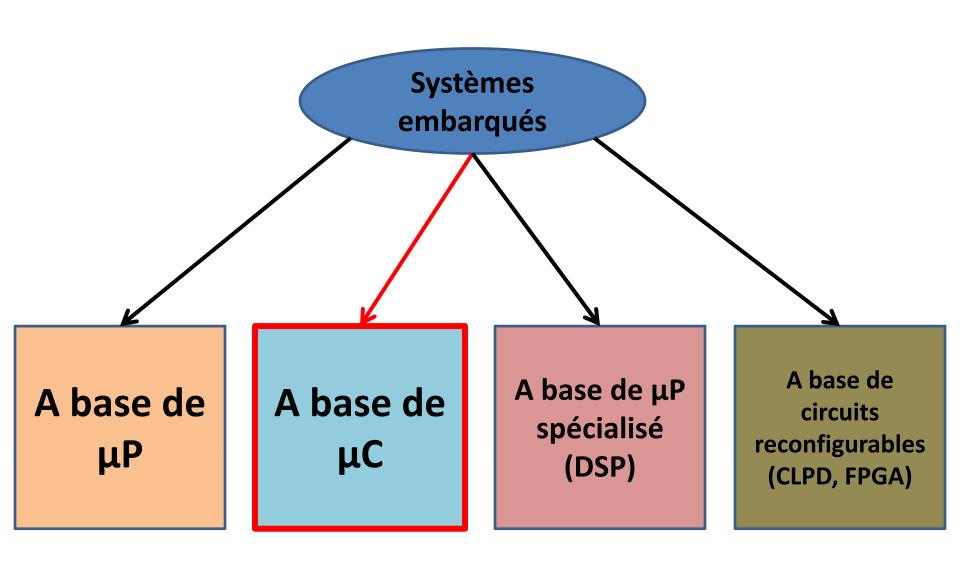
Formation Automatique et Informatique Industrielle

Master 1 S2

Matière: Systèmes Embarqués et Systèmes

Temps Réel SE-STR

Par: ATOUI Hamza

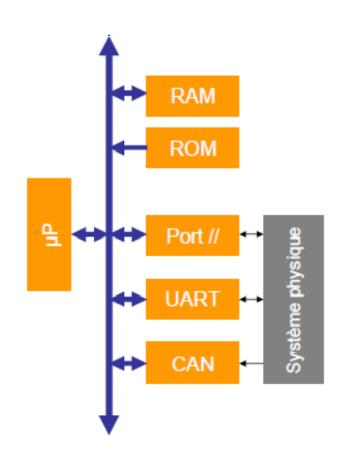

Plan du cours

- Systèmes Embarqués ?
- Types des systèmes embarqués selon l'architecture.
- Les principales contraintes liées au développement des systèmes embarqués.
- Du système à microprocesseur (μP) au Microcontrôleur (μC).
- Les principales caractéristiques des μC.
- Positionnement du problème.
- De la logique combinatoire vers La logique programmée.
 - Circuit de majorité.

Systèmes Embarqués?

- Un système embarqué est le résultat de l'union entre l'électronique et l'informatique pour réaliser un système de fonction ou tâche(s) bien précise comme :
 - Machine à café.
 - Système ABS
 - Télécommande
 - Téléphone portable
 - Imprimante
 - Jeux & gadgets
 - Etc.

Types des systèmes embarqués selon l'architecture

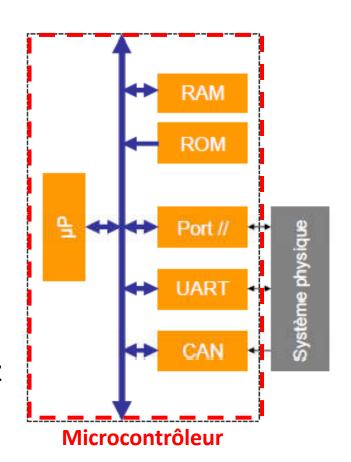


Les principales contraintes liées au développement des systèmes embarqués

- Puissance de calcul (MIPS).
- Taille de mémoire (CODE/DATA).
- Taille de bus (4, 8, 16,... bits).
- Consommation d'énergie/autonomie (mW/MIPS).
- Coût de développement (Soft/Hard).
- La durée de vie du système.
- Sureté de fonctionnent (condition climatiques, position géographique).

