant au vent H/L_{II} dans la direction du vent (voir Figure A.2 et Figure A.3)
- L_e est la longueur effective du versant au vent, définie dans le Tableau A.2
- $L_{\rm H}$ est la longueur réelle du versant au vent dans la direction du vent
- $L_{\rm d}$ est la longueur réelle du versant sous le vent dans la direction du vent
- H est la hauteur effective de l'obstacle
- x est la distance horizontale entre le lieu de construction et le sommet de la crête
- z est la distance verticale mesurée à partir du niveau du sol au lieu considéré

Tableau A.2 — Valeurs de la longueur effective $L_{\rm e}$

Type de pente ($\Phi = H/L_u$)	
Pente modérée (0,05 < Φ < 0,3)	Pente forte (Φ > 0,3)
$L_{\rm e} = L_{\rm u}$	$L_{\rm e} = H / 0.3$

NOTE Les graphiques calculés des Figures A.2 et A.3 excèdent le domaine d'application défini ci-dessus. La prise en considération des effets orographiques au-delà de ces limites est facultative.

(4) Dans les vallées, $c_0(z)$ peut être fixé à 1,0 quand aucune accélération due aux effets d'entonnoir n'est à prévoir. Pour les constructions situées dans des vallées, ou pour des ponts franchissant des vallées profondes, il convient de tenir compte de toute augmentation de la vitesse du vent due aux effets d'entonnoir.

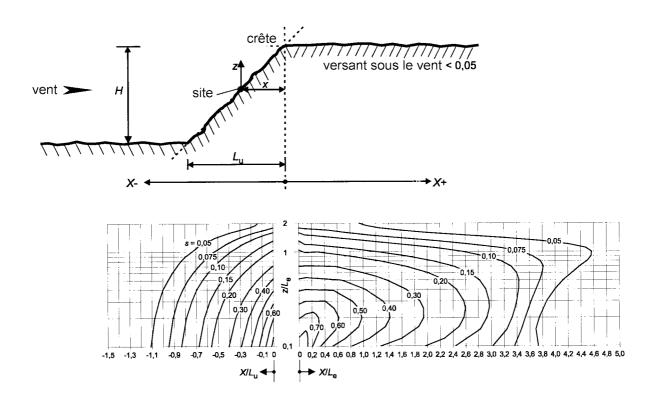


Figure A.2 — Coefficient s pour les falaises et les escarpements

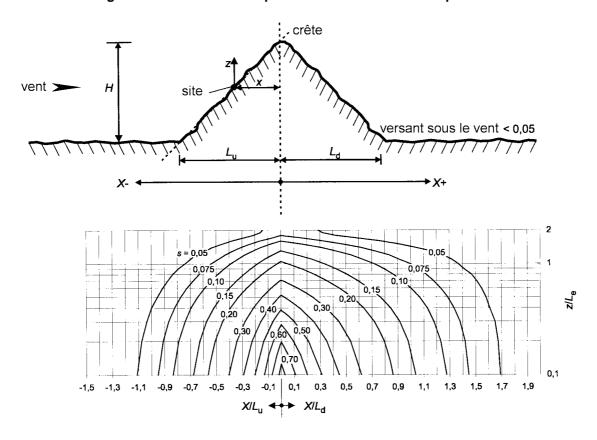


Figure A.3 — Coefficient s pour les collines isolées ou en chaîne

(5) Les expressions A.4 à A.7 et A.11 peuvent être utilisées pour calculer la valeur du coefficient s. Du fait du caractère empirique de ces expressions, il est tout particulièrement important que les valeurs des paramètres utilisés soient limitées aux plages énoncées, sous peine d'obtenir des valeurs non valables.

a) domaine au vent pour tous les types orographiques (Figures A.2 et A.3) :

Pour les plages

$$-1.5 \le \frac{X}{L_{\rm u}} \le 0 \text{ et } 0 \le \frac{z}{L_{\rm e}} \le 2.0$$

prendre:

$$s = A \cdot e^{\left(B \cdot \frac{X}{L_{\mathsf{u}}}\right)} \tag{A.4}$$

οù

$$A = 0,1552 \cdot \left(\frac{z}{L_{e}}\right)^{4} - 0,8575 \cdot \left(\frac{z}{L_{e}}\right)^{3} + 1,8133 \cdot \left(\frac{z}{L_{e}}\right)^{2} - 1,9115 \cdot \left(\frac{z}{L_{e}}\right) + 1,0124$$
(A.5)

et

$$B = 0.3542 \cdot \left(\frac{z}{L_{\rm e}}\right)^2 - 1.0577 \cdot \left(\frac{z}{L_{\rm e}}\right) + 2.6456 \tag{A.6}$$

Lorsque

$$\frac{X}{L_{\rm II}}$$
 < -1,5 ou $\frac{z}{L_{\rm P}}$ > 2

prendre

$$s = 0$$

b) domaine sous le vent dans le cas des falaises et des escarpements (Figure A.2) :

Pour les plages

$$-0.1 \le \frac{X}{L_e} \le 3.5 \text{ et } 0.1 \le \frac{z}{L_e} \le 2.0$$

prendre

$$s = A \cdot \left(\log \left[\frac{X}{L_{e}} \right] \right)^{2} + B \cdot \left(\log \left[\frac{X}{L_{e}} \right] \right) + C \tag{A.7}$$

οù

$$A = 1,3420 \cdot \left(\log \left[\frac{z}{L_{e}} \right] \right)^{3} - 0,8222 \cdot \left(\log \left[\frac{z}{L_{e}} \right] \right)^{2} + 0,4609 \cdot \log \left[\frac{z}{L_{e}} \right] - 0,0791$$
 (A.8)

$$B = 1,0196 \cdot \left[\log \left[\frac{z}{L_{e}} \right] \right]^{3} - 0,8910 \cdot \left[\log \left[\frac{z}{L_{e}} \right] \right]^{2} + 0,5343 \cdot \log \left[\frac{z}{L_{e}} \right] - 0,1156$$
 (A.9)

$$C = 1,8030 \cdot \left[\log \left[\frac{z}{L_{e}} \right] \right]^{3} - 0,4236 \cdot \left[\log \left[\frac{z}{L_{e}} \right] \right]^{2} + 0,5738 \cdot \log \left[\frac{z}{L_{e}} \right] - 0,1606$$
 (A.10)

Pour la plage

$$-0 \le \frac{X}{L_{\mathbf{e}}} \le 0,1$$

effectuer une interpolation entre les valeurs pour $\frac{X}{L_{\rm e}}$ = 0 (s = A dans l'expression A.5) et $\frac{X}{L_{\rm e}}$ = 0,1.

Lorsque : $\frac{z}{L_e}$ < 0,1 utiliser les valeurs pour $\frac{z}{L_e}$ = 0,1 .

Lorsque : $\frac{z}{L_d}$ > 3,5 ou $\frac{z}{L_e}$ > 2,0 prendre la valeur s = 0.

c) domaine sous le vent dans le cas des collines et des chaînes de collines (Figure A.3) :

Pour les plages

$$0 \le \frac{X}{L_d} \le 2.0 \text{ et } 0 \le \frac{z}{L_e} \le 2.0$$

prendre

$$s = A \cdot e^{\left(B \cdot \frac{X}{L_{d}}\right)} \tag{A.11}$$

οù

$$A = 1,1552 \cdot \left[\left[\frac{z}{L_{e}} \right] \right]^{4} - 0,8575 \cdot \left[\left[\frac{z}{L_{e}} \right] \right]^{3} + 0,8133 \cdot \left[\frac{z}{L_{e}} \right]^{2} - 1,9115 \cdot \left(\frac{z}{L_{e}} \right) + 1,0124$$
 (A.12)

$$B = 0.3056 \cdot \left[\left[\frac{z}{L_{e}} \right] \right]^{2} - 0.0212 \cdot \left[\left[\frac{z}{L_{e}} \right] \right] - 1.7637$$
(A.13)

Lorsque

$$\frac{X}{L_{\rm d}}$$
 > 2,0 ou $\frac{z}{L_{\rm e}}$ > 2,0

prendre

s = 0

NOTE Les expressions A.5 et A.12 sont identiques.

A.4 Constructions avoisinantes

(1) Lorsque la hauteur d'un bâtiment est plus de deux fois supérieure à la hauteur moyenne h_{ave} des constructions avoisinantes alors, en première approximation, le calcul de l'une quelconque de ces constructions avoisinantes peut être fondé sur la pression dynamique de pointe à la hauteur z_{n} ($z_{\text{e}} = z_{\text{n}}$) au dessus du sol (expression A.14), voir Figure A.4.

$$z_{n} = \frac{1}{2}r$$

$$r < x < 2r$$

$$z_{n} = \frac{1}{2} \left(r - \left(1 - \frac{2 \cdot h_{low}}{r} \right) \cdot (x - r) \right)$$

$$x \ge 2r$$

$$z_{n} = h_{low}$$
(A.14)

EN 1991-1-4:2005 (F)

dans laquelle le rayon r est le suivant :

$$r = h_{\text{high}}$$
 si $h_{\text{high}} \le 2d_{\text{large}}$ $r = 2d_{\text{large}}$ si $h_{\text{high}} > 2d_{\text{large}}$

La hauteur de construction h_{low} , le rayon r, la distance x et les dimensions d_{small} et d_{large} sont illustrées à la Figure A.4. L'augmentation des vitesses du vent peut être ignorée lorsque h_{low} est supérieure à la moitié de la hauteur h_{high} du bâtiment de grande hauteur, à savoir $z_{\text{n}} = h_{\text{low}}$.

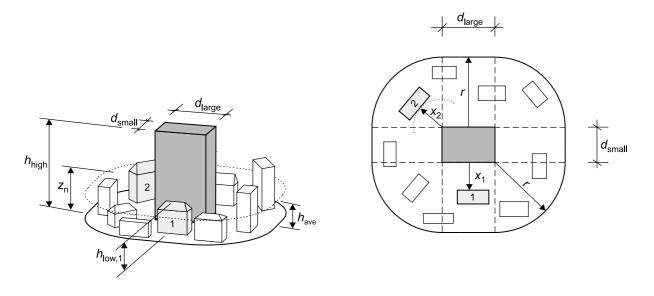


Figure A.4 — Influence d'une construction de grande hauteur, sur deux constructions voisines différentes (1 et 2)

A.5 Hauteur de déplacement

(1) Dans le cas de bâtiments situés sur un terrain de catégorie IV, les bâtiments rapprochés et les autres obstacles conduisent le vent à se comporter comme si le niveau du sol était élevé à une hauteur $h_{\rm dis}$ dite de déplacement. $h_{\rm dis}$ peut être déterminé par l'expression (A.15), voir Figure A.5. Le profil de la pression dynamique de pointe par rapport à la hauteur (voir Figure 4.2) peut être déplacé vers le haut d'une hauteur $h_{\rm dis}$.

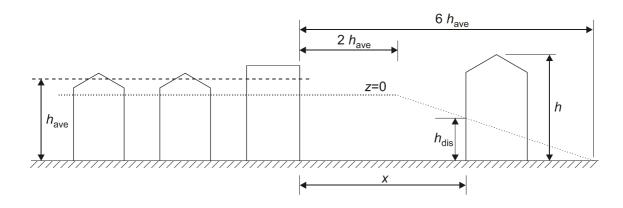


Figure A.5 — Hauteur d'obstruction et espacement au vent

$$x \le 2h_{\text{ave}}$$
 h_{dis} est la plus petite valeur de 0,8 h_{ave} ou 0,6 h

2 $h_{\text{ave}} < x < 6 h_{\text{ave}}$ h_{dis} est la plus petite valeur de (1,2 $h_{\text{ave}} = -0.2x$) ou 0,6 h

(A.1)

 $x \ge 6 h_{\text{ave}}$ $h_{\text{dis}} = 0$

En l'absence d'informations plus précises, la hauteur d'obstruction peut être considérée comme étant égale à h_{ave} = 15 m pour la catégorie de terrain IV.

Ces règles dépendent de la direction et il convient que les valeurs de h_{ave} et x soient établies pour chaque secteur de 30° tel que décrit en 4.3.2.

