

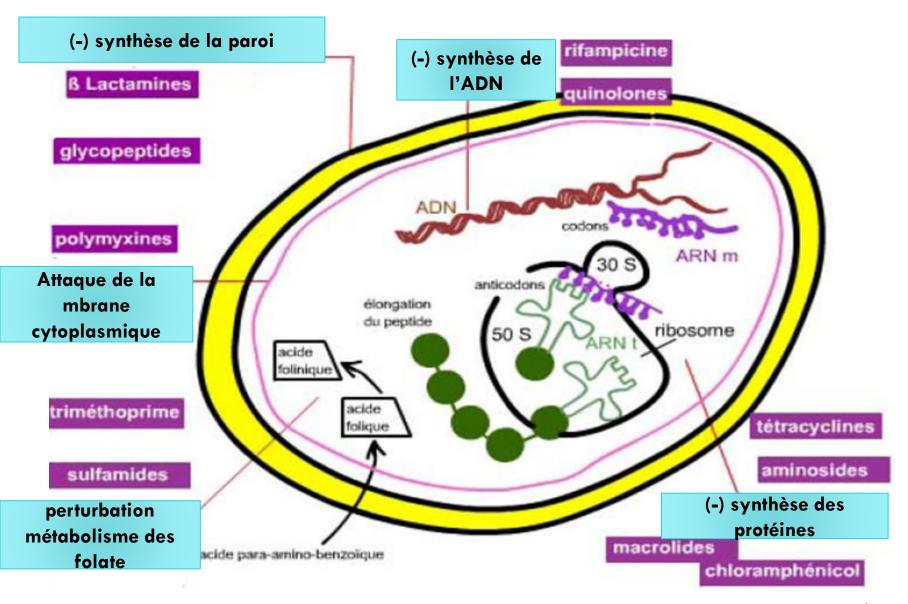
Cours 3^{ième} année

LES BETA-LACTAMINES

Élaboré par Dr MAKHLOUF Année universitaire 2019/2020

LES ANTIBIOTIQUES

ATB = Substances produites par diverses μ -organismes supprimant la croissance d'autres μ -organismes, le terme ATB s'étend à inclure des agents antimicrobiens synthétiques


1- définition:

- ·Substances naturelles ou synthétique
- Perturbant le fonctionnement d'une cible bactérienne
- •Propriétés : mécanisme d'action spécifique
- bactériostatique: inhibition de la multiplication bactérienne CMI ou
- bactéricide: destruction des bactéries CMB
- •Toxicité modérée permettant l'usage par voie générale
- caractérisés par un spectre d'activité spécifique : nombre d'espèces bactériennes naturellement sensibles

Possible action sur d'autres microorganismes

≠ des antiseptiques→ action non spécifique et inutilisable par voie générale (toxicité)

2- mécanisme d'action:

3- conditions d'efficacité d'un antibiotique:

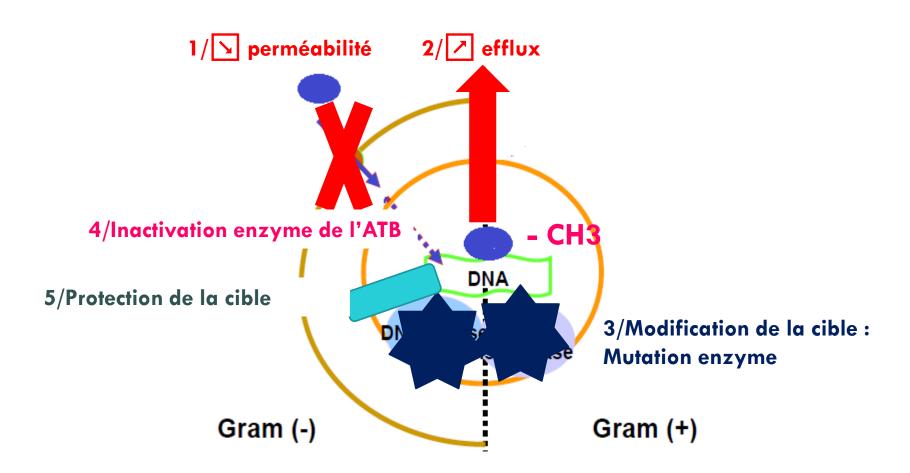
- -Qu'il diffuse au niveau du foyer infectieux à des concentrations suffisamment élevées sous sa forme active— pptés pharmacocinétiques
- -Qu'il pénètre dans le germe (porine, diffusion passive, mécanisme actif, désorganisation de la paroi)
- -Qu'il ne soit ni modifié ni détruit (dans l'organisme ou dans la bactérie).
- -Qu'il possède un mode d'action qui lui permette d'agir sur ce germe → spécificité d'action et d'interagir avec sa cible d'action
- Qu'il reste en contact avec sa cible pendant une durée de temps suffisante pour lui permettre soit de détruire le germe cible ou d'en arrêter la multiplication.