Du système à microprocesseur (μP) au Microcontrôleur (μC)

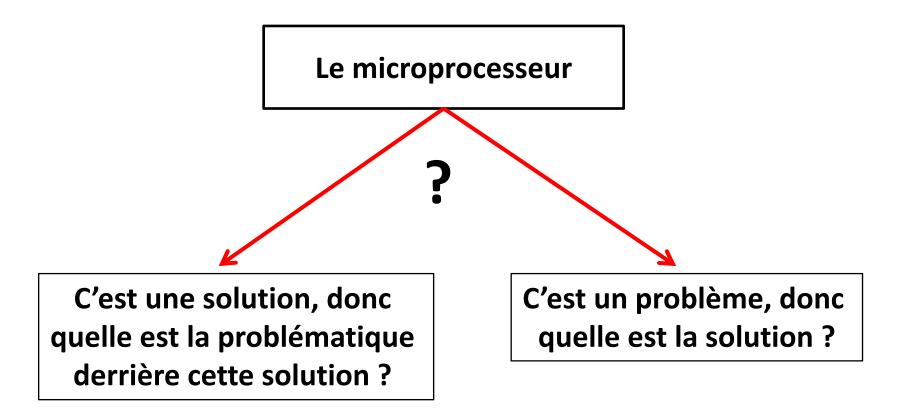
- Un système à μP est composé de
 - Un μ P (CPU).
 - Une mémoire CODE et DATA (ROM/RAM).
 - Quelques périphériques entrées-sorties.
 - Quelques périphériques de fonction précise (UART, USB, TIMER, ADC/DAC, CAN...).



Du système à microprocesseur (μP) au Microcontrôleur (μC)

• En général, les systèmes à μP sont inventés pour résoudre des problèmes de grande complexité, mais comment faire avec les problèmes de moyenne et petite complexité???

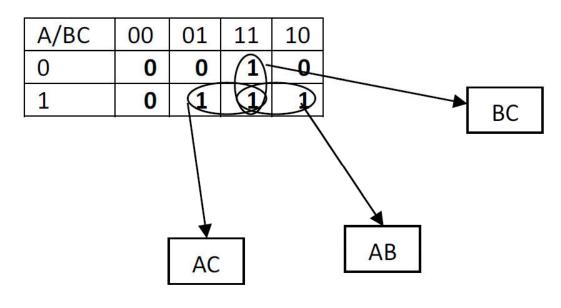
Du système à microprocesseur (μP) au Microcontrôleur (μC)


- La solution de notre problème est de réaliser des systèmes à μP de petite taille intégré dans un seul boîtier, qui s'appel les mono-chip.
- Ce mono-chip est appelé dans l'industrie embarquée par le nom Microcontrôleur (μC).
- Les μC sont des versions compactées des micro-ordinateurs. Ils sont très utiles dans notre vie.
- Les plus célèbres μC sont les PIC chez MICROCHIP, le 8051/52 chez Intel, 68HC11/12 chez Motorola, le AVR chez MICROCHIP/ATMEL, et le MSP430 chez TI.

Les principales caractéristiques des µC

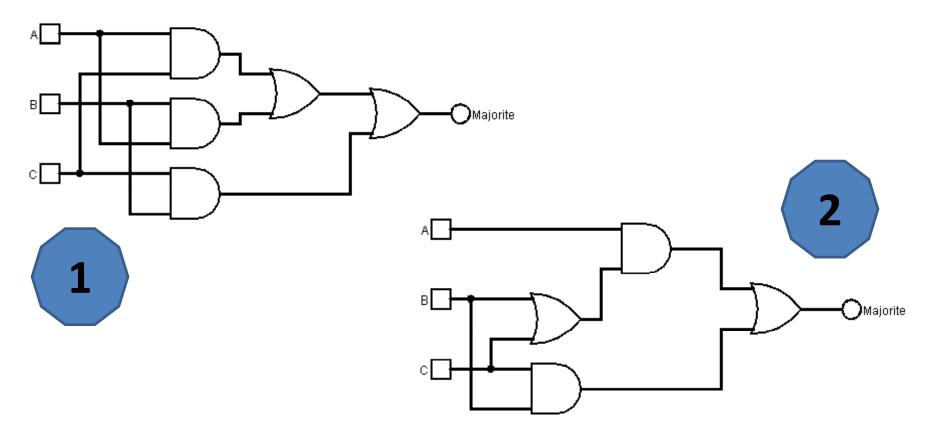
- Quelques ports I/O.
- Plusieurs périphériques de fonction spéciale (ADC, TIMER, USB, UART...).
- Une mémoire CODE de faible taille en général de type FLASH (512-256Ko).
- Une mémoire DATA de faible taille en général de type SRAM (32-32Ko).
- Une mémoire de type EEPROM pour sauvegarder des données en cas de coupure du courant (32-256 octet).
- Un processeur de 8-16 bits de faible puissance en calcul, ne dépasse pas quelques dizaine de MIPS.
- Une faible consommation électrique (standby/en marche).

