
Chapter 3

Molecular Mechanics

We don’t give a damn where the electrons are.
Words to the author, from the president of a

well-known chemical company, emphasizing
his firm’s position on basic research.

3.1 PERSPECTIVE

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as
a collection of balls (corresponding to the atoms) held together by springs (correspond-
ing to the bonds) (Fig. 3.1). Within the framework of this model, the energy of the
molecule changes with geometry because the springs resist being stretched or bent
away from some “natural” length or angle, and the balls resist being pushed too closely
together. The mathematical model is thus conceptually very close to the intuitive feel
for molecular energetics that one obtains when manipulating molecular models of plas-
tic or metal: the model resists distortions (it may break!) from the “natural” geometry
that corresponds to the bond lengths and angles imposed by the manufacturer, and in
the case of space-filling models, atoms cannot be forced too closely together. The MM
model clearly ignores electrons.

The principle behind MM is to express the energy of a molecule as a function of
its resistance toward bond stretching, bond bending, and atom crowding, and to use
this energy equation to find the bond lengths, angles, and dihedrals corresponding to
the minimum-energy geometry – or more precisely, to the various possible potential
energy surface minima (chapter 2). In other words, MM uses a conceptually mechanical
model of a molecule to find its minimum-energy geometry (for flexible molecules, the
geometries of the various conformers). The form of the mathematical expression for
the energy, and the parameters in it, constitute a forcefield, and MM methods are
sometimes called forcefield methods. The term arises because the negative of the first
derivative of the potential energy of a particle with respect to displacement along some
direction is the force on the particle; a “forcefield” E(x, y, z coordinates of atoms) can
be differentiated to give the force on each atom.
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The method makes no reference to electrons, and so cannot (except by some kind
of empirical algorithm) throw light on electronic properties like charge distributions
or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the Born–
Oppenheimer approximation, for only if the nuclei experience what amounts to a static
attractive force, whether from electrons or springs, does a molecule have a distinct
geometry (section 2.3).

An important point, which students sometimes have a problem with, is that the con-
cept of a bond is central to MM, but not essential – although often useful – in electronic
structure calculations. In MM a molecule is defined by the atoms and the bonds, which
latter are regarded almost literally as springs holding the atoms together. Usually, bonds
are placed where the rules for drawing structural formulas require them, and to do a MM
calculation you must specify each bond as single, double, etc., since this tells the pro-
gram how strong a bond to use (sections 3.2.1 and 3.2.2). In an electronic structure
calculation – ab initio (chapter 5), semiempirical (SE) (chapter 6), and density func-
tional theory (chapter 7) – a molecule is defined by the relative positions of its atomic
nuclei, the charge, and the “multiplicity” (which follows easily from the number of
unpaired electrons). An oxygen nucleus and two protons with the right x, y, z coor-
dinates, no charge, and multiplicity one (no unpaired electrons) is a water molecule.
There is no need to mention bonds here, although the chemist might wish to somehow
extract this useful concept from this picture of nuclei and electrons. This can be done
by calculating the electron density and associating a bond with, for example, a path
along which electron density is concentrated, but there is no unique definition of a bond
in electronic structure theory. It is worth noting, too, that in some graphical interfaces
used in computational chemistry bonds are specified by the user, while in others they
are shown by the program depending on the separation of pairs of atoms. The novice
may find it disconcerting to see a specified bond still displayed even when a change in
geometry has moved a pair of atoms far apart, or to see a bond vanish when a pair has
moved beyond the distance recognized by some fudge factor.

Historically [2], MM seems to have begun as an attempt to obtain quantitative
information about chemical reactions at a time when the possibility of doing quan-
titative quantum mechanical (chapter 4) calculations on anything much bigger than the
hydrogen molecule seemed remote. Specifically, the principles of MM, as a poten-
tially general method for studying the variation of the energy of molecular systems
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with their geometry, were formulated in 1946 by Westheimer1 and Meyer [3a], and by
Hill [3b], In this same year Dostrovsky, Hughes2 and Ingold3 independently applied
MM concepts of to the quantitative analysis of the reaction, but they do not seem
to have recognized the potentially wide applicability of this approach [3c]. In 1947
Westheimer [3d] published detailed calculations in which MM was used to estimate the
activation energy for the racemization of biphenyls.

Major contributors to the development of MM have been Schleyer4 [2b,c] and
Allinger5 [1c,d]; one of Allinger’s publications on MM [1d] is, according to the Citation
Index, one of the most frequently cited chemistry papers. The Allinger group has, since
the 1960s, been responsible for the development of the “MM-series” of programs, com-
mencing with MM1 and continuing with the currently widely-used MM2 and MM3,
and the recent MM4 [4]. MM programs [5] like Sybyl and UFF will handle molecules
involving much of the periodic table, albeit with some loss of accuracy that one might
expect for trading breadth for depth, and MM is the most widely-used method for
computing the geometries and energies of large biological molecules like proteins and
nucleic acids (although recently SE (chapter 6) and even ab initio (chapter 5) methods
have begun to be applied to these large molecules).

3.2 THE BASIC PRINCIPLES OF MM

3.2.1 Developing a forcefield
The potential energy of a molecule can be written

where etc. are energy contributions from bond stretching, angle bending, tor-
sional motion (rotation) around single bonds, and interactions between atoms or groups
which are nonbonded (not directly bonded together). The sums are over all the bonds,
all the angles defined by three atoms A–B–C, all the dihedral angles defined by four
atoms A–B–C–D, and all pairs of significant nonbonded interactions. The mathemat-
ical form of these terms and the parameters in them constitute a particular forcefield.
We can make this clear by being more specific; let us consider each of these four terms.

The bond stretching term. The increase in the energy of a spring (remember that we
are modelling the molecule as a collection of balls held together by springs) when it is

1Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor University of
Chicago, Harvard.

2 Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London. Professor,
London. Died 1963.

3Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London. Knighted
1958. Died London 1970.

4Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton; institute
codirector and professor University of Erlangen-Nürnberg, 1976–1998. Professor University of Georgia.

5Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los Angeles,
1954. Professor Wayne State University, University of Georgia.
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stretched (Fig. 3.2) is approximately proportional to the square of the extension:

where is the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants with the
traditional force constant from, say, spectroscopy – see section 3.3); the bigger
the stiffer the bond/spring – the more it resists being stretched; l is the length of the
bond when stretched; and      is the equilibrium length of the bond, its “natural” length.

If we take the energy corresponding to the equilibrium length as the zero of energy,
we can replace by

The angle bending term. The increase in energy of system ball–spring–ball–spring–
ball, corresponding to the triatomic unit A–B–C (the increase in “angle energy”)
is approximately proportional to the square of the increase in the angle (Fig. 3.2);
analogously to Eq. (3.2):

where is a proportionality constant (one-half the angle bending force constant [6];
note the warning about identifying MM force constants with the traditional force con-
stant from, say, spectroscopy –see section 3.3); a is the size of the angle when distorted;
and      is the equilibrium size of the angle, its “natural” value.
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The torsional term. Consider four atoms sequentially bonded: A–B–C–D (Fig. 3.3).
The dihedral angle or torsional angle of the system is the angle between the A–B
bond and the C–D bond as viewed along the B–C bond. Conventionally this angle is
considered positive if regarded as arising from clockwise rotation (starting with A–B
covering or eclipsing C–D) of the back bond (C–D) with respect to the front bond (A–B).
Thus in Fig. 3.3 the dihedral angle A–B–C–D is 60° (it could also be considered as
being –300°). Since the geometry repeats itself every 360°, the energy varies with
the dihedral angle in a sine or cosine pattern, as shown in Fig. 3.4 for the simple
case of ethane. For systems A–B–C–D of lower symmetry, like butane (Fig. 3.5), the
torsional potential energy curve is more complicated, but a combination of sine or
cosine functions will reproduce the curve:
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The nonbonded interactions term. This represents the change in potential energy with
distance apart of atoms A and B that are not directly bonded (as in A–B) and are not
bonded to a common atom (as in A–X–B); these atoms, separated by at least two atoms
(A–X–Y–B) or even in different molecules, are said to be nonbonded (with respect
to each other). Note that the A–B case is accounted for by the bond stretching term

and the A–X–B term by the angle bending term            but the nonbonded term
is, for the A–X–Y–B case, superimposed upon the torsional term              we

can think of as representing some factor inherent to resistance to rotation about
a (usually single) bond X–Y (MM does not attempt to explain the theoretical, electronic
basis of this or any other effect), while for certain atoms attached to X and Y there may
also be nonbonded interactions.

The potential energy curve for two nonpolar nonbonded atoms has the general form
shown in Fig. 3.6. A simple way to approximate this is by the so-called Lennard–Jones
12-6 potential [7]:

where r is the distance between the centers of the nonbonded atoms or groups.
The function reproduces the small attractive dip in the curve (represented by the

negative term) as the atoms or groups approach one another, then the very steep rise
in potential energy (represented by the raising the positive, repulsive term raised to
a large power) as they are pushed together closer than their van der Waals radii. Setting

we find that for the energy minimum in the curve the corresponding value
of     is                               i.e.
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If we assume that this minimum corresponds to van der Waals contact of the nonbonded
groups, then the sum of the van der Waals radii of the groups A
and B. So

and so

Thus can be calculated from or estimated from the van der Waals radii.
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Setting we find that for this point on the curve i.e.

If we set (from Eq. (3.6)) in Eq. (3.5), we find

i.e.

So can be calculated from the depth of the energy minimum.
In deciding to use equations of the form (3.2)–(3.5) we have decided on a particular

MM forcefield. There are many alternative forcefields. For example, we might have
chosen to approximate by the sum of a quadratic and a cubic term:

This gives a somewhat more accurate representation of the variation of energy with
length. Again, we might have represented the nonbonded interaction energy by a more
complicated expression than the simple 12-6 potential of Eq. (3.5) (which is by no means
the best form for nonbonded repulsions). Such changes would represent changes in the
forcefield.

3.2.2 Parameterizing a forcefield
We can now consider putting actual numbers, etc., into Eqs (3.2)–
(3.5), to give expressions that we can actually use. The process of finding these numbers
is called parameterizing (or parametrizing) the forcefield. The set of molecules used
for parameterization, perhaps 100 for a good forcefield, is called the training set. In the
purely illustrative example below we use just ethane, methane and butane.

Parameterizing the bond stretching term. A forcefield can be parameterized by ref-
erence to experiment (empirical parameterization) or by getting the numbers from
high-level ab initio or density functional calculations, or by a combination of both
approaches. For the bond stretching term of Eq. (3.2) we need and Experi-
mentally, could be obtained from IR spectra, as the stretching frequency of a bond
depends on the force constant (and the masses of the atoms involved) [8], and could
be derived from X-ray diffraction, electron diffraction, or microwave spectroscopy [9].

Let us find          for the C/C bond of ethane by ab initio (chapter 5) calculations.
Normally high-level ab initio calculations would be used to parameterize a forcefield,
but for illustrative purposes we can use the low-level but fast STO-3G method [10].
Eq. (3.2) shows that a plot of against should be linear with a slope of

Table 3.1 and Fig. 3.7 show the variation of the energy of ethane with stretching
of the C/C bond, as calculated by the ab initio STO-3G method. The equilibrium bond
length has been taken as the STO-3G length:
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The slope of the graph is

Similarly, the CH bond of methane was stretched using ab initio STO-3G calcula-
tions; the results are

Parameterizing the angle bending term. From Eq. (3.3), a plot of against
should be linear with a slope of  From STO-3G calculations on bending
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the H–C–C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

Calculations on staggered butane gave for the C–C–C angle

Parameterizing the torsional term. For the ethane case (Fig. 3.4), the equation for
energy as a function of dihedral angle can be deduced fairly simply by adjusting the

accurate torsional potential energy function can be created with five parameters,      and

The values of the parameters              are given in Table 3.2. The calculated curve can be
made to match the experimental one as closely as desired by using more terms (Fourier
analysis).