4- Résistance aux antibiotiques:

La capacité d'un microorganisme de résister aux effets des antibiotiques, on distingue 2 types :

La résistance naturelle : (chromosomique)

- Toutes les souches d'une même espèce bactérienne sont résistantes à un antibiotique donné: bactéries insensibles au mode d'action de l'antibiotique.
- Elle est chromosomique, rare, stable, spontanée et spécifique à un ATB ou une famille d'ATB.


Les résistances acquises : (chromosomique :mutations, plasmidique)

- Une ou plusieurs souches d'une espèce bactérienne naturellement sensible à un antibiotique y deviennent résistantes.
- Elles sont fréquentes, non spécifiques, consécutives à des modifications de l'équipement génétique chromosomique ou plasmidique.

4- Résistance aux antibiotiques:

Si I 'ATB doit :	La bactérie peut :	
pénétrer	devenir imperméable (↓ porines), s'opposer à son transport, augmenter son excrétion (↑ protéines d' efflux)	
ne pas être modifié ni détruit	synthétiser des enzymes qui le modifient ou l'hydrolysent	
se fixer à une cible	protéger la cible : mutation modifiant le site de fixation ou protection de ce dernier par un composé nouvellement synthétisé empêchant ainsi la liaison de l'antibiotique	

4- Résistance aux antibiotiques:

5- Principes généraux du choix d'un antibiotique:

- Facteurs liés au micro-organisme infectant:

Identification du germe, connaître sa sensibilité aux ATB (antibiogramme) surtout si Resistance

mais:

Infection grave→ prise en charge rapide, nécessité d'une thérapeutique empirique :prédiction du germe à partir des signes cliniques et de l'épidémiologie de l'infection, ex méningite : Méningocoque, Pneumocoque

Choisir l'ATB avec le = de R, et passer à une thérapeutique ciblée dès que possible

Infection communautaire: dgc clinique précis → présumer l'étiologie la plus probable de certaines infections communautaires : streptocoque du groupe A pour angine erythémato- pultacée

5- Principes généraux du choix d'un antibiotique:

- Facteurs liés au médicament:

- -Connaissance de la résorption, diffusion, demie vie, accès au site d'infection de l'ATB → concentration suffisante au site d'action et pendant une durée suffisante.
- -Elimination et toxicité : adapter la posologie en cas d'insuffisance hépatique ou rénale
- -Connaissance de l'expression d'activité sur le germe dans sa situation in vivo (germe intracellulaire, par exemple)

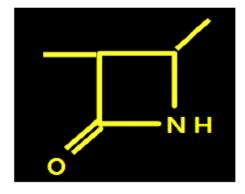
-Facteurs liés au sujet:

- -Femme enceinte
- -Sujet âgé
- nouveau né / enfant
- -Sujet immunodéprimé : ATB bactéricide

6- Association d'antibiotiques :