Annexe B

(informative)

Procédure 1 de détermination du coefficient structural $c_s c_d$

B.1 Turbulence du vent

(1) L'échelle de turbulence L(z) représente la dimension moyenne des rafales du vent naturel. Pour les hauteurs z inférieures à 200 m, l'échelle de turbulence peut être calculée à l'aide de l'expression (B.1).

$$L(z) = L_{t} \cdot \left(\frac{z}{z_{t}}\right)^{\alpha}$$

$$pour \ z \ge z_{min}$$

$$L(z) = L(z_{min})$$

$$pour \ z < z_{min}$$
(B.1)

avec une hauteur de référence $z_{\rm t}$ = 200 m, une échelle de référence $L_{\rm t}$ = 300 m et avec α = 0,67 + 0,05 ln($z_{\rm 0}$), où la longueur de rugosité $z_{\rm 0}$ est donnée en m. La hauteur minimale $z_{\rm min}$ est donnée dans le Tableau 4.1.

(2) La distribution du vent en fréquence est exprimée par la fonction de densité spectrale de puissance adimensionnelle $S_{\rm I}(z,n)$, qu'il convient de déterminer à l'aide de l'expression (B.2) :

$$S_{L}(z,n) = \frac{n \cdot S_{V}(z,n)}{\sigma_{V}^{2}} = \frac{6.8 \cdot f_{L}(z,n)}{(1+10.2 \cdot f_{L}(z,n))^{5/3}}$$
(B.2)

οù

 $S_{V}(z,n)$ est la densité spectrale à une branche (c'est-à-dire définie sur les seules fréquences positives), et

 $f_{L}(z,n) = \frac{n \cdot L(z)}{v_{m}(z)}$ est une fréquence adimensionnelle calculée pour la fréquence $n = n_{1,x}$, fréquence propre de la structure en Hz, la vitesse moyenne $v_{m}(z)$ et l'échelle de turbulence L(z) définie en (B.1). La fonction de densité spectrale de puissance est illustrée à la Figure B.1

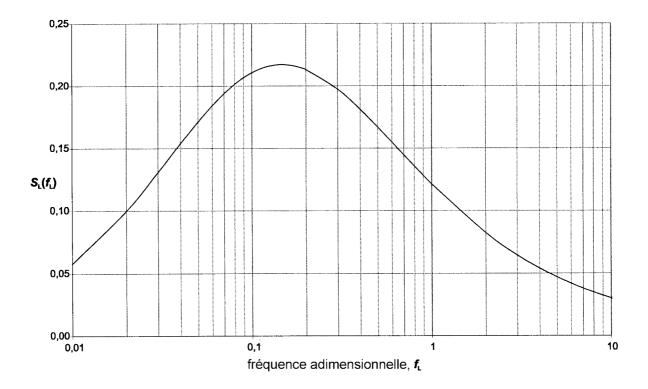


Figure B.1 — Fonction de densité spectrale de puissance adimensionnelle $S_1(f_1)$

B.2 Coefficient structural $c_{\rm s}c_{\rm d}$

- (1) Le coefficient structural $c_{\rm s}c_{\rm d}$ est défini en 6.3.1.
- (2) Le coefficient de réponse quasi-statique B^2 traduisant l'absence de corrélation parfaite de la pression sur la surface de la construction peut être calculé à l'aide de l'expression (B.3) :

$$B^{2} = \frac{1}{1 + 0.9 \cdot \left(\frac{b + h}{L(z_{s})}\right)^{0.63}}$$
(B.3)

οù

- b, h sont la largeur et la hauteur de la construction ; voir Figure 6.1
- $L(z_s)$ est l'échelle de turbulence donnée en B.1 (1) à la hauteur de référence z_s définie à la Figure 6.1

On se place du côté de la sécurité en prenant $B^2 = 1$.

(3) Il convient de déterminer le facteur de pointe k_p , défini comme le rapport de la valeur maximale de la partie fluctuante de la réponse à son écart type, à partir de l'expression (B.4), illustrée à la Figure B.2.

EN 1991-1-4:2005 (F)

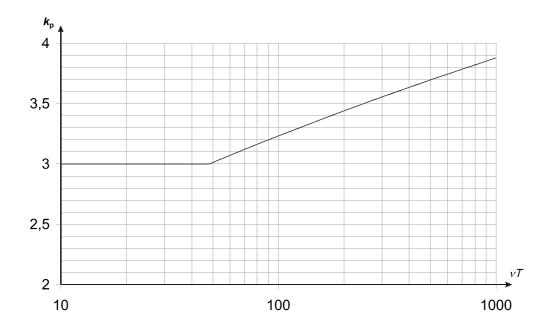


Figure B.2 — Facteur de pointe

$$k_{\rm p} = \sqrt{2 \cdot \ln{(\nu \cdot T)}} + \frac{0.6}{\sqrt{2 \cdot \ln{(\nu \cdot T)}}}$$
 ou $k_{\rm p}$ = 3 selon la plus grande valeur (B.4)

οù

 ν est la fréquence de franchissement donnée en (4)

T est la durée d'intégration de la vitesse moyenne du vent, T = 600 s

(4) Il convient de déterminer la fréquence ν à partir de l'expression (B.5) :

$$v = n_{1,x} \sqrt{\frac{R^2}{B^2 + R^2}} \; ; \; v \ge 0.02 \; Hz$$
 (B.5)

οù

 $n_{1,x}$ est la fréquence propre de la construction, qui peut être déterminée à l'aide de l'Annexe F. La limite de $v \ge 0.08$ Hz correspond à un facteur de pointe de 3,0

(5) Le coefficient de réponse résonante \mathbb{R}^2 traduit l'effet de la turbulence en résonance avec le mode de vibration considéré de la construction ; il convient de le calculer à l'aide de l'expression (B.6) :

$$R^{2} = \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{L}(z_{s}, n_{1,x}) \cdot R_{h}(\eta_{h}) \cdot R_{b}(\eta_{b})$$
(B.6)

οù

 δ est le décrément logarithmique total d'amortissement donné en F.5

S_I est la fonction de densité spectrale de puissance adimensionnelle donnée en B.1 (2)

 $R_{\rm h}, R_{\rm h}$ sont les fonctions d'admittance aérodynamique données en (6)

(6) Les fonctions d'admittance aérodynamique R_h et R_b pour une déformée de mode fondamental peuvent être calculées de manière approchée à l'aide des expressions (B.7) et (B.8)

$$R_{\rm h} = \frac{1}{\eta_{\rm h}} - \frac{1}{2 \cdot \eta_{\rm h}^2} (1 - e^{-2 \cdot \eta_{\rm h}}) \; ; R_{\rm h} = 1 \; \text{pour} \; \eta_{\rm h} = 0$$
 (B.7)

$$R_{\rm b} = \frac{1}{\eta_{\rm b}} - \frac{1}{2 \cdot \eta_{\rm b}^2} (1 - e^{-2 \cdot \eta_{\rm b}}) \; ; R_{\rm b} = 1 \; \text{pour} \; \eta_{\rm b} = 0$$
 (B.8)

avec
$$\eta_{h} = \frac{4.6 \cdot h}{L(z_{s})} \cdot f_{L}(z_{s}, n_{1,x})$$
 et $\eta_{b} = \frac{4.6 \cdot b}{L(z_{s})} \cdot f_{L}(z_{s}, n_{1,x})$

NOTE Il convient d'utiliser des calculs plus détaillés lorsque les déformées modales présentent des nœuds intermédiaires.

B.3 Nombre de chargements pour la réponse dynamique

(1) La Figure B.3 montre le nombre de fois $N_{\rm g}$, que la valeur ΔS d'un effet du vent est atteinte ou dépassée au cours d'une période de 50 ans. ΔS est exprimé comme le pourcentage de la valeur $S_{\rm k}$, où $S_{\rm k}$ est l'effet dû à l'action du vent de période de retour égale à 50 ans.

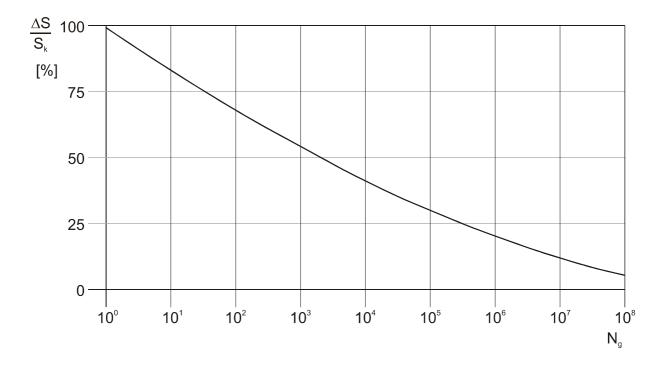


Figure B.3 — Nombre de chargements $N_{\rm g}$ par la turbulence pour un effet $\Delta S/S_{\rm k}$ au cours d'une période de 50 ans

La relation entre $\Delta S/S_{\mathbf{k}}$ et $N_{\mathbf{g}}$ est donnée par l'expression B.9.

$$\frac{\Delta S}{S_{k}} = 0.7 \cdot (\log(N_{g}))^{2} - 17.4 \cdot \log(N_{g}) + 100$$
(B.9)

B.4 Déplacement et accélérations de service pour les évaluations de l'aptitude au service d'une construction verticale

(1) Le déplacement maximal dans le sens du vent est déterminé à partir de la force du vent statique équivalente définie en 5.3.

(2) Il convient de déterminer l'écart type $\sigma_{a,x}$ de l'accélération caractéristique dans le sens du vent du point de la construction situé à la hauteur z à l'aide de l'expression (B.10).

$$\sigma_{\mathsf{a},\mathsf{x}}(z) = \frac{c_{\mathsf{f}} \cdot \rho \cdot b \cdot l_{\mathsf{v}}(z_{s}) \cdot v_{\mathsf{m}}^{2}(z_{s})}{m_{\mathsf{1}\mathsf{x}}} \cdot R \cdot K_{\mathsf{x}} \cdot \Phi_{\mathsf{1},\mathsf{x}}(z) \tag{B.10}$$

οù

c_f est le coefficient de force, voir Section 7

 ρ est la masse volumique de l'air, voir 4.5 (1)

b est la largeur de la construction, définie à la Figure 6.1

 $I_{v}(z_{s})$ est l'intensité de turbulence à la hauteur $z=z_{s}$ au-dessus du sol ; voir 4.4 et Figure 6.1

 $v_{\rm m}(z_{\rm S})$ est la vitesse moyenne du vent pour $z=z_{\rm S}$;voir 4.3.1 (1)

z_s est la hauteur de référence ;voir Figure 6.1

R est la racine carrée de la réponse résonante, voir B.2 (5)

 K_x est le coefficient adimensionnel, donné par l'expression (B.11)

 $m_{1,X}$ est la masse équivalente fondamentale dans le sens du vent, voir F.4 (1)

 $n_{1,x}$ est la fréquence fondamentale de la vibration de la construction dans le sens du vent ; des valeurs approchées en sont données à l'Annexe F

 $\Phi_{1,x}(z)$ est la déformée du mode fondamental dans le sens du vent ; les expressions mentionnées à l'Annexe F peuvent être utilisées en première approximation

(3) Le coefficient adimensionnel, K_x , est défini par :

$$K_{X} = \frac{\int_{0}^{h} v_{m}^{2}(z) \cdot \Phi_{1,X}(z) dz}{v_{m}^{2}(z_{s}) \cdot \int_{0}^{h} \Phi_{1,X}^{2}(z) dz}$$
(B.11)

οù

h est la hauteur de la construction (voir Figure 6.1)

NOTE En supposant que $\Phi_{1,x}(z) = (z/h)^{\zeta}$ (voir Annexe F) et $c_0(z) = 1$ (terrain plat, voir 4.3.3), l'expression (B.11) peut être calculée de manière approchée par l'expression (B.12). Cette valeur approchée est indiquée à la Figure B.4.

EN 1991-1-4:2005 (F)

$$K_{X} = \frac{\left(2 \cdot \varsigma + 1\right) \cdot \left\{\left(\varsigma + 1\right) \cdot \left[\ln\left(\frac{z_{s}}{z_{0}}\right) + 0, 5\right] - 1\right\}}{\left(\varsigma + 1\right)^{2} \cdot \ln\left(\frac{z_{s}}{z_{0}}\right)}$$
(B.12)

οù

 z_0 est la longueur de rugosité (Tableau 4.1)

 ζ est l'exposant de la déformée modale (voir Annexe F)

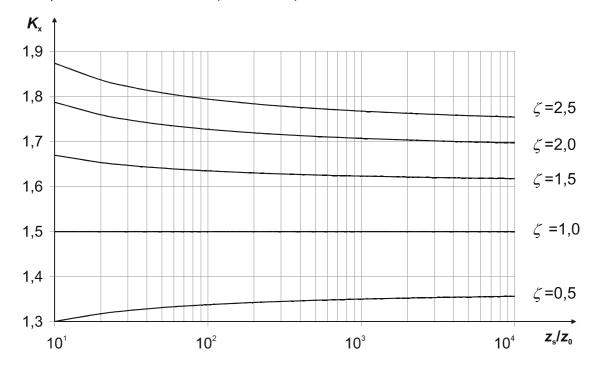


Figure B.4 — Approximation du coefficient adimensionnel, $K_{\rm X}$ selon l'expression (B.12)

(4) Les accélérations maximales caractéristiques sont obtenues en multipliant l'écart type mentionné en (2) par le facteur de pointe donné en B.2 (3) calculé en utilisant la fréquence propre comme valeur de la fréquence de franchissement ν , c'est-à-dire $\nu = n_{1,x}$.