Parameterizing the nonbonded interactions term. To parameterize Eq. (3.5) we might
perform ab initio calculations in which the separation of two atoms or groups in different

basic equation                     to give                                                            For butane (Fig. 3.5),
using Eq. (3.4) and experimenting with a curve-fitting program shows that a reasonably
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molecules (to avoid the complication of concomitant changes in bond lengths and
angles) is varied, and fit Eq. (3.5) to the energy vs. distance results. For nonpolar
groups this would require quite high-level calculations (chapter 5), as van der Waals
or dispersion forces are involved. We shall approximate the nonbonded interactions of
methyl groups by the interactions of methane molecules, using experimental values of

and , derived from studies of the viscosity or the compressibility of methane. The
two methods give slightly different values [7b], but we can use the values

and

Summary of the parameterization of the forcefield terms. The four terms of Eq. (3.1)
were parameterized to give:

The parameters k of Eq. (3.25) are given in Table 3.2.

Note that this parameterization is only illustrative of the principles involved; any really
viable forcefield would actually be much more sophisticated. The kind we have devel-
oped here might at the very best give crude estimates of the energies of alkanes. An
accurate, practical forcefield would be parameterized as a best fit to many experimental
and/or calculational results, and would have different parameters for different kinds of
bonds, e.g. C–C for acyclic alkanes, for cyclobutane and for cyclopropane. A force-
field able to handle not only hydrocarbons would obviously need parameters involving
elements other than hydrogen and carbon. Practical forcefields also have different para-
meters for various atom types, like carbon vs. carbon, or amine nitrogen vs.
amide nitrogen. In other words, a different value would be used for, say, stretching
involving an C–C bond than for an C–C bond. This is clearly nec-
essary since the force constant of a bond depends on the hybridization of the atoms
involved; the IR stretch frequency for the bond comes at roughly
while that for the bond is about                     [8]. Since the vibrational fre-
quency of a bond is proportional to the square root of the force constant, the force
constants are in the ratio of about for corresponding atoms, force
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constants are in fact generally roughly proportional to bond order (double bonds and
triple bonds are about two and three times as stiff, respectively, as the corresponding
single bonds). Some forcefields account for the variation of bond order with conforma-
tion (twisting p orbitals out of alignment reduces their overlap) by performing a simple
PPP molecular orbital calculation (chapter 6) to obtain the bond order.

A sophisticated forcefield might also consider H/H nonbonded interactions explic-
itly, rather than simply subsuming them into methyl/methyl interactions (combining
atoms into groups is the feature of a united atom forcefield). Furthermore, non-
bonding interactions between polar groups need to be accounted for in a field not
limited to hydrocarbons. These are usually handled by the well-known potential
energy/electrostatic charge relationship

which has also been used to model hydrogen bonding [11].
A subtler problem with the naive forcefield developed here is that stretching, bend-

ing, torsional, and nonbonded terms are not completely independent. For example,
the butane torsional potential energy curve (Fig. 3.5) does not apply precisely to all

systems, because the barrier heights will vary with the length of the
central C–C bond, obviously decreasing (other things being equal) as the bond is length-
ened, since there will be a decrease in the interactions (whatever causes them) between
the and on one of the carbons of the central C–C and those on the other
carbon. This could be accounted for by making the k’s of Eq. (3.25) a function of the
X–Y length. Actually, partitioning the energy of a molecule into stretching, bending,
etc. terms is somewhat formal; e.g. the torsional barrier in butane can be considered
to be partly due to nonbonded interactions between the methyl groups. It should be
realized that there is no one, right functional form for an MM forcefield (see, e.g. [1b]);
accuracy, versatility, and speed of computation are the deciding factors in devising a
forcefield.

3.2.3 A calculation using our forcefield
Let us apply the naive forcefield developed here to comparing the energies of two
2,2,3,3-tetramethylbutane i.e. t-Bu-Bu-t) geometries. We compare
the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our “natural”
or standard values (i.e. at the STO-3G values we took as the equilibrium bond lengths
and angles in section 3.2.2) with that of structure 2, where the central C–C bond has
been stretched from 1.538 to 1.600 Å, but all other bond lengths, as well as the bond
angles and dihedral angles, are unchanged. Figure 3.8 shows the nonbonded distances
we need, which would be calculated by the program from bond lengths, angles and
dihedrals. Using Eq. (3.1):
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For structure 1

Bond stretch contribution cf. structure with

Bond stretch contribution cf. structure with

Bond bend contribution cf. structure with

Bond bend contribution cf. structure with

Torsional contribution cf. structure with no gauche–butane interactions

nonbonding contribution cf. structure with noninteracting
Actually, nonbonding interactions are already included in the torsional term (as

gauche–butane interactions); we might have used an ethane-type torsional function
and accounted for interactions entirely with nonbonded terms. However, in
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comparing calculated relative energies the torsional term will cancel out.

For structure 2

Bond stretch contribution cf. structure with

Bond stretch contribution cf. structure with

Bond bend contribution cf. structure with

Bond bend contribution cf. structure with

Torsional contribution cf. structure with no gauche–butane interactions.

The stretching and bending terms for structure 2 are the same as for structure 1,
except for the contribution of the central C–C bond; strictly speaking, the torsional
term should be smaller, since the opposing groups have been moved apart.

nonbonding contribution cf. structure with noninteracting

So the relative energies are calculated to be

This crude method predicts that stretching the central C/C bond of 2,2,3,3-
tetramethylbutane from the approximately normal length of 1.583 Å
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(structure 1) to the quite “unnatural” length of 1.600 Å (structure 2) will lower the poten-
tial energy by and indicates that the drop in energy is due very largely to the
relief of nonbonded interactions. A calculation using the accurate forcefield MM3 [12]

(roughly to about ) and medium-sized (roughly to  organic molecules.
It is by no means limited to organic molecules, as forcefields like SYBYL and UFF [5]
have been parameterized for most of the periodic table, but the great majority of MM
calculations have been done on organics, probably largely because MM was the cre-
ation of organic chemists (this is probably because the concept of geometric structure
has long been central in organic chemistry). The most frequent use of MM is undoubt-
edly to obtain reasonable starting structures for ab initio, SE, or DFT (chapters 5–7)

gave an energy difference of                        between a “standard” geometry approximately
like structure 1, and a fully optimized geometry, which had a central C/C bond length
of 1.576 Å. The surprisingly good agreement is largely the result of a fortuitous can-
cellation of errors, but this does not gainsay the fact that we have used our forcefield to
calculate something of chemical interest, namely the relative energy of two molecular
geometries. In principle, we could have found the minimum-energy geometry accord-
ing to this forcefield, i.e. we could have optimized the geometry (chapter 2). Geometry
optimization is in fact the main use of MM, and modern programs employ analytical
first and second derivatives of the energy with respect to the geometric coordinates for
this (chapter 2).