- **-Elargir le spectre d'action** : antibiothérapie probabiliste si infections graves à étiologies multiples ou si infection polymicrobienne : Neutropénie fébrile, Pneumonie nosocomiale
- -Synergie d'action : E(A) + E(B) > E(A) seul + E(B) seul : l'augmentation de la vitesse de bactéricidie surtout si infection grave, défense immunitaire amoindrie :

association β lactamine / aminosides lors de l'endocardite infectieuse


-Prévention de la sélection de germe résistant: Mycobactérium tuberculosis : mutation(s) susceptible(s) de lui conférer une résistance au traitement → l'association de plusieurs ATB diminue la probabilité de sélection de mutant résistant

7 - causes d'échecs de l'antibiothérapie :

- -Utilisation des ATB dans des situations ou ils ne sont pas nécessaires : Infections virales : rubéole, varicelle , oreillons , fièvre inexpliquée
- -Mauvaise posologie : dose et nombre de prise par jour (ATB temps dep et
- -ATB dose dep)→ sélection de mutants résistants
- -Durée du traitement insuffisante
- -Absence de données bactériologiques sur le germe et jugement clinique approximatif → choix d'ATB erroné
- -Instauration d'une ATBthérapie sans drainage chirurgical au préalable (si présence de pus)

1- structure / origine :

- o Origine naturelle ou de semi-synthèse
- o Noyau Bêta-lactame (4 Chainons)