Annexe C (informative)

Procédure 2 de détermination du coefficient structural $c_s c_d$

C.1 Turbulence du vent

(1) Il convient d'utiliser les caractéristiques de la turbulence décrites en B.1.

C.2 Coefficient structural

- (1) Le coefficient structural $c_{\rm s}c_{\rm d}$ est défini en 6.3.1.
- (2) Le coefficient de réponse quasi-statique B^2 traduisant l'absence de corrélation parfaite de la pression sur la surface de la construction peut être calculé à l'aide de l'expression (C.1).

$$B^{2} = \frac{1}{1 + \frac{3}{2} \sqrt{\left(\frac{b}{L(z_{s})}\right)^{2} + \left(\frac{h}{L(z_{s})}\right)^{2} + \left(\frac{b}{L(z_{s})} \cdot \frac{h}{L(z_{s})}\right)^{2}}}$$
(C.1)

οù

- b, h sont la largeur et la hauteur de la construction, voir Figure 6.1
- $L(z_s)$ est l'échelle de turbulence donnée en B.1 (1) à la hauteur de référence z_s définie à la Figure 6.1

On se place du côté de la sécurité en prenant $B^2 = 1$.

- (3) Il convient de déterminer le facteur de pointe k_p , à partir de B.2 (3).
- (4) Le coefficient de réponse résonante \mathbb{R}^2 traduit l'effet de la turbulence en résonance avec le mode de vibration considéré de la construction ; il convient de le calculer à l'aide de l'expression (C.2) :

$$R^{2} = \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{L}(z_{s}, n_{1,x}) \cdot K_{s} n_{1,x}$$
 (C.2)

οù

- δ est le décrément logarithmique total d'amortissement donné à l'Annexe F
- S_I est la fonction de densité spectrale de puissance du vent donnée en B.1 (2)
- $N_{1,x}$ est la fréquence propre fondamentale de la construction, dont les valeurs approchées sont données à l'Annexe F
- $K_{\rm s}$ est la fonction d'effet réducteur de dimension indiquée en (5)

(5) La fonction d'effet réducteur de dimension K_s peut être calculée de manière approchée à l'aide de l'expression (C.3):

$$K_{s}(n) = \frac{1}{1 + \sqrt{(G_{y} \cdot \phi_{y})^{2} + (G_{z} \cdot \phi_{z})^{2} + \left(\frac{2}{\pi} \cdot G_{y} \cdot \phi_{y} \cdot G_{z} \cdot \phi_{z}\right)^{2}}}$$
(C.3)

$$\varphi_{\mathsf{y}} = \frac{c_{\mathsf{y}} \cdot b \cdot n}{v_{\mathsf{m}} (z_{s})}$$

$$\varphi_{\mathsf{z}} = \frac{c_{\mathsf{z}} \cdot b \cdot n}{v_{\mathsf{m}} (z_{s})}$$

Les constantes G_y et G_z dépendent de la variation de la déformée modale le long de l'axe horizontal y et de l'axe vertical z, respectivement. Les constantes de décroissance c_y et c_z sont toutes deux égales à 11,5.

(6) La constante G indiquée en (5) et la constante K utilisée pour calculer les accélérations, sont données dans le Tableau C.1.

Tableau C.1 — G et K en fonction de la déformée modale

Déformée modale	Uniforme	Linéaire	Parabolique	Sinusoïdale
G:	1/2	3/8	5/18	4/π ²
<i>K</i> :	1	3/2	5/3	4/π

NOTE 1 Pour les bâtiments dont la déformée modale est uniforme horizontalement et varie linéairement verticalement $\Phi(y,z) = z/h$, $G_y = 1/2$, $G_z = 3/8$, $K_y = 1$ et $K_z = 3/2$.

NOTE 2 Pour les cheminées dont la déformée modale est uniforme horizontalement et de forme parabolique verticalement $\Phi(y,z) = z^2/h^2$, $G_y = 1/2$, $G_z = 5/18$, $K_y = 1$ et $K_z = 5/3$.

NOTE 3 Pour les ponts dont la déformée modale horizontale est de forme sinusoïdale $\Phi(y,z) = \sin(\pi \cdot y/b)$, $G_y = 4/\pi^2$, $G_z = 1/2$, $K_y = 4/\pi$ et $K_z = 1$.

C.3 Nombre de chargements pour la réponse dynamique

(1) Il convient de déterminer le nombre de chargements à partir de B.3.

C.4 Déplacement et accélérations de service pour les évaluations de l'aptitude au service

(1) Le déplacement maximal dans le sens du vent est le déplacement statique déterminé à partir de la force du vent statique équivalente définie en 5.2.

(2) L'écart type $\sigma_{a,x}$ de l'accélération caractéristique dans le sens du vent du point de la construction de coordonnées (y,z) est donné de manière approchée par l'expression (C.4).

$$\sigma_{\mathsf{a},\mathsf{x}}(y,z) = c_{\mathsf{f}} \cdot \rho \cdot l_{\mathsf{v}}(z_{s}) \cdot v_{\mathsf{m}}^{2}(z_{s}) \cdot R \cdot \frac{K_{\mathsf{y}} \cdot K_{z} \cdot \varphi(y,z)}{\mu_{\mathsf{ref}} \cdot \varphi_{\mathsf{max}}} \tag{C.4}$$

οù

 $c_{\rm f}$ est le coefficient de force ; voir Section 7

 ρ est la masse volumique de l'air ; voir 4.5

 $I_{\rm V}(z_{\rm S})$ est l'intensité de turbulence à la hauteur $z_{\rm S}$ au-dessus du sol ; voir 4.4 (1)

 $v_{\rm m}(z_{\rm s})$ est la vitesse moyenne caractéristique du vent à la hauteur $z_{\rm s}$ au-dessus du sol; voir 4.3.1 (1)

z_s est la hauteur de référence ;voir Figure 6.1

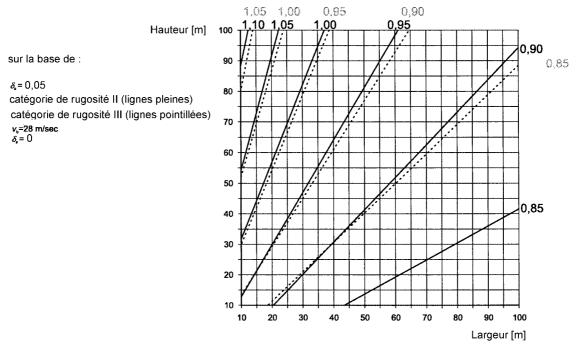
R est la racine carrée de la réponse résonante ; voir C.2 (4)

 K_{V} , K_{Z} sont les constantes données en C.2 (6)

 μ_{ref} est la masse de référence par unité d'aire ; voir F.5 (3)

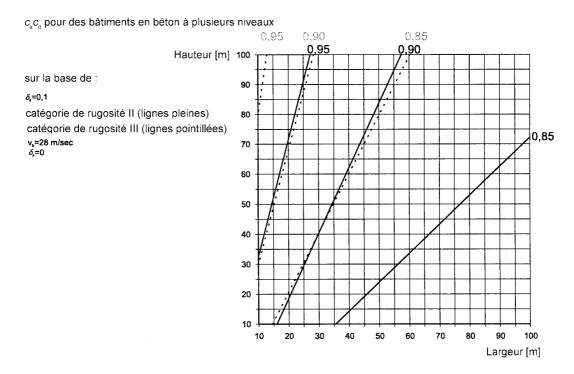
 $\Phi(y,z)$ est la déformée modale

 Φ_{max} est la valeur de déformée modale au point d'amplitude maximale


(3) Les accélérations maximales caractéristiques sont obtenues en multipliant l'écart type défini en (2) par le facteur de pointe donné en B.2 (3) en utilisant la fréquence propre comme valeur de la fréquence ν , c'est-à-dire $\nu = n_{1,x}$.

Annexe D (informative)

Valeur de $c_s c_d$ pour divers types de constructions


(1) Les fréquences propres et les déformées modales des constructions présentées dans la présente annexe sont calculées à partir de l'analyse linéaire ou estimées à l'aide des expressions données à l'Annexe F.

 $c_{\rm s}c_{\rm d}$ pour des bâtiments en acier à plusieurs niveaux

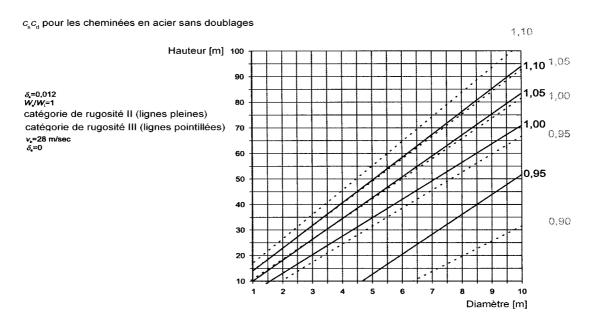

NOTE Pour les valeurs supérieures à 1,1, la procédure détaillée donnée en 6.3 peut être appliquée (valeur minimale agréée de $c_{\rm s}c_{\rm d}$ = 0,85).

Figure D.1 — $c_{\rm s}c_{\rm d}$ pour les bâtiments en acier à plusieurs niveaux, de base rectangulaire et avec des murs extérieurs verticaux, avec une répartition régulière de la rigidité et de la masse (fréquence conforme à l'expression (F.2))

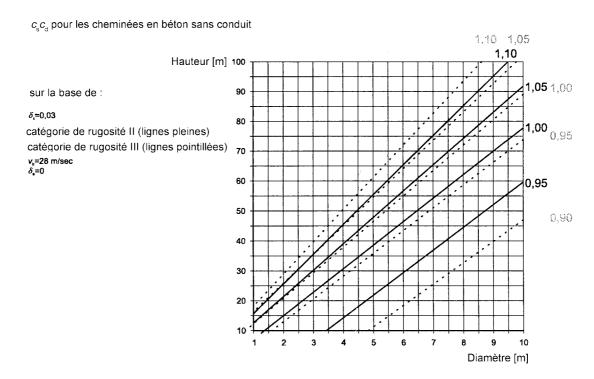

NOTE Pour les valeurs supérieures à 1,1, la procédure détaillée donnée en 6.3 peut être appliquée (valeur minimale agréée de $c_{\rm s}c_{\rm d}$ = 0,85).

Figure D.2 — $c_{\rm s}c_{\rm d}$ pour les bâtiments en béton à plusieurs niveaux, de base rectangulaire et avec des murs extérieurs verticaux, avec une répartition régulière de la rigidité et de la masse (fréquence conforme à l'expression (F.2))

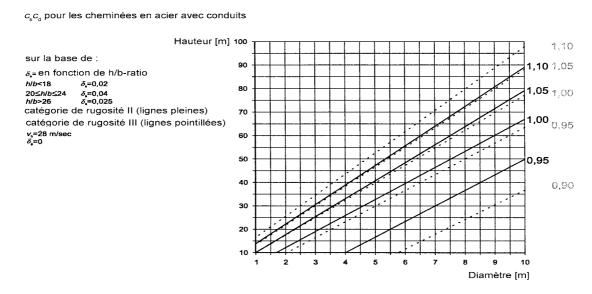

NOTE Pour les valeurs supérieures à 1,1, la procédure détaillée donnée en 6.3 peut être appliquée (valeur minimale agréée de $c_{\rm s}c_{\rm d}$ = 0,85).

Figure D.3 — $c_{\rm s}c_{\rm d}$ pour les cheminées en acier sans conduit (fréquence conforme à l'expression (F.3), avec $\varepsilon_{\rm l}$ = 1 000 et $W_{\rm s}$ / $W_{\rm t}$ = 1,0)

NOTE Pour les valeurs supérieures à 1,1, la procédure détaillée donnée en 6.3 peut être appliquée (valeur minimale agréée de $c_{\rm s}c_{\rm d}$ = 0,85).

