Université Badji Mokhtar -Annaba-Faculté de Médecine - Département de Pharmacie Laboratoire de Chimie analytique 2^{ème} année Pharmacie

Série de TD n°08

(Extraction liquide-liquide)

EXERCICE $N^{\bullet}1$:

Une substance S est dissoute dans un solvant A et extraite par un solvant B non miscible à A $(\lambda = 15)$.

- 1- Quelle doit être la valeur de V_B/V_A permettant d'obtenir en une seule extraction 98% de la substance S ?
- 2- Même question dans le cas où on veut obtenir en une seule extraction C_{B1} cinq (5) fois supérieure à C_{A0} .
- 3- Calculer le rendement pour un rapport V_B/V_A égal à celui obtenu en 2^e question et pour un nombre d'extraction égal à 3.

Comparer les résultats obtenus.

EXERCICE N°2:

Soit une solution aqueuse d'un soluté X à 6 gr/200 mL. Sachant que λ (chloroforme/eau) est égale à 5, calculer la quantité extraite, la quantité restante et le rendement après deux extractions successives à raison de 50 mL de chloroforme pour le 1^{er} étage et 75 mL pour le second.

EXERCICE N°3:

On veut extraire une amine à partir d'une solution aqueuse acide.

- 1- Dans quelles conditions de pH doit-on se placer pour obtenir un rendement d'extraction de 99% ?
- 2- Quel est dans ce cas le rapport des volumes de la phase organique et de la phase aqueuse ?
- 3- Quel est le rendement de l'extraction si l'on opère à pH = 5 dans les mêmes conditions de volume déterminées en deuxième question ?

On donne : $\lambda = 25$ et pKa = 8.

CORRIGE TYPE

EXERCICE N°1

1- Calcul de V_B/V_A pour $\rho = 98\%$:

$$\rho = 1 - \frac{1}{\alpha + 1} \implies \alpha = 49.$$

Nous avons : $\alpha = \lambda \frac{v_B}{v_A} \implies V_B/V_A = \alpha/\lambda = 3,27.$

2- Calcul de V_B/V_A pour $C_{B1} = 5C_{A0}$:

$$C_{B1} = 5C_{A0} \implies \frac{Q_{B_1}}{V_B} = 5\frac{Q_{A_0}}{V_A} \implies \frac{Q_{B_1}}{Q_{A_0}} = 5\frac{V_B}{V_A} \implies \frac{V_B}{V_A} = \frac{1}{5}\rho \rightarrow (1)$$

Nous avons : $\rho = \frac{\alpha}{\alpha + 1}$ et $\alpha = \lambda \frac{v_B}{v_A}$ On remplace dans (1)

On obtient:
$$\frac{V_B}{V_A} = \frac{\lambda - 5}{5\lambda} = 0.13$$

Le rendement dans ce cas : $\rho = 65\%$.

3- Calcul du rendement pour $V_B/V_A = 0.13$ et n = 2:

$$\alpha = \lambda \frac{v_B}{v_A} \implies \alpha = 1,95.$$

$$\rho = 1 - \frac{1}{(\alpha+1)}n \implies \rho = 96,10\%.$$

Conclusion: le rendement augmente, si:

- V_B/V_A augmente,
- le nombre d'étages (n) augmente.

EXERCICE N°2

Pour le 1er étage :

$$\alpha_1 = \lambda \frac{v_{B_1}}{v_A} \implies \alpha_1 = 1,25.$$

Donc: $Q_{B1} = 3,34gr$ et $Q_{A1} = 2,66gr$

Pour le 2^e étage :

$$\alpha_2 = \lambda \frac{v_{\text{B2}}}{v_A} \implies \alpha_2 = 1,875.$$

Donc: $Q_{B2} = 1,733gr$ et $Q_{A2} = 0,927gr$

La quantité extraite : $\Sigma Q_B = Q_{B1} + Q_{B2} = 5,073 gr.$

La quantité restante : $Q_{A2} = 0.927 gr$.

Le rendement : $\rho = \frac{\Sigma QB}{OA0} = 84,55\%$.

EXERCICE N°3

1- Conditions de pH pour l'obtention d'un rendement de 99% :

R-NH₂

$$\frac{\text{solvant organique}}{\text{eau}} = \frac{1}{\text{R-NH}_2}$$

$$R-\text{NH}_2 + \text{H}_3\text{O}^+ \iff \text{R-NH}_3^+ + \text{H}_2\text{O}$$

$$D = \frac{\left| R\text{-NH}_2 \right|_0}{\left| R\text{-NH}_2 \right|_e + \left| R\text{-NH}_3^+ \right|_e} \quad \text{avec} : \left| R\text{-NH}_3^+ \right|_e = \frac{\left| R\text{-NH}_2 \right|_e \cdot \left| H_3 O^+ \right|}{\text{Ka}}$$

On trouve alors que :
$$D = \frac{\left|R - NH_2\right|_O}{\left|R - NH_2\right|_e \cdot \left(1 + \frac{\left|H_3O^+\right|}{Ka}\right)} \implies \boxed{D = \frac{\lambda}{\left(1 + \frac{\left|H_3O^+\right|}{Ka}\right)}}$$

$$\rho=0.99 \implies D \simeq \lambda$$

Soit que :
$$\frac{|H_3O^+|}{Ka} \ll 1 \implies \frac{|H_3O^+|}{Ka} \approx 0.01$$

En découle que : $pH = pKa +2 \Longrightarrow pH \ge 10$

2- Rapport des volumes de la phase organique et de la phase aqueuse (Vo/Ve) :

3

$$\begin{split} \rho &= \frac{\alpha}{\alpha + 1} \Longrightarrow \boxed{\alpha = \frac{\rho}{1 - \rho} = 99} \\ \alpha &= D. \frac{V_0}{V_e} \Longrightarrow \boxed{\frac{V_0}{V_e} = \frac{\alpha}{\lambda} \ (D \simeq \lambda)} \ \text{On trouve que} : \boxed{\frac{V_0}{V_e} = 3,96} \end{split}$$

3- Rendement de l'extraction si l'on opère à pH = 5 dans les mêmes conditions de volume :

$$D = \frac{\lambda}{\left(1 + \frac{|H_3O^+|}{|K_a|}\right)} \approx 0.025 \text{ (pH = 5)}$$

$$\alpha = D. \frac{V_0}{V_e} = 0.025 . 3.96 = 0.099$$

On trouve que :
$$\rho = \frac{\alpha}{\alpha + 1} = 9,00\%$$