# Formation Automatique et Informatique Industrielle

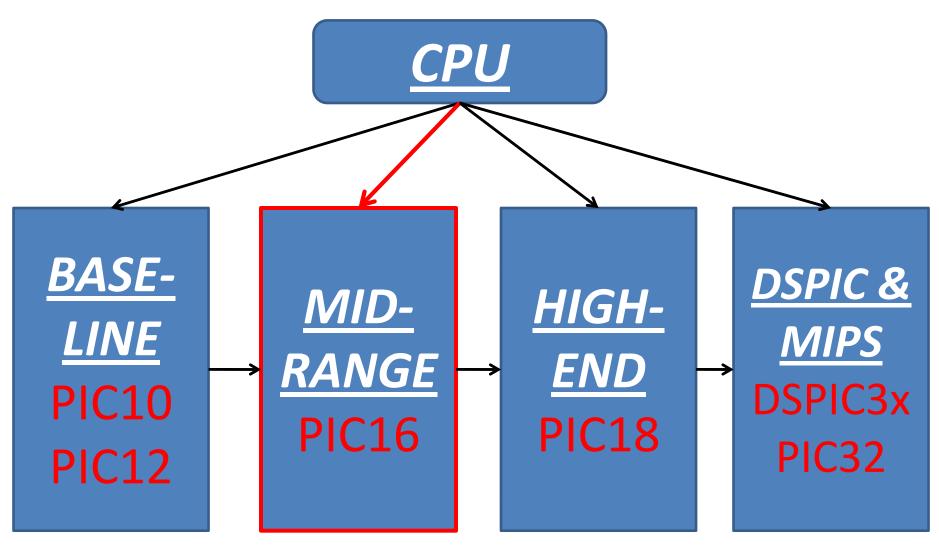
Master 1 S2

Matière: Systèmes Embarqués et Systèmes

Temps Réel SE-STR

Par: ATOUI Hamza

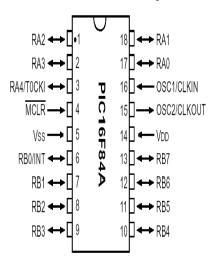
## Plan du cours –partie 1-


- MICROCHIP TECHNOLOGY.
- Les  $\mu$ P et  $\mu$ C de MICROCHIP.
- La série 16Fxxx.
- Le μP MID-RANGE de la série 16Fxxx.
  - Architecture interne.
  - Fréquence d'horloge, cycle machine et pipeline de MID-RANGE.
  - Modes d'adressage.
  - Organisation de l'espace DATA/IO.

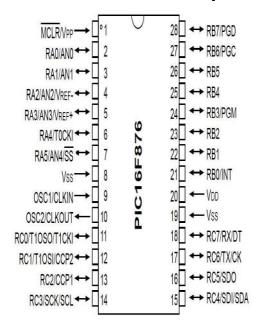
### MICROCHIP TECHNOLOGY

- MICROCHIP TECHNOLOGY, ou tout simplement MICROCHIP, est un fabricant de semi-conducteurs fondé en 1989, à partir d'une division de General Instrument.
- MICROCHIP produit les microcontrôleurs PIC, des composants radiofréquences, des composants de gestion des batteries, des interfaces, des composants analogiques, etc.

• Source : Wikipédia

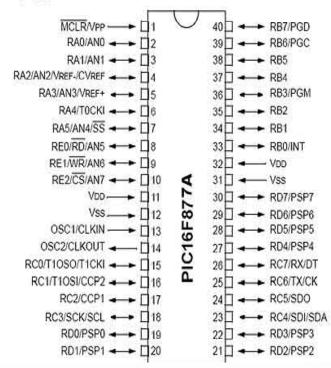

# Les μP et μC de MICROCHIP




Pourquoi cette évolution?