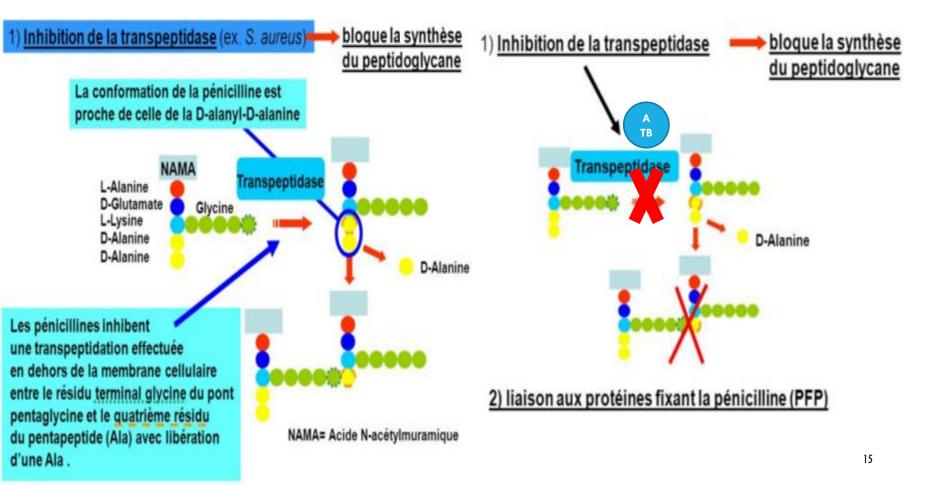
Les Pénames : Pénicillines

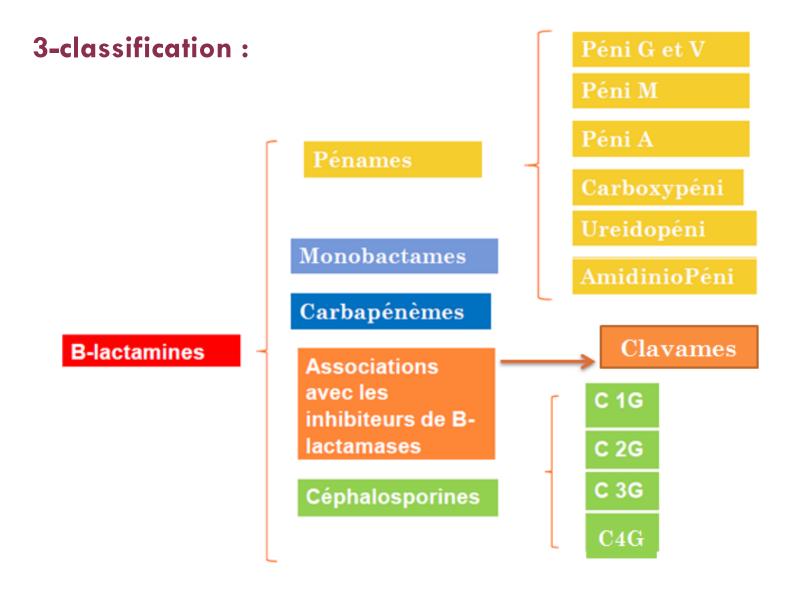
Les Pénemes : Carbapénèmes

Les céphemes : Céphalosporines

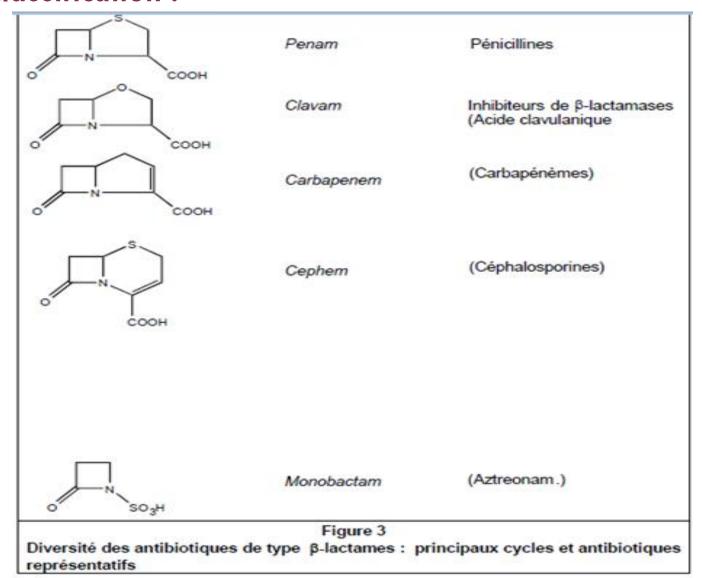
Les monolactames : Monobactames

16/02/2016


Famille des B-lactamines:


- ATB antibactériens
- Mode d'action sur la paroi liant les PLP
- Bactéricide en phase de croissance
- Faible toxicité
- Différentes structures mais cycle B-lactame en commun

2- mécanisme d'action :


ils empêchent la synthèse du peptidoglycane: Bactérie en phase de multiplication $+++ \rightarrow autolyse \rightarrow effet bactéricide$

Similarité structurale : β lactamines vs D Ala-D Alanine

3-classification:

4- Spectre/ indications :

Les pénicillines :

Pénicilline G (et ses forme retard) (parentérale) et pénicilline V(péni G orale) sensibles aux pénicillinase :

Activité sur : Bactéries Gram+, Cocci Gram-, Treponème, R staph producteur pénicillinase

Pénicilline M : oxacilline (orale/parentérale):

Activité sur : Staphylocoques Résistant à Pénicilline G

Pénicilline A : ampicilline, amoxicilline (orale/parentérale):

Activité élargie sur: certains bacilles gram- (sauf P.aeruginosa)

Carboxypénicilline: ticarcilline,

Uréidopénicilline : piperacilline

Uréidopénicilline : piperacilline

Parentérales

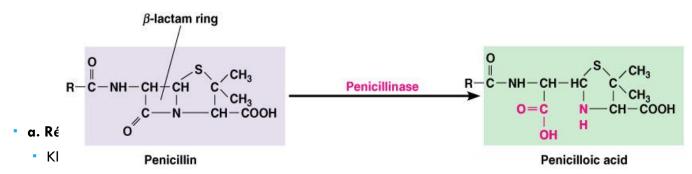
Activité élargie sur: bacilles gram- et P.aeruginosa productreur de cephalosporinase

Amidinopénicilline: mécillinam actif sur G – uniquement (parentérale)