Positionnement du problème

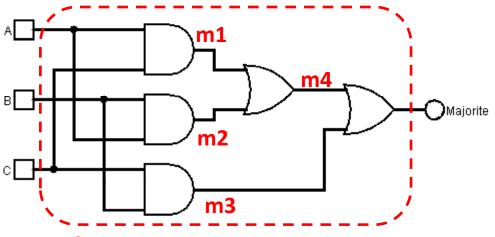


- Exemple : réalisation de circuit combinatoire qui fait le calcul de la fonction majorité de 3 bits (3 entrées).
- Pour résoudre se genre du problème, il faut passer par la table de vérité.

• Table de vérité de la fonction majorité :


Α	В	С	Majorité
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 L'étape suivante consiste à simplifier la fonction majorité par la table de KARNAUGH (K-MAP).


MAJORITE = AC + AB + BC = A(C+B) + BC

 Dernière étape est la réalisation de logigramme :

• La question qui se pose, est ce que on peut réaliser le logigramme de la fonction majorité par une séquence d'opérations élémentaires, l'une après l'autre (Algorithme) ?????

- Absolution, OUI.
- Algorithme de la forme 1 :

0- m1 ← A and C 1- m2 ← A and B 2- m4 ← m1 or m2 3- m3 ← B and C 4- M ← m3 or m4

<u>Bilan:</u>

Variables internes: m1, m2, m3 et m4

Variables d'entrée : A, B et C

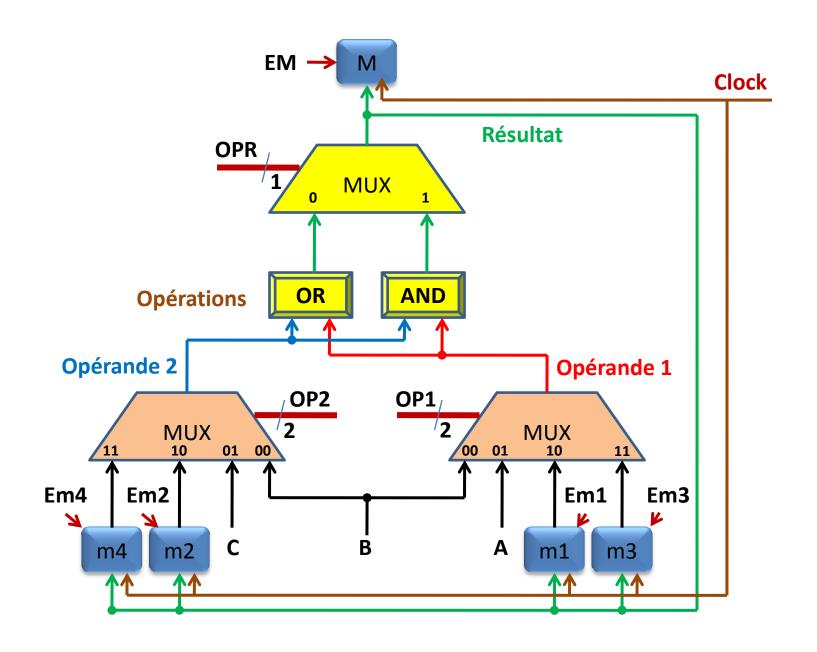
Variables de sortie : M

Nombre de lignes dans l'algo : 5

- Vous remarquez que chaque ligne de l'algorithme est composé par les éléments suivants :
 - 1. 2 opérandes (source).
 - 2. Une opération élémentaire (OR et AND).
 - 3. Résultat (destination).
- Donc, proposer un chemin de données qui partage les éléments au-dessus sur toutes les lignes de l'algorithme.