### La série 16Fxxx

#### PIC16F84A 18-pins

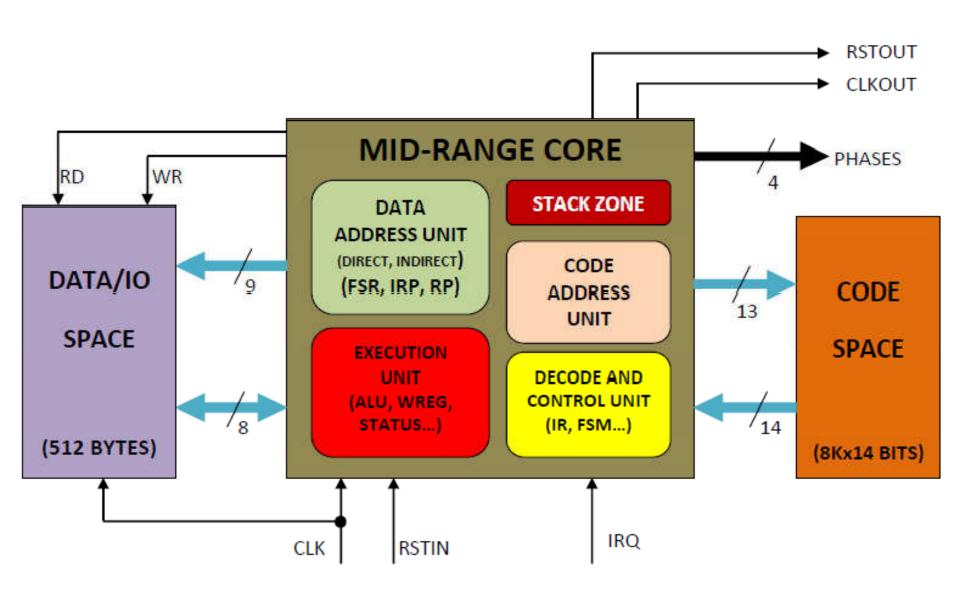



### PIC16F876A 28-pins

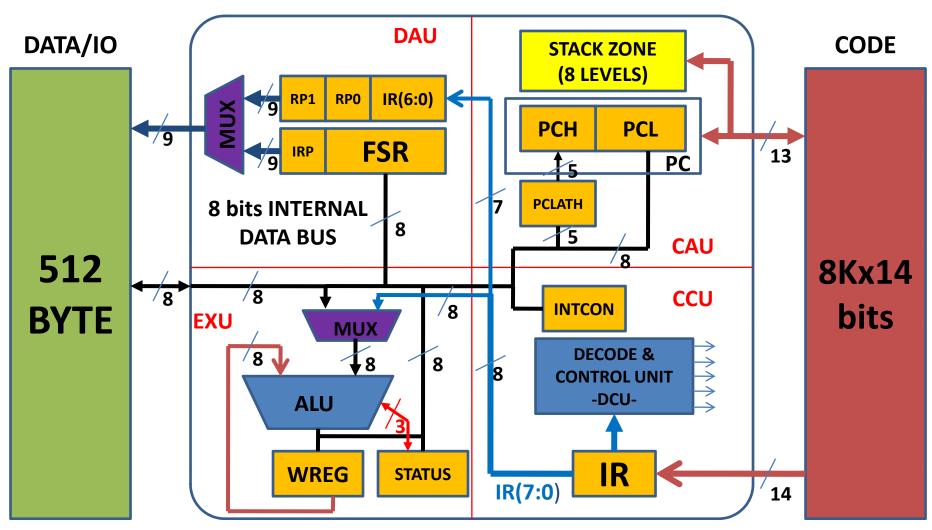




### PDIP PIC16F877A 40-pins







### La série 16Fxxx

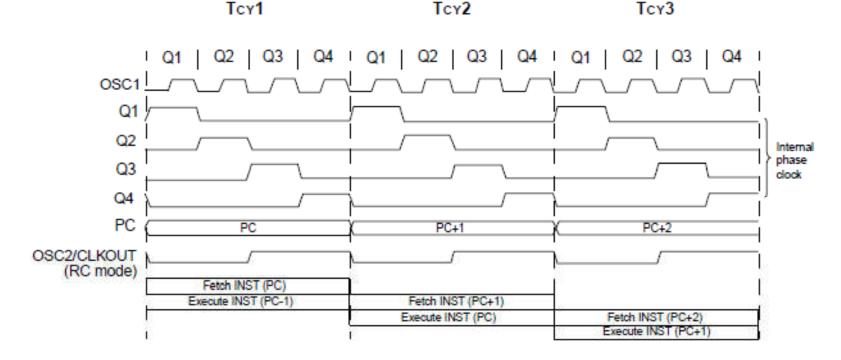
- Les différences entre ces μC sont :
  - Le nombre de pattes, donc nombre des ports I/O.
  - Le nombre de pattes analogiques/Numériques.
  - La taille des espaces DATA, CODE et EEPROM.
  - Le nombre de périphériques (ADC, UART, TIMERS...).
- Mais, tous sont équipés par le MID-RANGE comme microprocesseur (CPU).

