Laboratoire de chimie analytique
Département de pharmacie
Faculté de médecine
Annaba

# Les méthodes électrochimiques



# Objectifs

✓ Introduire des notions de bases nécessaires à l'étude des réactions électrochimiques.

#### ✓ Connaitre:

- \* les différents types d'électrodes.
- \* Les méthodes électrochimiques.
- \* Les applications

## Plan

- 1- Introduction
- 2- Généralités
- 2- Les électrodes:
  - 2-1 Electrodes de référence
  - 2-2 Electrode indicatrice
    - a- Electrodes indicatrice métalliques
    - **b-** Electrodes indicatrice membranaire
- 3- Méthodes d'analyses électrochimique:
  - 3-1 Potentiométrie.
  - 3-2 Ampérométrie.
  - 3-3 Coulométrie.
  - 3-4 Conductimétrie.
- 4- applications.

### Introduction

Parmi les méthodes courantes de contrôle analytique les méthodes électrochimiques sont largement utilisées dans le contrôle des matières premières et des produits finis dans le domaine pharmaceutique:

- -Mesure du pH et de la conductivité des solutions, des sirops...
- -Détection en chromatographie.
- -Microdosage de l'eau (Karl Fisher).
- -Détermination de la pureté de nombreuses matières premières.

## Définition

La réaction électrochimique est un processus englobant l'ensemble des phénomènes associés au transfert de charge électrique à travers l'interface électrochimique formée par la mise en contact d'une électrode (conducteur électronique) et un électrolyte (conducteur ionique) dont le siège est une cellule électrochimique.

## Historique

- 4 1786 -GALVANI: 2 métaux + muscle de grenouille = électricité
- **4 1800 –VOLTA**: Première pile obtenue par empilement de cuivre et de zinc séparé par un linge humidifié par une solution saline ou acide.
- **4** 1829 –BECQUEREL: Séparation des compartiments
- **♣** 1834 **–**FARADAY:

Electrolyse et lois de Faraday Introduction de la notion de rendement.

- **4 1836 DANIELL:** La pile de DANIELL
- **4** 1859 PLANTE:

L'accumulateur au plomb

1866 – LECLANCHE

La pile saline Zn-MnO<sub>2</sub>

**4 1887-ARHENIU**S:

Théorie de la dissociation ionique

Théorie des acides et des bases

**4** 1901 – JUNGER ET EDISON: Les accumulateurs alcalins

# Généralités

# électro chimie



Déplacement des e-

réaction chimique

oxydoréduction

# R<sup>α</sup> d'oxydoréduction=> couple Ox/Red

Oxydant: capte les e- => réduction: gain d'e-

Réducteur : cède les e- => oxydation : perte d'e-

$$0x + e \rightarrow Red$$

Potentiel « E » => équation de Nernst:

$$E = E^{\circ} + \frac{0.06}{n} \log[Ox]/[Red]$$

R<sup>α</sup> milieu homogène: redox R<sup>α</sup> milieu hétérogène: électrolyse

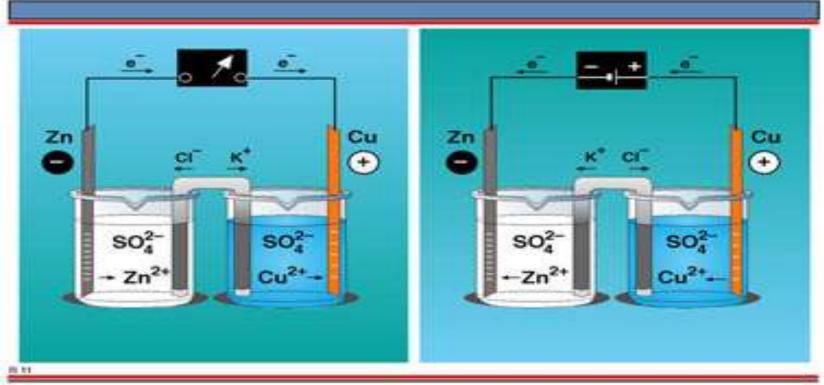
# Système électrochimique

### Cellule électrochimique

Dispositif constitué de deux compartiments, comportant chacun une électrode (une demi cellule) trompée dans une solution d'électrolyte:

1- Pile=c. galvanique

2- cellule électrolytique


=c. voltaïque

### La pile:

Réaction spontanée ddp> o

### La cellule à electrolyse

Réaction non spontanée => application d'une ddp



## Système électrochimique

osition d'une cellule électrochimique:

Ε

R

0

D

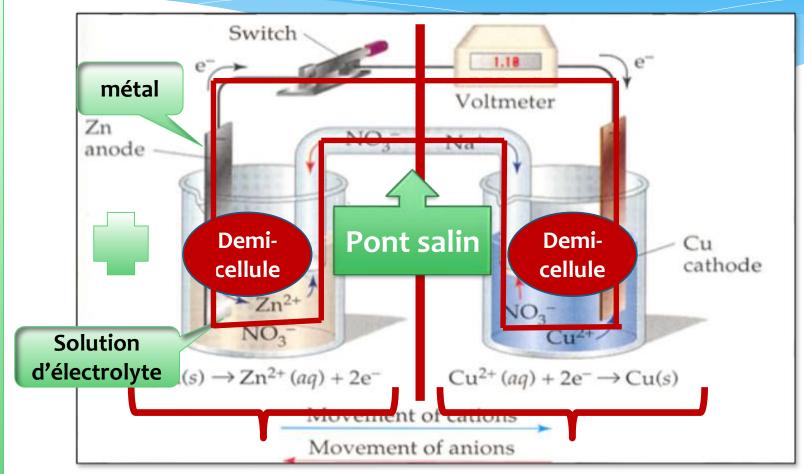



Schéma représentant la composition d'une cellule électrochimique (pile Daniell)

## Système électrochimique

### 2- processus électrochimique:

Le processus électrochimique est basé sur le transport de:

- La charge : électrons et les ions.
- La matière: espèces consommées ou produites, qui se déplacent suivant trois phénomènes différents.

