Charges formelles

Pour compléter un diagramme de Lewis, on calcule les charges formelles (C_f) de chaque atome. La somme des charges formelles est toujours égale à la charge globale (z) de l'édifice.

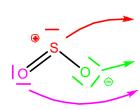
Une règle simple permet leur calcul à priori :

$$C_f = N_v - N_\ell - 2 \times D_\ell$$

 N_{ν} = nombre d'électrons de la couche de valence de l'atome considéré dans son état fondamental isolé.

 N_{ℓ} = nombre de liaisons formées par l'atome considéré dans la molécule étudiée.

 D_{ℓ} = nombre de doublets libres pour l'atome considéré dans la molécule étudiée.


Exemples

O: $1s^2 2s^2 2p^4$; 6 électrons de valence; $C_f = 6 - 2 - 2 \times 2 = 0$; Dans une molécule l'oxygène divalent est neutre.


O: $1s^2 2s^2 2p^4$; 6 électrons de valence; $C_f = 6 - 1 - 2 \times 3 = -1$; Dans une molécule l'oxygène monovalent porte une charge formelle -1.

S: $1s^2 2s^2 2p^6 3s^2 3p^4$; 6 électrons de valence; $C_f = 6 - 3 - 2 \times 1 = +1$

O : $1s^2 2s^2 2p^4$; 6 électrons de valence ; $C_f = 6 - 1 - 2 \times 3 = -1$

O: $1s^2 2s^2 2p^4$; 6 électrons de valence; $C_f = 6 - 2 - 2 \times 2 = 0$

S: $1s^2 2s^2 2p^6 3s^2 3p^4$; 6 électrons de valence; $C_f = 6 - 6 - 2 \times 0 = 0$

O : $1s^2 2s^2 2p^4$; 6 électrons de valence ; $C_f = 6 - 2 - 2 \times 2 = 0$

O: $1s^2 2s^2 2p^4$; 6 électrons de valence; $C_f = 6 - 1 - 2 \times 3 = -1$

O : $1s^2 2s^2 2p^4$; 6 électrons de valence ; $C_f = 6 - 1 - 2 \times 3 = -1$

O : $1s^2 2s^2 2p^4$; 6 électrons de valence ; $C_f = 6 - 3 - 2 \times 1 = +1$

O: $1s^2 2s^2 2p^4$; 6 électrons de valence; $C_f = 6 - 2 - 2 \times 2 = 0$