### **Architecture interne**



### **Architecture interne**



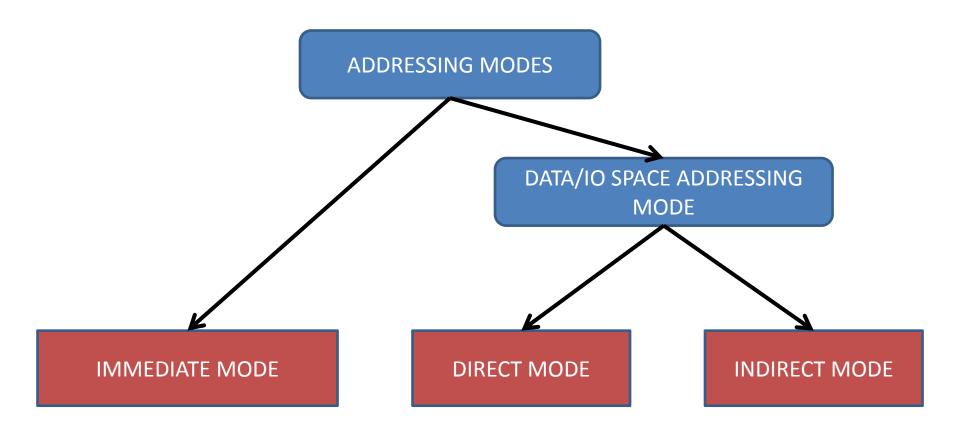

MID-RANGE μP

### **Architecture interne**

- EXECUTION UNIT (EXU) : est composée de registre WREG, l'ALU et le registre STATUS.
- DATA ADDRESSING UNIT (DAU) : est composée de registre FSR plus 3 bits RPO, RP1 et IRP.
- CODE ADDRESSING UNIT (CAU): est constituée d'une pile de 8 niveaux (<u>STACK ZONE</u>), le registre compteur ordinal (PC), et le registre PCLATH.
- COMMAND & CONTROL UNIT (CCU): est formée de registre d'instruction (IR), de registre d'interruption (INTCON) et l'unité la plus compliquée dans notre μP (DCU), cette dernière génère les différents signaux pour exécuter une instruction.

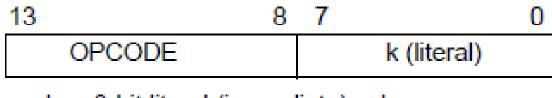
# Fréquence d'horloge, cycle machine et pipeline de MID-RANGE

 La fréquence de l'horloge d'entrée du MID-RANGE est divisée par 4 pour générer 4 phases sont (Q1,Q2,Q3,Q4), donc le cycle machine est 4 fois plus long que la période d'horloge.




# Fréquence d'horloge, cycle machine et pipeline de MID-RANGE

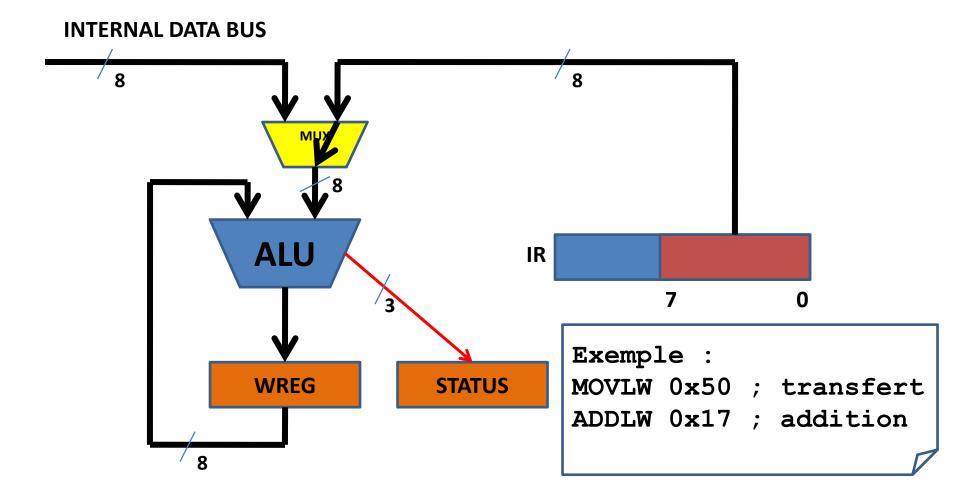
- D'après la figure précédente le MID-RANGE utilise un <u>pipeline</u> à 2 étages (FETCH/EXECUTION ⇔recherche de l'instruction suivante/exécution de l'instruction en cours).
- Dans l'étage FETCH : le MID-RANGE incrémente le PC à la fin de Q4.
- Dans l'étage EXECUTION : le MID-RANGE fait 4 phases:
  - Q1 : pour décoder d'instruction.
  - Q2: pour lire les opérandes (case mémoire ou constante) s'il existe.
  - Q3: pour réaliser l'opération demander dans l'instruction.
  - Q4 : pour ranger le résultat vers la destination (case mémoire ou WREG).