Transport de charge

# Système électrochimique

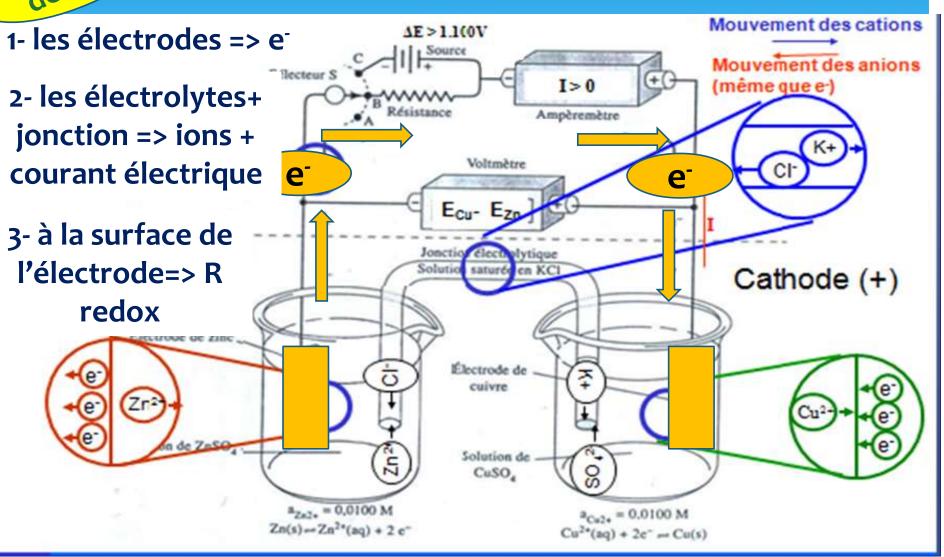



Schéma: conduction d'une cellule électrochimique

# Système électrochimique

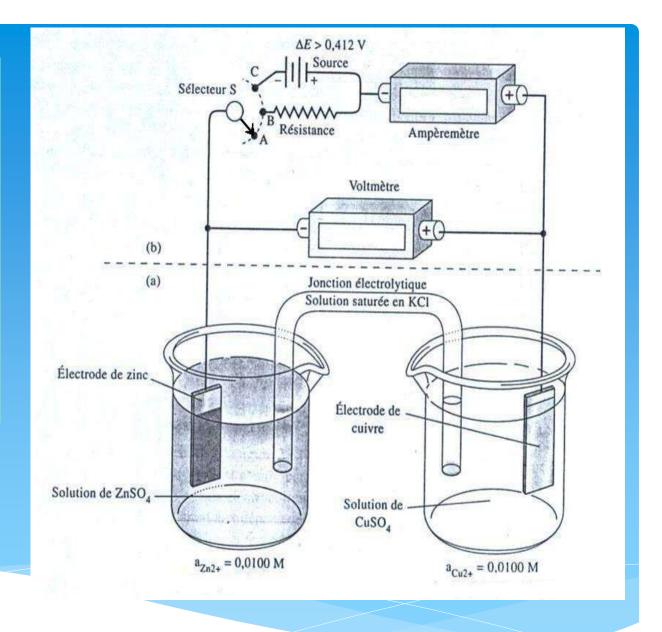
Transport de matière

| phénomène  | cause                                      | siège                                                 | Espèces                   |
|------------|--------------------------------------------|-------------------------------------------------------|---------------------------|
| Diffusion  | Gradient de concentration                  | Interface métal-<br>solution                          | Espèces<br>électroactives |
| Convection | Agitation<br>mécanique ou /et<br>thermique | Cœur de la solution                                   | Toutes les<br>espèces     |
| Migration  | Champ électrique                           | Interface métal-<br>solution + cœur<br>de la solution | Espèces chargées          |