Figure D.4 — $c_{\rm s}c_{\rm d}$ pour les cheminées en béton sans conduit (fréquence conforme à l'expression (F.3), avec $\varepsilon_{\rm l}$ = 700 et $W_{\rm s}$ / $W_{\rm t}$ = 1,0)

NOTE Pour les valeurs supérieures à 1,1, la procédure détaillée donnée en 6.3 peut être appliquée (valeur minimale agréée de $c_{\rm s}c_{\rm d}$ = 0,85).

Figure D.5 — $c_{\rm s}c_{\rm d}$ pour les cheminées en acier avec conduits et différentes valeurs de $\delta_{\rm s}$ selon le Tableau F.2 (fréquence conforme à l'expression (F.3), avec $\varepsilon_{\rm l}$ = 1 000 et $W_{\rm s}$ / $W_{\rm t}$ = 0,5)

Annexe E (informative)

Détachement tourbillonnaire et instabilités aéroélastiques

E.1 Détachement tourbillonnaire

E.1.1 Généralités

- (1) Le détachement tourbillonnaire survient lorsque des tourbillons se détachent alternativement à partir des côtés opposés de la construction. Ceci produit une force fluctuante perpendiculaire à la direction du vent. La mise en vibration de la construction peut se produire si la fréquence du détachement tourbillonnaire est identique à une fréquence propre de la construction. Cette condition se produit lorsque la vitesse du vent est égale à la vitesse critique du vent définie en E.1.3.1. Généralement, la vitesse critique est une vitesse fréquemment observée du vent de sorte que, du fait du nombre de cycles de chargement, la fatigue peut devenir préoccupante.
- (2) La réponse (de la construction) au détachement tourbillonnaire se compose d'une réponse à large bande qui se produit que la construction se déplace ou non, et d'une réponse à bande étroite ayant pour origine une force aérodynamique induite par le mouvement.
- NOTE 1 La réponse à large bande est généralement plus importante pour les constructions en béton armé et les constructions lourdes en acier.
- NOTE 2 La réponse à bande étroite est généralement plus importante pour les constructions légères en acier.

E.1.2 Critères relatifs au détachement tourbillonnaire

- (1) Il convient d'examiner l'effet de détachement tourbillonnaire lorsque le rapport entre la plus grande et la plus petite dimension transversale de la construction, toutes deux prises dans le plan perpendiculaire au vent, est supérieur à 6.
- (2) Il n'est pas nécessaire d'examiner l'effet du détachement tourbillonnaire lorsque :

$$v_{\text{crit.i}} > 1,25 \cdot v_{\text{m}}$$
 (E.1)

οù

 $v_{\text{crit,i}}$ est la vitesse critique du vent pour le mode i, tel que définie en E.1.3.1

v_m est la vitesse moyenne sur 10 min caractéristique du vent, spécifiée en 4.3.1 (1) au niveau de la section transversale où se produit le détachement tourbillonnaire (voir Figure E.3)

E.1.3 Paramètres fondamentaux du détachement tourbillonnaire

E.1.3.1 Vitesse critique du vent $v_{crit.i}$

(1) La vitesse critique du vent pour le mode de vibration de flexion *i* est définie comme la vitesse du vent à laquelle la fréquence du détachement tourbillonnaire est égale à une fréquence propre de la construction ou d'un élément structural ; elle est donnée par l'expression (E.2).

$$v_{\text{crit,i}} = \frac{b \cdot n_{i,y}}{St} \tag{E.2}$$

οù

- est la largeur de référence de la section transversale sur laquelle se produit le détachement tourbillonnaire en résonance et sur laquelle la déformée modale est maximale, pour la construction ou l'élément structural considérés ; dans le cas des cylindres à base circulaire, la largeur de référence est le diamètre extérieur
- $n_{i,y}$ est la fréquence propre du mode considéré i, de vibration en flexion perpendiculairement au vent. Des valeurs approchées de $n_{1,y}$ sont données en F.2
- St est le nombre de Strouhal tel que défini en E.1.3.2
- (2) La vitesse critique du vent pour le mode *i* de vibration par ovalisation des coques cylindriques est définie comme la vitesse du vent à laquelle le double de la fréquence du détachement tourbillonnaire est égal à la fréquence propre du mode d'ovalisation *i* de la coque cylindrique ; elle est donnée par l'expression (E.3).

$$v_{\text{crit,i}} = \frac{b \cdot n_{\text{i,o}}}{2 \cdot St} \tag{E.3}$$

οù

- b est le diamètre extérieur de la coque
- St est le nombre de Strouhal tel que défini en E.1.3.2
- $n_{i,o}$ est la fréquence propre du mode d'ovalisation i de la coque
- NOTE 1 n_0 est donné en F.2 (3) pour les coques dépourvues d'anneaux de rigidité.
- NOTE 2 L'Annexe E ne traite pas des méthodes de calcul des vibrations d'ovalisation.

E.1.3.2 Nombre de Strouhal St

Le nombre de Strouhal St applicable à différentes sections transversales peut être lu dans le Tableau E.1.

Tableau E.1 — Nombres de Strouhal St pour différentes sections transversales

Section transversale		St
b Branch (D.)		0,18
pour tous les nombres de Reynolds (Re)		
$\begin{array}{c c} & d \\ \hline & \downarrow b \end{array}$		donné à la Figure E.1
$0.5 \le dlb \le 10$		
d	d/b = 1	0,11
¦ +	d/b = 1,5	0,10
b	<i>d</i> / <i>b</i> = 2	0,14
interpolation linéaire		
<u> </u>	<i>d/b</i> = 1	0,13
b	<i>dlb</i> = 2	0,08
interpolation linéaire		
d +	<i>d/b</i> = 1	0,16
b	<i>d</i> / <i>b</i> = 2	0,12
interpolation linéaire		
 d	<i>dlb</i> = 1,3	0,11
	<i>dlb</i> = 2,0	0,07
interpolation linéaire		
NOTE Les extrapolations du nombre de	Strouhal an fo	nction de <i>dlh</i> ne sont nas

admises.

Figure E.1 — Nombre de Strouhal (St) pour les sections transversales rectangulaires à angles vifs

E.1.3.3 Nombre de Scruton Sc

(1) La sensibilité aux vibrations dépend de l'amortissement structural et du rapport de la masse de la construction à la masse du fluide. Ceci est exprimé par le nombre de Scruton Sc, donné par l'expression (E.4) suivante :

$$Sc = \frac{2 \cdot \delta_{s} \cdot m_{i,e}}{a \cdot b^{2}} \tag{E.4}$$

οù

- $\delta_{\!\scriptscriptstyle S}$ est l'amortissement structural exprimé par le décrément logarithmique
- ρ est la masse volumique de l'air dans les conditions de détachement tourbillonnaire
- $m_{\rm i,e}$ est la masse équivalente $m_{\rm e}$ par unité de longueur pour le mode i telle que définie en F.4 (1)
- b est la largeur de référence de la section transversale à laquelle se produit le détachement tourbillonnaire en résonance

NOTE La valeur de la masse volumique ρ peut être donnée dans l'Annexe Nationale. La valeur recommandée est 1,25 kg/m³.

E.1.3.4 Nombre de Reynolds Re

(1) L'action du détachement tourbillonnaire sur un cylindre à base circulaire dépend du nombre de Reynolds Re à la vitesse critique du vent $v_{\text{crit i}}$. Le nombre de Reynolds est donné par l'expression (E.5).

$$Re(v_{\text{crit,i}}) = \frac{b \cdot v_{\text{crit,i}}}{v}$$
 (E.5)

οù

- b est le diamètre extérieur du cylindre à base circulaire
- ν est la viscosité cinématique de l'air ($\nu \approx 15 \cdot 10^{-6} \text{ m}^2/\text{s}$)
- $v_{\rm crit,i}$ est la vitesse critique du vent, voir E.1.3.1

E.1.4 Action du détachement tourbillonnaire

(1) Il convient de calculer l'effet des vibrations dues au détachement tourbillonnaire à partir de l'effet de la force d'inertie par unité de longueur $F_{W}(s)$, qui agit perpendiculairement à la direction du vent à l'emplacement s sur la construction et qui est donnée par l'expression (E.6).

$$F_{\mathsf{W}}(s) = m(s) \cdot (2 \cdot \pi \cdot n_{\mathsf{i} \mathsf{V}}) 2 \cdot \Phi_{\mathsf{i} \mathsf{V}}(s) \cdot y_{\mathsf{F} \mathsf{max}} \tag{E.6}$$

ΟÙ

- m(s) est la masse en vibration de la construction par unité de longueur [kg/m]
- $n_{i,v}$ est la fréquence propre de la construction
- $\Phi_{iv}(s)$ est la déformée modale de la construction normalisée à 1 au point de déplacement maximal
- $y_{F,max}$ est le déplacement maximal dans le temps au point où $\Phi_{i,y}(s)$ est égal à 1, voir E.1.5

E.1.5 Calcul de l'amplitude perpendiculairement au vent

E.1.5.1 Généralités

- (1) Deux méthodes différentes de calcul des amplitudes des vibrations perpendiculaires au vent, excitées par le détachement tourbillonnaire sont définies en E.1.5.2 et E.1.5.3.
- NOTE 1 Le choix de la méthode de calcul ou de méthodes de calcul alternatives peut être spécifié dans l'Annexe Nationale.
- NOTE 2 Il n'est pas possible d'effectuer une comparaison directe des méthodes proposées en E.1.5.2 et E.1.5.3 du fait que certains paramètres d'entrée sont choisis pour des conditions environnementales différentes. L'Annexe Nationale peut définir la plage d'application de chacune des méthodes proposées.
- NOTE 3 Il n'est pas admis de mélanger les méthodes définies en E.1.5.2 et E.1.5.3, sauf stipulation spécifique dans le texte.
- (2) La méthode définie en E.1.5.2 peut être utilisée pour différents types de constructions et déformées modales. Elle inclut les effets de la turbulence et de la rugosité, et peut être utilisée pour des conditions climatiques normales.

EN 1991-1-4:2005 (F)

(3) La méthode définie en E.1.5.3 peut être utilisée pour calculer la réponse pour des vibrations selon le premier mode de constructions en console dont les dimensions, perpendiculairement au vent, sont réparties régulièrement le long de l'axe principal de la construction. Les constructions types couvertes sont les cheminées ou les mâts. Cette méthode ne peut pas s'appliquer aux constructions disposées en groupe ou en ligne, et aux cylindres assemblés (couplés). Cette méthode permet de prendre en considération différentes intensités de turbulence, pouvant différer du fait des conditions météorologiques. Dans les régions susceptibles d'être soumises à des conditions climatiques pouvant se révéler très froides et où des conditions d'écoulement stratifié peuvent se produire (par exemple dans les zones côtières de l'Europe septentrionale), la méthode E.1.5.3 peut être utilisée.

NOTE L'Annexe Nationale peut mentionner les régions dans lesquelles des conditions de froid extrême et d'écoulement stratifié peuvent se produire. Pour ce type de régions, la méthode 2 définie en E.1.5.3 convient davantage, et l'Annexe Nationale peut définir les paramètres d'entrée appropriés (tels que $K_{\rm a}$ ou l'intensité de turbulence) qu'il convient d'utiliser avec cette méthode.

E.1.5.2 Méthode 1 pour le calcul des amplitudes perpendiculairement au vent

E.1.5.2.1 Calcul des déplacements

Le plus grand déplacement $y_{\text{F.max}}$ peut être calculé à l'aide de l'expression (E.7).

$$\frac{y_{\text{F,max}}}{b} = \frac{1}{St^2} \cdot \frac{1}{Sc} \cdot K \cdot K_{\text{W}} \cdot C_{\text{lat}}$$
 (E.7)

οù

St est le nombre de Strouhal donné dans le Tableau E.1

Sc est le nombre de Scruton donné en E.1.3.3

*K*_w est le facteur de longueur de corrélation effective donné en E.1.5.2.4

K est le facteur de déformée modale donné en E.1.5.2.5

 c_{lat} est le coefficient de force latérale donné dans le Tableau E.2

NOTE Les forces aéroélastiques sont prises en compte par le facteur de longueur de corrélation effective K_{w} .

E.1.5.2.2 Coefficient de force latérale c_{lat}

(1) La valeur de base $c_{\text{lat},0}$ du coefficient de force latérale est donnée dans le Tableau E.2.