3.3 EXAMPLES OF THE USE OF MM

If we consider the applications of MM from the viewpoint of the goals of those who
use it, then the main applications have been:

(1)

(2)

(3)

(4)

(5)

to calculate the geometries (and perhaps energies) of small to medium-sized
(i.e. nonpolymeric) molecules, very often in order to a reasonable starting geometry
for another type (e.g. ab initio) of calculation;

to calculate the geometries and energies of polymers (mainly proteins and nucleic
acids);

to calculate the geometries and energies of transition states (infrequent);

as an aid to organic synthesis;

to generate the potential energy function under which molecules move, for
molecular dynamics calculations.

These applications are not all independent. For example, a chemist planning a synthesis
might use MM to obtain a plausible geometry for an intermediate involved in the
synthesis (the use ofMM in synthesis is now so common it is likely that this is often not
reported in the literature), and a protein or nucleic acid could be studied with molecular
dynamics. Examples of these five facets of the use of MM will be given.

3.3.1 Geometries and energies of small- to
medium-sized molecules

Molecular mechanics is used mainly to calculate geometries and energies for small-
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calculations. Nowadays this is usually done by building the molecule with an interac-
tive builder in a graphical user interface, then optimizing it with MM with the click
of a mouse. The resulting structure is then subjected to an ab initio, etc. calculation.
MM calculations are usually done only for equilibrium structures (i.e. relative minima
on the PES), but by constraining geometric parameters one can approximate roughly
transition states (below).

The two salient features of MM calculations on small to medium-sized molecules
is that they are fast and they can be very accurate. Times required for a geometry
optimization of unbranched of symmetry, with the Merck Molecular
Force Field (MMFF), the SE AM1 (chapter 6) and the ab initio HF/3-21G (chapter 5)
methods, as implemented with the program SPARTAN [13], were 1.2, 16 s, and 57 min,
respectively (on an obsolescent machine a few years ago; these times would now by
shorter by a factor of at least 2). Clearly as far as speed goes there is no contest between
the methods, and the edge in favor of MM increases with the size of the molecule. In
fact, MM was till recently the only practical method for calculations on molecules with
more than about 100 heavy atoms (in computational chemistry a heavy atom is any atom
heavier than helium). Even programs not designed specifically for macromolecules
will handle molecules with 1000 or more atoms on machines of modest power (e.g. a
good PC).

Molecular mechanics energies can be very accurate for families of compounds for
which the forcefield has been parameterized. Appropriate parameterization permits
calculation of (heat of formation, enthalpy of formation) in addition to strain
energy [1f]. For the MM2 program (see below), for standard hydrocarbons errors
are usually only which is comparable to experimental error, and for
oxygen containing organics the errors are only the errors in MM
conformational energies are often only about [15]. MM geometries are
usually reasonably good for small to medium-sized molecules [4,9a,16]; for the MM3
program (see below) the RMS error in bond lengths for cholesteryl acetate was only
about 0.007 Å [4]. “Bond length” is, if unqualified, somewhat imprecise, since different
methods of measurement give somewhat different values [4,9a] (section 5.5.1). MM
geometries are routinely used as input structures for quantum-mechanical calculations,
but in fact the MM geometry and energy are in some cases as good or better than
those from a “higher-level calculation” [17]. The benchmark MM programs for small
to medium-sized molecules are probably MM2 and MM3, which will presumably be
gradually supplanted by MM4 [4]; the MMFF [18] is likely to become very popular
too, not least because of its implementation in SPARTAN [13].

3.3.2 Geometries and energies of polymers
Next to generating geometries and energies of small to medium-sized molecules, the
main use of MM is to model polymers, mainly biopolymers (proteins, nucleic acids,
polysaccharides). Forcefields have been developed specifically for this; two of the
most widely-used of these are CHARMM (Chemistry at Harvard using Molecular
Mechanics) [19] (the academic version; the commercial version is CHARMm) and
the forcefields in the computational package AMBER (Assisted Model Building with
Energy Refinement) [20]. CHARMM was designed to deal with biopolymers, mainly
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proteins, but has been extended to handle a range of small molecules. AMBER is per-
haps the most widely used set of programs for biological polymers, being able to model
proteins, nucleic acids, and carbohydrates. Programs like AMBER and CHARMM
that model large molecules have been augmented with quantum mechanical meth-
ods (SE [21] and even ab initio [22]) to investigate small regions where treatment of
electronic processes like transition state formation may be critical.

An extremely important aspect of the modelling (which is done largely with MM) of
biomolecules is designing pharmacologically active molecules that can fit into active
sites (the pharmacophores) of biomolecules and serve as useful drugs. For example,
a molecule might be designed to bind to the active site of an enzyme and block the
undesired reaction of the enzyme with some other molecule. Pharmaceutical chemists
computationally craft a molecule that is sterically and electrostatically complementary
to the active site, and try to dock the potential drug into the active site. The binding
energy of various candidates can be compared and the most promising ones can then
be synthesized, as the second step on the long road to a possible new drug. The compu-
tationally assisted design of new drugs and the study of the relationship of structure to
activity (quantitative structure–activity relationships, QSAR) is one of the most active
areas of computational chemistry [23].