Les pénicillines + inhibiteurs de β-lactamase: amoxicilline+a.clavulanique, ticarcilline+a.clavulanique

Activité élargie sur bactéries qui ont une pénicillinase sensible à ces inhibiteurs →Protection des B-lactamines de l'inactivation

4- Spectre/ indications :


Les pénicillines :

0 0 0 0		
Peni G,V	 Angines aigues à strepto A, Pneumonies, otites à Méningite à meningocoque, Endocardites strepto Syphilis péniG retard : prophylaxie des rechutes RAA 	pneumocoque
Peni M	Trt des infections à staph. sensibles : cutanées (et/respiratoires,	ou dues à strepto), ORL,
Amino penicillines	-Infections des voies respiratoires sup , urinaires, d hépatiques, urogénitale , méningite -Eradication d' Helicobacter pylori.	ligestives et biliaires,
Carboxy et ureido Penicillines	Usage hospitalier -Infections graves à bacilles G- dont Paeruginosa -Infections nosocomiales à germes multi-résistants	
Amidino péni	Infections urinaires et biliaires	
Assoc clavame 16/02/2016	En 2ème intention: Angine ,sinusite, otite récidivant, en 1 ^{ière} intention sujet à risque (diabète , femme	•

Les pénicillines

Mécanismes de résistance bactérienne:

- Résistance enzymatique:
 - Synthèse de B-lactamases: « Protéases à sérine active »

- b. Résistance enzymatique acquise: nouveaux gènes (plasmides d'une autre espèce) ou mutation des gènes existants (dérépression)
 - **BGP:** +++, surtt Pénicillinases
 - **BGN:**+, Pénicillinases, Céphalosporinases

Les pénicillines

Mécanismes de résistance bactérienne:

- Résistance non enzymatique:
 - a. Résistance non enzymatique naturelle:
 - Faible affinité pr la cible (Entérocoque PLP5)
 - Imperméabilité de la paroi (Porines des BGN et peni hydrophobes)
 - Efflux actif: +BGN ex: E.coli

Les pénicillines

Mécanismes de résistance bactérienne:

- Résistance non enzymatique:
 - b. Résistance non enzymatique acquise:
 - Modification de la cible: modif. str. des PLP existants (mutation) ou synthèse de PLP supplémentaire ex: PLP2a MRSA
 - Diminution de perméabilité de la paroi:
 - Perte de porines: ex: E. coli OmpF- OmpC-
 - Biofilms: PS extracellulaires (prothèses)
 - Hyper-expression de syst d'efflux: la pompe MexAB-OprM de P. aeruginosa
 - Tolérance: perte d'activité d'autolysines ex: amoxicilline sur E.feacalis

4- Spectre/ indications :

Les céphalosporines :

groupe 1 :, céfaclor, céfalexine (orale) , céfalotine, cefazoline (parentérale) Activité sur cocci G +, et certains bacilles G - (E.coli) S staph producteur β lactamases et R entérobactéries prod cephalosporinases

Groupe 2 : céfuroxime (orale, parentérale), cefoxitine (parentérale) Activité sur cocci G+, ↑ activité G- (E. coli, Klebsiella, Heamophilus, gono ..), Activité entérobactéries prod cephalosporinases
Sauf P.aeruginosa

groupe 3 : cefoperazone, céfotaxime, ceftriaxone (parentérale), céfixime (orale) $\downarrow activit\'e\ cocci\ G+, \uparrow \uparrow$ activit\'e G- et P aeruginosa


groupe 4 : céfépime, cefpirome (parentérale): \uparrow activité G+, $\uparrow \uparrow$ G - / aux C3G

4- Spectre/ indications :

Les céphalosporines :