# Modes d'adressage

• Le MID-RANGE utilise 3 modes d'adressage sont :

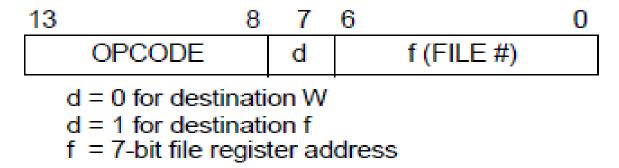


### IMMEDIAT MODE


- Ce mode fait la manipulation des valeurs immédiates avec le WREG (transfert, opération A/L)
  - WREG ← K (constante sur 8bits)
  - WREG ← K (op) WREG (op : opération A/L).
  - Le format de l'instruction est le suivant:



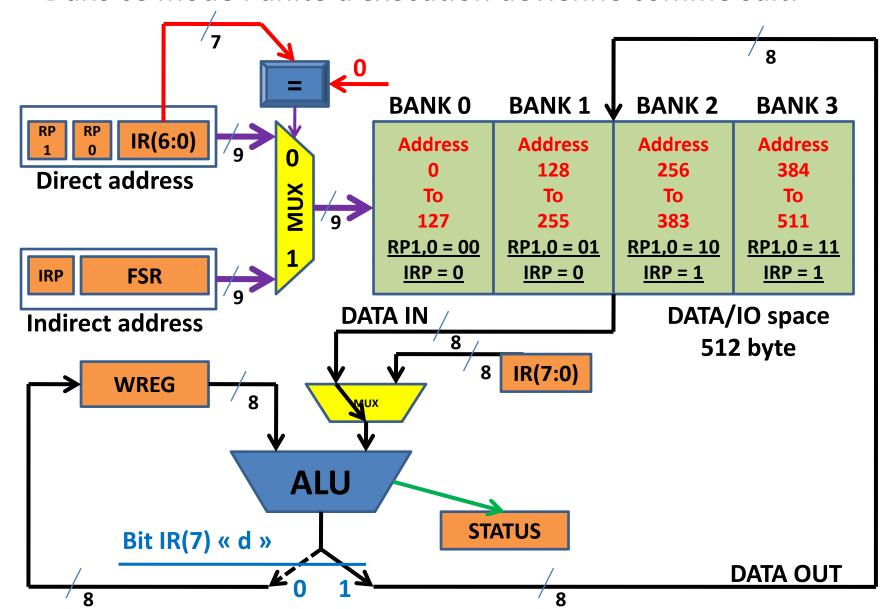
k = 8-bit literal (immediate) value


### IMMEDIAT MODE

• L'unité d'exécution devienne comme suit:



## DATA/IO SPACE ADDRESSING MODE


- Ce mode en général fait la manipulation de l'espace DATA/IO avec le WREG (transfert, opération A/L)
- Ce mode comprend le mode direct et le mode indirect par le registre FSR.
- Le format de l'instruction pour ces modes est:



- Vous remarquez que l'adresse d'une case mémoire est sur 7 bits, et notre unité d'adressage DATA/IO du MID-RANGE sortir 9 bits, donc <u>comment faire pour les 2</u> <u>derniers bits???</u> (notre instruction présente une limite d'accès de 128 octets seulement )
- Et aussi, on a le même format d'instruction pour les deux modes, donc <u>comment</u> <u>différencier entre ces deux modes???</u>