Tableau E.2 — Valeur de base du coefficient de force latérale $c_{\rm lat,0}$ pour différentes sections transversales

Section transversale		c _{lat,0}			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		donné à la Figure E.2			
pour tous les nombres de Reynolds (Re)					
$-\!$		1,1			
$0.5 \le d/b \le 10$	1/1 - 4	0.0			
\downarrow d	d/b = 1 $d/b = 1,5$	0,8 1,2			
b	dlb = 1,5 $dlb = 2$	0,3			
interpolation linéaire					
b	d/b = 1 $d/b = 2$	2,3			
interpolation linéaire					
 d 	<i>d/b</i> = 1	1,4			
b	<i>d/b</i> = 2	1,1			
interpolation linéaire					
<u>d</u>	<i>d/b</i> = 1,3	0,8			
	<i>d/b</i> = 2,0	1,0			
interpolation linéaire					
NOTE Les extrapolations du coefficient de force latérale en fonction de d/b ne sont pas					

admises.

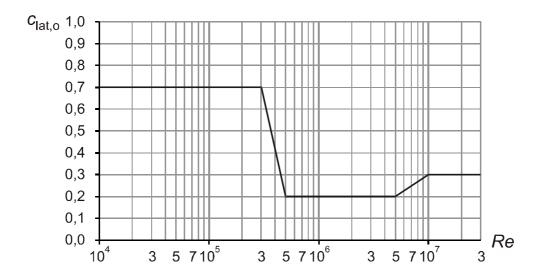


Figure E.2 — Valeur de base du coefficient de force latérale $c_{\rm lat,0}$ en fonction du nombre de Reynolds $Re(v_{\rm crit,i})$ pour les cylindres à base circulaire, voir E.1.3.4

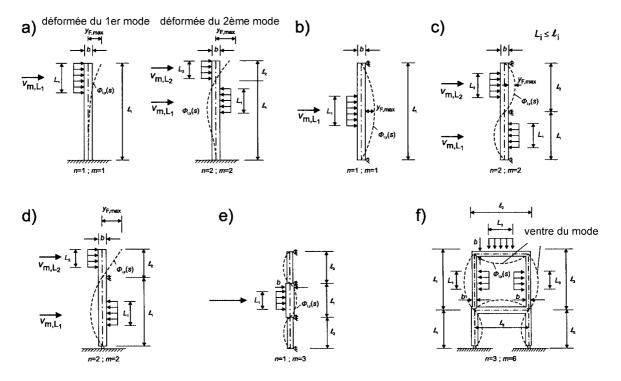

(2) Le coefficient de force latérale $c_{\rm lat}$ est donné dans le Tableau E.3.

Tableau E.3 — Coefficient de force latérale $c_{\rm lat}$ en fonction du rapport de vitesse critique $v_{\rm crit,i}$ / $v_{\rm m,Lj}$

	Rapport de vitesse critique	c _{lat}				
$\frac{v_{\text{crit,i}}}{v_{\text{m,Lj}}} \le 0.83$	3	$c_{\text{lat}} = c_{\text{lat},0}$				
$0.83 \le \frac{v_{\text{crit,i}}}{v_{\text{m,L}j}}$		$c_{\text{lat}} = \left(3 - 2.4 \cdot \frac{v_{\text{crit,i}}}{v_{\text{m,Lj}}}\right) c_{\text{lat,0}}$				
$1,25 \le \frac{v_{\text{crit,i}}}{v_{\text{m,Lj}}}$		$c_{\text{lat}} = 0$				
où						
c _{lat,0}	est la valeur de base de c_{lat} telle que donnée dan à la Figure E.2	s le Tableau E.2 et, pour les cylindres à base circulaire,				
$v_{ m crit,i}$	$v_{\rm crit,i}$ vitesse critique du vent (voir expression (E.1))					
v _{m,Lj}	vitesse moyenne du vent (voir 4.2) au centre de la longueur de corrélation effective telle que définie à la Figure E.3					

E.1.5.2.3 Longueur de corrélation L

(1) Il convient de positionner la longueur de corrélation $L_{\rm j}$, dans les zones de ventres du mode. Des exemples sont donnés à la Figure E.3. Des recommandations spéciales se révèlent nécessaires pour les mâts haubanés et les ponts à travées multiples continues.

NOTE Lorsque deux longueurs de corrélation au moins sont indiquées, elles peuvent être utilisées en toute sécurité de manière simultanée, et il convient d'employer la valeur la plus élevée de $c_{\rm lat}$.

Figure E.3 — Exemples d'application de la longueur de corrélation L_i (j = 1, 2, 3)

Tableau E.4 — Longueur de corrélation effective $L_{\rm j}$ en fonction de l'amplitude de vibration $y_{\rm F}(s_{\rm j})$

$y_{F}(s_{j}) / b$	L _j / b
< 0,1	6
0,1 à 0,6	$4.8 + 12 \cdot \frac{y_{F}(S_{j})}{b}$
> 0,6	12

E.1.5.2.4 Facteur de longueur de corrélation effective $K_{\rm w}$

(1) Le facteur de longueur de corrélation effective, $K_{\rm w}$, est donné dans l'expression (E.8) suivante :

$$k_{\mathsf{W}} = \frac{\sum_{j=1}^{n} \int_{L_{j}} \left| \Phi_{\mathsf{i},\mathsf{y}}(s) \right| ds}{\sum_{j=1}^{n} \int_{\ell_{j}} \left| \Phi_{\mathsf{i},\mathsf{y}}(s) \right| ds} \le 0,6 \tag{E.8}$$

οù

- $\Phi_{i,y}$ est la déformée modale i (voir F.3)
- L_{i} est la longueur de corrélation
- ℓ_j est la longueur de la construction entre deux nœuds (voir Figure E.3) ; pour les constructions en console, elle est égale à la hauteur de la construction
- n est le nombre de régions où se produit l'excitation par détachement tourbillonnaire simultanément (voir Figure E.3)
- m est le nombre de ventres de la construction en vibration, dans la déformée modale considérée $\Phi_{i,v}$
- s est la coordonnée définie dans le Tableau E.5
- (2) Pour certaines constructions simples vibrant selon le mode fondamental perpendiculaire au vent et avec la force d'excitation indiquée dans le Tableau E.5, le facteur de longueur de corrélation effective $K_{\rm W}$ peut être calculé de manière approchée par les expressions données dans le Tableau E.5.

Tableau E.5 — Facteur de longueur de corrélation $K_{\rm W}$ et facteur de déformée modale K pour certaines constructions simples

Construction	déformée modale $arPhi_{i,y}$ (s)	K _w	K
	voir F.3 avec $\zeta = 2,0$	L_{i}/h L_{i}/h 1 L_{i}/h 2	
$ \begin{array}{c c} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	n = 1; m = 1	$3 \cdot \frac{L_j/b}{\lambda} \cdot \left[1 - \frac{L_j/b}{\lambda} + \frac{1}{3} \cdot \left(\frac{L_j/b}{\lambda} \right)^2 \right]$	0,13
	voir Tableau F.1	[]	
$ \begin{array}{c c} & F \\ & \downarrow b \\ & \downarrow$	n = 1; m = 1	$\cos \left[\frac{\pi}{2} \cdot \left(1 - \frac{L_{j}/b}{\lambda} \right) \right]$	0,10
→ ^S	voir Tableau F.1	[, ,]	
$ \begin{array}{c c} b & & \\ \hline $	n = 1; m = 1	$\left[\frac{L_{j}/b}{\lambda} + \frac{1}{\pi} \cdot \sin \left[\pi \cdot \left(1 - \frac{L_{j}/b}{\lambda} \right) \right] \right]$	0,11
L ₂	analyse modale		
F_2 $D_{i,y}(s)$ F_1 F_3 $D_{i,y}(s)$ F_3 $D_{i,y}(s)$	m = 3 $m = 3$	$\frac{\sum\limits_{i=1}^{n}\int\limits_{L_{j}}\left \varphi_{i,y}\left(s\right)\right \mathrm{d}s}{\sum\limits_{j=1}^{n}\int\limits_{\ell_{j}}\left \varphi_{i,y}\left(s\right)\right \mathrm{d}s}$	0,10

NOTE 1 La déformée modale, $\Phi_{i,y}(s)$, est celle indiquée en F.3. Les paramètres n et m sont définis dans l'expression (E.7) et à la Figure E.3.

NOTE 2 $\lambda = \ell / b$.

E.1.5.2.5 Facteur de déformée modale

(1) Le facteur de déformée modale *K* est donné dans l'expression (E.9).

$$K = \frac{\sum_{j=1}^{m} \int_{\ell_{j}} \left| \Phi_{i,y}(s) \right| ds}{4 \cdot \pi \cdot \sum_{j=1}^{m} \int_{\ell_{j}} \left| \Phi_{i,y}^{2}(s) \right| ds} \le 0,6$$
(E.9)

οù

m est défini en E.1.5.2.4 (1)

 $\Phi_{i,v}(s)$ est la déformée du mode *i* perpendiculaire au vent (voir F.3)

 $\ell_{
m i}$ est la longueur de la construction entre deux nœuds (voir Figure E.3)

(2) Pour certaines constructions simples vibrant selon le mode fondamental perpendiculaire au vent, le facteur de déformée modale est donné dans le Tableau E.5.

E.1.5.2.6 Nombre de cycles de chargement

(1) Le nombre de cycles de chargement N dû à une oscillation excitée par détachement tourbillonnaire est donné par l'expression (E.10) suivante :

$$N = 2 \cdot T \cdot n_{V} \cdot \varepsilon_{0} \cdot \left(\frac{V_{crit}}{v_{0}}\right)^{2} \cdot exp\left(-\left(\frac{v_{crit}}{v_{0}}\right)^{2}\right)$$
(E.10)

οù

 $n_{\rm y}$ est la fréquence propre du mode perpendiculaire au vent [Hz]. Des valeurs approchées de $n_{\rm y}$ sont données à l'Annexe F

v_{crit} est la vitesse critique du vent [m/s] donnée en E.1.3.1

 v_0 est égale à $\sqrt{2}$ fois la valeur modale de la distribution statistique (loi de Weibull) de la vitesse du vent [m/s] ; voir Note 2

T est la durée de vie en secondes, égale à 3,2 10⁷ multiplié par la durée de vie prévue en années

 ε_0 est le coefficient de largeur de bande qui décrit la bande des vitesses de vent dans laquelle apparaissent les vibrations dues au détachement tourbillonnaire ; voir Note 3

NOTE 1 L'Annexe Nationale peut spécifier la valeur minimale de N. La valeur recommandée est $N \ge 10^4$.

NOTE 2 La valeur v_0 peut être considérée comme étant égale à 20 % de la vitesse moyenne caractéristique du vent telle que spécifiée en 4.3.1 (1) à la hauteur de la section transversale où se produit le détachement tourbillonnaire.

NOTE 3 Le coefficient de largeur de bande ε_0 se situe dans l'intervalle 0,1 - 0,3. Il peut être considéré comme étant égal à ε_0 = 0,3.

E.1.5.2.7 Résonance tourbillonnaire de cylindres verticaux disposés en ligne ou en groupe

(1) Des vibrations dues à une excitation par le détachement tourbillonnaire peuvent se produire dans le cas des cylindres à base circulaire disposés en ligne ou en groupe, avec ou sans couplage (voir Figure E.4).

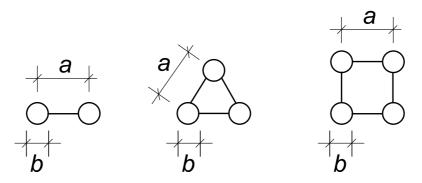


Figure E.4 — Disposition de cylindres en ligne et en groupe

(2) Les amplitudes maximales d'oscillation peuvent être exprimées au moyen de l'expression (E.7) et de la procédure de calcul indiquée en E.1.5.2 avec les modifications données par les expressions (E.11) et (E.12).

Dans le cas des cylindres à base circulaire, en ligne, indépendants les uns des autres :

$$c_{\text{lat}} = 1,5 \cdot c_{\text{lat(single)}}$$
 pour $1 \le \frac{a}{b} \le 10$
 $c_{\text{lat}} = c_{\text{lat(single)}}$ pour $\frac{a}{b} \le 15$

Interpolation linéaire pour $10 \le \frac{a}{b} \le 15$
 $St = 0,1 + 0,085 \cdot \log \left(\frac{a}{b}\right)$ pour $1 \le \frac{a}{b} \le 9$
 $St = 0,18$ pour $\frac{a}{b} > 9$

οù

 $c_{\text{lat(single)}} = c_{\text{lat}}$ tel qu'indiqué dans le Tableau E.3.