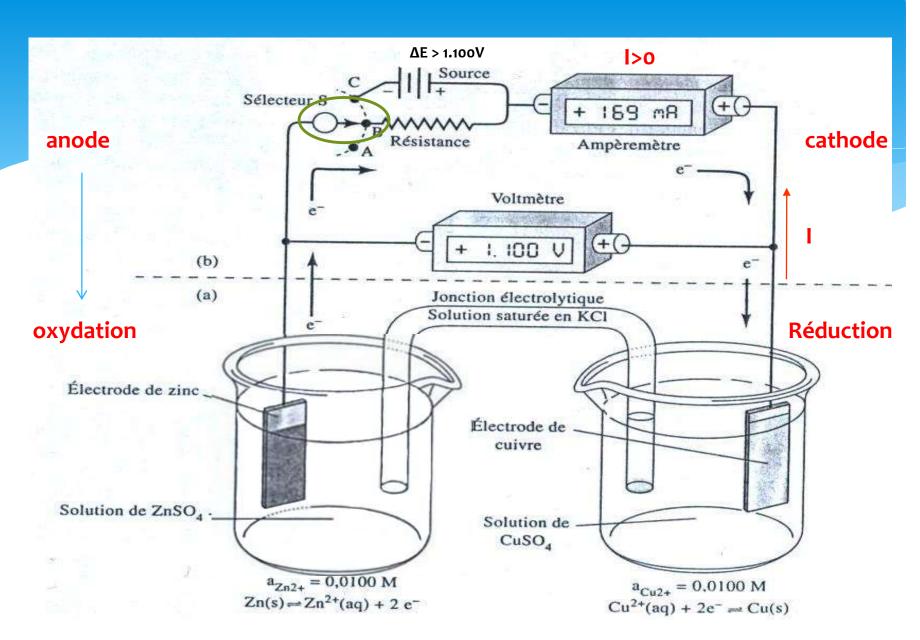
## Système électrochimique

### **3- Fonctionnement:**

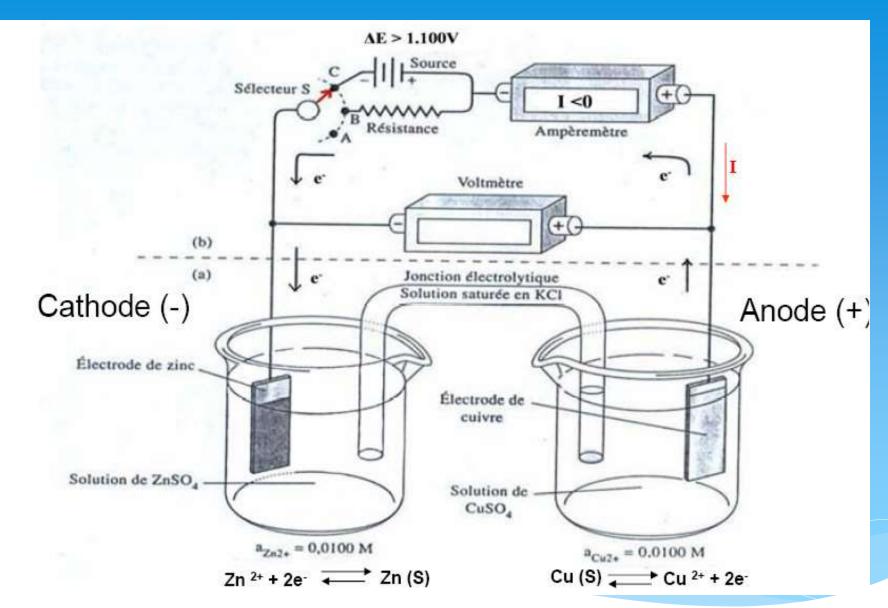
entièrement déterminés par les caractéristiques du circuit extérieur sélectionné par le contacteur S


<u>a– Circuit ouvert (courant nul) : Sélecteur en position S-A;</u>

Les électrodes ne sont pas connectées, le circuit est dit


« ouvert » (il ne circule aucun courant):

- <u>b- mode galvanique (pile)</u>: Contacteur en position S-B (Circuit fermé)
- C- Cellules électrolytique: Contacteur en position S-C


- Le courant ne circule pas
- La composition de la solution au voisinage des électrodes ne change pas
- Utilisé en potentiométrie



**Figure: Circuit ouvert (courant nul)** 



Pile :cellule galvanique



Circuit fermé : régime d'électrolyse

### Convention

Les électrodes n'ont pas le même signe suivant qu'on fonctionne en pile ou en électrolyseur.

Pile: anode: -

cathode: +

Électrolyseur: anode: +

cathode: -

Symbole de l'électrolyseur: —

On a toujours:

> Anode: oxydation

> Cathode : réduction

### 4- courant électrique:

Les réactions électrochimiques se produisent à l'interface *métal-solution* résultent de :

### **≻**Courant faradique:

Réactions avec transferts d'e (oxydoréduction faradique) Obéit à la lois de Faraday :

 $Q_{esp\ produites} \approx Q_{courant\ faradique}$ 

### **►** Courant non faradique:

✓ Existence d'une double couche à l'interface métal/solution

(e- demeure à la surface d'électrode)

✓ Absence de courant faradique pour des raisons cinétiques ou thermodynamiques.

# Le courant électrique est caractérisé par deux paramètres:

- L'intensité (I) mesurée par l'ampèremètre
- La différence de potentiel (ddp ou ΔE) mesurée par le voltmètre





## Courbe intensité-potentiel

A l'équilibre, le potentiel de l'électrode est donné par la formule de Nernst :

$$E_{eq} = E^{\circ} + 0.06/n + \log a \text{ ox } / \text{ aRed}$$

Échange d'e- entre interface et électrolyte à la surface de l'électrode:

I>0 => oxydation => courant anodique

I<0 => réduction => courant cathodique

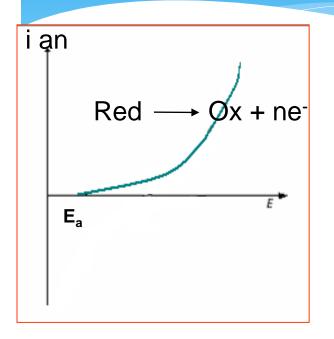
Supposons que l'on porte cette électrode à un potentiel:

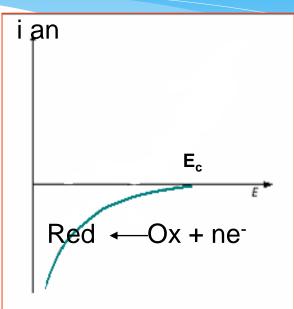
 $E > E_{\acute{eq}}$ : elle est alors le siège d'une oxydation

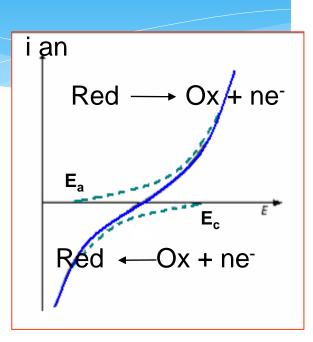
E< E<sub>éq</sub>: elle est alors le siège d'une réduction

## Courbe intensité-potentiel

Les réactions électrochimiques se produisent à une vitesse de proportionnelle à l'intensité du courant qui passe dans l'électrode :


: Intensité du courant (A)


n: le nombre d'électrons échangé


F: la constante de Faraday = 96485 C/mol

### **VI.COURBES INTENSITE-POTENTIEL**

### Système rapide (réversible) Fa < Ec

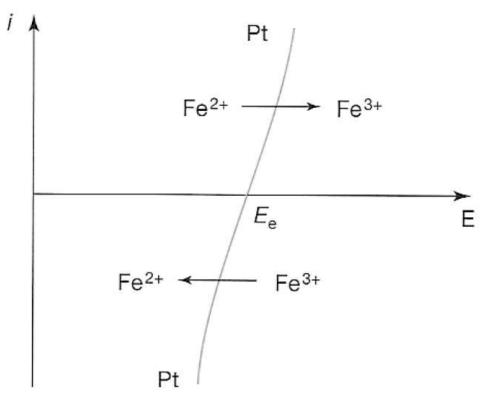






Red

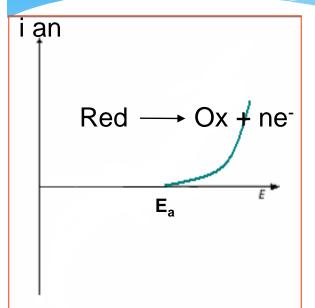
Ox

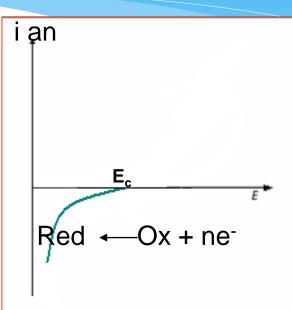

Red + Ox

La pente est remarquable au voisinage au E eq

#### Systèmes rapides:

### Exemple d'un système rapide


Couples d'ions monoatomique sur électrode métallique  $(M^{n+}/M^{p+} \text{ sur Pt}) \rightarrow (Fe^{3+}/Fe^{2+} \text{ sur Pt})$ 





#### **VI.COURBES INTENSITE-POTENTIEL**



 $E_a > E_c$ 

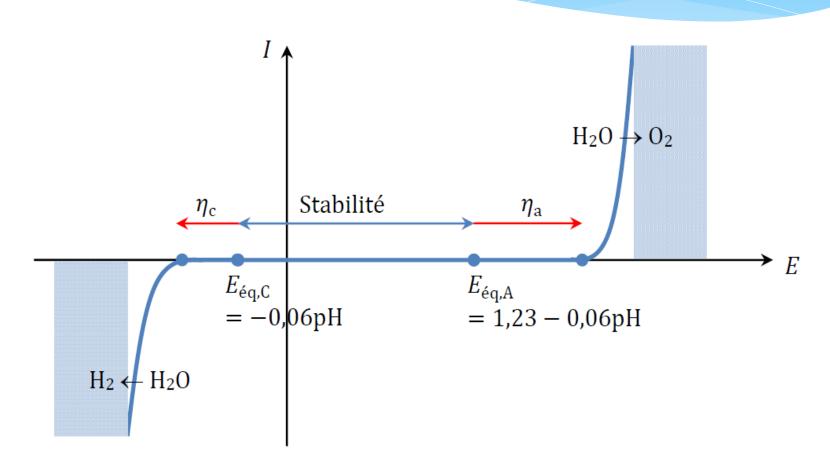






Red

Ox


Red + Ox

Un système est dit lent si la pente de la courbe i = f(E) est très faible au voisinage de  $E_{\acute{eq}}$ .

#### systèmes lent:

### Exemple:

les systèmes de l'eau (H<sup>+</sup>/H<sub>2</sub> et O<sub>2</sub>/H<sub>2</sub>O quelle que soit l'électrode).



# Les électrodes

## Définition

Electrode = Pièce conductrice (métal) reliée à un pôle d'un appareil électrique

### Electrodes

Electrodes de référence

**Electrodes** indicatrice

\* Électrode Normale à Hydrogène

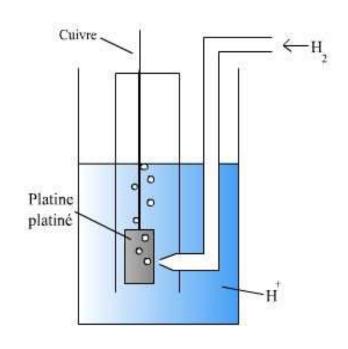
\* Électrodes métalliques

\* Électrode au Calomel Saturé

\* Électrodes membranaires

\* Électrode argent chlorure d'argent

Une électrode de référence est une demi-cellule dont le potentiel est connu et reste constant quelque soit le courant qui la traverse , indépendamment de la composition de la solution d'analyte.