- Opérande 1 : est partagé entre [A, B, m1, m3].
- Opérande 2 : est partagé entre [C, B, m2, m4].
- Opération : est partagé entre [and, or].
- Résultat : est partagé entre [m1, m2, m3, m4, M].

```
0- m1 ← A and C

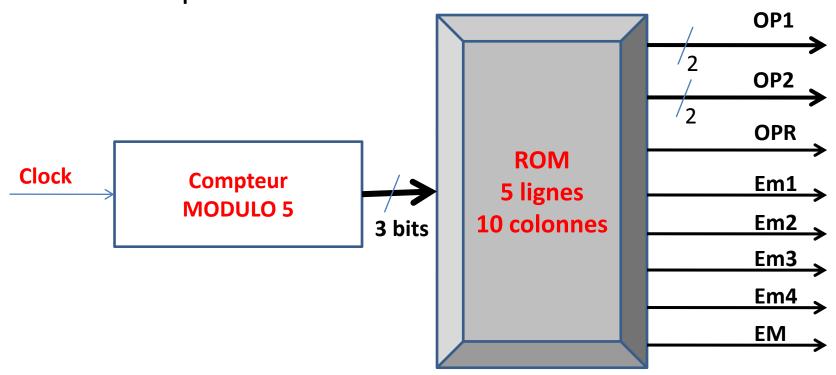

1- m2 ← A and B

2- m4 ← m1 or m2

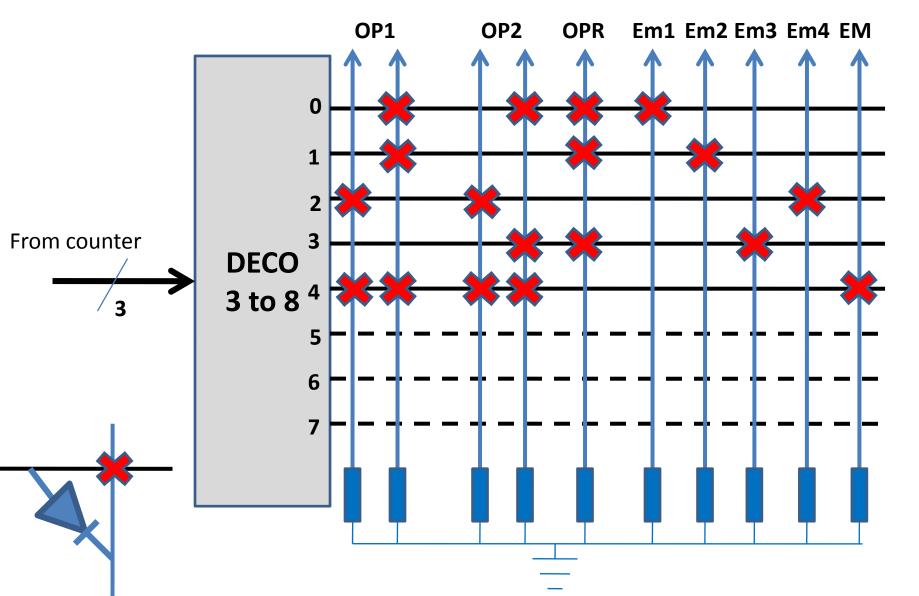
3- m3 ← B and C

4- M ← m3 or m4
```

- m1, m2, m3, m4 et M se sont des bascules (des cases mémoires de 1 bit chacune). En plus se sont des destinations dans une ligne bien précise; donc, ces bascules nécessites un signal de commande pour autoriser l'écriture.
- L'élément électronique qui partage une ligne sur plusieurs lignes est le MUX.
- Finalement : le chemin de données est un ensemble de bascules avec signal de commande et des MUXs.
 - Il reste de réaliser !!!???


- Notre DATA-PATH contient un ensemble de signaux à commandé [OP1, OP2, OPR, Em1, Em2, Em3, Em4, EM].
- L'activation des signaux de commande se fait sur la lumière de l'algorithme.
- Donc, on dessine le tableau de commandes, dont chaque ligne présente une opération de l'algorithme et les colonnes sont les signaux à commandé.
- La taille de tableau de commandes = Nombre de ligne dans l'algorithme * Nombre de signaux à commandé.

• Tableau de commandes :


Ligne 0	Opération	Signaux de commandes									
		OI	P1	OP	2	OPR	Em1	Em2	Em3	Em4	EM
0	m1 ← A and C	0	1	0	1	1	1	0	0	0	0
1	m2 ← A and B	0	1	0	0	1	0	1	0	0	0
2	m4 ← m1 or m2	1	0	1	0	0	0	0	0	1	0
3	m3 ← B and C	0	0	0	1	1	0	0	1	0	0
4	M ← m3 or m4	1	1	1	1	0	0	0	0	0	1

- La logique d'activation des signaux de commandes est appelée le séquenceur.
- Sur l'axe pratique notre séquenceur est la réalisation du tableau de commandes.
- A votre avis mes chers étudiants, comment réaliser ???

- Tout simplement par un compteur modulo 5 avec un circuit ROM à base de décodeur et réseau de diodes.
- La figure suivante présente la synoptique générale de notre séquenceur.

• Réalisation de la ROM :

 En conclusion la logique programmée de la fonction Majorité est un union entre un chemin de données (DATA-PATH) et un séquenceur cadencé par une horloge (Clock).