3.3.3 Geometries and energies of transition states
By far the main use of MM is to find reasonable geometries for the ground states
of molecules, but it has also been used to investigate transition states. The calcula-
tion of transition states involved in conformational changes is a fairly straightforward
application of MM, since “reactions” like the interconversion of butane or cyclohexane
conformers do not in involve the deep electronic reorganization that we call bond-
making or bond-breaking. The changes in torsional and nonbonded interactions that
accompany them are the kinds of processes that MM was designed to model, and so
good transition state geometries and energies can be expected for this particular kind of
process; transition state geometries cannot be (readily) measured, but the MM energies
for conformational changes agree well with experiment: indeed, one of the two very
first applications of MM [3a,d] was to the rotational barrier in biphenyls (the other
was to the reaction [3c]). Since MM programs are usually not able to optimize
an input geometry toward a saddle point (see below), one normally optimizes to a
minimum subject to the symmetry constraint expected for the transition state. Thus
for ethane, optimization to a minimum within symmetry (i.e. by constraining the
HCCH dihedral to be or by starting with a structure of exactly symmetry)
will give the transition state, while optimization with symmetry gives the ground-
state conformer (Fig. 3.9). Optimizing an input cyclohexane structure (Fig. 3.10)
gives the stationary point nearest this input structure, which is the transition state for
interconversion of enantiomeric twist cyclohexane conformers.

There are several examples of the application of MM to actual chemical reactions,
as distinct from conformational changes; the ones mentioned here are taken from the
review by Eksterowicz and Houk [24]. The simplest way to apply MM to transition
states is to approximate the transition state by a ground-state molecule. This can some-
times give surprisingly good results. The rates of solvolysis of compounds RX to the

59
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cation correlated well with the energy difference between the hydrocarbon RH, which
approximates RX, and the cation which approximates the transition state leading to
this cation. This is not entirely unexpected, as the Hammond postulate [25] suggests that
the transition state should resemble the cation. In a similar vein, the activation energy for
solvolysis has been approximated as the energy difference between a “methylalkane”,
with corresponding to X in RX, and a ketone, the carbon of which corresponds
to the incipient cationic carbon of the transition state.
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One may wish a more precise approximation to the transition state geometry than
is represented by an intermediate or a compound somewhat resembling the transition
state. This can sometimes be achieved by optimizing to a minimum subject to the
constraint that the bonds being made and broken have lengths believed (e.g. from
quantum mechanical calculations on simple systems, or from chemical intuition) to
approximate those in the transition state, and with appropriate angles and dihedrals
also constrained. With luck this will take the input structure to a point on the potential
energy surface near the saddle point. For example, an approximation to the geometry of
the transition state for formation of cyclohexene in the Diels–Alder reaction of butadiene
with ethene can be achieved (Fig. 3.11) by essentially building a boat conformation of
cyclohexene, constraining the two forming C/C bonds to about 2.1 Å, and optimizing,
using the bridge (later removed) to avoid twisting and to maintain symmetry;
optimization with a dihedral constraint removes steric conflict between two hydrogens
and gives a reasonable starting structure for, say, an ab initio optimization.

The most sophisticated approach to locating a transition state with MM is to use an
algorithm that optimizes the input structure to a true saddle point, that is to a geometry
characterized by a Hessian with one and only one negative eigenvalue (chapter 2). To
do this the MM program must be able not only to calculate second derivatives, but
must also be parameterized for the partial bonds in transition states, which is a feature
lacking in standard MM forcefields.

MM has been used to study the transition states involved in reactions, hydrob-
orations, cycloadditions (mainly the Diels-Alder reaction), the Cope and Claisen
rearrangements, hydrogen transfer, esterification, nucleophilic addition to carbonyl
groups and electrophilic C/C bonds, radical addition to alkenes, aldol condensations,
and various intramolecular reactions [24].

3.3.4 MM in organic synthesis
In the past 15 years or so MM has become widely used by synthetic chemists, thanks
to the availability of inexpensive computers (personal computers will easily run MM
programs) and user-friendly and relatively inexpensive programs [5]. Since MM can
calculate the energies and geometries of ground state molecules and (within the lim-
itations alluded to above) transition states, it can clearly be of great help in planning
syntheses. To see which of two or more putative reaction paths should be favored,
one might (1) use MM like a hand-held model: examine the substrate molecule for
factors like steric hindrance or proximity of reacting groups, or (2) approximate the
transition states for alternative reactions using an intermediate or some other plausi-
ble proxy (cf. the treatment of solvolysis in the discussion of transition states above),
or (3) attempt to calculate the energies of competing transition states (cf. the above
discussion of transition state calculations).

The examples given here of the use of MM in synthesis are taken from the review
by Lipkowitz and Peterson [26]. In attempts to simulate the metal-binding ability of
biological acyclic polyethers, the tricyclic 1 (Fig. 3.12) and a tetracyclic analogue were
synthesized, using as a guide the indication from MM that these molecules resemble the
cyclic polyether 18-crown-6, which binds the potassium ion; the acyclic compounds
were found to be indeed comparable to the crown ether in metal-binding ability.
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Enediynes like 2 (Fig. 3.12) are able to undergo cyclization to a phenyl-type diradical
3, which in vivo can attack DNA; in molecules with an appropriate triggering mechanism
this forms the basis of promising anticancer activity. The effect of the length of the
constraining chain (i.e. of n in 2) on the activation energy was studied by MM, aiding
the design of compounds (potential drugs) that were found to be more active against
tumors than are naturally-occurring enediyne antibiotics.

To synthesize the very strained tricyclic system of 4 (Fig. 3.12), a photochemical
Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should be
about                        less stable than that of the available 5. Photolysis of the diazoketone
6 gave a high-energy carbene which lay above the carbon skeleton of 4 and so was able
to undergo Wolff rearrangement ring contraction to the ketene precursor of 4.

A remarkable (and apparently still unconfirmed) prediction of MM is the claim
that the perhydrofullerene should be stabler with some hydrogens inside the
cage [27].