♣ Par convention l'électrode de référence est toujours raccordée à la borne négative du voltmètre(à gauche).

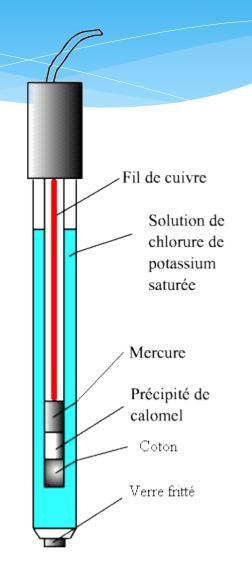
# Electrode Normale (Standard) à Hydrogène : (ENH ou ESH)

✓ Il s'agit de l'électrode de référence absolue, mettant en jeu le couple H<sup>+</sup> (aq) / H<sub>2(g)</sub>

$$\checkmark E^{\circ}_{H^{+}/H^{2}}=0$$

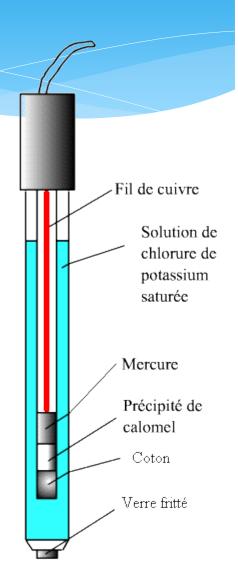
$$2H^{+}(aq) + 2e^{-} \longrightarrow H_{2}(g)$$




### Électrode au Calomel Saturé (ECS):

- ✓ L'électrode au **calomel** saturée (en KCl) est composée de mercure métallique (Hg) en contact avec du **calomel** (Hg₂Cl₂) lui-même en équilibre avec une solution de chlorure de potassium (KCl) saturée
- ✓ Les réactions:

$$Hg_2^{2+} + 2Cl^- \rightleftharpoons Hg_2Cl_{2(s)}$$


$$Hg_2Cl_{2(s)} + 2e^- \rightleftharpoons Hg_{(l)} + 2Cl^-$$

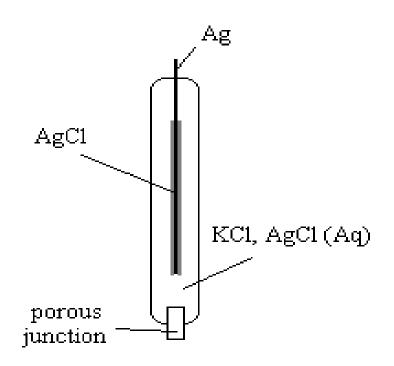
$$E^{\circ}(Hg_2Cl_2/Hg) = +0,268 \text{ V}$$



## Électrode au Calomel Saturé (ECS):

- ✓ Le potentiel de l'électrode au calomel dépend de [Cl<sup>-</sup>]
- ✓ Les concentrations en KCl les plus utilisées dans ces électrodes sont: 0,1M, 3,5 M, saturée.
- ✓ Électrode au calomel saturée (ECS):La solution de KCl est saturée (4,6M)
  À 25°c son potentiel =0,244V

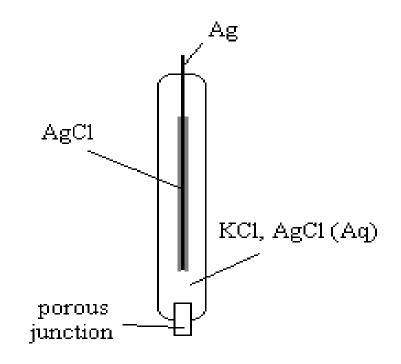



### Électrode argent chlorure d'argent

- ✓ Une électrode d'argent plongeant dans une solution à la fois saturée en KCl et en AgCl.
- ✓ Les réactions:

$$Ag_{(s)} + Cl^{-} \rightleftharpoons AgCl_{(s)}$$

$$AgCl_{(s)} + e^{-} \rightleftharpoons Ag_{(s)} + Cl^{-}$$


$$E^{\circ}(AgCl/Ag) = +0,222 \text{ V}$$



# Electrodes de référence

# Électrode argent chlorure d'argent

- ✓ Le potentiel de l'électrode Ag/AgCl dépend de [Cl<sup>-</sup>]
- ✓ Les électrodes Ag/AgClles plus courantes sont (selon la concentration en KCl): 3,5 M, saturée



- Une électrode indicatrice est une demi-cellule dont le potentiel varie de manière connue en fonction de l'activité ou de la concentration de l'analyte en ions.
- Parmi les électrodes indicatrices il y'a les électrodes métalliques et membranaires

## Différents types d'électrodes indicatrices :

### 1 - Les électrodes indicatrices métalliques :

- Les électrodes de première espèce.
- Les électrodes de deuxième espèce.
- Les électrodes métalliques inertes indicatrices de systèmes redox.

