Solution du TD Corrosion

<u>Exercice = 1</u>

a et b : oxydation car il y a libération d'électrons. I et Al sont des réducteurs.

c et d : réduction car il y a capture d'électrons. Na⁺ et Br₂ sont des oxydants.

$Exercice = ^{\bullet} 2$

 Ag^{+}/Ag ; H^{+}/H_{2} ; Sn^{2+}/Sn ; Fe^{2+}/Fe ; NO^{3-}/NO ; Al^{3+}/Al ; Cl_{2}/Cl^{-} ; Zn^{2+}/Zn .

 $Ag^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} \longleftrightarrow \quad Ag; \quad 2H^{\scriptscriptstyle +} + 2e^{\scriptscriptstyle -} \longleftrightarrow \quad H_2; \qquad Sn^{2+} + 2e^{\scriptscriptstyle -} \longleftrightarrow \quad Sn; \qquad Fe^{2+} + 2e^{\scriptscriptstyle -} \longleftrightarrow \quad Fe;$

 $NO^{3-} + 4H^+ + 3e^- \leftrightarrow NO + 2H_2O;$ $Al^{3+} + 3e^- \leftrightarrow Al;$ $Cl_2 + 2e^- \leftrightarrow 2Cl^-;$

 $Zn^{2+} + 2e^{-} \leftrightarrow Zn$.

Exercice = • *3*

a) Fe \leftrightarrow Fe²⁺ + 2e⁻ ; $2H^+ + 2e^- \leftrightarrow H_2$

La reaction global est : $2H^+ + Fe = H_2 + Fe^{2+}$

b) Les coefficients nous montrent qu'une mole de Fe correspond à un dégagement de une mole de H_2 , donc :

$$n(Fe) = n(H_2)$$

$$n(Fe) = m(Fe)/M(Fe) = 0.5/55.8 = 8.96.10^{-3} \text{ mol}$$

Si on prend comme volume molaire normal 22,41:

$$V(H_2) = 8,96.10^{-3}.22,4$$
 $V(H_2) = 200 \text{ cm}^3$

c) Il y a des Fe^{2+} , des $H_3O^+(H^+)$, des Cl^- et des OH^- .

On a le nombre de mol de Fe égal au même nombre de mol de $Fe^{+2} \leftrightarrow n(Fe) = n(Fe^{2+})$

$$[Fe^{2+}] = 8,96.10^{-3}/50.10^{-3}$$
 donc $[Fe^{2+}] = 0,179 \text{ mol.}1^{-1}$

Au début :
$$[HCl] = [H^+] = [Cl^-] = 1 \text{ mol.} l^{-1}$$

Comme Cl⁻ ne réagit pas, à la fin, on a encore :
$$[Cl-] = 1 \text{ mol.} l^{-1}$$

Par contre : [H⁺] change puisque y a un dégagement de H₂

$$[H^+]$$
 restant = $[H^+]$ initial – $[H^+]$ disparu

$$[H^+]$$
 initial = 1 mol.l⁻¹

$$[H^+]$$
 disparu = $2[Fe^{2+}] = 0.359 \text{ mol.}1^{-1}$ $[H^+] = 0.64 \text{ mol.}1^{-1}$

$Exercice = ^{\bullet} 4$

1) Fe
$$\leftrightarrow$$
 Fe²⁺ + 2 e⁻

3) a)
$$m(Fe) = 1,2.10^{-4}.24.365$$
 $m(Fe) = 1,05 \text{ kg.m}^{-2}.\text{an}^{-1}$

- b) 1 mole de fer correspond à 2 moles de e⁻, donc à 2 F.
 - 2) Q = m(Fe).2F/N(Fe)

3)
$$Q = 1,05$$
. $X 10^3 2.96500/55,8$ donc $Q = 3,64.10^6$ C