3.3.5 Molecular dynamics and Monte Carlo simulations
Programs like those in AMBER are used not only for calculating geometries and ener-
gies, but also for simulating molecular motion, i.e. for molecular dynamics [28], and
for calculating the relative populations of various conformations or other geometric
arrangements (e.g. solvent molecule distribution around a macromolecule) in Monte
Carlo simulations [29]. In molecular dynamics Newton’s laws of motion are applied



 2.4 min; 1.4min; 3.7min; 1.5GHz Pentium 4). For
larger molecules where MP2 would need hours, MM calculations might still take only
seconds. Note, however, that ab initio methods provide information that MM cannot,
and are far more reliable for molecules outside those of the kind used in the MM
training set (section 3.2.2). The worst MMFF bond length deviation from experiment
among the 20 molecules is 0.021 Å (the bond of propene; the MP2 deviation
is 0.020 Å); most of the other errors are ca. 0.01 Å or less. The worst bond angle
error is 13.6°, for HOF, and for HOCl the deviation is 7.9°, the second worst angle
error in the set. This suggests a problem for the MMFF with X–O–Halogen angles,
but while for OF deviation from the MP2 angle (which is likely to be close to

only
MMFF dihedral angles are remarkably good, considering that torsional barriers are

believed to arise from subtle quantum mechanical effects. The worst dihedral angle
error is 10°, for HOOH, and the second worst, –5.0°, is for the analogous HSSH.
The popular ab initio HF/3-21G (chapter 5) and SE PM3 (chapter 6) methods also
have trouble with HOOH, predicting a dihedral angle of 180°. For those dihedrals not
involving OO or SS bonds, (an admittedly small selection), the MMFF errors are only
ca. l°–2°, cf. ca. 2°–6° for MP2.
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to molecules moving in a MM forcefield, although relatively small parts of the sys-
tem (system: with biological molecules in particular modelling is often done not on an
isolated molecule but on a molecule and its environment of solvent and ions) may be
simulated with quantum mechanical methods [21,22]. In Monte Carlo methods random
numbers decide how atoms or molecules are moved to generate new conformations or
geometric arrangements (states) which are then accepted or rejected according to some
filter. Tens of thousands (or more) of states are generated, and the energy of each is
calculated by MM, generating a Boltzmann distribution.

3.4 GEOMETRIES CALCULATED BY MM

Figure 3.13 compares geometries calculated with the MMFF with those from a rea-
sonably high-level ab initio calculation chapter 5) and from
experiment. The MMFF is a popular force field, applicable to a wide variety of mole-
cules. Popular prejudice holds that the ab initio method is “higher” than MM and so
should give superior geometries. The set of 20 molecules in Fig. 3.13 is also used in
chapters 5, 6, and 7, to illustrate the accuracy of ab initio, SE, and density functional
calculations in obtaining molecular geometries. The data in Fig. 3.13 are analyzed in
Table 3.3. Table 3.4 compares dihedral angles for eight molecules, which are also used
in chapters 5–7.

This survey suggests that for common organic molecules the MMFF is nearly as good
as the ab initio method for calculating geometries. Both methods
give good geometries, but while these MM calculations all take effectively about one
second, MP2 geometry optimizations on these molecules require typically a few minutes

experiment) is for  the deviation is
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3.5 FREQUENCIES CALCULATED BY MM

Any method that can calculate the energy of a molecular geometry can in principle
calculate vibrational frequencies, since these can be obtained from the second deriva-
tives of energy with respect to molecular geometry (section 2.5), and the masses of the
vibrating atoms. Some commercially available MM programs, for example the MMFF
as implemented in SPARTAN [13], can calculate frequencies. Frequencies are useful
(section 2.5) (1) for characterizing a species as a minimum (no imaginary frequencies)
or a transition state or higher-order saddle point (one or more imaginary frequencies),
(2) for obtaining zero-point energies to correct frozen-nuclei energies (section 2.2), and
(3) for interpreting or predicting infrared spectra.

68 Computational Chemistry



Molecular Mechanics 69

(1) Characterizing a species. This is not often done with MM, because MM is
used mostly to create input structures for other kinds of calculations, and to study
known (often biological) molecules. Nevertheless MM can yield information on the
curvature of the potential energy surface (as calculated by that particular forcefield,
anyway) at the point in question. For example, the MMFF-optimized geometries of

(staggered) and (eclipsed) ethane (Fig. 3.3) show, respectively, no imaginary
frequencies and one imaginary frequency, the latter corresponding to rotation about the
C/C bond. Thus the MMFF (correctly) predicts the staggered conformation to be a min-
imum, and the eclipsed to be a transition state connecting successive minima along the
torsional reaction coordinate. Again, calculations on cyclohexane conformations with
the MMFF correctly give the boat an imaginary frequency corresponding to a twisting
motion leading to the twist conformation, which latter has no imaginary frequencies
(Fig. 3.10). Although helpful for characterizing conformations, particularly hydrocar-
bon conformations, MM is less appropriate for species in which bonds are being formed
and broken. For example, the symmetrical species in the
reaction, with equivalent C/F partial bonds, is incorrectly characterized by the MMFF
as a minimum rather than a transition state, and the C/C bonds are calculated to be
1.289 Å long, cf. the value of ca. 1.8 Å from methods known to be trustworthy for
transition states.

(2) Obtaining zero-point energies (ZPEs). ZPEs are essentially the sum of the
energies of each normal-mode vibration. They are added to the raw energies (the frozen-
nuclei energies, corresponding to the stationary points on a Born-Oppenheimer surface;
section 2.3) in accurate calculations of relative energies using ab initio (chapter 5) or
DFT (chapter 7) methods. However, the ZPEs used for those corrections are usually
obtained from an ab initio or DFT calculation.