### 2 - Les électrodes indicatrices à membrane :

- L'électrode de verre indicatrice de pH.
- Les électrodes de verre indicatrices de cations autres que H<sup>+</sup>.
- Les électrodes à membrane liquide.
- Les électrodes à membrane cristalline.

# Electrodes métalliques

## Electrodes métalliques

### Electrode de première espèce

Il s'agit d'un métal en contact avec l'un de ses ions en solution

### **Exemple:**

Électrode d'argent : fil d'argent plongeant dans une solution de nitrate d'argent par exemple (Ag+, NO<sub>3</sub>-).

$$Ag^{+}+1\acute{e}$$
  $Ag$  :  $E=E^{o}_{Ag+/Ag}+0.06 log [Ag^{+}]$ 

 $E=E_{(Ag+/Ag)}^{o}-0.06 pAg$ 

Une telle électrode est dite « indicatrice » de la concentration de Ag+dans le milieu.

## Electrodes métalliques

### Electrode de deuxième espèce (à sel insoluble)

Il s'agit d'une électrode métallique en contact avec un sel peu soluble de ce métal et d'un sel d'anion commun.

### **Exemple:**

Ag/AgCl<sub>(s)</sub>/ K<sup>+</sup>, Cl<sup>-</sup>, La réaction de l'électrode peut s'écrire:

AgCl + é \_\_\_\_\_ Ag<sub>(s)</sub> + Cl<sup>-</sup> ; 
$$E_{AgCl/Ag}^{o} = 0.222V$$

Équation de Nernst:

$$E_{ind} = 0.222 + 0.06 \log(1/[Cl^{-}])$$
  $E_{ind} = 0.222 + 0.06 pCl$ 

L'électrode d'argent peut servir d'électrode indicatrice de deuxième espèce pour l'ion chlorure

## Electrodes métalliques

Electrode de troisième espèce (électrode redox)

Il s'agit d'une électrode constituée par un métal inerte (inattaquable tel que le platine, l'or, ....) plongé dans une solution des formes « Ox » et « red » d'un même couple.

### Exemple:

Un fil de platine plongeant dans une solution de [Fe<sup>3+</sup>]=b et [Fe<sup>2+</sup>] =a  $E = E^{\circ}_{Fe^{3+}/Fe^{2+}} + 0.06 \log [Fe^{3+}]/ [Fe^{2+}] = E^{\circ}_{Fe^{3+}/Fe^{2+}} + 0.06 \log a/b$ 

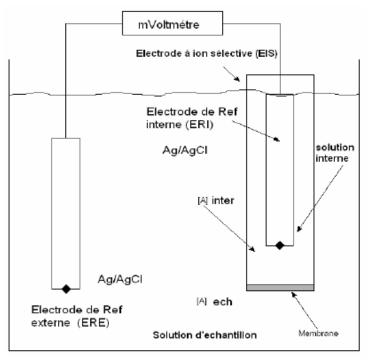
Ce type d'électrode permet de suivre l'évolution du couple redox

### **Electrodes membranaires**

Les électrodes sélectives d'ions sont des électrodes qui répondent sélectivement à une seule espèce en solution.

La membrane d'une électrode est la composante la plus importante d'une électrode indicatrice car sa composition détermine la sélectivité de l'électrode.

### **Potentiel membranaire:**


- Le potentiel membranaire se développe à travers une membrane conductrice lorsque ses deux faces sont en contact avec des solutions de composition différente.
- ♣ Soit la cellule électrochimique suivante

$$E_{cell} = E_{ind} - E_{ref} + E_{j}$$

$$E_{cell} = E_{EIS} - E_{ERE} + E_{j}$$

$$E_{cell} = E_{ERI} + E_{m} - E_{ERE} + E_{j}$$

$$E_{cell} = E' + E_{m}$$



#### Avec:

E<sub>EIS</sub> = Potentiel de l'électrode à ion sélective.

E<sub>FRF</sub> = Potentiel de l'électrode de référence externe.

E<sub>FRI</sub> = Potentiel de l'électrode de référence interne.

 $E_i$  = Potentiel de jonction.

 $E_m$  = Potentiel membranaire.

#### Or:

$$E_{m} = E_{asy} + 0.059 / Z_{A} log [A]_{ech} / [A]_{int}$$

**E**<sub>asy</sub> = Potentiel d'asymétrie, potentiel qui se développe à travers une membrane conductrice lorsque ses deux faces sont en contact avec des solutions identiques.

 $Z_A$  = Charge de l'ion A

 $[A_{int}]$  = concentration de A dans la solution interne de EIS.

Et donc:  $E_{cell} = K + 0.059 / Z_A log [A]_{ech}$ 

### Sélectivité membranaire:

La plupart des membranes ne sont pas sélectives que pour un seul analyte  $\longrightarrow$  le  $E_m$  et donc le  $E_{cell}$  est proportionnel à la concentration de tous les ions capables d'interagir avec les sites actifs de la membrane.