Grpe	Indications:
C1G	Orale: Infections ORL (+ infections respiratoires basses, infections urinaires non compliqués, cutanées→alternatives à l'ampicilline +l'amoxicilline.
	Inj:antibioprophylaxie chirurgicale
C2G	orale :infections urinaires compliquées à entérobactéries, infection ORL, pulmonaires , abdominales à Klebsiella / haemophilus
	Inj: antibioprophylaxie chirurgicale
C3G	Orale: Infections ORL, broncho-pulmonaires récidivantes, pyélonéphrite. Inj:-infections sévères (méningite, septicémie), germes nosocomiaux - antibioprophylaxie chirurgicale
C4G	Alternative si résistance aux C3G
	24

MÉCANISME DE RÉSISTANCE AUX CÉPHALOSPORINES

5- propriétés pharmacocinétiques:

Formes exclusivement parentérale PéniG , uréiodo, carboxy péni , certaines céphalosporines — instables en milieu acide

Bne résorption orale pour le reste

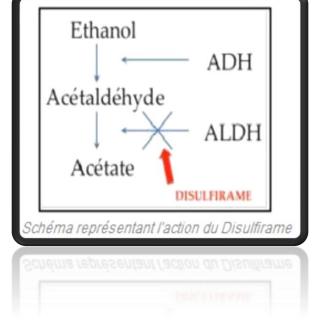
Bne diffusion tissulaire, pour le LCR :C3et 4G , pour les péni bne diffusion si inflammation méningée

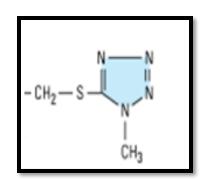
Élimination urinaire prédominante : pour la majorités sauf uréido / carboxipéni , cefoperazone, ceftriaxone \to élimination biliaire

Ces molécules traversent le placenta et passent dans le lait maternel

T ½ d'élimination, court(1h-4h), ATB à action temps dépendant \rightarrow plusieurs administration par jour, si IV \rightarrow perfusion

Péni retard benzathine-peniG: administration IM chaque 21j


6- effets indésirables:


Effet indésirable	Mdt responsable	
Réaction d'hypersensibilité (4 types)	Plus fréquente avec les pénicillines , possible réaction croisée entre les 2 classes $\to CI\ si$ allergie connue	
Troubles digestifs (nausée, vomissement, diarrhée)	Avec toute les β lactamines, risque colite pseudomembraneuse avec céfopérazone PE si ATCD	
Troubles hématologique (leucopénies, neutropénies)	Toutes les β lactamines	
† transitoire des transaminanses	Toutes les β lactamines	
-Lithiase biliaire / rénale -Toxicité rénale	-Ceftriaxone PE si ATCD de lithiase -C1G → nécessité adaptation posologie si IR	

PéniM CI chez la femme enceinte et le nouveau-né (risque d'ictère nucléaire)

EFFETS INDÉSIRABLES

effet antabuse et hypoprothrombinémie: MTT

méthylthiotétrazole (MTT) (céfamandole, céfotétan, céfopérazone, moxalactam)

7- interactions médicamenteuses:

B lactamines	Mdt associé	conséquence
Toutes	Mdts anticoagulants	Risque hémorragique
	Bactériostatiques	↓bactéricidie desB lactamines
	Méthorexate/ pénicillines	Toxicité méthotrexate†
	Pénicillines /aminosides	Synergie d'action
	Allopurinol / peni A	†Risque de R° cutanées
	Mycophénolates mofétil (Peni A)	↓ effet du MMF
	C1G/ mdts nephrotoxiques	†Risque néphrotoxique

II- AUTRES BETA-LACTAMINES:

Carbapénèmes:

Imipénème / méropénème :

spectre large Action sur gram+, gram -, anaérobies
 Infections nosocomiales à germes résistants (adm parentérale)

T1/2 court : Plrs administrations par jour

Monobactames:

aztréonam

BG - : entérobactéries et pseudomonas Infections graves aux germes sensibles (adm parentérale)

T1/2 court : Plrs administrations par jour Pas de réaction croisée avec le reste des B lactamines sauf ceftazidime