(3) Infrared spectra. The ability to calculate the energies and relative intensi-
ties of molecular vibrations amounts to being able to calculate infrared spectra. MM as
such cannot calculate the intensities of vibrational modes, since these involve changes
in dipole moments (section 5.5.3), and dipole moment is related to electron distribution,
a concept that lies outside MM. However, approximate intensities can be calculated by
assigning dipole moments to bonds or charges to atoms, and such methods have been
implemented in MM programs [31], although MM programs that calculate intensities
are not yet widely used. Figures 3.14–3.17 compare the IR spectra of acetone, benzene,
dichloromethane and methanol, calculated with the MM3 program6 with the experi-
mental spectra, and with spectra calculated by the ab initio method;
the data for Figs 3.14–3.17 are in Tables 3.5–3.8 (in chapters 5–7 spectra for these four
molecules, calculated by ab initio, SE, and density functional methods, are also given).
The MP2 spectra generally match experiment better than the MM3, although the latter
method furnishes a rapid way of obtaining approximate IR spectra. For a series of related
compounds, MM3 might be a reasonable way to quickly investigate trends in frequen-
cies and intensities. Extensive surveys of MMFF and MM4 frequencies showed that
MMFF root-mean-square errors are ca. and MM4 errors [5b].

6 The MM3 frequencies and intensities were kindly provided by Dr. J. -H. Lii of the Department of
Chemistry of the University of Georgia, Athens, Georgia, USA.



70 Computational Chemistry



Molecular Mechanics 71



72 Computational Chemistry

3.6 STRENGTHS AND WEAKNESSES OF MM

3.6.1 Strengths
Molecular mechanics is fast, as shown by the times for optimization of in
section 3.3. The speed of MM is not always at the expense of accuracy: for the kinds
of molecules for which it has been parameterized, it can rival or surpass experiment in
the reliability of its results (sections 3.3 and 3.4). MM is undemanding in its hardware
requirements: except perhaps for work on large biopolymers, MM calculations on
moderately well-equipped personal computers are quite practical. The characteristics
of speed, (frequent) accuracy and modest computer requirements have given MM a place
in many modelling programs.

Because of its speed and the availability of parameters for almost all the elements
(section 3.3), MM – even when it does not provide very accurate geometries – can
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supply reasonably good input geometries for SE, ab initio or density functional cal-
culations, and this is one of its main applications. The fairly recent ability of MM
programs to calculate IR spectra with some accuracy [16,32] may presage an impor-
tant application, since frequency calculation by quantum mechanical methods usually
requires considerably more time than geometry optimization). Note that MM frequen-
cies should be calculated using the MM geometry – unfortunately, MM cannot be used
as a shortcut to obtaining frequencies for a species optimized by a quantum mechanical
calculation (ab initio, density functional or SE), since frequencies must be calculated
using the same method used for the geometry optimization (section 2.5).

3.6.2 Weaknesses
The possible pitfalls in using MM are discussed by Lipkowitz [33]. The weaknesses
of MM stem from the fact that it ignores electrons. The philosophy behind MM is to
think of a molecule as a collection of atoms subject to forces and to use any practical
mathematical treatment of these forces to express the energy in terms of the geometric
parameters. By parameterization MM can “calculate” electronic properties; for exam-
ple, using bond dipoles it can find a dipole moment for a molecule, and using values
that have been calculated for various atom types by quantum mechanics it can assign
charges to atoms. However, such results are obtained purely by analogy, and their reli-
ability can be negated by unexpected electronic factors to which MM is oblivious. MM
cannot provide information about the shapes and energies of molecular orbitals nor
about related phenomena such as electronic spectra.

Because of the severely empirical nature of MM, interpreting MM parameters in
terms of traditional physical concepts is dangerous; for example, the bond-stretching
and angle-bending parameters cannot rigorously be identified with spectroscopic force
constants [33]; Lipkowitz suggests that the MM proportionality constants (section 3.2.1)
be called potential constants. Other dangers in using MM are the following:

(1) Using an inappropriate forcefield. A field parameterized for one class of
compounds is not likely to perform well for other classes.

(2) Transferring parameters form one forcefield to another. This is usually not valid.
(3) Optimizing to a stationary point that may not really be a minimum (it could

be a “maximum”, a transition state), and certainly may not be a global minimum
(chapter 2). If there is reason to be concerned that a structure is not a minimum, alter
it slightly by bond rotation and reoptimize; a transition state should slide down toward
a nearby minimum (e.g. eclipsed ethane altered slightly from the geometry and
optimized goes to the staggered conformer (Fig. 3.9).

(4) Being taken in by vendor hype. MM programs, more so than SE ones and unlike
ab initio or DFT programs, are ruled by empirical factors (the form of the forcefield and
the parameters used in it), and vendors do not usually caution buyers about potential
deficiencies.

(5) Ignoring solvent and nearby ions. For polar molecules using the in vacuo structure
can lead to quite wrong geometries and energies. This is particularly important for
biomolecules. One way to mitigate this problem is to explicitly add solvent molecules
or ions to the system, which can considerably increase the time fora calculation. Another
might be to subject various plausible in vacuo-optimized conformations to single-point
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(no geometry optimization) calculations that simulate the effect of solvent and take the
resulting energies as being more reliable than the in vacua ones.

(6) Lack of caution about comparing energies calculated with MM. The method cal-
culates the energy of a molecule relative to a hypothetical strainless idealization of the
molecule. Using MM to calculate the relative energy of two isomers by comparing their
strain energies (the normal MM energies) is dangerous because the two strain energies
are not necessarily relative to the same hypothetical unstrained species (strain energies
are not an unambiguous observable [34]). This is particularly true for functional group

relative enthalpies. For example, the MMFF gives for
strain energies of i.e. relative energies of but the
experimental value is ca. i.e. is much the higher-
energy molecule. On the other hand, the MMFF yields for gauche-butane/anti-butane

sonably close to the experimental value of For chair twist
and boat       cyclohexane, the MMFF strain energies are –14.9, 9.9, and

the estimates of 0,24 and MM programs can be parameterized to give, not
just strain energy, but enthalpies of formation [1f], and the use of these enthalpies should
make possible energy comparisons between isomers of disparate structural kinds.