Soit l'analyte A et les ions I qui interfèrent avec l'analyte:

$$E_{cell} = K + 0.059 / Z_A log [A]_{ech} + K_{A/I} . [I]^{(ZA/ZI)} ... (6)$$

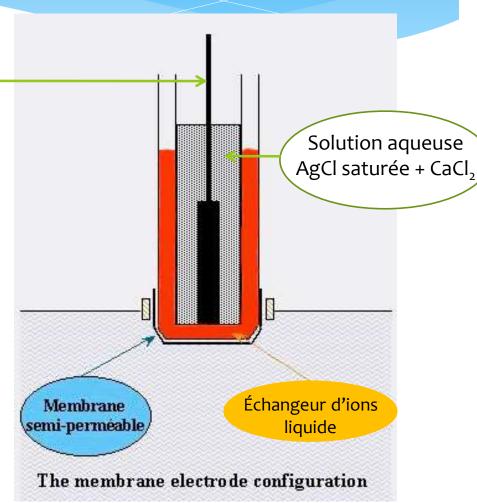
 $Z_I$  = Charge de l'ion I.  $K_{A/I}$  = Coefficient de sélectivité.

### **Electrodes membranaires**

#### Electrode à membrane de verre

C'est une électrode Indicatrice de pH

- Dosage potentiométrique direct de nombreux cations polyvalents et de certains anions.
- Le potentiel se développe à travers l'interface entre la solution contenant l'analyte et un échangeur d'ions liquide qui forme des liaisons sélectives avec l'ion analyte.


### **Electrodes membranaires**

Électrode d'argent

Electrode à membrane de verre Indicatrice de cation

### **Exemple:**

électrode à membrane liquide indicatrice de l'ion calcium.



Un potentiel se développe à travers la membrane lorsque le degré de dissociation de l'échangeur d'ion sur une des surfaces diffère de celui de l'autre --- différences d'activité en ion calcium entre les solutions internes et externes.

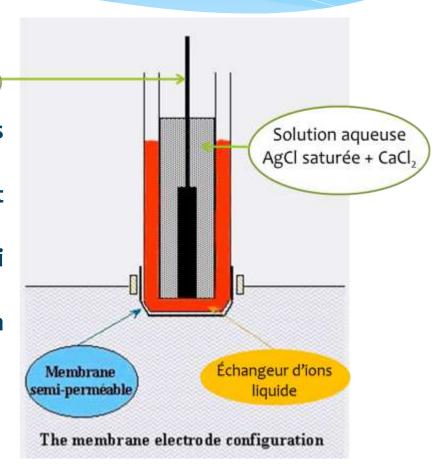
La relation entre le potentiel de membrane et les activités en ions calcium est donnée par l'équation suivante :

$$E_{\rm m} = E_1 - E_2 = 0.059/2 \log a_1/a_2 \dots (11)$$

a₁: activité de l'analyte en solution externe.

a<sub>2</sub>: activité de l'analyte en solution interne.

$$E_{ind} = N + 0.059 / 2 log a_1$$
  
 $E_{ind} = N - 0.059 / 2 pCa ... (12)$   
 $N = -0.059/2 log a_5$ 


Avec:

Électrode

### Electrodes membranaires

Electrode à membrane liquide

Le potentiel se développe à travers l'interface entre la solution contenant l'analyte et un échangeur d'ion liquide qui forme des liaisons sélectives avec l'ion analyte.



### Electrodes membranaires

#### Electrode à membrane cristalline

- Ce sont des électrodes utilisées dans le but de doser sélectivement des anions.
- Membranes --- pastilles moulées d'halogénures d'argent --- dosage sélectif des ions chlorures, bromures et iodures.
- Membranes polycristalline d'Ag<sub>2</sub>S --- dosage de l'ion sulfure.
- Dans ces 2 types de membranes, les ions argent sont suffisamment mobiles pour conduire l'électricité à travers le milieu solide.

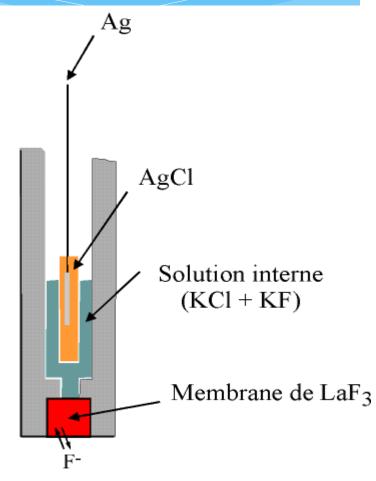
Il se développe à travers les électrodes solides cristallines un potentiel qui obéit à la relation :

$$E_{\rm m} = E_1 - E_2 = 0.059/n \log a_1/a_2 ...(12)$$

a₁: activité de l'analyte en solution externe.

a<sub>2</sub>: activité de l'analyte en solution interne.

Comme l'activité de l'analyte dans la solution interne est constante, l'équation devient :