EN 1991-1-4:2005 (F)

Pour les cylindres assemblés (reliés entre eux) :

$$c_{\text{lat}} = K_{\text{iv}} \cdot c_{\text{lat(single)}} \text{ pour } 1,0 \le a/b \le 3,0$$
 (E.12)

οù

 K_{iv} est le facteur d'interférence applicable au détachement tourbillonnaire (Tableau E.8)

St est le nombre de Strouhal donné dans le Tableau E.8

Sc est le nombre de Scruton donné dans le Tableau E.8

Pour les cylindres assemblés avec ald > 3,0, il est recommandé de consulter un spécialiste.

NOTE Le coefficient $1.5 \cdot c_{\text{lat}}$ pour les cylindres à base circulaire indépendants les uns des autres, est une valeur approximative. Il est supposé traduire une certaine prudence.

E.1.5.3 Méthode 2 pour le calcul des amplitudes perpendiculairement au vent

(1) Le déplacement maximal caractéristique, au point de plus grand déplacement, est donné par l'expression (E.13).

$$y_{\text{max}} = \sigma_{\mathbf{y}} \cdot k_{\mathbf{p}}$$
 (E.13)

οù

 $k_{\rm n}$ est le facteur de pointe ; voir (6)

(2) L'écart type σ_y du déplacement rapporté à la largeur b, au point de plus grand déplacement (Φ = 1) peut être calculé en utilisant l'expression (E.14).

$$\frac{\sigma_{y}}{b} = \frac{1}{St^{2}} \cdot \frac{C_{c}}{\sqrt{\frac{Sc}{4 \cdot \pi}} - K_{a} \cdot \left(1 - \left(\frac{\sigma_{y}}{b \cdot a_{L}}\right)^{2}\right)} \cdot \sqrt{\frac{\rho \cdot b^{2}}{m_{e}}} \cdot \sqrt{\frac{b}{h}}$$
(E.14)

οù

- $C_{\rm c}$ est la constante aérodynamique dépendant de la forme de section transversale, ainsi que, pour un cylindre à base circulaire, du nombre de Reynolds Re défini en E.1.3.4 (1); elle est donnée dans le Tableau E.6
- K_a est le paramètre d'amortissement aérodynamique donné en E.1.5.3 (4)
- $a_{\rm L}$ est l'amplitude de limitation normalisée donnant le déplacement des constructions très faiblement amorties; elle est donnée dans le Tableau E.6
- St est le nombre de Strouhal donné en E.1.6.2
- ρ est la masse volumique de l'air dans les conditions de détachement tourbillonnaire ; voir Note 1
- $m_{\rm e}$ est la masse effective par unité de longueur ; elle est donnée en F.4 (1)
- h,b sont respectivement la hauteur et la largeur de la construction. Dans le cas des constructions à largeur variable, la largeur à utiliser est celle au point présentant les déplacements les plus importants

NOTE 1 La valeur de la masse volumique ρ peut être donnée dans l'Annexe Nationale. La valeur recommandée est 1,25 kg/m³.

- NOTE 2 La constante aérodynamique C_c dépend de la force de portance qui agit sur une construction ne se déplaçant pas.
- NOTE 3 Les charges du vent dues au mouvement sont prises en compte par K_a et a_L .
- (3) La solution de l'équation (E.14) est donnée dans l'expression (E.15).

$$\left(\frac{\sigma_{y}}{b}\right)^{2} = c_{1} + \sqrt{c_{1}^{2} + c_{2}}$$
(E.15)

où les constantes c_1 et c_2 sont données par :

$$c_{1} = \frac{a_{L}^{2}}{2} \cdot \left(1 - \frac{Sc}{4 \cdot \pi \cdot K_{a}} \right) ; c_{2} = \frac{\rho \cdot b^{2}}{m_{e}} \cdot \frac{a_{L}^{2}}{K_{a}} \cdot \frac{C_{c}^{2}}{St^{4}} \cdot \frac{b}{h}$$
 (E.16)

(4) La constante d'amortissement aérodynamique $K_{\rm a}$ diminue avec l'augmentation de l'intensité de turbulence. Pour une intensité de turbulence de 0 %, la constante d'amortissement peut être considérée égale à $K_{\rm a}$ = $K_{\rm a,max}$, qui est donnée dans le Tableau E.6.

NOTE L'utilisation de $K_{\rm a,max}$ pour des intensités de turbulence supérieures à 0 % conduit à des estimations prudentes des déplacements. Des informations plus détaillées concernant l'influence de l'intensité de turbulence sur $K_{\rm a}$ peuvent être spécifiées dans l'Annexe Nationale.

(5) Les constantes C_c , $K_{a,max}$ et a_L applicables à un cylindre à base circulaire et à une section transversale carrée sont données dans le Tableau E.6.

Constante	Cylindre à base circulaire <i>Re</i> ≤ 10 ⁵	Cylindre à base circulaire $Re = 5 \cdot 10^5$	Cylindre à base circulaire $Re \ge 10^6$	Section transversale carrée
C_{c}	0,02	0,005	0,01	0,04
$K_{a,\text{max}}$	2	0,5	1	6
a_{L}	0,4	0,4	0,4	0,4

NOTE Dans le cas des cylindres à base circulaire, les constantes $C_{\rm c}$ et $K_{\rm a,max}$ sont supposées varier de manière linéaire avec le logarithme du nombre de Reynolds pour $10^5 < Re < 5 \cdot 10^5$ et pour $5 \cdot 10^5 < Re < 10^6$, respectivement.

(6) Il convient de déterminer le facteur de pointe $k_{\rm p}$.

NOTE L'Annexe Nationale peut spécifier le facteur de pointe. L'expression (E.17) donne la valeur recommandée.

$$k_{\rm p} = \sqrt{2} \cdot \left(1 + \frac{1,2}{\tan \left(0.75 \cdot \frac{Sc}{(4 \cdot \pi \cdot K_{\rm a})} \right)} \right) \tag{E.17}$$

(7) Le nombre de cycles de chargement peut être obtenu à partir de E.1.5.2.6 en utilisant un coefficient de largeur de bande ε_0 = 0,15.

E.1.6 Mesures susceptibles de réduire les vibrations dues au détachement tourbillonnaire

- (1) Les amplitudes dues au détachement tourbillonnaire peuvent être réduites au moyen de dispositifs aérodynamiques (uniquement dans certaines conditions, par exemple nombres de Scruton supérieurs à 8) ou de dispositifs d'amortissement mis en place sur la construction. Pour une construction de section transversale circulaire et équipée de dispositifs aérodynamiques, le coefficient de traînée $c_{\rm f}$ fondé sur le diamètre initial b, peut augmenter jusqu'à une valeur de 1,4. Ces applications nécessitent le recours à des spécialistes.
- (2) Pour de plus amples informations, se reporter aux codes applicables aux constructions spéciales.

E.2 Phénomène de galop

E.2.1 Généralités

- (1) Le phénomène de galop est une vibration auto-entretenue d'une construction souple selon un mode de flexion perpendiculaire au vent. Les sections transversales non circulaires, notamment les sections en L, en I, en U et en T sont prédisposées au phénomène de galop. La glace peut entraîner l'instabilité d'une section transversale habituellement stable.
- (2) L'oscillation due au phénomène de galop apparaît pour une vitesse de vent particulière v_{CG} et son amplitude croît en général rapidement avec la vitesse du vent.

E.2.2 Vitesse du vent de déclenchement du galop

(1) La vitesse de vent déclenchant le galop, v_{CG} , est donnée par l'expression (E.18) suivante :

$$v_{\text{CG}} = \frac{2 \cdot Sc}{a_{\text{G}}} \cdot n_{1,y} \cdot b \tag{E.18}$$

οù

- Sc est le nombre de Scruton tel que défini en E.1.3.3 (1)
- $n_{1,y}$ est la fréquence du mode fondamental perpendiculaire au vent de la construction; les valeurs approchées de $n_{1,y}$ sont données en F.2
- b est la largeur telle que définie dans le Tableau E.7
- $a_{\rm G}$ est le coefficient d'instabilité en galop (Tableau E.7) ; si ce coefficient n'est pas connu, la valeur $a_{\rm G}$ = 10 peut être utilisée
- (2) Il convient de s'assurer que :

$$v_{\rm CG} > 1,25 \cdot v_{\rm m}$$
 (E.19)

οù

- $v_{\rm m}$ est la vitesse moyenne du vent telle que définie dans l'expression (4.3) et calculée à la hauteur où le phénomène de galop est attendu, c'est-à-dire au point où l'amplitude d'oscillation devrait être maximale
- (3) Lorsque la vitesse critique du détachement tourbillonnaire v_{crit} est proche de la vitesse du vent déclenchant le galop v_{m} :

$$0.7 < \frac{v_{\text{CG}}}{v_{\text{crit}}} < 1.5$$
 (E.20)

des effets d'interaction entre le détachement tourbillonnaire et le phénomène de galop sont susceptibles de se produire. Dans ce cas, il est recommandé de consulter un spécialiste.

Section transversale		Coefficient d'instabilité en galop $a_{\rm G}$	Section transversale		Coefficient d'instabilité en galop $a_{\rm G}$
t t=0,06 b → + b				b	1,0
GLACE (g)	(glace pour câbles)		** \ell \tau \tau \tau \tau \tau \tau \tau \tau	3 b	4
b	d/b = 2	2	* b * * d	d/b = 2	0,7
+ d - +	<i>d/b</i> = 1,5	1,7	* d * t b	<i>d/b</i> = 2,7	5
interpolation linéaire	<i>d/b</i> = 1	1,2	** d **	<i>d/b</i> = 5	7
b	d/b = 2/3	1	+ d + * b	<i>d/b</i> = 3	7,5
+ d +	dlb = 1/2	0,7	* d * * b	d/b = 3/4	3,2
interpolation linéaire $d/b = 1/3$		0,4	+ d + †b	<i>d\b</i> = 2	1
NOTE Les extrapolat	ions du coeffi	cient a_{G} en fonct	ion de d/b ne sont pas admise	S.	

Tableau E.7 — Coefficient d'instabilité en galop $a_{\mathbf{G}}$

E.2.3 Phénomène de galop classique des cylindres assemblés

(1) Le phénomène de galop classique peut affecter les cylindres assemblés (Figure E.4).

(2) La vitesse de déclenchement du galop classique de cylindres assemblés, v_{CG} , peut être estimée par l'expression (E.21).

$$v_{\text{CG}} = \frac{2 \cdot Sc}{a_{\text{G}}} \cdot n_{1,y} \cdot b \tag{E.21}$$

οù

Sc, a_G et b sont donnés dans le Tableau E.8

 $n_{1,V}$ est la fréquence propre du mode de flexion (voir F.2)

(3) Il convient de s'assurer que :

$$v_{\text{CG}} > 1,25 \cdot v_{\text{m}}(z) \tag{E.22}$$

οù

 $v_{\rm m}\left(z
ight)$ est la vitesse moyenne du vent telle que définie dans l'expression (4.3), calculée à la hauteur z où l'excitation en galop est attendue, c'est-à-dire au point où l'amplitude d'oscillation devrait être maximale

Tableau E.8 — Données relatives à l'estimation de la réponse, perpendiculairement au vent, des cylindres assemblés disposés en ligne ou en groupe

Cylindres assemblés	Nombre de Scruton $Sc = \frac{2 \cdot \zeta_s \cdot \sum m_{i,y}}{\rho \cdot b^2}$ (comparer avec l'expression (E.4)						
	<i>alb</i> = 1	<i>alb</i> ≥ 2	<i>alb</i> ≤ 1,5	<i>alb</i> ≥ 2,5			
→ a → O → O → D i=2	K _{iv} = 1,5	K _{iv} = 1,5	a _G = 1,5	a _G = 3,0			
a X i=3	K _{iv} = 4,8	K _{iv} = 3,0	a _G = 6,0	a _G = 3,0			
# # # # # # # # # # # # # # # # # # #	K _{iv} = 4,8	K _{iv} = 3,0	a _G = 1,0	a _G = 2,0			
	ı		1	"à suivre"			

 $\frac{2 \cdot \zeta_{\text{S}} \cdot \sum m_{\text{i,y}}}{2}$ (comparer avec l'expression (E.4)) Nombre de Scruton Sc =Cylindres assemblés a/b = 1 $alb \ge 2$ alb ≤ 1,5 alb ≥ 2,5 interpolation linéaire 15 , i=4 10 5 а 0 1 2 3 Inverse des nombres de Strouhal des cylindres assemblés disposés en ligne et en groupe

Tableau E.8 (fin)

E.3 Phénomène de galop d'interférence de plusieurs cylindres indépendants

- (1) Le phénomène de galop d'interférence est une oscillation auto-entretenue pouvant se produire lorsque plusieurs cylindres sont proches l'un de l'autre sans être reliés entre eux.
- (2) Si l'angle d'attaque du vent se situe dans la plage de direction du vent critique β_k et si a/b < 3 (voir Figure E.5), la vitesse du vent critique, ν_{CIG} peut être estimée à l'aide de l'équation suivante :

$$v_{\text{CIG}} = 3.5 \cdot n_{1,y} \cdot b \sqrt{\frac{\frac{a}{b} \cdot Sc}{a_{\text{IG}}}}$$
 (E.23)

οù

Sc est le nombre de Scruton tel que défini en E.1.3.3 (1)

 a_{IG} est le paramètre de stabilité combinée a_{IG} = 3,0

 $n_{1,y}$ est la fréquence fondamentale du mode perpendiculaire au vent. Des valeurs approchées sont données en F.2

a est l'espacement

b est le diamètre

NOTE L'Annexe Nationale peut fournir des recommandations supplémentaires sur a_{IC} .