Although chemists often compare stabilities of isomers using enthalpies, we should
remember that equilibria are actually determined by free energies. The lowest-enthalpy
isomer is not necessarily the one of lowest free energy: a higher-enthalpy molecule
may have more vibrational and torsional motion (it may be springier and floppier)
and thus possess more entropy and hence have a lower free energy. Free energy has an
enthalpy and an entropy component, and to calculate the latter, one needs the vibrational
frequencies. Programs that calculate frequencies will usually also provide entropies,
and with parameterization for enthalpy this can permit the calculation of free energies.
Note that the species of lowest free energy is not always the major one present: one
low-energy conformation could be outnumbered by one hundred of higher energy, each
demanding its share of the Boltzmann pie.

(7) Assuming that the major conformation determines theproduct. In fact, in a mobile
equilibrium the product ratio depends on the relative reactivities, not relative amounts,
of the conformers (the Curtin–Hammett principle [35]).

(8) Failure to exercise judgement: small energy differences (say up to
mean nothing in many cases. The excellent energy results referred

to in section 3.3 can be expected only for families of molecules (usually small to
medium-sized) for which the forcefield has been parameterized.

Many of the above dangers can be avoided simply by performing test calculations on
systems for which the results are known (experimentally, or “known” from high-level
quantum mechanical calculations). Such a reality check can have salutary effects on
the reliability of one’s results, and not only with reference to MM.

isomers, like and which have
quite different atom types. For isomers consisting of the same kinds of atoms (alkanes
cf. alkanes, say), and especially for conformational isomers and E/Z isomers (geometric
isomers), a good MM forcefield should give strain energies which reasonably represent

strain energies of i.e. relative energies of rea-

i.e. relative energies of 0, 24.8 and cf. the experimental
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3.7 SUMMARY OF CHAPTER 3

This chapter explains the basic principles of MM, which rests on a view of molecules
as balls held together by springs. MM began in the 1940s with attempts to analyze the
rates of racemization of biphenyls and reactions.

The potential energy of a molecule can be written as the sum of terms involving
bond stretching, angle bending, dihedral angles and nonbonded interactions. Giving
these terms explicit mathematical forms constitutes devising a forcefield, and giving
actual numbers to the constants in the forcefield constitutes parameterizing the field.
An example is given of the devising and parameterization of an MM forcefield.

MM is used mainly to calculate geometries and energies for small to medium-sized
molecules. Such calculations are fast and can be very accurate, provided that the
forcefield has been carefully parameterized for the types of molecules under study.
Calculations on biomolecules is a very important application of MM; the pharmaceuti-
cal industry designs new drugs with the aid ofMM: for example, examining how various
candidate drugs fit into the active sites of biomolecules (docking) and the related aspect
of QSAR are of major importance. MM is of some limited use in calculating the geome-
tries and energies of transition states. Organic synthesis now makes considerable use of
MM, which enables chemists to estimate which products are likely to be favored and to
devise more realistic routes to a target molecule than was hitherto possible. In molecular
dynamics MM is used to generate the forces acting on molecules and hence to calculate
their motions, and in Monte Carlo simulations MM is used to calculate the energies of
the many randomly generated states.

MM is fast, it can be accurate, it is undemanding of computer power, and it provides
reasonable starting geometries for quantum mechanical calculations. MM ignores elec-
trons, and so can provide parameters like dipole moment only by analogy. One must
be cautious about the applicability of MM parameters to the problem at hand. Station-
ary points from MM, even when they are relative minima, may not be global minima.
Ignoring solvent effects can give erroneous results for polar molecules. MM gives strain
energies, the difference of which for structurally similar isomers represent enthalpy dif-
ferences; parameterization to give enthalpies of formation is possible. Strictly speaking,
relative amounts of isomers depend on free energy differences. The major conformation
(even when correctly identified) is not necessarily the reactive one.
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EASIER QUESTIONS

1.
2.
3.
4.
5.

6.

7.
8.
9.

10.

What is the basic idea behind MM?
What is a forcefield?
What are the two basic approaches to parameterizing a forcefield?
Why does parameterizing a forcefield for transition states present special problems?
What is the main advantage of MM, generally speaking, over the other methods of
calculating molecular geometries and relative energies?
Why is it not valid in all cases to obtain the relative energies of isomers by comparing
their MM strain energies?
What class of problems cannot be dealt with by MM?
Give four applications for MM. Which is the most widely used?
MM can calculate the values of vibrational frequencies, but without
“outside assistance” it can’t calculate their intensities. Explain.
Why is it not valid to calculate a geometry by some slower (e.g. ab initio) method,
then use that geometry for a fast MM frequency calculation?

HARDER QUESTIONS

1.

2.

3.

4.

5.

6.

7.

One big advantage of MM over other methods of calculating geometries and rel-
ative energies is speed. Does it seem likely that continued increases in computer
speed could make MM obsolete?
Do you think it is possible (in practical terms? In principle?) to develop a forcefield
that would accurately calculate the geometry of any kind of molecule?
What advantages or disadvantages are there to parameterizing a forcefield with the
results of “high-level” calculations rather than the results of experiments?
Would you dispute the suggestion that no matter how accurate a set of MM results
might be, they cannot provide insight into the factors affecting a chemical problem,
because the “ball and springs” model is unphysical?
Would you agree that hydrogen bonds (e.g. the attraction between two water
molecules) might be modelled in MM as weak covalent bonds, as strong van der
Waals or dispersion forces, or as electrostatic attractions? Is any one of these three
approaches to be preferred in principle?
Replacing small groups by “pseudoatoms” in a forcefield (e.g. by an
“atom” about as big) obviously speeds up calculations. What disadvantages might
accompany this simplification?
Why might the development of an accurate and versatile forcefield for inorganic
molecules be more of a challenge than for organic molecules?
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8.

9.

10.

What factor(s) might cause an electronic structure calculation (e.g. ab initio or
DFT) to give geometries or relative energies very different from those obtained
from MM?
Compile a list of molecular characteristics/properties that cannot be calculated
purely by MM.
How many parameters do you think a reasonable forcefield would need to minimize
the geometry of 1,2-dichloroethane?