$$E_m = L' + 0.059/n \log a_1 ...(13)$$

Avec:  $L' = -0.059/n \log a$ ,

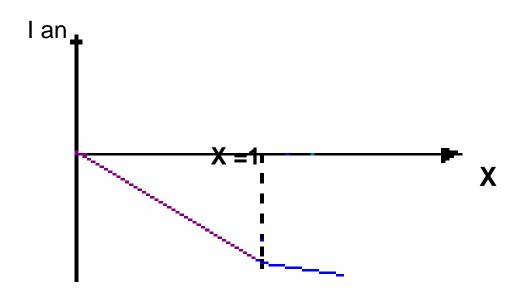
### Electrodes membranaires

Electrode à membrane cristalline

Exemple: électrode à membrane de fluorure de lanthane



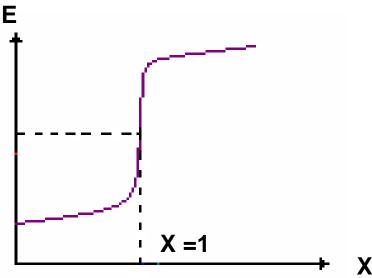
Solution à analyser


### Applications des électrodes à membrane:

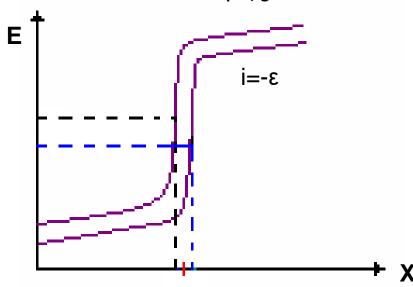
- En agriculture : analyse de nitrate dans des échantillons de sol.
- **En agroalimentaire:** analyse des divers ions dans les boissons, le lait, les jus de fruits, les viandes...
- En industrie: Les chlorure dans les pâtes à papier, les cyanure dans les bains d'électrolyse...
- Dans le secteur biomédical: analyse de certains ions dans les sérums, fluides biologiques, suc digestif, salive...

# méthodes d'analyses électrochimiques

### 1) Ampérométrie:


- On fixe le potentiel et on détermine l'intensité I.
- Titrage ampérométrique : Courbe I = f (V<sub>titrant</sub>)




### 3) Potentiomètrie:

- On fixe l'intensité I et on détermine le potentiel.
- Titrage Potentiométrique : Courbe E = f (V<sub>titrant</sub>)
- Potentiomètrie à intensité nulle: système rapide

Potentiométrie à intensité non nulle: imposer à l'électrode indicatrice une intensité très faible ±ε de quelques micro ampères (lorsque les potentiels à intensité nulle sont mal définis)



Potentiométrie à intensité = o



Potentiométrie à intensité ≠ o

#### Applications Quantitatives de la Potentiométrie:

- Mesure du pH
- Dosage Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Cl<sup>-</sup>, gaz dissous, dans des matrices complexes: analyse sang, urine... (Potentiométrie direct)
- Dosage des CN<sup>-</sup>, F<sup>-</sup>, NH<sub>3</sub> , NO<sub>3</sub><sup>-</sup> en analyse environnementale.
- Titrages potentiométriques: determination du point equivalent avec une très grande précision lors de titrage acido-basique, compléxométrique, précipitation et oxydoréduction.

### 3) Coulométrie :

- Oxydation ou réduction électrolytique de l'analyte pendant une durée de temps suffisante pour obtenir sa conversion quantitative à son nouvel état d'oxydation.
- Mesure de la quantité d'électricité Q= i.t nécessaire pour produire une reaction de dosage.
- Coulométrie directe : coulométrie à potentiel contrôlé.
- Titrage coulométriques : coulométrie à courant contrôlé (intensité constante)

### 4) Electrogravimétrie:

- Oxydation ou réduction électrolytique de l'analyte pendant une durée de temps suffisante pour obtenir sa conversion quantitative à son nouvel état d'oxydation.
- On mesure la masse du produit de l'électrolyse qui se dépose sur l'électrode.

# applications

#### 1/Électroraffinage:

purification de certains métaux (zinc ,cuivre, aluminium)

#### 2/ Stockage et conversion de l'énergie :

✓ Piles et batteries comme les batteries au plomb qui assurent le démarrage des véhicules

#### 3/Environnement et biologie:

Ces techniques permettent la séparation (électrodialyse)

Exemple: dessalement des eaux saumâtres par électrodialyse

#### 4. traitement de surface et corrosion:

L'objectif de l'électrochimie est de ralentir le phénomène de corrosion.

**5.** Électrosynthèse: exemple la production d'aluminium, dichlore, soude....

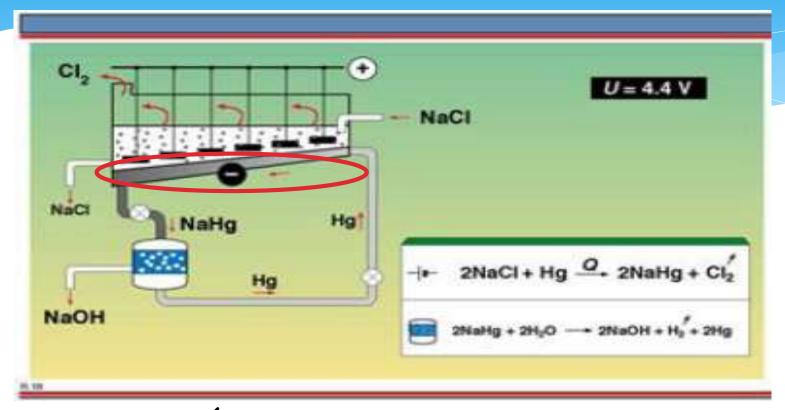



Figure: Électrosynthèse d'aluminium

Le procédé faisant appel à une cathode de mercure dans la chimie de la production du chlore et des alcalis.

### 6.dans le domaine pharmaceutique:

les méthodes électrochimiques sont largement utilisées dans le contrôle des *matières premières* et des *produits finis* :

- -Mesure du pH et de la conductivité des solutions, des sirops...
- -Détection en chromatographie liquide.
- -Microdosage de l'eau (Karl Fisher).
- -Détermination de la pureté de nombreuses matières premières.