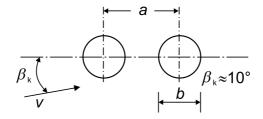


Figure E.5 — Paramètres géométriques du phénomène de galop d'interférence

(3) Le phénomène de galop d'interférence peut être évité en reliant les cylindres entre eux. Dans ce cas, un phénomène de galop classique peut se produire (voir E.2.3).

E.4 Divergence et flottement

E.4.1 Généralités

- (1) La divergence et le flottement sont des instabilités qui se produisent dans le cas de structures souples du type "plaque", telles que les panneaux de signalisation ou les tabliers de ponts suspendus, au-delà d'un certain seuil de vitesse du vent (ou vitesse de vent critique). L'instabilité est due à la déformation de la construction, qui modifie ses caractéristiques aérodynamiques, et ainsi les actions du vent.
- (2) Il convient d'éviter la divergence et le flottement.
- (3) Les procédures indiquées ci-dessous fournissent un moyen d'évaluation de la sensibilité d'une construction en termes de critères structuraux simples. Lorsque ces critères ne sont pas satisfaits, il est recommandé de consulter un spécialiste.

E.4.2 Critères relatifs aux constructions du type "plaque"

- (1) Pour qu'une construction soit prédisposée à la divergence ou au flottement, elle doit satisfaire à l'ensemble des trois critères donnés ci-dessous. Il est recommandé de vérifier les critères dans l'ordre donné (le plus facile en premier lieu) et, lorsque l'un des critères n'est pas satisfait, la construction n'est prédisposée ni à la divergence ni au flottement.
- La construction, ou l'un de ses composants principaux, a une section transversale allongée (telle qu'une plaque plane) avec un rapport b/d inférieur à 0,25 (voir Figure E.6);
- l'axe de torsion est parallèle au plan de la plaque et perpendiculaire à la direction du vent, et le centre de torsion est situé à une distance au moins égale à d/4 sous le vent du bord d'attaque (bord au vent) de la plaque, où b est l'épaisseur du bord au vent de la plaque, mesurée perpendiculairement à l'axe de torsion. Cette disposition inclut les cas courants où le centre de torsion est confondu avec le centre géométrique, à savoir panneau de signalisation ou toiture isolée, à support central, ainsi que les cas où le centre de torsion se situe sur le bord sous le vent, à savoir toiture isolée en console;
- la fréquence propre la plus basse correspond à un mode de torsion, ou bien la fréquence propre de torsion la plus basse est inférieure à deux fois la fréquence propre de translation (flexion) la plus basse.

E.4.3 Vitesse de divergence

(1) La vitesse critique du vent correspondant au phénomène de divergence est donnée dans l'expression (E.24).

$$v_{\text{div}} = \left[\frac{2 \cdot k_{\Theta}}{\rho \cdot d^2 \cdot \frac{dc_{\text{M}}}{d\Theta}} \right]^{\frac{1}{2}}$$
 (E.24)

οù

 k_{Θ} est la rigidité en torsion

 $c_{\rm M}$ est le coefficient de moment aérodynamique, donné dans l'expression (E.25)

$$c_{\mathsf{M}} = \frac{M}{\frac{1}{2} \cdot \rho \cdot v^2 \cdot d^2} \tag{E.25}$$

 $dc_M/d\Theta$ est le taux de variation du coefficient de moment aérodynamique vis à vis de la rotation autour du centre de torsion ; Θ est exprimé en radians

M est le moment aérodynamique par unité de longueur de la construction

ho est la masse volumique de l'air indiquée en 4.5

d est la largeur dans le sens du vent (corde) de la construction (voir Figure E.6)

b est la largeur telle que définie à la Figure E.6

- (2) Des valeurs de $dc_M/d\Theta$ mesurées autour du centre géométrique de diverses sections rectangulaires sont données à la Figure E.6.
- (3) Il convient de s'assurer que :

$$v_{\text{div}} > 2 \cdot v_{\text{m}}(z)$$
 (E.26)

οù

 $v_{\rm m}(z)$ est la vitesse moyenne du vent telle que définie dans l'expression (4.3) à la hauteur $z_{\rm s}$ (définie à la Figure 6.1)

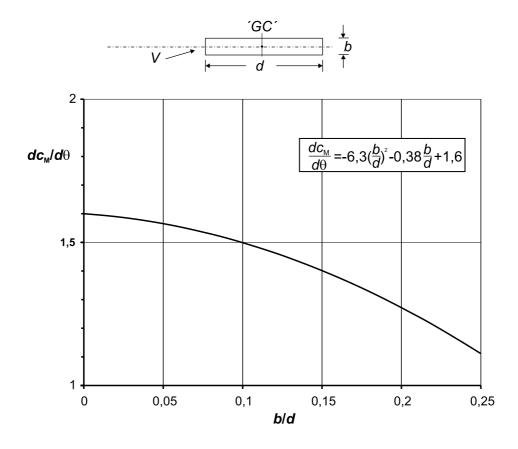


Figure E.6 — Taux de variation du coefficient de moment aérodynamique, $dc_M/d\Theta$, d'une section rectangulaire, par rapport au centre géométrique "GC"

Annexe F (informative)

Caractéristiques dynamiques des structures

F.1 Généralités

(1)	Les méthodes	de calcul	recomma	andées	dan	s la p	orésente	sec	tion présu	ipposent o	que les struc	tures	présentent
un	comportement	élastique	linéaire	ainsi	que	des	modes	de	vibration	normaux	classiques.	Les	propriétés
dyr	amiques structu	urales se d	caractéris	ent pai	cons	séqu	ent par :						

- les fréquences propres ;
- les déformées modales ;
- les masses équivalentes ;
- les décréments logarithmiques d'amortissement.
- (2) Il convient d'évaluer, de manière théorique ou expérimentalement, les fréquences propres, déformées modales, masses équivalentes et décréments logarithmiques d'amortissement, en appliquant les méthodes de la dynamique des structures.
- (3) Les propriétés dynamiques fondamentales peuvent être évaluées de manière approximative, au moyen d'équations simplifiées analytiques, semi-empiriques ou empiriques, pourvu qu'elles soient convenablement justifiées : certaines de ces équations sont données de F.2 à F.5.

F.2 Fréquence fondamentale

(1) Dans le cas des structures en console comportant une masse à l'extrémité, une expression simplifiée permettant de calculer la fréquence fondamentale de flexion n_1 est donnée par l'expression (F.1).

$$n_1 = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{g}{x_1}} \tag{F.1}$$

οù

g est l'accélération due à la pesanteur = 9,81 m/s²

 x_1 est le déplacement maximal dû au poids propre appliqué dans la direction de vibration, en [m]

(2) La fréquence fondamentale de flexion n_1 de bâtiments à plusieurs niveaux ayant une hauteur de plus de 50 m, peut être estimée à l'aide de l'expression (F.2).

$$n_1 = \frac{46}{h} \cdot [Hz] \tag{F.2}$$

οù

h est la hauteur de la construction, en [m]

La même expression peut donner des indications utiles pour les bâtiments à un seul niveau et les tours.

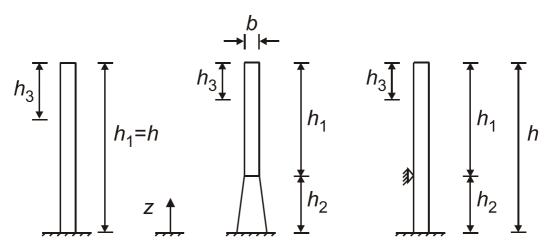
(3) La fréquence fondamentale de flexion n_1 des cheminées, peut être estimée à l'aide de l'expression (F.3).

$$n_1 = \frac{\varepsilon_1 \cdot b}{h_{\text{eff}}^2} \cdot \sqrt{\frac{W_s}{W_t}} \text{ [Hz]}$$

avec

$$h_{\text{eff}} = h_1 + \frac{h_2}{3}$$
 (F.4)

οù


b est le diamètre en tête de la cheminée [m]

 h_{eff} est la hauteur équivalente de la cheminée [m], h_1 et h_2 sont donnés à la Figure F.1

 W_{S} est le poids des éléments structuraux contribuant à la rigidité de la cheminée

 $W_{\rm t}$ est le poids total de la cheminée

 ε_1 est égal à 1 000 pour les cheminées en acier, et à 700 pour les cheminées en béton ou en maçonnerie

NOTE $h_3 = h_1/3$, voir F.4 (2).

Figure F.1 — Paramètres géométriques des cheminées

EN 1991-1-4:2005 (F)

(4) La fréquence fondamentale d'ovalisation $n_{1,0}$ d'une longue coque cylindrique sans anneaux de rigidité peut être calculée à l'aide de l'expression (F.5).

$$n_{1,0} = 0.492 \cdot \sqrt{\frac{t^3 \cdot E}{\mu_s \cdot (1 - v^2) \cdot b^4}}$$
 (F.5)

οù

- E est le module de Young en $[N/m^2]$
- t est l'épaisseur de la coque en [m]
- ν est le coefficient de Poisson
- $\mu_{\rm S}$ est la masse de la coque par unité d'aire en [kg/m²]
- b est le diamètre de la coque en [m]

L'expression (F.5) donne la fréquence propre la plus basse de la coque. Les anneaux de rigidité augmentent n_0 .

(5) La fréquence fondamentale de flexion verticale $n_{1,B}$ d'un pont à poutres à âme pleine ou à poutres-caissons peut être calculée de manière approchée à partir de l'expression (F.6).

$$n_{1,B} = \frac{K^2}{2 \cdot \pi \cdot L^2} \sqrt{\frac{EL_b}{m}}$$
 (F.6)

οù

- L est la longueur de la travée principale en [m]
- E est le module de Young en [N/m²]
- I_b est le moment d'inertie d'aires de la section transversale, pour la flexion verticale, à mi-travée en [m⁴]
- m est la masse par unité de longueur de la section transversale complète à mi-travée (poids propre et poids propres ajoutés) en [kg/m]
- K est un coefficient adimensionnel dépendant de la disposition des travées définie ci-dessous
- a) Pour les ponts à une seule travée :
 - $K = \pi$ si la travée repose sur deux appuis simples ; ou
 - K = 3.9 si elle est encastrée sur un appui et libre sur le second ; ou
 - K = 4,7 si elle est encastrée aux deux appuis ;
- b) pour les ponts à deux travées continues :
 - K est obtenu à partir de la Figure F.2, en utilisant la courbe applicable aux ponts à deux travées ; où
 - L_1 est la longueur de la travée latérale et $L > L_1$;

c) pour les ponts à trois travées continues :

K est obtenu à partir de la Figure F.2, en utilisant la courbe appropriée applicable aux ponts à trois travées ; où

 L_1 est la longueur de la plus longue travée latérale ;

 L_2 est la longueur de l'autre travée latérale et $L > L_1 > L_2$;

Cela s'applique également aux ponts à trois travées avec une travée principale en poutre cantilever.

Si $L_1 > L$, alors K peut être obtenu à partir de la courbe applicable aux ponts à deux travées, en ne tenant pas compte de la travée latérale la plus courte et en considérant la travée latérale la plus grande comme la travée principale d'un pont à deux travées équivalent.

d) pour les ponts à quatre travées continues symétriques (à savoir les ponts symétriques par rapport au support central) :

K peut être obtenu à partir de la courbe applicable aux ponts à deux travées décrite à la Figure F.2, en considérant chaque moitié du pont comme un pont à deux travées équivalent.

e) pour les ponts à quatre travées continues non symétriques et les ponts comprenant plus de quatre travées continues :

K peut être obtenu à partir de la Figure F.2 en utilisant la courbe appropriée applicable aux ponts à trois travées, en considérant la travée principale comme la plus grande travée intérieure.