## DATA/IO SPACE ADDRESSING MODE

Dans ce mode l'unité d'exécution devienne comme suit:



## DATA/IO SPACE ADDRESSING MODE

- D'après la figure précédente :
  - Dans le mode d'adressage direct, on peut considérer le DATA/IO SPACE comme une barrette de RAM à 4 circuits intégrés, dont chaque circuit a une taille de 128 octets.
  - Dans le mode d'adressage indirect, on peut considérer le DATA/IO SPACE comme une barrette de RAM à 2 circuits intégrés, dont chaque circuit a une taille de 256 octets.
  - Le mécanisme de pointage vers le DATA/IO SPACE est :

```
IF IR(6:0) = « 0000000 » THEN

MEM ADDRESS ← [IRP:FSR]; -INDIRECT-

ELSE

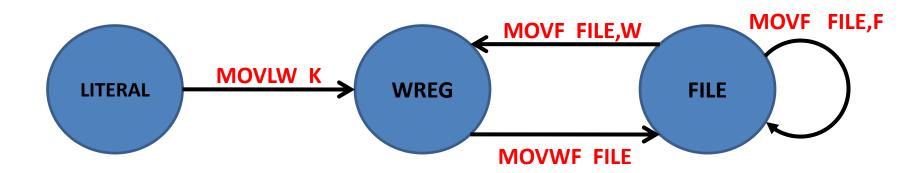
MEM ADDRESS ← [RP1:RP0:IR(6:0)]; -DIRECT-

END IF
```

## Exemple

 Transférer le contenu de la case mémoire d'adresse 250 vers le WREG par le mode direct et indirect.

# Solution de l'exemple


#### **DIRECT MODE**

- L'adresse 250 existe dans la BANK1
- $250 \rightarrow 011111010$ .
- RP(1,0)  $\leftarrow$  01.
- ADR FILE ← 1111010.
- W ← MEM(0x7A)

#### **INDIRECT MODE**

- L'adresse 250 existe dans la première partie 256 octets.
- 250 **→** 011111010
- IRP  $\leftarrow \boxed{0}$ .
- FSR ← 11111010.
- W ← MEM(0x00)

# GRAPHE D'ETAT DES MODES D'ADRESSAGES AU MOMENT DU TRANSFERT DE DONNEES



# Organisation de l'espace DATA/IO

| <u> </u> |          |     |           |    |        |        |       |        |          |  |
|----------|----------|-----|-----------|----|--------|--------|-------|--------|----------|--|
| IRP      | 0        |     | 0         | 1  |        |        | 1     |        |          |  |
| RP1,0    | 00       |     | 01        | 10 |        |        | 11    |        |          |  |
| 0x00     | 00 INDF  | 0x0 | x080 INDF |    | 0x100  | INDF 0 |       | 180    | 180 INDF |  |
|          |          |     |           |    |        |        |       |        |          |  |
| 0x00     | )2 PCL   | 0x0 | 82 PCL    |    | 0x102  | PCL    | 0x182 |        | PCL      |  |
| 0x00     | STATUS   | 0x0 | 83 STATUS |    | 0x103  | STATUS | 0x183 |        | STATUS   |  |
| 0x00     | )4 FSR   | 0x0 | 84 FSR    |    | 0x104  | FSR    | Ох    | 184    | FSR      |  |
|          |          |     |           |    |        |        |       |        |          |  |
|          |          |     |           |    |        |        |       |        |          |  |
| 0x00     | PCLATH   | 0x0 | 8A PCLATH |    | 0x10A  | PCLATH | Ох    | 18A    | PCLATH   |  |
| 0x00     | B INTCON | 0x0 | 8B INTCON |    | 0x10B  | INTCON | Ох    | 18B    | INTCON   |  |
|          |          |     |           |    |        |        |       |        |          |  |
|          |          |     |           |    |        |        |       |        |          |  |
|          |          |     |           |    |        |        |       |        |          |  |
| 0x07     | 'F       | 0x0 | FF        |    | 0x17F  |        | Ох    | 1FF    |          |  |
|          | BANK 0   |     | BANK 1    |    | BANK 2 |        |       | BANK 3 |          |  |