NOTE 1 Si la valeur de $\sqrt{\frac{El_{\rm b}}{m}}$ au niveau des appuis est supérieure à deux fois la valeur à mi-travée, ou est inférieure à

80 % de la valeur à mi-travée, il convient alors de ne pas utiliser l'expression (F.6) sauf lorsque des valeurs très approchées sont suffisantes.

NOTE 2 Il convient d'utiliser un ensemble cohérent de variables (sur le plan dimensionnel) pour obtenir $n_{1,B}$ en cycles par seconde.

- (6) La fréquence fondamentale de torsion des ponts à poutres à âme pleine est égale à la fréquence fondamentale de flexion calculée à partir de l'expression (F.6), à condition que la rigidité en flexion moyenne longitudinale par unité de largeur ne soit pas inférieure à 100 fois la rigidité en flexion moyenne transversale par unité de longueur.
- (7) La fréquence fondamentale de torsion d'un pont à poutres-caissons peut être calculée de manière approchée à partir de l'expression (F.7).

$$n_{1,T} = n_{1,B} \cdot \sqrt{P_1 \cdot (P_2 + P_3)}$$
 (F.7)

avec

$$P_{1} = \frac{m \cdot b^{2}}{l_{p}} \tag{F.8}$$

$$P_2 = \frac{\sum r_j^2 \cdot l_j}{b^2 \cdot l_p} \tag{F.9}$$

EN 1991-1-4:2005 (F)

$$P_3 = \frac{L^2 \cdot \sum_j J_j}{2 \cdot K_2 \cdot b^2 \cdot l_p \cdot (1+\nu)}$$
 (F.10)

οù

 $n_{1,B}$ est la fréquence fondamentale de flexion en Hz

b est la largeur totale du pont

m est la masse par unité de longueur définie en F.2 (5)

ν est le coefficient de Poisson du matériau des poutres

 r_i est la distance entre l'axe du caisson élémentaire j et l'axe du pont

 I_j est le moment d'inertie de masse par unité de longueur du caisson élémentaire j pour une flexion verticale à mi-travée, y compris une largeur effective associée du tablier

Ip est le moment d'inertie de masse par unité de longueur de la section transversale à mi-travée. Il est décrit par l'expression (F.11)

$$l_{\rm p} = \frac{m_{\rm d} \cdot b^2}{12} + \sum (l_{\rm pj} + m_{\rm j} \cdot r_{\rm j}^2) \tag{F.11}$$

οù

 $m_{\rm d}$ est la masse par unité de longueur du seul tablier, à mi-travée

 I_{pj} est le moment d'inertie de masse du caisson élémentaire j à mi-travée

 m_j est la masse par unité de longueur du seul caisson élémentaire j à mi-travée, sans partie de tablier associée

 $J_{\rm i}$ est la constante de torsion du caisson élémentaire j à mi-travée. Elle est décrite par l'expression (F.12)

$$J_{j} = \frac{4 \cdot A_{j}^{2}}{\oint \frac{ds}{t}} \tag{F.12}$$

οù

 $A_{\rm i}$ est l'aire de la surface fermée délimitée par le caisson à mi-travée

 $\oint \frac{ds}{t}$ est l'intégrale sur le périmètre du caisson du rapport longueur/épaisseur pour chaque partie de paroi de caisson à mi-travée

NOTE Une perte sensible de précision peut se produire si l'expression proposée (F.12) est appliquée aux ponts à caissons multiples dont le rapport de forme en plan (= portée / largeur) est supérieur à 6.

Figure F.2 — Coefficient K utilisé pour le calcul de la fréquence fondamentale de flexion

F.3 Déformée du mode fondamental

(1) Le mode fondamental de flexion $\Phi_1(z)$ des bâtiments, tours et cheminées en console à partir du sol peut être estimé à l'aide de l'expression (F.13), voir Figure F.3.

$$\Phi_{1}(z) = \left(\frac{z}{h}\right)^{\varsigma} \tag{F.13}$$

οù

- ζ = 0,6 pour les constructions à ossature élancée et murs non porteurs ou bardage
- ζ = 1,0 pour les bâtiments à noyau central et poteaux périphériques ou poteaux plus importants et contreventements
- ζ = 1,5 pour les bâtiments élancés en encorbellement et les bâtiments supportés par noyau central en béton armé
- ζ = 2,0 pour les tours et les cheminées
- ζ = 2,5 pour les tours métalliques à treillis

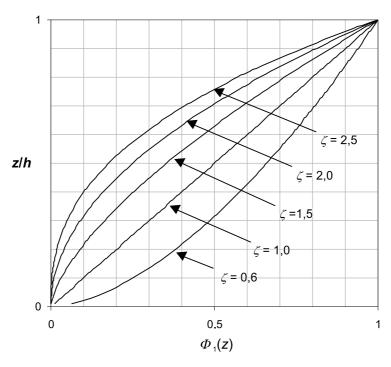


Figure F.3 — Déformée du mode fondamental de flexion pour les bâtiments, tours et cheminées en console à partir du sol

(2) La déformée du mode fondamental vertical de flexion $\Phi_1(s)$ des ponts peut être estimée comme indiqué dans le Tableau F.1.

Tableau F.1 — Déformée du mode fondamental vertical de flexion pour les structures et les éléments structuraux sur appuis simples ou encastrés

Plan	Déformée modale	$\boldsymbol{\varphi}_{1}(s)$
$\stackrel{\Delta}{\models} \stackrel{\ell}{\longrightarrow} \stackrel{S}{\longmapsto}$	$\Phi_1(S) = \frac{1}{4} 1$	$\sin\left(\pi\cdot\frac{s}{\ell}\right)$
# S → l → l	$\frac{\Phi_1(s)}{\uparrow}$	$\frac{1}{2} \cdot \left[1 - \cos \left(2 \cdot \pi \cdot \frac{s}{\ell} \right) \right]$

F.4 Masse équivalente

(1) La masse équivalente par unité de longueur $m_{\rm e}$ du mode fondamental est donnée par l'expression (F.14).

$$m_{e} = \frac{\int_{0}^{\ell} m(s) \cdot \Phi_{1}^{2}(s) \, ds}{\int_{0}^{\ell} \Phi_{1}^{2}(s) \, ds}$$
(F.14)

οù

m est la masse par unité de longueur

est la hauteur ou la portée de la construction ou de l'élément structural

i = 1 est le numéro du mode

- (2) Pour les structures en console avec une répartition de masse variable, $m_{\rm e}$ peut être calculé de manière approchée par la valeur moyenne de m sur le tiers supérieur de la construction h_3 (voir figure F.1).
- (3) Pour les structures appuyées aux deux extrémités de la portée ℓ avec une répartition variable de la masse par unité de longueur, $m_{\rm e}$ peut être calculé de manière approchée par la valeur moyenne de m sur une longueur de $\ell/3$ centrée sur le point de la structure où la valeur $\Phi(s)$ est maximale (voir Tableau F.1).

F.5 Décrément logarithmique d'amortissement

(1) Le décrément logarithmique d'amortissement δ pour le mode fondamental de flexion peut être estimé par l'expression (F.15) suivante :

$$\delta = \delta_{\rm S} + \delta_{\rm A} + \delta_{\rm C} \tag{F.15}$$

οù

- $\delta_{\rm s}$ est le décrément logarithmique d'amortissement structural
- δ_a est le décrément logarithmique d'amortissement aérodynamique pour le mode fondamental
- δ_{d} est le décrément logarithmique d'amortissement dû à des dispositifs spéciaux (amortisseurs dynamiques accordés, amortisseurs à mouvement de liquide, etc.)
- (2) Des valeurs approchées du décrément logarithmique d'amortissement structural δ_s sont données dans le Tableau F.2.
- (3) Le décrément logarithmique d'amortissement aérodynamique δ_a pour le mode fondamental de flexion dans le sens du vent peut être estimé par l'expression (F.16).

$$\delta_{a} = \frac{c_{f} \cdot \rho \cdot v_{m}(z_{s})}{2 \cdot n_{1} \cdot \mu_{p}} \tag{F.16}$$

οù

- c_{f} est le coefficient de force applicable à l'action du vent dans la direction de ce dernier, indiquée en Section 7
- $\mu_{\rm e}$ est la masse équivalente par unité d'aire de la construction pour les surfaces rectangulaires, donnée par l'expression (F.17)

$$\mu_{e} = \frac{\int_{00}^{hb} \mu(y,z) \cdot \Phi_{1}^{2}(y,z) \, dydz}{\int_{00}^{hb} \Phi_{1}^{2}(y,z) \, dydz}$$
(F.17)

οù

- $\mu(y,z)$ est la masse par unité d'aire de la construction
- $\Phi_1(y,z)$ est la déformée modale

La masse par unité d'aire de la construction au point où l'amplitude de la déformée modale est la plus grande, est généralement une valeur approchée correcte de $\mu_{\rm p}$.

(4) Dans la plupart des cas, les déformations modales $\Phi(y,z)$ sont constantes pour chaque hauteur z (c'est-à-dire que $\Phi(y,z)$ est indépendant de y) et le décrément logarithmique d'amortissement aérodynamique δ_a pour les vibrations dans le sens du vent, peut être estimé par l'expression (F.18) en lieu et place de l'expression (F.16).

$$\delta_{\mathsf{a}} = \frac{c_{\mathsf{f}} \cdot \rho \cdot b \cdot v_{\mathsf{m}}(z_{\mathsf{s}})}{2 \cdot n_{\mathsf{1}} \cdot m_{\mathsf{e}}} \tag{F.18}$$

(5) Lorsque des dispositifs dissipatifs spéciaux sont ajoutés à la construction, il convient de calculer δ_d au moyen de méthodes théoriques ou expérimentales appropriées.

Tableau F.2 — Valeurs approchées du décrément logarithmique d'amortissement structural du mode fondamental, $\delta_{\rm s}$

Type de construction			amortissement structural $\delta_{ m s}$
bâtiments en béton armé			0,10
bâtiments en acier			0,05
structures mixtes béton + acier			0,08
tours et cheminées en béton armé			0,03
cheminées en acier soudé non revêtues sans isolation thermique externe			0,012
cheminées en acier soudé non revêtues avec isolation thermique externe			0,020
h/b < 18		<i>h/b</i> < 18	0,020
cheminée en acier avec externe a	n conduit et isolation thermique	20 ≤ <i>h/b</i> < 24	0,040
<i>-</i>		<i>h</i> / <i>b</i> ≥ 26	0,014
cheminée en acier avec plusieurs conduits et isolation thermique externe ^a		<i>h/b</i> < 18	0,020
		20 ≤ <i>h/b</i> < 24	0,040
thermique externe		<i>h</i> / <i>b</i> ≥ 26	0,025
cheminée en acier avec conduit en brique intérieur			0,070
cheminée en acier avec gunite à l'intérieur			0,030
cheminées couplées sans conduit			0,015
cheminée en acier haubanée sans conduit			0,04
ponts en acier	soudés		0,02
+ tours à treillis en acier	assemblés par boulons à haute	résistance	0,03
	assemblés par boulons ordinaires		0,05
ponts mixtes			0,04
ponts en béton	précontraint sans fissures		0,04
	avec fissures		0,10
			« à suivre

Tableau F.2 (fin)

Type de construction		amortissement structural $\delta_{ m s}$
ponts en bois		0,06 - 0,12
ponts en alliages d'aluminium		0,02
ponts en résine renforcée de fibres ou verre		0,04 - 0,08
câbles	fils parallèles	0,006
	fils en torons	0,020

NOTE 1 Les valeurs relatives aux composites de bois et de plastique sont des valeurs données uniquement à titre indicatif. Dans les cas où il est montré que les effets aérodynamiques sont significatifs dans le calcul, des valeurs d'une plus grande précision sont nécessaires et peuvent être obtenues en consultant un spécialiste (avec l'accord, le cas échéant, de l'autorité compétente).

NOTE 2 Dans le cas de ponts à câbles, les valeurs données dans le Tableau F.2 doivent être multipliées par le coefficient 0,75.

a L'interpolation linéaire peut être utilisée pour les valeurs intermédiaires de h/b.

Bibliographie

ISO 2394, Principes généraux de la fiabilité des constructions.

ISO 3898, Bases du calcul des constructions — Notations — Symboles généraux.

ISO 8930, Principes généraux de la fiabilité des constructions — Liste de termes équivalents.